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ABSTRACT

Learning fine-grained embeddings is essential for extending the generalizability
of models pre-trained on “coarse” labels (e.g., animals). It is crucial to fields for
which fine-grained labeling (e.g., breeds of animals) is expensive, but fine-grained
prediction is desirable, such as medicine. The dilemma necessitates adaptation of
a “coarsely” pre-trained model to new tasks with a few “finer-grained” training la-
bels. However, coarsely supervised pre-training tends to suppress intra-class vari-
ation, which is vital for cross-granularity adaptation. In this paper, we develop a
training framework underlain by a novel superclass-conditional Gaussian mixture
model (SCGM). SCGM imitates the generative process of samples from hierar-
chies of classes through latent variable modeling of the fine-grained subclasses.
The framework is agnostic to the encoders and only adds a few distribution re-
lated parameters, thus is efficient, and flexible to different domains. The model
parameters are learned end-to-end by maximum-likelihood estimation via a princi-
pled Expectation-Maximization algorithm. Extensive experiments on benchmark
datasets and a real-life medical dataset indicate the effectiveness of our method.

1 INTRODUCTION

Training deep models with sufficient generalizability is of fundamental importance, which demands
immense training data with fine-grained annotations (Krizhevsky et al., 2012; Brown et al., 2020). In
many fields, however, data labeling requires domain-specific knowledge, such as medicine (Sohoni
et al., 2020), thus is prohibitive, and infeasible to be exhaustive. In this case, data for model training
may only be “coarsely” labeled, while later the model is tested on a finer-grained classification task
(Bukchin et al., 2021). For example, consider an event prediction task for dialysis patients (Inaguma
et al., 2019). Hemodialysis is a major renal replacement therapy for patients with end-stage renal
failure. These patients have to take hemodialysis thrice a week, each lasts for 4-5 hours. During the
treatment, unexpected events, such as muscle cramp, perspiration, and dizziness, may happen as a
result of lowering blood pressure, which need intensive medical care, thus should always be avoided.
It is therefore an important medical issue to predict such events before an initiation of hemodialysis.
In this task, binary labels, which mark the incidence of an event, can be collected. In contrast, finer-
grained labels that annotate different subtypes of events are seldom recorded. Since distinguishing
different subtypes facilitates precise diagnoses, and helps physicians assess the risk for deciding
whether to perform a hemodialysis (with certain precautions), it is desirable that a model trained
with coarse (binary) labels can perform well on a finer-grained multi-class (subtypes) task.

To fill the gap of granularity between the training and testing scenarios, a practical way is to collect
a few new records for a patient, with their fine-grained annotations. These data constitute a support
set for fine-tuning a pre-trained model to the specific data distribution induced by the annotations of
the target patient, for whom the adapted model is used for future predictions. Although massive fine-
grained annotation is impractical, annotating a few-shot set is feasible. In this work, we are interested
in such a Cross-Granularity Few-Shot (CGFS) learning problem, where a model pre-trained on a set
of coarse classes (denoted as superclasses), needs to adapt to an unseen set of fine-grained target
classes (denoted as subclasses). The target subclasses could be descendants of the superclasses (as in
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the aforementioned example), or could descend from other superclasses that are unobserved during
pre-training. To be practical, the adaptation should only use a few samples from the subclasses.

The CGFS problem is not limited to the above application. It occurs in a model’s lifespan when an
application requires separating some subclasses from the superclasses yet when the training dataset
was created these subclasses were unannotated. For example, it could occur in detecting rare pathol-
ogy or variants using medical images that were coarsely described (Oakden-Rayner et al., 2020), or
personalizing a generic model trained on all historical users to a specific customer (Luo et al., 2020).

Despite its significance, CGFS cannot be trivially solved by regularly training models with coarse
labels, because typical losses for supervised learning aim to maximize inter-class boundaries but ne-
glect intra-class variation. Thus, subclasses may arbitrarily and unevenly spread in every superclass.
Recently, Bukchin et al. (2021) proposed to integrate coarse supervision and contrastive learning
(within superclasses) for solving CGFS. However, their approach cannot be readily used for medi-
cal records which typically contain static profiles and time series (Che et al., 2016). This is due to
the absence of a standard augmentation method for generating constrastive pairs on some data other
than images. Also, since contrastive learning does not model subclass explicitly, their solution could
be suboptimal (as evaluated in Sec. 4). Moreover, as their model was built upon MoCo (He et al.,
2020), and maintains many dictionaries for data sampling, its computational costs are high (Sec. 4).

In this work, we propose a novel Superclass-Conditional Gaussian Mixture model (SCGM) to learn
fine-grained embeddings for the CGFS problem. Our contributions are summarized as follows.

• SCGM is agnostic to the encoder, thus is flexible to different applications. It models the generation
of samples from hierarchical classes, and explicitly represents the unobserved subclasses by latent
variables, without assuming their identities. It dynamically computes a Gaussian mixture for every
sample conditioned on its superclass, and the model forms a hierarchy of Gaussian mixtures.

• SCGM only adds a small overhead to an encoder, for parameterizing its distributions, thus is ef-
ficient. The model parameters are learned end-to-end by maximum likelihood estimation via a
principled Expectation-Maximization (EM) algorithm. We also theoretically linked our loss func-
tion to InfoNCE (Oord et al., 2018), explaining its effectiveness from a contrastive perspective.

• In the experiments, we evaluated SCGM on both benchmark image datasets and a real-life medical
dataset. Since SCGM is compatible with contrastive learning, we also tested it with a momentum
encoder (He et al., 2020). The results demonstrate SCGM on generic encoders has already out-
performed the state-of-the-art (SOTA) baselines, with less computational costs, and it achieves
boosted performance in some cases with momentum contrast integrated.

2 RELATED WORK

To our best knowledge, this is the first work to develop an SCGM model for underlying a framework
that enables tackling CGFS across domains. The most relevant work (Bukchin et al., 2021) combines
superclass-wise contrastive learning with coarse classification for preserving intra-class variation.
Another work (Yang et al., 2021) used a three-step approach that pseudo-labels the embeddings (pre-
trained by coarse classification and batch-wise contrastive learning) by clustering every superclass.
The pseudo-fine-labels were used to re-train the encoder. A similar three-step method (Sohoni et al.,
2020) used a different loss for maximizing the worst-case expected accuracy over the pseudo-labeled
subclasses. As discussed before, the former two methods require non-trivial searches for a suitable
data augmentation method, which may be unavailable for some non-image data. By splitting training
steps, the latter two methods could lead to suboptimal pseudo-labeling, and misleading labels could
confuse the downstream steps. In contrast, our model is end-to-end. It explicitly infers the posterior
of the subclass during coarse training. Moreover, it can achieve better performance without using as
many computational resources as the model of (Bukchin et al., 2021) (as evaluated in Sec. 4).

Learning with coarse supervision. Several works deal with coarse/fine labels from the perspective
of weakly supervised learning (Zhou, 2018) than to tackle the CGFS problem, including training
methods that take advantage of a mixture of either balanced (Ristin et al., 2015; Guo et al., 2018;
Taherkhani et al., 2019) or unbalanced (Hsieh et al., 2019; Liu et al., 2019; Robinson et al., 2020)
coarse and fine labels. Among them, Liu et al. (2019) addressed a few-shot learning problem, but
the model training assumes access to some fine labels and a graph of class hierarchy, which are
unavailable in our problem. Thus it cannot be adapted to solve our problem.

2



Published as a conference paper at ICLR 2022

Few-shot learning. Meta-learning has become a popular idea to handle the few-shot learning prob-
lem, which derives metric-based (Vinyals et al., 2016; Snell et al., 2017) and optimization-based
methods (Finn et al., 2017; Nichol et al., 2018). The idea has been extended to semi-supervised
(Ren et al., 2018), unsupervised (Hsu et al., 2018) and semantics-augmented (Xing et al., 2019) sce-
narios, when labels are scarce. However, none of them explores coarse labels for cross-granularity
learning. Recently, many works observed that learning embeddings on all classes (without episodic
training), followed by simple fine-tuning, is superior to SOTA meta-learning methods (Wang et al.,
2019; Dhillon et al., 2020; Tian et al., 2020). In this work, similar to (Bukchin et al., 2021), we
focus on this paradigm to learn useful embeddings, and do not use meta-learning for pre-training.

Embedding methods. The emerging self-supervised methods, such as contrastive methods (Oord
et al., 2018; Chen et al., 2020a; He et al., 2020), are appealing in their ability to attain comparable
embeddings to the supervised counterparts, and even surpass them when transferring to other tasks
(He et al., 2020; Tian et al., 2020). Beyond instance-wise contrast, recent methods have explored
instance-cluster contrast to boost performance (Caron et al., 2020; Li et al., 2020). In unsupervised
methods, joint embedding and clustering has been found beneficial (Caron et al., 2018; Asano et al.,
2020). Whereas, these methods never exploited coarse supervision. Thus, their embeddings/clusters
do not necessarily reflect intra-class variation, which is important to the CGFS task.

Vanilla Gaussian mixture (GM) model is unfit for the CGFS scenario. A recent work (Manduchi
et al., 2021) extended GM to constrained clustering by conditioning every sample with a prior clus-
tering preference. It is neither supervised by coarse classes nor hierarchically structured. Conven-
tional hierarchical GM is used for hierarchical clustering (Goldberger & Roweis, 2005; Olech &
Paradowski, 2016; Athey et al., 2019) by applying GM agglomeratively or divisively. These unsu-
pervised methods only infer clusters, but do not pre-train embedding models for task adaptation.

3 SUPERCLASS-CONDITIONAL GAUSSIAN MIXTURE MODEL

Firstly, a word about some notations. Let Dtrain = {(xi, yi)}ni=1 be n sample-label training pairs,
where yi ∈ Ysuper = {1, ..., c} is a superclass label. Each xi is associated with a latent (unobserved)
subclass label ŷi ∈ Ysub = {1, ..., s}. Ysub relates to Ysuper by a hierarchical structure, i.e., Ysub can
be partitioned into c disjoint sets Ysub-1, ..., Ysub-c, such that if ŷi ∈ Ysub-j , then yi = j (1 ≤ j ≤ c).
Let fθ be an encoder (i.e., backbone network) that is trained on Dtrain (without knowing Ysub). It
maps xi to a d-dimensional feature fθ(xi). At test time, given a k-shot support set for a subset
Ym

sub ⊆ Ysub of m subclasses, i.e., Dsupport = {(xi, ŷi)|ŷi ∈ Ym
sub}mk

i=1, the task is to train a classifier
C: Rd → Ym

sub with optimal accuracy on a test set of Ym
sub subclasses. In our experiments, we also

explored the case when the subclasses belong to superclasses that are not used for pre-training. As
discussed in Sec. 2, our focus is to train fθ for good embeddings without modifying fθ during the
adaptation–a paradigm with SOTA few-shot performance (Dhillon et al., 2020; Tian et al., 2020).

Formally, let fθ(xi) = vi, our goal is to find the model parameter θ that maximizes the likelihood of
the posterior distribution pθ(yi|vi) on the observed data in Dtrain for classification tasks (Grathwohl
et al., 2019). To model the unobserved subclasses, we associate every vi with a latent variable zi to
indicate to which subclass vi belongs. Suppose there are r possible subclasses, the log-likelihood to
maximize can be rewritten by marginalizing out the latent variables.

ℓ(Dtrain;θ) =
1

n

n∑
i=1

log
[
pθ(yi|vi)

]
=

1

n

n∑
i=1

log

[ r∑
zi=1

p(yi|zi)pθ(zi|vi)

]
(1)

where the distribution pθ(zi|vi) specifies the subclass membership of vi, and p(yi|zi) associates zi
with a subclass partition Ysub-yi . Unlike some previous works (Sohoni et al., 2020), which searched
the number of subclasses for every superclass using a quality metric, we only assume a total number
of r subclasses, and seek to infer their relationship with superclasses, i.e., p(yi|zi), without any prior
on subclass partitions, so that the model is more generalizable.

3.1 PARAMETERIZATION OF PROBABILITIES

In Eq. (1), both p(yi|zi) and pθ(zi|vi) are not specified, and involve non-parametric variables. To
make it solvable, we introduce our SCGM that models the generative process of the embeddings.
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Figure 1: An illustration of (a) embedding distribution tuned by SCGM via dynamic mixture prob-
abilities πi, when yi = 1, and (b) when yi = 2, where (c) summarizes SCGM’s graphical model.

Let µj and Σj (1 ≤ j ≤ r) be the mean and variance of the j-th mixture component, and πj be its
corresponding mixture probability. In a generic GM model, the generation of vi involves two steps:
(1) draw a latent variable zi from a categorical distribution on all mixture components, and (2) draw
vi from the Gaussian distribution N (µzi ,Σzi) (Bishop, 2006), as illustrated by Fig. 1(c).

In step (1), the categorical distribution is usually defined on π = [π1, ..., πr] ∈ Rr, i.e., the static
mixture probabilities, which cannot reflect different samples’ superclasses. In light of this, for each
vi, we propose to define πi = [πi

1, ..., π
i
r] to be conditional on yi, which dynamically changes w.r.t.

different samples. To this end, we introduce µ̄yi
and Σ̄yi as the mean and variance of superclass

yi, and compute πi
j = softmax(−Dyi

(µj)
2/2), where Dyi

(·) measures the Mahalanobis distance
between a data point and the superclass distribution N (µ̄yi

, Σ̄yi
). Basically, πi

j evaluates the density
ratio of the mixture component mean µj , by regarding it as a sample from yi’s distribution.

πi
j =

exp
(
− 1

2
(µj − µ̄yi

)⊤Σ̄
−1
yi (µj − µ̄yi

)
)

∑r
j′=1 exp

(
− 1

2
(µj′ − µ̄yi

)⊤Σ̄
−1
yi (µj′ − µ̄yi

)
) =

pN (µj |µ̄yi
, Σ̄yi)∑r

j′=1 pN (µj′ |µ̄yi
, Σ̄yi)

(2)

where pN (·|·) represents the density function of a multivariate Gaussian distribution.

Our generative process can be summarized as
1. for each sample index i:

(a) draw a superclass label yi ∼ Categorical(p(yi))
(b) for j = 1, ..., r:

i. compute πi
j = softmax(−Dyi(µj)

2/2) using Mahalanobis distance Dyi(·)
(c) draw a latent subclass variable for the i-th sample zi ∼ Categorical([πi

1, ..., π
i
r])

(d) draw a feature vector vi ∼ N (µzi
,Σzi)

where p(yi) is a prior on superclasses, which can be drawn from a Dirichlet distribution Dir(α)
(the conjugate of categorical distribution), and α can be estimated by the ratios of different labels in
Dtrain. p(yi) can also be set as a uniform prior, for unknown datasets and better generalization.

As can be seen, steps (a)(b) specify a (static) mixture of superclasses, and steps (c)(d) specify a
(dynamic) mixture of subclasses. The whole process establishes a hierarchical GM distribution. Fig.
1(a)(b) illustrate the process using 2 superclasses and 3 subclasses, where the embedding distribution
p(vi|yi) dynamically changes w.r.t. vi’s superclass as a result of updated πi. For example, when
yi = 1 (Fig. 1(a)), vi is more likely to be generated from the first two subclasses. This yi-adjusted
Gaussian mixture distribution highlights the first two subclasses, and will be used to fit data with
yi = 1 during model training. Fig. 1(c) bottom illustrates the graphical model of SCGM, which
distinguishes itself from the generic GM in Fig. 1(c) by (1) the condition yi, and (2) the variable πi.

Now, if we consider µ̄yi
and µzi as the surrogate representations of yi and zi in the embedding

space, we can specify two probabilities p(zi|yi) and p(vi|zi) using their corresponding densities:
p(zi|yi) = pN (µzi

|µ̄yi
, Σ̄yi), p(vi|zi) = pN (vi|µzi

,Σzi) (3)

from which, the probabilities p(yi|zi) and p(zi|vi) in Eq. (1) can be derived by using Bayesian rules
as (the detailed derivation is deferred to Appendix A.1)

pϕ(yi|zi) =
pN (µzi

|µ̄yi
, Σ̄yi)p(yi)∑c

y′
i=1 pN (µzi

|µ̄y′
i
, Σ̄y′

i
)p(y′

i)
, pθ,ϕ(zi|vi) =

pN (vi|µzi
,Σzi)π

i
zi∑r

z′i=1 pN (vi|µz′i
,Σz′i

)πi
z′i

(4)
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where θ are the parameters of encoder fθ, ϕ includes our added distribution parameters. To reduce
complexity, in this work, we investigate the feasibility of using isotropic Gaussian with tied variance,
i.e., Σzi = Iσ2 and Σ̄yi

= Iσ̄2, which turned out to be efficient in our experiments. Here, I is the
identity matrix, σ and σ̄ are hyperparameters. Empirically, it is sufficient to set σ̄ = 1 and tune σ to
adjust the relativity between super- and subclasses. Also, tied variance is a commonly used trick in
Gaussian discriminate analysis (GDA) for generative classifiers (Lee et al., 2018).

Finally, substituting the factors in Eq. (1) with Eq. (4), whose probabilities are specified and param-
eterized, we get our SCGM induced loss ℓSCGM(Dtrain;θ,ϕ), where ϕ = {{µj}rj=1, {µ̄j}cj=1}.

3.2 MODEL OPTIMIZATION VIA EXPECTATION-MAXIMIZATION

It is hard to directly optimize ℓSCGM(Dtrain;θ,ϕ), because exact posterior inference is intractable
(due to an exponential searching space). To solve it, we resort to variational methods, and introduce
an approximated posterior q(zi|vi, yi), where yi is included so that the inference is also conditioned
on superclass. Then, a lower-bound of Eq. (1) is derived as (the details are in Appendix A.2)

ℓSCGM(Dtrain;θ,ϕ) ≥
1

n

n∑
i=1

Eq(zi|vi,yi)

[
log pϕ(yi|zi) + log pθ,ϕ(zi|vi)− log q(zi|vi, yi)

]
(5)

which can be maximized by alternately inferring the posterior q(zi|vi, yi) and solving the model
parameters {θ,ϕ} through an Expectation-Maximization (EM) algorithm.

E-step. This step is to infer q(zi|vi, yi) when fixing model parameters. A straightforward way is
to apply k-means on the embeddings vi, similar to (Caron et al., 2018). However, as discussed in
(Asano et al., 2020), alternately applying k-means and learning embeddings without any constraints
will lead to a degenerate solution, i.e., all samples are assigned to a single (arbitrary) subclass. Also,
k-means is unaware of the superclass yi as it doesn’t optimize Eq. (5). To address this problem,
inspired by (Asano et al., 2020), let Qzi,i = q(zi|vi, yi)

1
n and Pzi,i = pϕ(yi|zi)pθ,ϕ(zi|vi) be

two r × n matrices, we enforce an equal partition of subclasses by constraining Q to belong to the
transportation polytope (Appendix A.3), and rewrite Eq. (5) as (the derivation is in Appendix A.4)

min
Q∈Q

−
(

Tr(Q⊤ logP) +
1

λ
H(Q)

)
, whereQ =

{
Q ∈ Rr×n

+ |Q1n =
1

r
1r,Q

⊤1r =
1

n
1n

}
(6)

where H(Q) = −
∑

ij Qij logQij is the entropy function, 1n is the vector of ones in dimension n,
and λ ≥ 1 controls the regularization (it also further relaxes the lower-bound in Eq. (5)).

The problem in Eq. (6) is a regularized instance of the optimal transport problem, whose minimizer
can be written as Q∗ = Diag(u)PλDiag(v), where u ∈ Rr and v ∈ Rn are renormalization vectors.
These vectors can be efficiently solved by the iterative Sinkhorn-Knopp algorithm (Cuturi, 2013).
Once Q∗ is found, rounding its values and using discrete codes adds more algorithmic stability.

M-step. Fixing q(zi|vi, yi), the model parameters {θ,ϕ} can be efficiently solved by stochastic
gradient descent (SGD). Combining Eq. (4) and Eq. (5), the loss to minimize is (Appendix A.5)

ℓϕ,θ = − 1

n

n∑
i=1

q(zi|vi, yi)

[
log

exp (µ⊤
zi
· µ̄yi

/σ̄2)p(yi)∑c
y′
i=1 exp (µ

⊤
zi
· µ̄y′

i
/σ̄2)p(y′

i)
+ log

exp (v⊤
i · µzi

/σ2)πi
zi∑c

z′i=1 exp (v
⊤
i · µz′i

/σ2)πi
z′i

]
(7)

It is noteworthy that the two terms in the bracket have similar form to InfoNCE (Oord et al., 2018).
Therefore, Eq. (7) can be interpreted from a contrastive perspective, where the positive pairs in both
terms are specified by q(zi|vi, yi) from E-step, i.e., (zi, yi) and (zi,vi) that induce the maximal
q(zi|vi, yi), and the variances σ2 and σ̄2 resemble temperature scaling. Thus, the M-step seeks to
push the embedding vi to its closest subclass µzi , which should meanwhile be close to its superclass
µ̄yi

, in contrast to the distances of the negative pairs. In the second term, πi
zi (Eq. (2)) serves as a

weight to select µzi that is close to µ̄yi
. As such, our problem can be seen as a generalized InfoNCE

for subclass- and superclass-level contrastive learning.

In practice, we found it is beneficial to integrate Eq. (7) with cross-entropy loss ℓCE (on superclass)

ℓ(Dtrain;θ,ϕ) = ℓCE(Dtrain;θ, {µ̄j}
c
j=1) + γℓϕ,θ(Dtrain;θ,ϕ) (8)

where ℓCE uses superclass means {µ̄j}cj=1 as the classification weights, γ is a trade-off parameter.
The detailed algorithm for training SCGM can be found in Algorithm 1 in Appendix A.6.
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4 EXPERIMENTS

In this section, we first evaluate SCGM on benchmark datasets and compare it with SOTA methods.
Then we evaluate SCGM for a model personalization task on a real-life medical dataset.

The table below summarizes the benchmark datasets: (1) BREEDS (Santurkar et al., 2020) includes
four datasets {Living17, Nonliving26, Entity13, Entity30} derived from ImageNet with class hierar-
chy calibrated so that classes on the same level are of similar visual granularity (i.e., the granularity
of images for distinguishing classes); (2) CIFAR-100 (Krizhevsky, 2009); and (3) tieredImageNet
(Ren et al., 2018), which has 34 superclasses as per the ImageNet hierarchy, and was divided into
20/6/8 splits for (disjoint) train/val/test sets. For BREEDS and CIFAR-100, the val set is 10% of the
train set. These datasets have been used in (Bukchin et al., 2021).

Dataset Living17 Nonliving26 Entity13 Entity30 CIFAR-100 Tiered
# Coarase classes 17 26 13 30 20 20/6/8
# Fine classes 68 104 260 240 100 351/97/160
# Train images 88K 132K 334K 307K 50K 448K
# Test images 3.4K 5.2K 13K 12K 10K 206K
Image resolution 224×224 224×224 224×224 224×224 32×32 84×84

4.1 EXPERIMENTAL SETUP

Baselines. We compare SCGM with the most relevant SOTA models on embedding learning, includ-
ing self-supervised models: (1) MoCo-v2 (Chen et al., 2020b) trained on each of the above dataset;
(2) MoCo-v2-ImageNet pretrained on ImageNet by Chen et al. (2020b); (3) SwAV-ImageNet is a
pretrained model by (Caron et al., 2020), which takes advantage of cluster-level contrastive learning.
Note that pretrained models on full ImageNet saw more data during training than did SCGM. (4)
ANCOR (Bukchin et al., 2021), as introduced in Sec.1 and 2; (5) GEORGE (Sohoni et al., 2020),
a three-step framework that uses a separate clustering step to pseudo-fine-label the dataset; and
(6) SeLa (Asano et al., 2020), an unsupervised algorithm for joint clustering and embedding. The
detailed setup of these models was deferred to Appendix C.1.

Similar to (Bukchin et al., 2021), we include natural baselines trained on superclasses: (7) “Coarse”,
uses encoder fθ followed by a classifier C; (8) “Coarse+”, uses fθ → E → C, which adds an
embedder E . Also, baselines trained on subclass labels represent performance upper-bounds: (9)
“Fine”, uses fθ → C; and (10) “Fine+”, uses fθ → E → C. For our method, since it is a flexible
framework, we tested it with a generic encoder, and a momentum-based encoder with superclass-
wise dictionaries similar to ANCOR (Bukchin et al., 2021). We denote these two variants by SCGM-
G and SCGM-A, where the training loss (i.e., Eq. (8)) of the latter adds an InfoNCE term with
angular normalization. The detailed implementation of SCGM-A can be found in Appendix C.2.

Implementation. The encoder is ResNet-50 (He et al., 2016) for the 224×224 images in BREEDS,
and ResNet-12 for the small resolution images in CIFAR-100 and tieredImageNet, as is common
in few-shot learning works. The output dimension of these networks is 2048 and 640, respectively.
Similar to (Chen et al., 2020b), two types of embedder E were tested: (1) fc layer: d → e, and (2)
MLP: d → d → e, with e = 128. At test time, some models performed better with E dropped
while some were better otherwise. For each model, the better case was reported. For training, we
used cosine annealing with warm restarts schedule (Loshchilov & Hutter, 2017) with 20 epochs per
cycle. The batch size was 256 for BREEDS, 1024 for CIFAR-100, and 512 for tieredImageNet.
The learning rate was 0.03 for BREEDs, and 0.12 for CIFAR-100 and tieredImageNet. The weight
decay was 1e−4. All models were trained with 200 epochs. The best training practices of (Tian et al.,
2020) were also applied. For SCGM, we set γ = 0.5, σ2 = 0.1, and λ = 25 (λ follows (Asano
et al., 2020)). The number of latent variables r varies w.r.t. different datasets, and was grid-searched
from 100 to 500 with step size 50. All hyperparameters were set according to validation sets.

4.2 EXPERIMENTAL RESULTS

Following (Tian et al., 2020), we report the mean accuracy and the 95% confidence interval of 1000
random episodes with 5-way/all-way k-shot, 15-query tests. Unless otherwise stated, k = 1. Effects
of more shots are in Appendix D.1. For each episode, 5 augmented copies were created per support
sample. A logistic regression classifier was trained on the support set embedded by each model with
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Method Living17 Nonliving26 Entity13 Entity30
5-way All-way 5-way All-way 5-way All-way 5-way All-way

Fine (upper-bounds) 91.10±0.47 58.95±0.16 85.25±0.49 47.68±0.13 91.01±0.39 50.19±0.08 91.65±0.41 56.54±0.09
Fine+ (upper-bounds) 90.75±0.48 62.65±0.18 90.33±0.47 60.68±0.14 94.72±0.33 65.18±0.09 94.02±0.36 63.72±0.10
MoCo-v2 56.66±0.70 18.57±0.11 63.51±0.75 21.07±0.11 82.00±0.67 33.06±0.07 80.37±0.62 28.62±0.06
MoCo-v2-ImageNet 83.85±0.65 40.59±0.15 77.02±0.72 35.13±0.11 85.07±0.61 35.78±0.07 83.44±0.64 32.00±0.08
SwAV-ImageNet 81.15±0.63 39.57±0.15 75.67±0.70 35.28±0.12 81.76±0.61 34.53±0.07 80.76±0.63 31.92±0.08
GEORGE 85.50±0.63 32.10±0.11 80.75±0.62 31.07±0.10 77.68±0.68 15.58±0.05 83.41±0.59 21.12±0.06
SeLa 52.46±0.68 14.87±0.10 54.08±0.72 14.23±0.07 63.29±0.73 13.83±0.05 60.68±0.71 12.20±0.05
Coarse 85.12±0.74 33.83±0.10 83.53±0.64 33.52±0.11 82.33±0.61 17.49±0.04 87.03±0.54 24.01±0.06
Coarse+ 79.29±0.65 37.44±0.12 75.91±0.66 36.80±0.11 83.23±0.66 31.15±0.07 84.81±0.61 33.22±0.08
ANCOR 89.23±0.55 45.14±0.12 86.23±0.54 43.10±0.11 90.58±0.54 42.29±0.08 88.12±0.54 41.79±0.08
ANCOR-fc 90.41±0.57 46.19±0.16 88.77±0.54 45.34±0.13 89.05±0.58 38.52±0.08 91.84±0.49 42.33±0.10
SCGM-G 89.72±0.54 48.74±0.15 89.87±0.51 49.25±0.13 90.15±0.51 40.00±0.08 92.90±0.46 42.17±0.08
SCGM-A 90.97±0.55 49.31±0.16 88.78±0.55 46.93±0.13 88.48±0.59 41.07±0.09 91.22±0.51 44.14±0.09

Table 1: Comparison on BREEDS datasets. Bold and underlined numbers are the best and second best results.

Method 5-way All-way
Fine 74.36±0.68 28.82±0.11
Fine+ 75.53±0.68 31.35±0.11
MoCo-v2 48.07±0.68 10.61±0.06
GEORGE 70.64±0.70 24.54±0.10
SeLa 38.52±0.60 5.87±0.05
Coarse 74.40±0.70 27.37±0.11
Coarse+ 70.69±0.69 26.16±0.10
ANCOR 74.56±0.70 29.84±0.11
ANCOR-fc 74.73±0.73 27.32±0.10
SCGM-G 76.19±0.73 29.92±0.11
SCGM-A 77.37±0.77 25.91±0.10

Table 2: Comparison on CIFAR-100
datasets. Bold and underlined numbers
are the best and second best results.

Method Living17 Nonliving26 Entity13 Entity30
Fine (upper-bounds) 66.60±0.89 66.33±0.92 64.20±0.63 65.74±0.68
Fine+ (upper-bounds) 70.72±0.92 74.02±0.91 72.24±0.60 73.86±0.67
MoCo-v2 41.38±0.62 45.21±0.78 37.78±0.49 41.67±0.59
MoCo-v2-ImageNet 51.73±0.79 53.69±0.94 42.78±0.54 45.13±0.60
SwAV-ImageNet 52.26±0.73 54.77±0.90 42.95±0.54 45.78±0.60
GEORGE 38.17±0.52 43.55±0.69 21.42±0.30 30.79±0.47
SeLa 40.58±0.61 42.56±0.70 23.90±0.32 31.02±0.46
Coarse 38.14±0.53 40.38±0.62 16.01±0.22 28.20±0.44
Coarse+ 40.70±0.59 50.21±0.83 37.13±0.48 43.10±0.65
ANCOR 48.77±0.71 49.64±0.88 42.00±0.47 45.17±0.59
ANCOR-fc 51.07±0.82 53.51±1.00 41.83±0.48 47.82±0.65
SCGM-G 53.48±0.81 57.32±1.04 43.89±0.58 46.80±0.78
SCGM-A 53.88±0.90 55.12±1.00 45.09±0.58 50.02±0.71

Table 3: Intra-class few-shot learning results of the compared
methods on BREEDS datasets.

L2 norm. The model with the resulting classifier was used to classify the query samples. The test
classes of each episode were a random subset of all subclasses (or all of them for all-way tests). Two
cases were evaluated: (1) unseen subclasses of seen superclasses (on BREEDS, CIFAR-100); and (2)
unseen subclasses of unseen superclasses (on tieredImageNet). On CIFAR-100 and tieredImageNet,
ImageNet-pratrained models were excluded since pretrained ResNet-12 models are unavailable.

Evaluation case (1). We first evaluate when test classes are unseen subclasses of the training super-
classes. Table 1 and 2 summarize the results. For ANCOR, its variants when the embedder E is fc
(with ‘-fc’) or MLP (without ‘-fc’) were included as either variant does not consistently outperform
another. The embedder setup of all models are in Appendix C.1. From the tables, we have several
observations. First, models that cannot leverage superclasses, such as MoCo-v2 and SeLa, are infe-
rior to Coarse(+). Although full ImageNet-pretrained models used larger training datasets, they are
unable to fill the gap of superclass supervision, compared with Coarse(+). Second, the limitation
of GEORGE indicates a separate clustering step may induce misleading pseudo-labels that degener-
ate embedding quality. Third, ANCOR and SCGM consistently outperform Coarse(+), and SCGM
significantly outperforms ANCOR(-fc) in most all-way cases. With a generic encoder, SCGM-G is
suprior or competitive to ANCOR(-fc). Using momentum contrast, SCGM-A further gains on some
datasets. Note that 5-way has less room to improve than the all-way cases, because the random sub-
classes are more likely to be from different superclasses, which may degrade the evaluation to coarse
classification. The results suggest SCGM could perform better when more subclasses are from the
same superclass. To investigate it, we evaluated an “intra-class” case when all subclasses of a ran-
dom superclass were sampled in each episode. Table 3 indicates SCGM got more improvements in
this challenging task, implying its embeddings distinguish subclasses better than other models.

Dataset ANCOR SCGM-G
memory time (h) size memory time (h) size

Living17 51.98G 16.43 0.74G 29.63G 8.09 0.09G
Nonliving26 55.27G 25.42 1.02G 29.63G 12.94 0.09G
Entity13 50.35G 65.45 0.62G 29.63G 43.94 0.09G
Entity30 56.91G 58.98 1.15G 29.63G 34.56 0.09G

Table 4: Computational costs on 4 Quadro RTX6000 24G GPUs.

Moreover, Table 4 compares the
computational costs of ANCOR
and SCGM-G, from which we
can see training ANCOR re-
quires much more resources and
time than SCGM-G as it inherits
MoCo-v2 (Chen et al., 2020b).
Also, its memory costs vary a lot
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Method 5-way-1-
shot

5-way-5-
shot

All-way-
1-shot

Fine 70.15±0.70 84.96±0.47 15.42±0.06
Fine+ 67.33±0.69 84.43±0.47 15.22±0.06
MoCo-v2 53.19±0.68 70.90±0.58 8.33±0.04
GEORGE 60.97±0.70 77.72±0.55 10.24±0.05
SeLa 47.96±0.63 66.39±0.57 7.17±0.04
C2F-VSME 60.54±0.79 75.22±0.63 N/A
Coarse 61.61±0.74 75.72±0.56 8.42±0.04
Coarse+ 64.07±0.75 78.41±0.58 10.70±0.05
ANCOR 62.86±0.70 79.93±0.52 11.97±0.06
ANCOR-fc 60.43±0.69 78.18±0.53 11.04±0.05
SCGM-G 64.64±0.71 80.83±0.52 12.32±0.05
SCGM-A 64.47±0.71 80.68±0.51 11.75±0.05

Table 5: Comparison on tieredImageNet.

(a) ANCOR (b) SCGM-G

Figure 2: The tSNE visualization of the embeddings learned
by ANCOR and SCGM-G. Star represents superclass means.
“+” marker represents subclass means of SCGM-G.

by datasets since its dictionaries are superclass-wise whose size changes w.r.t. the number of super-
classes. In contrast, SCGM-G had lower and stable costs, with better performance, thus is more
favorable in practical deployments.

Evaluation case (2). Since tieredImageNet has distinct train/val/test sets, it was used to evaluate
the case when the testing subclasses is out of any training superclass. All models were trained with
the superclasses of the train set, and tested on the subclass labels of the test set. Table 5 presents
the results. Another three-step method C2F-VSME (Yang et al., 2021) was included as the same
evaluation has been performed (but their code is unavailable). First, from the smaller gaps between
Fine(+) and Coarse(+), this task is more difficult than the previous case. Similar to Table 1, MoCo-
v2 and SeLa are inferior to Coarse(+), underlining the benefit of superclass supervision, even when
test subclasses are not their descendants. Compared to GEORGE and C2F-VSME, ANCOR and
SCGM can better leverage superclasses, by using coherent learning frameworks. Both SCGM-G
and SCGM-A outperform ANCOR(-fc) in most cases, demonstrating the effectiveness of explicit
modeling of latent subclasses, in both evaluation case (1) and (2).

Visualization of embedding. To understand how SCGM uncovers the subclass structures, we vi-
sualize a random batch of embeddings using tSNE (Maaten & Hinton, 2008). Fig. 2 presents the
visualization results of ANCOR and SCGM-G on Living17 dataset, where colors mark different su-
perclasses, “+” markers are the learned subclass means by SCGM-G, and stars represent superclass
means. ANCOR’s embeddings resemble those of Coarse+ (Appendix D.5) as it distinguishes sub-
classes from an angular perspective, which induces intra-class variation that is suboptimal. SCGM-G
explicitly detects the boundaries of both super- and subclasses, properly positions Gaussian means,
and associates subclasses with their corresponding superclasses, whereby establishing a hierarchical
structure. We evaluated SCGM-G’s detected subclasses using the subclass labels in the val set. It got
an NMI of 71.58% and purity accuracy of 74.79%, much higher than its unsupervised counterpart
SeLa (NMI 36.50%, purity 38.14%). This validates SCGM’s effectiveness in leveraging superclass
guidance for subclass inference. Several other model’s visualization can be found in Appendix D.5.

Performance analysis. We have evaluated SCGM in terms of the effects of more shots, the impacts
of the number of latent variables r, the impacts of the variance σ2, and the convergence, which are
in Appendix D.1, D.2, D.3, D.4.

4.3 CASE STUDY: PERSONALIZED PREDICTION ON MEDICAL RECORDS

Next, we evaluate SCGM on a real Dialysis-Event dataset collected by several hospitals in Japan.
This dataset consists of one-year medical records of 673 hemodialysis patients. It contains 40 tempo-
ral features (e.g., blood flow, venous pressure, etc.) that were monitored during each hemodialysis
session (thrice/week). Each session was annotated to indicate whether certain subtypes of events
have occurred. A subtype corresponds to certain unstable behaviors of blood pressure during the
dialysis, as categorized by experts. As introduced in Sec. 1, these events are risky and may develop
complications, thus should be avoided. Formally, our task is as follows. Given xi

t:t+w−1 ∈ Rd×w,
a length-w segment including the i-th patient’s records starting at time step t, where d = 40 is the
dimensionality, the task outcome is a label y ∈ {0, 1} indicating event occurs (y = 1) or not (y = 0),
at time step t + w. When y = 1, a fine-grained label ŷ ∈ {1, ..., s} is to be predicted to mark the
subtype of the event.

8



Published as a conference paper at ICLR 2022

Historical
medical records

Training

Pretrained model

!":$" !%:$&"" ...... !':'&$(""

!":$% !%:$&"% ...... !':'&$("%

!":$)(" !%:$&")(" ...... !':'&$(")("

!":$) !%:$&") ...... !':'&$(")

......

New patients

time

...

...

...

...

Support set for model personalization

Pretraining stage

1

2

n-1

n

A segment of * records(a) (b) Personalized prediction comparison
Each dot is one patient’s model

Figure 3: (a) An illustration of the model personalization framework for fine-grained event predic-
tion for hemodialysis patients. (b) The distributions of patient-wise prediction accuracy on the query
set by different methods. Each dot represents the accuracy of one patient’s personalized model.

Since annotating fine-grained labels is costly, training a model on them at a large scale is infeasible
in practice. To predict event subtypes, we use a model personalization framework as illustrated in
Fig. 3(a). At the pre-training stage, only binary labels are used. For every new patient, a short
period of (a few) medical records are collected as the support set for the fine-grained labels w.r.t.
that specific patient. It is used to train a personalized classifier based on the pre-trained model.

To evaluate how SCGM fits this paradigm, we randomly split the 673 patients into 50%/50%
train/test set, and reserved 10% of the train set for validation. For each testing patient, the first
50% records (i.e., half year) form the support set, and the remaining form the query set. It is likely
some event types didn’t appear in the support set will appear in the query set, which are out-of-
distribution (OOD) cases, thus is out of our scope. Hence, we only selected patients without such
cases, which constitute a major part (>65%) of the test set. The dataset has two event subtypes, i.e.
s = 2. The segments x(i)

t:t+w−1 were sampled with w = 5, stride 1. The encoder is a Dual-Channel
Combiner Network (DCCN), similar to (Che et al., 2016). DCCN has two channels (e.g., RNNs and
MLP) for encoding temporal and static features, respectively. The outputs of them are integrated by
a classification head. Its architecture can be found in Appendix C.3. In this application, each patient
has 28 static features such as demographic information and infrequent blood test results.

Method Accuracy (%)
DCCN 45.59±0.99
GEORGE 43.63±0.63
SeLa 42.32±0.80
SCGM 49.89±0.90

Table 6: The comparison results
on Dialysis-Event dataset.

Table 6 presents the average accuracy of all testing patients over
10 random train/test splits for the applicable methods. As is con-
sistent with Sec. 4.2, unsupervised method SeLa and three-step
framework GEORGE cannot improve DCCN’s performance due to
(1) ignorance of superclass supervision, and (2) a separate pseudo-
labeling step, respectively. In contrast, SCGM outperforms the
original DCCN significantly. Fig. 3(b) compares different models
by their distributions of personalized prediction accuracy of differ-
ent testing patients in a random train/test split. Each dot represents
the mean accuracy of one patient’s personalized predictions in the
query set (220 dots in total). From the figure, SCGM has more dots close to the top (e.g., above 0.8)
than other models, meaning more patients received fairly accurate predictions on the fine-grained
labels. Although current performance could be limited by the data size, the results demonstrate the
flexibility of SCGM, and its potential in tackling the CGFS problem in real practice.

5 CONCLUSION

In this paper, we proposed a new method, superclass-conditional Gaussian mixture model (SCGM),
that underlies a general framework for tackling CGFS across domains. SCGM imitates the genera-
tive process of samples from hierarchies of classes, and explicitly models unobserved subclasses by
latent variables. It dynamically computes a Gaussian mixture for every sample given its superclass,
with a small overhead to an encoder. We learned the model parameters by maximum likelihood es-
timation in a principled Expectation-Maximization framework, and also theoretically linked SCGM
with contrastive learning. The extensive experiments on various datasets demonstrated the effective-
ness, efficiency, and flexibility of our proposed method.
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6 ETHICS STATEMENT

In the case study in Sec. 4.3, we evaluated our SCGM on datasets related to human subjects that
are hemodialysis patients. We clarify that we got the permission to perform the experiments on
the dataset as described in Sec. 4.3. There is no ethics issue nor harmful insights in our current
experiments. The dataset was properly used under the guidance of the data providers and domain
experts. Sensitive information about the patients was well protected. The final description about the
experiments was checked and approved by the data providers and relevant authorities.

7 REPRODUCIBILITY STATEMENT

The code of SCGM is available at https://github.com/nijingchao/SCGM for repro-
ducibility study. The benchmark datasets are large and cannot be upoloaded. The repository in-
cludes an instruction on how to obtain the datasets and process them. Relevant instructions were
provided on how to use the code to train SCGM-G and SCGM-A, and evaluate their performance
for CGFS task in 5-way and all-way cases (Table 1, 2, 5), and in the intra-class case (Table 3).
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A APPENDIX FOR DETAILS OF DERIVING SCGM

A.1 DERIVATION OF PARAMETERIZED PROBABILITIES

In this section, we provide the details of the probabilities in Eq. (4). First, using Bayesian rules and
marginal property, we can derive

p(yi|zi) =
p(zi|yi)p(yi)

p(zi)
=

p(zi|yi)p(yi)∑c
y′
i=1 p(zi|y′

i)p(y
′
i)
, p(zi|vi) =

p(vi|zi)πi
zi

p(vi)
=

p(vi|zi)πi
zi∑r

z′i=1 p(vi|z′i)πi
z′i

(9)

Since µzi and µ̄yi
are surrogate representations of zi and yi in the embedding space, substituting

p(zi|yi) and p(vi|zi) with the equality in Eq. (3), Eq. (4) can be achieved.

A.2 THE LOWER-BOUND OF THE LIKELIHOOD FUNCTION

In this section, we provide the details of the lower-bound in Eq. (5). By introducing the approximated
posterior q(zi|vi, yi), the likelihood in Eq. (1) becomes

ℓ(Dtrain;θ) =
1

n

n∑
i=1

log

[ r∑
zi=1

p(yi|zi)pθ(zi|vi)
q(zi|vi, yi)

q(zi|vi, yi)

]

=
1

n

n∑
i=1

log

[ r∑
zi=1

q(zi|vi, yi)
p(yi|zi)pθ(zi|vi)

q(zi|vi, yi)

]

≥ 1

n

n∑
i=1

r∑
zi=1

q(zi|vi, yi)
[
log p(yi|zi) + log pθ(zi|vi)− log q(zi|vi, yi)

]
=

1

n

n∑
i=1

Eq(zi|vi,yi)

[
log pϕ(yi|zi) + log pθ,ϕ(zi|vi)− log q(zi|vi, yi)

]
(10)

where the third step uses Jensen’s inequality. This completes the derivation of Eq. (5).

A.3 DETAILS ON TRANSPORTATION POLYTOPE

Let a be a probability vector in the simplex ∆r = {x ∈ Rr
+|x⊤1r = 1} and b be a probability

vector in the simplex ∆n = {x ∈ Rn
+|x⊤1n = 1}, where 1r and 1n are the vectors of ones in

dimension r and n, respectively. The transportation polytope of a and b, i.e., the polyhedral set of
r × n matrices, is defined as (Cuturi, 2013)

Q =
{
Q ∈ Rr×n

+ |Q1n = a,Q⊤1r = b
}

(11)

which means Q is a set of non-negative r × n matrices with row and column sums a and b, re-
spectively. From a probabilistic perspective, any matrix Q ∈ Q represents a joint probability of two
multinomial random variables X and Y that take values in {1, ..., r} and {1, ..., n} with marginal
distributions a and b, respectively.

The transportation polytope defines a space of transport matrix Q for mapping a to b. Given a cost
matrix M ∈ Rr×n

+ , the cost of the mapping can be quantified as Tr(Q⊤M), and the problem

min
Q∈Q

Tr(Q⊤M) (12)

is called an optimal transport (OT) problem between a and b, given cost M. Since the traditional
algorithms to solve the OT problem scale inefficiently to large datasets, (Cuturi, 2013) introduced a
fast Sinkhorn-Knopp algorithm, which amounts to solve a regularized problem

min
Q∈Q

Tr(Q⊤M)− 1

λ
H(Q) (13)

where H(Q) = −
∑

ij Qij logQij is the entropy function, and λ is a trade-off parameter. If λ is
large, optimizing Eq. (13) approximates optimizing Eq. (12).

13



Published as a conference paper at ICLR 2022

In our case of Eq. (6), M = − logP, a = 1
r1r, and b = 1

n1n. In addition, similar to (Asano et al.,
2020), Qzi,i = q(zi|vi, yi)

1
n can be considered as a joint probability of zi and the i-th sample (note

the condition (vi, yi) corresponds to the incidence of the i-th sample) with a uniform prior 1
n . For

the details of the Sinkhorn-Knopp algorithm, we refer the readers to (Cuturi, 2013).

It is noteworthy that our optimization problem in Eq. (6) in the E-step is derived from our likelihood
function in Eq. (5), which turns out to be a form of the regularized OT problem in Eq. (13), rather
than directly formulated using Eq. (13). The derivation of the optimization problem in Eq. (6) can
be found in next section (Appendix A.4).

A.4 THE OPTIMIZATION PROBLEM IN E-STEP

In this section, we elaborate the optimization problem for inferring the posterior q(zi|vi, yi) in
Eq. (6). Substituting q(zi|vi, yi) with nQzi,i, and substituting pϕ(yi|zi)pθ,ϕ(zi|vi) with Pzi,i, the
third step in Eq. (10) can be rewritten by

n∑
i=1

r∑
zi=1

[
Qzi,i logPzi,i −Qzi,i logQzi,i −Qzi,i logn

]
≥ Tr(Q⊤ logP) +

1

λ
H(Q)− logn (14)

where Tr(·) is the trace function, H(·) is the entropy function, the last constant term is because∑n
i=1

∑r
zi=1 Qzi,i = 1, and the inequality stems from λ ≥ 1, which is introduced to control the

strength of the regularization (Cuturi, 2013). This is the objective function in Eq. (6), where the
constant log n is omitted because it has no effects on the optimization.

The right hand side of Eq. (14) is a valid lower bound of the likelihood function in Eq. (5) according
to Eq. (10). Therefore, optimizing it (i.e., the objective function in Eq. (6)) provides a reasonably
approximated solution to the likelihood function in Eq. (5). In addition, the transport polytope Q in
Eq. (6) is introduced as an equal partition constraint on subclasses (Asano et al., 2020), so that the
optimization problem is feasible. It is noteworthy that although subclasses have the equal partition
constraint, superclasses can have different sizes since they can have different numbers of subclasses.

A.5 THE OPTIMIZATION PROBLEM IN M-STEP

In this section, we derive the optimization problem for learning model parameters in Eq. (7). Intro-
ducing the probabilities specification in Eq. (4) to the negative of the lower-bounded likelihood in
Eq. (5), and removing terms that are irrelevant to model parameters {θ,ϕ}, we have

ℓθ,ϕ =
1

n

n∑
i=1

r∑
zi=1

q(zi|vi, yi)
[
log

pN (µzi
|µ̄yi

, Σ̄yi)p(yi)∑c
y′
i=1 pN (µzi

|µ̄y′
i
, Σ̄y′

i
)p(y′

i)
+ log

pN (vi|µzi
,Σzi)π

i
zi∑r

z′i=1 pN (vi|µz′i
,Σz′i

)πi
z′i

]
(15)

Considering isotropic Gaussian with Σ̄yi
= Iσ̄2, we have

pN (µzi
|µ̄yi

, Σ̄yi) = exp
(−(µzi

− µ̄yi
)2

2σ̄2

)
= exp

( (µ⊤
zi
· µ̄yi

− 1)

σ̄2

)
=

exp (µ⊤
zi
· µ̄yi

/σ̄2)

exp (1/σ̄2)
(16)

where the second equivalence is because we apply L2 norm to µzi and µ̄yi
, respectively. Similarly,

considering Σzi = Iσ2, and applying L2 norm to vi, we have

pN (vi|µzi
,Σzi) = exp

(−(vi − µzi
)2

2σ2

)
= exp

( (v⊤
i · µzi

− 1)

σ2

)
=

exp (v⊤
i · µzi

/σ2)

exp (1/σ2)
(17)

Substituting the corresponding terms in Eq. (15) with Eq. (16) and Eq. (17), and removing the
constants exp (1/σ̄2) and exp (1/σ2)in the fractions, we obtain the loss function in Eq. (7). In
Eq. (7), the prior p(yi) can be set as uniform, i.e., p(yi) = 1

c . If using a prior from Dirichlet
distribution, p(yi) can be instantiated by estimating the parameters α (of the Dirichlet distribution)
by the ratio of different superclass labels in Dtrain, the training dataset. Also, πi

zi in the second term
of Eq. (7) can be calculated using Eq. (2).

A.6 THE TRAINING ALGORITHM OF SCGM

The training algorithm of SCGM is summarized in Algorithm 1.
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Algorithm 1: Superclass-conditional Gaussian mixture model (SCGM)
Input: encoder fθ , training dataset Dtrain (number of classes is c), hyperparameters r, λ, γ, σ
Output: model parameters {θ, ϕ}

1 ϕ = Initialization(c, r) // initialize Gaussian means ϕ = {{µj}rj=1, {µ̄j}cj=1}
2 for i← 1 to MaxEpoch do

/* E-step */
3 for (x, y) in Dataloader(Dtrain) do

/* load a minibatch (x, y) */
4 v = fθ(x) // get embeddings
5 Compute p for Eq. (6) based on Eq. (4) using v and ϕ
6 end
7 Concatenate all batch-wise probabilities p to get P for Dtrain
8 Q = SinkhornKnopp(P, λ) // Inferring posterior using Sinkhorn-Knopp

algorithm for optimizing Eq.(6)
/* M-step */

9 for (x, y,q) in Dataloader(Dtrain) do
/* load a minibatch (x, y,q) where q is obtained from E-step */

10 v = fθ(x) // forward pass through the encoder
11 Calculate ℓ(v, y,q,ϕ, γ, σ) // calculate loss in Eq.(8) using ℓϕ,θ in Eq.(7)
12 θ,ϕ = SGD(ℓ,θ,ϕ) // update model parameters
13 end
14 end

B APPENDIX FOR FURTHER DISCUSSION

B.1 DISCUSSION ON THE EQUAL PARTITION CONSTRAINT

The equal partition constraint on subclasses in Eq. (6) theoretically assumes subclasses are of equal
or similar sizes, through using Q1n = 1

r1r (i.e., a = 1
r1r in Eq. (11)) as a prior distribution of

the subclass sizes (superclasses can have different sizes because they can have different numbers of
subclasses). It is possible to replace 1

r1r by other prior distributions to reflect an uneven distribution
of the subclasses sizes. In this work, we used a uniform prior because we don’t assume such prior
knowledge (since the subclasses are unobserved during training). This prior is inspired by (Asano
et al., 2020). If we don’t have such a prior, the searching space of subclasses will be exponential
and the optimization is intractable. To make the optimization feasible, we included this constraint to
help reduce the searching space. In this way, we found the solution is efficient and effective to our
CGFS problem, which does not necessitate an exact identification of every subclass. Compared to
other baseline methods, the performance improvements indicate that reasonable boundaries between
subclasses can be learned by SCGM with this constraint for model adaptation, though the boundaries
may not be ideal. However, it is worth to note that this uniform prior may not always be reasonable
in different applications. For example, if identifying rare subclass is important in an application
(Sohoni et al., 2020), a more reasonable prior may be considered. In our experiments, the evaluations
on the benchmark datasets (which were used for a consistent setup with the existing works (Bukchin
et al., 2021)) do not reflect the case of substantially skew distributions of subclass sizes. We leave
the extension of the proposed method to this scenario in our future work.

B.2 DISCUSSION ON THE EVALUATION CASES IN SECTION 4.2

In Section 4.2, we evaluated two fundamental cases of (1) unseen subclasses of seen superclasses;
and (2) unseen subclasses of unseen superclasses. Another case that considers the mixture of the
subclasses of seen and unseen superclasses is worth discussion because it is a practical case. As
discussed in (Xian et al., 2018; Oreshkin et al., 2020), a mixture of samples from seen and un-
seen classes during testing may result in an imbalance of prediction performance between seen and
unseen classes, and the inductive bias may lead to misclassification of unseen classes towards the
seen classes. It is noteworthy that (Xian et al., 2018; Oreshkin et al., 2020) focus on a generalized
zero-shot learning problem, which is not for cross-granularity adaptation and don’t consider class
hierarchy. Thus their task is remarkably different from our CGFS task. Despite the difference, we
are inspired to be aware of the challenge that there could be a similar imbalance in the prediction of
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the subclasses of seen and unseen superclasses if they are mixed. This could be an open challenge
in the CGFS task which is rarely discussed in the existing works. To alleviate this problem, some
specific technical extensions may be designed, as discussed in (Xian et al., 2018; Oreshkin et al.,
2020), which is out of our scope. We leave this scenario in our future work.

C APPENDIX FOR IMPLEMENTATION DETAILS

C.1 THE SETUP OF THE COMPARED MODELS

For MoCo-v2 and MoCo-v2-ImageNet, following (Chen et al., 2020b), we set its queue size
65536, momentum 0.999 (0.99 for CIFAR-100), temperature 0.2, embedder E as MLP. For SwAV-
ImageNet, following (Caron et al., 2020), its number of prototypes was 3000, embedder E as MLP.
For ANCOR, following (Bukchin et al., 2021), we set its queue size 65536, momentum 0.999 (0.99
for CIFAR-100), temperature 0.2, embedder E as fc and MLP, with the multi-class queue, and an-
gular norm on. For GEORGE (Sohoni et al., 2020), we set its robust learning rate 1e−4, E as fc,
(dim 16, 10 neighbors, 0 distance) for its dimension reduction step, the number of clusters per su-
perclasses was grid-searched within {5, 10, 15, 20}. For SeLa, following (Asano et al., 2020), we
set its λ = 25, E as fc, and number of clusters was grid-searched from 100 to 500 with step size 50.
For Coarse+ and Fine+, we set E as MLP. For our SCGM, we set γ = 0.5, σ2 = 0.1, and λ = 25 (λ
follows (Asano et al., 2020)), E as fc, the number of latent variables r was grid-searched from 100
to 500 with step size 50.

Remarks on embedder. For the compared methods, adding an embedder follows the practice of the
existing works such as MoCo-v2 (Chen et al., 2020b) and SimCLR (Chen et al., 2020a), which was
also used in the different compared methods in (Bukchin et al., 2021). In these works, adding certain
types of embedder (e.g., MLP) is empirically found helpful for improving performance. We have the
same observation in our experiments, and think the effectiveness could come from (1) more capacity;
and (2) better generalization in some cases. The latter is because after training, the embedder may be
specific to the pre-training tasks, which enables more generalizable representations to be learned by
the backbone networks. Thus dropping the embedder at testing stage may help alleviate overfitting
to some extent. For comprehensiveness, we evaluated both of the cases when an embedder is added
or not in our experiments, as described in Section 4.1.

C.2 THE ARCHITECTURE OF SCGM-A
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Figure 4: An illustration the architecture of SCGM-A

Fig. 4 illustrates the architecture of SCGM-A, which was implemented on a generic encoder (e.g.,
ResNet-50) with momentum encoders. The query v and positive key k+ are computed from two
random augmentations of the input images through the encoder and embedder, and their momentum
updates. There is a superclass-wise dictionary maintains c queues for c different superclasses so that
superclass-wise negative keys k− can be generated for within-superclass contrastive learning, which
facilitates preserving intra-class variation. At the SCGM classification head, v, k+ and k− are ap-
plied with an angular normalization, followed by the InfoNCE loss, where the angular normalization
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is defined by (Bukchin et al., 2021)

|vi|A =
( vi

∥vi∥
−

µ̄yi

∥µ̄yi
∥

)
/∥ vi

∥vi∥
−

µ̄yi

∥µ̄yi
∥∥ (18)

which enables contrasts from an angular perspective, and induces better synergy with cross-entropy
loss.

The top part of the SCGM classification head are similar to its counterpart using a generic encoder,
where v interacts with superclass means {µ̄j}cj=1 and subclass means {µj}rj=1 for computing our
SCGM loss ℓθ,ϕ and a cross-entropy loss ℓCE as in Eq. (8). Thus the loss for training SCGM-A is

ℓ(Dtrain;θ,ϕ) = ℓCE(Dtrain;θ, {µ̄j}
c
j=1) + ℓInfoNCE(|Dtrain|A;θ) + γℓϕ,θ(Dtrain;θ,ϕ) (19)

where the model parameters are learned by our proposed EM-based algorithm that alternates be-
tween the SGD backpropagation (M-step) for computing model parameters {θ,ϕ} and the posterior
inference (E-step) for computing subclass distributions.

C.3 THE ARCHITECTURE OF DCCN
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Figure 5: An illustration the architecture of DCCN

Fig. 5 illustrates the architecture of the Dual-Channel Combiner Network (DCCN). DCCN is effec-
tive to process heterogeneous medical records data that usually consists of static profiles and time
series (i.e., records) (Che et al., 2016). It has a static channel realized by MLPs to encode static
features (e.g., demographic information, infrequent blood test results, etc.) and a temporal channel
realized by RNNs (e.g., LSTM) to encode temporal feature (e.g., blood flow, venous pressure, etc.).
The hidden representations output by the two channels are concatenated (or using certain pooling
method) and further projected to a compact embedding that is used for prediction by the classifi-
cation head, i.e., the combination layer in Fig. 5, which is realized by MLPs. Attention layer may
be added before the combination layer for weighted combination of the hidden representations from
different channels and different time steps.

D APPENDIX FOR MORE EXPERIMENTAL RESULTS

D.1 EFFECTS OF MORE SHOTS

Method 1-shot 5-shot 10-shot 20-shot
Coarse+ 37.44±0.12 50.51±0.31 57.35±0.33 63.23±0.25
ANCOR 45.14±0.12 59.60±0.35 65.14±0.28 68.87±0.26
ANCOR-fc 46.19±0.16 60.64±0.30 64.31±0.27 66.85±0.26
SCGM-G 48.74±0.15 60.39±0.29 63.42±0.31 65.67±0.25
SCGM-A 49.31±0.16 63.82±0.32 67.43±0.30 69.99±0.25

Table 7: Effects of more shots (all-way)

Table 7 and 8 summarize the performance of SCGM-G and SCGM-A, with the strongest baseline
ANCOR and ANCOR-fc, together with the coarse baseline Coarse+, on Living17 dataset. From
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Method 1-shot 5-shot 10-shot 20-shot
Coarse+ 79.29±0.65 92.99±0.41 94.33±0.36 95.27±0.31
ANCOR 89.23±0.55 94.44±0.36 95.33±0.31 95.90±0.27
ANCOR-fc 90.41±0.57 93.84±0.36 94.52±0.32 95.09±0.29
SCGM-G 89.72±0.54 94.38±0.37 95.09±0.35 95.52±0.31
SCGM-A 90.97±0.55 94.41±0.34 95.11±0.30 95.43±0.28

Table 8: Effects of more shots (5-way)

Table 7, we observe SCGM-A continuously improves performance as more shots are added, consis-
tently outperforms other models, which validate the effectiveness of SCGM framework with varying
number of shots. SCGM-G’s performance becomes comparable to ANCOR(-fc) as more shots are
added, due to its simpler architecture, which however is more computationally efficient. Thus it pro-
vides a good balance between performance and efficiency. From Table 8, we observe ANCOR and
SCGM perform similarly. This is because the task is close to the regular superclass classification,
and its performance limit can be easily reached by adding a few more shots. This can be seen from
Coarse+’s results, which become close to other models when there are 20 shots in the support set.

D.2 IMPACTS OF THE NUMBER OF SUBCLASSES

Setting r=50 r=100 r=150 r=200 r=250 r=300 r=400 r=500
5-way 89.45±0.60 89.72±0.54 88.29±0.57 88.26±0.55 88.05±0.56 87.88±0.56 86.82±0.56 86.35±0.58
All-way 42.98±0.14 48.74±0.15 46.21±0.15 47.81±0.15 47.55±0.16 46.91±0.16 45.23±0.15 44.63±0.15

Table 9: Impacts of the number of latent variables r on the performance of SCGM-G

Table 9 presents the results of SCGM-G on Living17 by varying the number of latent variables r
from 50 to 500. As can be seen, the performance of SCGM-G is generally stable and it consistently
outperforms Coarse(+) (Table 1) w.r.t. different r. By looking into the details, we observe too small
(e.g., 50) or too big (e.g., 500) r may degenerate the performance in the all-way case, which may be
caused by slight underfitting and overfitting, respectively. In the 5-way case, small r does not impact
performance obviously, this is because the 5-way case is close to evaluate coarse classification,
which does not need exact inference of subclasses. Thus a small number of r is fine (which may not
distinguish all possible subclasses).

D.3 IMPACTS OF THE VARIANCE

Setting σ2=0.05 σ2=0.1 σ2=0.15 σ2=0.2 σ2=0.25 σ2=0.3
5-way 90.49±0.56 89.72±0.54 90.09±0.57 90.88±0.55 90.56±0.59 90.69±0.59
All-way 46.47±0.15 48.74±0.15 47.48±0.15 48.03±0.16 42.21±0.13 38.38±0.13

Table 10: Impacts of the variance parameter σ2 on the performance of SCGM-G

Table 10 presents the results of SCGM-G on Living17 by varying the variance σ2 of subclasses,
which resembles the temperature scaling in Eq. (7). As described in Sec. 3.1, in our experiments,
we set σ̄2 = 1 and tune σ2 to adjust the relativity between super- and subclasses, which we found
is empirically effective. From Table 10, we observe σ2 is better to be selected from 0.1 to 0.2, and
a too small (e.g., 0.05) or too big (e.g., 0.3) value may degenerate the performance in the all-way
case. This observation is similar to the evaluation of the temperature scaling parameter in MoCo-v2
(Chen et al., 2020b). In the 5-way case, the performance is relatively stable w.r.t. different values of
σ2. Similar to the observation in Appendix D.2, this is because the 5-way case is close to evaluate
coarse classification, which is less impacted by the learning of subclasses.

D.4 CONVERGENCE ANALYSIS

Fig. 6 presents the training loss ℓ(Dtrain;θ,ϕ) in Eq. (8) of SCGM-G, and ℓ(Dtrain;θ,ϕ) in Eq. (19)
of SCGM-A, during the training process on the four BREEDS datasets. The training alternates
between E-step and M-step, where E-step runs every 5 epochs. As can be seen, although there are
some periodic fluctuations, the loss function values generally decrease and converge to a small value
across different datasets. The periodic fluctuations are not synchronized with the alternate E-step
and M-step since its period is not 5 epoch as can be observed. In fact, the fluctuations come from the
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(a) SCGM-G (b) SCGM-A

Figure 6: The training loss w.r.t. the number of epochs of SCGM on BREEDS datasets

cosine annealing with warm restarts schedule for the learning rate (as discussed in Sec. 4.1), which
has 20 epochs per cycle. This is consistent with Fig. 6. In practice, we observed both E-step and
M-step can decrease the loss function values since both steps are theoretically optimizing the same
loss function. There is a rounding step (as discussed in Sec. 3.2) for generating discrete code from
the posterior, which follows the E-step. We found this rounding step is beneficial, since without
it, too small values may be generated in the posterior inference, which is unstable in computation.
Generally, the current setup provides a stable training framework and we don’t need to interfere in
the program during the training process on all of our experimental datasets.

D.5 VISUALIZATION OF EMBEDDING

(c) ANCOR-fc

(a) Coarse+ (b) MoCo-v2

(d) SCGM-A

Figure 7: The tSNE visualization of the embeddings learned by different methods. Star represents
superclass means. “+” marker represents subclass means.

19



Published as a conference paper at ICLR 2022

In addition to the visualization results of ANCOR and SCGM-G provided in Fig. 2, Fig. 7 presents
the tSNE visualization of the embeddings of several most relevant methods in comparison using Liv-
ing17 dataset, including Coarse+, MoCo-v2, ANCOR-fc and SCGM-A. In the figure, colors mark
different superclasses, “+” markers are the learned subclass means by SCGM-G, and stars represent
superclass means. From Fig. 7(a)(c), we can observe the embeddings of both ANCOR and ANCOR-
fc resemble Coarse+. Although ANCOR-fc slightly distinguish several small groups of embeddings
in some superclasses, their intra-class variation is suboptimal. From Fig. 7(b), MoCo-v2 has the
ability to detect superclasses to some extent, but cannot fill the gap of superclass supervision, by
comparing with Coarse+, in this dataset. The reason may be the Living17 dataset is not sufficiently
large and comprehensive for MoCo-v2 to learn embeddings that are comparable to supervised meth-
ods. In contrast to them, SCGM-A (and SCGM-G in Fig. 2) explicitly detects subclasses, with
proper position of subclass means and superclass means. It also associates every subclass to its
corresponding superclass, which establishes a hierarchical class structure. This explains the effec-
tiveness of SCGM in cross-granularity learning tasks.
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