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Abstract

Federated learning (FL) is a popular collaborative learning scheme involving1

multiple clients and a server. FL focuses on client’s data privacy but exposes2

interfaces for Model Extraction (ME) attacks. As FL periodically collects and3

shares model parameters, a malicious client can download the latest model and thus4

steal model Intellectual Property (IP). Split Federated Learning (SFL), a recent5

variant of FL, splits the model into two, giving one part of the model (client-6

side model) to clients, and the remaining part (server-side model) to the server.7

While SFL was primarily designed to facilitate training on resource-constrained8

devices, it prevents some ME attacks by blocking prediction queries. In this work,9

we expose the vulnerability of SFL and show how ME attacks can be launched10

by malicious clients querying the gradient information from server-side. We11

propose five ME attacks that differ in the gradient usage in data crafting, generating,12

gradient matching and soft-label crafting as well as in the attacker data availability13

assumptions. We show that the proposed ME attacks work exceptionally well for14

SFL. For instance, when the server-side model has five layers, our proposed ME15

attack can achieve over 90% accuracy with less than 2% accuracy degradation with16

VGG-11 on CIFAR-10.17

1 Introduction18

Federated Learning (FL) [McMahan et al., 2017] has become increasingly popular thanks to its ability19

to protect users’ data privacy and comply with General Data Protection Regulation (GDPR) policy. In20

FL, clients locally update their model copies, and the FL server collects them by averaging the model21

parameters, then distributing the averaged model again to its clients. Such a setting only allows model22

parameters to be shared with the server, and direct data sharing is avoided. One drawback of FL is23

its clients need to train the entire model locally, which is usually challenging for resource-limited24

edge devices. As the countermeasure, Split Federated Learning (SFL) scheme [Thapa et al., 2020] is25

proposed as a variant of FL. In SFL, a neural network is split into a client-side model and a server-side26

model, where the client-side model is shared among multiple clients and processed locally on their27

devices. During training, clients offload the intermediate activations to server, where the heavy-duty28

computation is performed at the heavy-duty server and the computed gradients are sent back to clients.29

SFL follows the same model averaging routine as FL to synchronize the model. SFL avoids collecting30

clients’ raw data and also reduces the computational overhead at the client-end.31

In addition to the computation advantage introduced by SFL, it can also provide model IP protection32

which is absent in FL. The high training cost of high-performance NN makes the NN model a valuable33

Intellectual Property (IP). Unlike FL which handles the entire NN over to the clients, SFL preserves34

the server-side model which prevents potential IP theft (Fig. 1 (a)). Moreover, according to our35

investigation, SFL shows resistance to Model Extraction (ME) attack [Tramèr et al., 2016, Jagielski36

et al., 2020]. In an ME attack, the model IP can be acquired by querying a publicly accessible37
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Figure 1: Model Extraction (ME) attack in SFL. (a) The attacker knows the client-side model
parameters but does not know the server-side model parameters. (b) Server-side model allows
gradient query access but does not allow prediction queries.

prediction API of the model. Prior ME attacks cannot be applied to SFL as the protocol does not38

allow prediction query access, as illustrated in Fig. 1 (b).39

As prior ME attacks fail in SFL, we propose SFL-specific ME attacks in this work. Assuming40

the client-side model is a white box, the attacker posing as a participant client can get gradient41

information of inputs sent to the server. We propose five variants of ME attacks on SFL enumerated as42

Craft-ME, GAN-ME, GM-ME, Train-ME, and SoftTrain-ME. These ME attack variants extensively43

cover different gradient usage, including data crafting, data generating, gradient matching and44

soft label crafting, as well as assumptions on data such as no data (including randomly generated45

noise data) [Truong et al., 2021], only auxiliary data (out-of-distribution data) and training data (in-46

distribution data). We consider both train-from-scratch and fine-tuning SFL applications as gradient47

consistency is different. We benchmark the performance of five ME attacks on SFL for these two48

cases and show that ME attacks can succeed without any data in fine-tuning applications. We also49

show that ME performance strongly correlates with the #layers in the server-side model and fail when50

the #layers in the server-side model increase. However, increasing layers in server-side model reduces51

layers in client-side model, which compromises clients’ privacy. Finally, we conclude that using L152

regularization during training can improve SFL schemes’ resistance to ME attacks. In summary, we53

make the following contributions:54

• We define the unique threat model in SFL and propose five ME attacks. These attacks55

differ in the usage of gradients (data crafting, data generating, gradient matching and soft56

label crafting) and data assumptions (no data, only auxiliary data and training data). To our57

knowledge, this is the first work that studies ME attacks for SFL.58

• We study the performance of the proposed attacks and find that even when the attacker has59

no data, the model can be extracted with high accuracy. With auxiliary data or with training60

data, ME attack performance can be further improved. For a 5-layer-in-server SFL, the61

strongest ME attack can derive a surrogate model with over 90% accuracy, and less than 2%62

accuracy degradation compared to the original VGG-11 on CIFAR-10 model.63

• We find the ME attack performance decreases when more layers are present in server-side64

model. However, such a split model configuration compromises clients’ privacy. We also65

show resistance to ME attack can be improved by regularizing the client-side model.66

2 Related Work67

Model-split learning schemes. The key idea for model-split learning schemes is to split the model68

so that part of it is processed in the client and the rest is offloaded to the server. This idea was first69

proposed in Kang et al. [2017], Teerapittayanon et al. [2017], Liu et al. [2018] for inference tasks.70

Gupta and Raskar [2018] then extended this idea for split learning, a collaborative multi-client neural71

network training. However, the round-robin design needed clients to learn sequentially and thus has a72

huge disadvantage in terms of training time.73

Split federated learning (SFL). In this paper, we consider the SFL scheme where the clients process74

their local models in parallel followed by periodic synchronization as in FedAvg [McMahan et al.,75

2017]. This is the SFL-V2 scheme that is introduced in Thapa et al. [2020] for its better accuracy76

performance. The detailed process is shown in Algorithm 1. At the beginning of each epoch, server77

performs the synchronization of client-side model and sends the updated version to all clients. Then,78
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Algorithm 1 Split Federated Learning

Require: For M clients, instantiate private training data (Xi,Yi) for 1, 2, ...,M . Server-side
model S has N layers and client-side model Ci has L−N layers.

1: initialize Ci, S
2: for epoch t← 1 to num_epochs do
3: C∗ = 1

M

∑M
i=1 Ci {Model Synchronization}

4: Ci ← C∗ for all i
5: for step s← 1 to num_batches do
6: for client i← 1 to M in Parallel do
7: data batch (xi,yi)← (Xi,Yi)
8: Ai = Ci(WCi

;xi) {Client forward; send Ai to Server}
9: end for

10: for client i← 1 to M in Sequential do
11: L = LCE(S(WS ;Ai),yi) {Server forward}
12: ∇AiL ← back-propagation {Server backward, send ∇AiL to Client}
13: Update WS ;
14: end for

15: for client i← 1 to M in Parallel do
16: ∇xi

L ← back-propagation {Client backward}
17: Update WCi

;
18: end for
19: end for
20: end for

clients perform forward propagation locally till layer L − N (the last layer of client-side model),79

sending the intermediate activation Ai to the server (line 8). Server accepts the activation and label80

yi sent from clients, and uses them to calculate the loss and initiates the backward process (line 9).81

The backward process (line 10) consists of several steps: server performs backward propagation on82

the loss, updates server-side model and sends back gradient ∇AiL to clients. Clients then continue83

the backward propagation on their client-side model copies and perform model updates accordingly.84

While FedGKT [He et al., 2020] leaks prediction logits to clients, SFL does not, making it a promising85

candidate against ME attacks.86

Model extraction (ME) attack. ME attack targets model prediction service APIs and retrieves87

confidence score or prediction label for given inputs. The vulnerability of a DNN model to ME is first88

shown in Tramèr et al. [2016]. Jagielski et al. [2020] shows that high fidelity model extraction can89

be achieved with fewer queries and the surrogate model can be used for launching more successful90

adversarial attacks. A successful ME attack not only breaches the model IP, but also makes the model91

more vulnerable to attacks. ME attack also supports transferable adversarial attacks [Goodfellow92

et al., 2014], mainly targeted ones [Madry et al., 2017] against the victim model. It can also be used93

to perform bit-flip attacks [Rakin et al., 2019]; with hardware expertise, a few bit flips on model94

parameters can degrade ResNet-18 model accuracy to below 1%.95

Data privacy in SFL. Similar to FL, SFL scheme also has data privacy concerns. The most serious96

one is its vulnerability to MI attacks. In model-based MI attack [Fredrikson et al., 2015], the attacker97

trains an inverted version of client-side model and can directly reconstruct raw inputs from the98

intermediate activation. Recent works [Vepakomma et al., 2020, Li et al., 2022] point out this99

vulnerability and provide practical ways to mitigate MI. However, defenses only work well if the100

client-side model has enough number of layers.101

3 Threat Model102

3.1 Attacker assumptions.103

Objectives. According to Jagielski et al. [2020], there are three model extraction (ME) attack104

objectives: i) functional equivalence, ii) high accuracy, and iii) high fidelity. However, achieving105
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Figure 2: tSNE analysis of intermediate activation with different N (8, 5, 2 from left to right) on a
VGG11 model on CIFAR-10 dataset. N denotes number of layers in server-side model in SFL.

functional equivalence is difficult in practical applications. Hence, most of the existing practical106

ME attacks on NN models focus on achieving high accuracy and fidelity. To achieve the accuracy107

goal, the attacker wants to obtain a model that maximizes the prediction correctness. To achieve the108

fidelity goal, the attacker wants to derive a model with a similar decision boundary as the victim109

model before launching adversarial attacks [Biggio et al., 2013].110

Capabilities. We assume the attacker acts as a client in a multi-client SFL scheme against the111

server (model owner). Consider the SFL scheme outlined in Fig. 1. We assume the entire model has a112

total of L layers (or layer-like blocks, i.e. BasicBlock in ResNet) out of which the server processes N113

layers. The attacker holds white-box assumption on the client-side model (consists of L−N layers),114

that is, it knows the exact model architecture and parameters for those layers. The attacker holds115

a grey-box assumption on the N -layer server-side model, that is, it knows its architecture and loss116

function while the model parameters are unknown. Also, we assume server blocks the prediction117

queries thus neither logits nor prediction labels are accessible by clients during training, but server118

allows gradient queries to let client-side models be updated. Based on a client’s activation A = C(x)119

and its label y, gradient information ∇AL is computed and sent back to clients. In addition, we120

assume the attacker can perform gradient queries on any input x, including malicious ones.121

3.2 Analysis122

Partial model extraction problem. Since the attacker already has a white-box assumption of the123

client-side model, the attacker only needs to extract the server-side model to reveal the entire model.124

This results in an easier problem setting. We observe client-side model heavily regularizes the feature125

space of its output (input of server-side model), making ME attacks easier to succeed, especially126

when N is small. As shown in Fig. 2, on a VGG-11 [Simonyan and Zisserman, 2014] model on127

CIFAR-10 dataset, as N becomes smaller, tSNE embeddings of intermediate features with different128

labels are easier to distinguish. For N = 2, ME attack is as simple as separating different clusters129

with a linear layer.130

To show that the extracting part of the model with ME is easier, we study existing ME attacks on131

the server-side model, by assuming that prediction access is allowed. Specifically, we investigate132

CopyCat CNN [Correia-Silva et al., 2018], Knockoff-random [Orekondy et al., 2019] and data-free133

ME [Truong et al., 2021]. As shown in Fig. 3 (a), with auxiliary data (CIFAR-100) and enough query134

budget, both attacks derive a surrogate model with very high accuracy even for a large N setting.135

Moreover, attacker with no data can also succeed with data-free ME as shown in Fig. 3 (a). When the136

query budget is equal to 2 million, the data-free ME can extract the model with high accuracy even137

when N is equal to 5.138

Consistency of gradient query. For fine-tuning applications [Park et al., 2021], attackers get139

consistent gradient information from gradient query, as server-side model parameters are frozen140

or updated with a very small learning rate. Gradient consistency is very beneficial for ME attacks.141

However, for a training-from-scratch usage, queries to SFL model obtain inconsistent gradient142

information as the server-side model drastically changes during training. As shown in Fig. 3 (c), for143

the same query input, the gradient is drastically different in different epochs.144

4 Proposed Model Extraction Attack145

Previously, Milli et al. [2019] demonstrated that using gradients to reveal one-layer linear transforma-146

tion is trivial. Given f(x) = W Tx, one can directly infer W from a single gradient query given that147
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Figure 3: Analyses of SFL threat model. Existing ME attack performance on VGG-11 CIFAR-
10 model with different N , assuming prediction query access is allowed: (a) ME attacks using
CIFAR-100 as auxiliary dataset; (b) Data-free ME attack that demonstrates ME attack on part of
the model is much easier than ME attack on the entire model; (c) Inconsistent gradient problem in
training-from-scratch SFL. The y-axis denotes the change in gradient (lower means more consistent)
for the same inputs in different epochs.

W T = ∇xf(x). However, using gradient only can go no further than one layer. Milli et al. [2019]148

shows that to recover a two-layer ReLU network of the form f(x) =
∑h

n=1 g(x)iWiA
T
i x, where149

g(x) = 1 {Ax > 0}, A is of Rh×d and W is of Rh, using input gradient can recover the absolute150

value of normal vectors |WiAi| for i ∈ [h]. In order to get the sign information of WiAi, prediction151

query is required which is not supported by SFL’s threat model.152

So in this paper, we investigate approximate ME attacks that differ in the data assumptions and153

gradient usage. We propose five ME attacks as shown in Table 1. We also include a naive baseline154

scheme that train the surrogate model from scratch without access to either the client-side model or155

gradients. Despite the differences, the five proposed attack methods follow the same strategy, that is,156

they all train a randomly initialized surrogate server-side model from scratch. We provide a detailed157

illustration of proposed five attacks in Appendix A.2.158

Table 1: Model Extraction Attack Methods in SFL

Method Data Assumption Prediction Query Gradient Usage Client-side model Usage
Craft-ME None No Data Crafting Initialization
GAN-ME None No Data Generator Initialization
GM-ME Natural Auxiliary No Gradient Matching Initialization

Train-ME Limited Training No None Initialization
SoftTrain-ME Limited Training No Soft Label Crafting Initialization

Naive Baseline Limited Training No None None

4.1 ME attacks without training data159

We first consider two cases where the attacker does not have training data: one is that attacker does160

not use any data or use randomly generated noise data. This case is motivated by Truong et al. [2021]161

which shows that when an attacker does not have a similar enough dataset, it is better not to use it at162

all. The other case is when the attacker has an auxiliary dataset with different labels from the victim’s163

training data (for example, CIFAR-10 and CIFAR-100).164

Crafting model extraction (Craft-ME). Inspired by Han et al. [2018], where data-label pairs165

(referred to as instances) with small-loss are shown to present useful guidance for knowledge166

distillation, we propose a simple method to craft small-loss instances using gradient queries and use167

them to train the surrogate model. We initialize random input xr for every class label c, and use the168

gradient∇xr
L to update xr. For each input, updating is repeated for a number of steps. By varying169

label c, a collection of small-loss instances is derived during SFL training. Then, a surrogate model is170

trained from scratch on these small-loss instances.171

GAN-based model extraction (GAN-ME). Recent work [Truong et al., 2021] proposes a GAN-172

based approach for data-free ME. The key idea is to use a generator G to continually feed fake inputs173

to the victim model V and surrogate model S, and use confidence score matching to let S approach174

V . However, the confidence score matching needs prediction query which is not allowed in our case.175
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Thus, we adapt the GAN-based method to gradient-query-only case and propose a two-step method:176

First, a conditional-GAN (c-GAN) model G(z|c) is initialized. The attacker trains the generator177

during victim model’s training by generating fake data xf and label c and performing gradient queries178

to update G. After the training is done, generator G is used to supply small-loss instances (xf , c) to179

train the surrogate model (the unknown part). We observe a serious mode collapse problem during180

the GAN training. So we utilize the distance-aware training introduced in Yang et al. [2019], to181

encourage the c-GAN to generate more diverse small-loss instances. In the new method, the training182

of the generator is not based on a min-max game, or on traditional GAN training. Instead, it simply183

trains the generator toward minimizing cross-entropy loss. While the generator G fails to generate184

natural-looking inputs even upon convergence, it generates abundant small-loss instances for every185

label, and divergence loss helps it generate a good variety of outputs. During SFL training, the186

generator can adjust itself to the changing server-side model.187

Gradient matching model extraction (GM-ME). Gradient matching (GM) in ME attack has been188

investigated in Jagielski et al. [2020], Milli et al. [2019] and is used in combination with prediction189

query to improve the extraction performance. Since, in SFL, prediction query is not allowed, we190

navigate this strict threat model’s restriction by adopting gradient matching (GM) loss. For a given191

label yi, GM loss has the following form:192

LGM = |∇xiL(S(C(xi)),yi)−∇xiL(V (C(xi)),yi)|22 (1)

where, xi denote inputs, C denotes client-side model, S and V denotes the surrogate model and193

victim model, respectively. For each input, attacker would query gradients with different label yi to194

get as much information as possible. This attack performs extremely well for small N but degrades195

significantly for a larger N . Its performance also depends on the domain similarity between the196

auxiliary dataset and the victim dataset.197

4.2 ME attacks with training data.198

Next we discuss the case when the attacker has a subset of training data, corresponding to the strongest199

data assumption .200

Training-based model extraction (Train-ME). For attackers with a subset of the training data,201

derivation of an accurate surrogate model can be done using supervised learning (through minimizing202

the cross entropy loss on the available data). We call this Train-ME, similar idea is also adopted in Fu203

et al. [2022] to extract the entire model of the other party. Train-ME only relies on the white-box204

assumption of the client-side model, using it to initialize the surrogate model and does not need to205

use the gradient query at all. Surprisingly, it is one of the most effective ME attacks.206

Gradient-based soft label training model extraction (Soft-train-ME). If gradient query is allowed207

and a subset of training data is available, the attacker can achieve better ME attack performance208

compared to Train-ME. To utilize gradients, a naive idea is to combine the GM loss with cross-entropy209

loss in Train-ME. However, our initial investigation shows they are not compatible; the cross-entropy210

loss term usually dominates and the GM loss even hurts the performance. An alternative approach is211

to use soft label. We build upon the method in Gu et al. [2020] which shows that gradient information212

of incorrect labels is beneficial in knowledge distillation, and use it for surrogate model training.213

Specifically, for each input xi, gradients of the ground truth label as well as incorrect labels are214

collected (a total NC , where NC is the number of classes). For an input xi with true label c, its soft215

label qki of k-th (k ̸= c) label is computed as follows:216

qki = (1− α) ∗ cos(ek, ec)∑NC

m=1,m ̸=c(cos(e
m, ec) + 1)

(2)

where, ek denotes flattened gradients of label k, qki denotes soft label for the k-th label k and α is a217

constant (α > 0.5). The derived (xi, qi) pair is then used in the surrogate model training in addition218

to the true label c (which is the only difference from the Train-ME).219
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5 Model Extraction Performance220

In this section, we demonstrate the performance of the proposed ME attacks and the baseline attack221

on SFL schemes. All experiments are conducted on a single RTX-3090 GPU. For the SFL model222

training, we set the total number of epochs to 200, and use SGD optimizer with a learning rate of223

0.05 and learning rate decay (multiply by factor of 0.2 at epochs 60, 120 and 160). We assume all224

clients participate in every epoch with an equal number of training steps. To perform ME attacks,225

the attacker uses an SGD optimizer with a learning rate of 0.02 to train the surrogate model and we226

report the best accuracy and fidelity. We evaluate accuracy of the surrogate model on the validation227

dataset. We use the label agreement as fidelity, defined as the percentage of samples that the surrogate228

and victim models agree with over the entire validation dataset, as in Jagielski et al. [2020]. Detailed229

settings for each ME attack are described in Appendix A.1.230

5.1 ME attack on SFL with fine-tuning based training231

We first perform the proposed ME attacks on fine-tuning SFL version with consistent gradient query.232

Here we use a pre-trained model and set the number of gradient queries to 100K. On a victim VGG-11233

model on CIFAR-10 dataset, whose original accuracy is 91.89%, performance of all five ME attacks234

are shown in Table 2. For each of the ME attacks, we vary hyper-parameters and report the one235

that achieves the best attack performance; details on different hyper-parameters are included in236

Appendix A.3. When N = 2, all five ME attacks can achieve near-optimal accuracy and fidelity237

performance. For Craft, GAN and GM ME, the accuracy drops to around 80% when N is 5, it sharply238

drops to below 40% when N is 8. For Train and SoftTrain ME, accuracy slightly degrades when N is239

5, and reduces to around 70% when N is 8. These results show that ME attack performance strongly240

correlates with the #layers in server-side model. With an increasing #layers in server-side model, ME241

attack performance reduces as the extraction problem becomes harder with more unknown parameters242

and more complicated input feature space.243

Observation. Different attacks present different and interesting characteristics. Craft-ME has a244

steady attack performance and can succeed even with a tight query budget. GAN-ME needs a large245

query budget to train the c-GAN generator towards convergence but can achieve better accuracy246

and fidelity than Craft-ME for N ≤ 5. GM-ME requires an auxiliary dataset that is similar to the247

training data. If CIFAR-100 is used to attack CIFAR-10 model, GM-ME achieves almost perfect248

extraction for small N . However, its performance degrades if MNIST or SVHN are used as auxiliary249

datasets. For a high N , the surrogate model fails to converge on the GM loss, and its extraction250

performance suffers from a sharp drop. For attacks with training data such as Train and SoftTrain251

MEs, both accuracy and fidelity are much higher than attacks without training data. When N ≥ 6,252

SoftTrain-ME can achieve slightly better accuracy and fidelity than Train-ME.253

Table 2: ME attack performance on SFL on fine-tuning and training-from-scratch applications. The
victim is a VGG-11 model on CIFAR-10 with 91.89% validation accuracy. For Train, SoftTrain and
Naive baseline, for the fine-tuning setting, data assumption is 1K training data (randomly sampled),
and for the train-from-scratch setting, the number of clients is 10 and each client has 5K training data.

Metric N
Fine-tuning Training-from-scratch

Craft GAN GM Train SoftTrain Naive Craft GAN GM Train SoftTrain Naive

Accuracy
(%)

2 91.64 91.86 92.02 92.05 91.99 85.99 85.99 53.06 90.58 90.31
5 83.46 84.93 80.28 90.82 90.48 49.64 35.58 40.03 12.13 89.86 87.02 72.63
8 35.48 18.82 12.45 70.28 71.32 15.34 17.49 10.88 78.64 56.78

Fidelity
(%)

2 98.23 98.42 99.87 99.29 99.10 92.37 89.59 54.63 99.34 98.87
5 86.32 87.49 84.33 94.84 94.67 50.62 41.32 38.72 11.87 95.40 89.83 72.62
8 36.11 18.62 12.63 71.79 72.45 15.63 17.44 10.67 80.01 57.78

5.2 ME attack on training-from-scratch SFL254

Next, we investigate the proposed ME attack performance in training-from-scratch SFL case. A good255

attack-time-window for gradient-based ME attacks is at the end of training when gradients do not vary256

as much and the model converges. So for Craft, GAN and GM-ME, we launch the attack at epoch257

160 to get more consistent gradients. As the model is updated by multiple clients, the percentage of258
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malicious clients also affects the ME attack performance. We found that with more benign clients259

(or fewer malicious inputs), the server-side model returns more consistent gradients to the attacker.260

Attack performance for three attacks are shown in Table 2 for 10-client SFL training-from-scratch261

case. Results with other hyperparameter settings are included in Appendix A.4.262

Observation. Because of the poisoning effect of malicious inputs sent by the attacker in gradient-263

based attacks, in all the methods except Train-ME, the victim model’s accuracy suffers from a 2-3%264

degradation, resulting in a less accurate surrogate model. For gradient-based attacks without training265

data (Craft, GAN and GM MEs), we notice a sharp (> 3%) performance drop in both accuracy266

and fidelity compared to the consistent query case. The sharp drop in ME attack performance is267

caused by inconsistent gradients. Take Craft-ME as an example. Crafted inputs that have a small268

loss at an earlier epoch of the training can have a large loss in the final model. Training surrogate269

model with large amount of inconsistent information results in poor training accuracy. Compared270

to Craft-ME, GAN-ME is more robust to inconsistent gradients as the generator can adjust itself271

to the change of server-side model, resulting in a better extraction performance. However, when272

N is larger, the generator does not converge well and its performance drops drastically. Last but273

not the least, GM-ME completely fails with inconsistent gradients, even for small N . This implies274

that the GM loss is super sensitive to inconsistent gradients and is only effective in consistent query275

cases. A comparison of SoftTrain-ME and Train-ME shows that SoftTrain’s advantage diminishes276

because of the poisoning effect. Thus, Train-ME is more effective for an attacker with training data277

in training-from-scratch SFL.278

5.3 ME attack performance for other architectures and datasets279

We perform extensive analysis on the attack performance of the proposed ME schemes on other280

architectures and datasets. We use Train-ME attack, the best performer for both fine-tuning and281

training-from-scratch cases and use the accuracy as the performance measure. To test ME attack on282

different datasets, we perform Train-ME attack with 1K training data on VGG-11 model with N283

set to 5, on MNIST [LeCun, 1998], FMNSIT [Xiao et al., 2017], SVHN [Netzer et al., 2011] and284

CIFAR-100 datasets [Krizhevsky et al., 2009] (in addition to CIFAR-10). As shown in Fig. 4 (a), for285

all datasets except CIFAR-100, ME attack achieves accuracy very close to the original. For CIFAR-286

100, the extracted accuracy is over 20% below the original because of its task difficulty. Additionally,287

we also test Train-ME performance with 2% and 20% ImageNet training data of Mobilenet-V2 on288

ImageNet dataset. As shown in Fig. 4 (b), ME attack fails badly due to the complexity of ImageNet289

dataset [Deng et al., 2009], resulting in a high accuracy gap of 10% when N is set to 2. For different290

architectures, we choose Resnet-20, Resnet-32 [He et al., 2016] and Mobilenet-V2 [Sandler et al.,291

2018] on CIFAR-10 dataset (with necessary adaptations). For Resnet and Mobilenet family, we292

assign last 4 layer-blocks and 1 FC layer to server-side model. As shown in Fig. 4 (c), with the293

same proportion of layers (5 out of 11) being assigned to server-side model, ME attack is much294

less effective on Resnet-20 than on VGG-11. A comparison of the performance of Resnet-32 and295

Mobilenetv2 with similar proportion of layers being assigned to server-side (5 out of 17 and 20,296

respectively), ME on Resnet-32 is also much worse than on MobilenetV2. This indicates Resnet297

architecture is more resistant to ME attack.298

6 Discussion299

Our evaluation showed that ME attack performance drops with increasing #layers in server-side300

model. Thus, a simple idea to improve resistance to ME attack is to use a larger N . However this301

implies that the #layers in client-side model would be smaller, thereby undermining clients’ data302

privacy. Data privacy in SFL can be represented by the Mean Square Error (MSE) performance of303

an MI attack as outlined in Li et al. [2022]. The implementation detail is included in Appendix B.1.304

As shown in Fig. 4 (d), extracted accuracy decreases with a larger N , and MSE decreases too. This305

means MI attack can provide more precise reconstruction which compromises data privacy. We will306

extensively consider the tradeoff between ME resistance and data privacy in future.307

Defense Method. We also investigate defensive methods against ME attacks on SFL. According to308

the analysis in Fig. 2, extraction is easier because client-side model is leaked to the attacker. Thus, to309

make ME attacks more difficult, we can restrict the client-side model’s feature extraction capabilities.310

Towards this goal, we apply L1 regularization with three different strength (λ = 5e-5, 1e-4 and 2e-4)311
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Figure 4: Top row: Extensive results on model extraction (ME) attacks. (a) ME attack performance
of VGG-11 on other datasets. (b) ME attack performance of MobilenetV2 on ImageNet. (c) ME
attack performance of other architectures on CIFAR-10 dataset. Bottom row: (d) Tradeoff between
ME resistance and data privacy (MSE). (e) L1 regularization as effective defense for ME attacks.

on the client-side model to penalize its weight magnitude. As shown in Fig. 4 (e), this simple defense312

effectively improves the resistance to ME attack (specifically, Train-ME with 1K data) without hurting313

data privacy. While there is some accuracy degradation, as shown in Appendix A.5, this demonstrates314

the potential of using regularization to defend ME attacks.315

7 Ablation Study316

ME attack with non-IID data. We consider the non-IID (independent and identically distributed)317

case where the attacker only has data from C classes of CIFAR-10. Results presented in Appendix A.6318

show that ME attack performance is still good for C = 5 but degrades sharply when C = 2.319

Adversarial attack based on successful ME attack. As mentioned before, the goal of ME attack320

is to launch more successful adversarial attacks. We perform transfer adversarial attacks using a321

surrogate model extracted by the strongest Train-ME attack. As shown in Appendix A.7, SFL with322

proper N achieves better resistance to adversarial attacks.323

ME attack without architecture information. In Appendix A.8, we investigate simple variants324

(longer, shorter, wider, and thinner) of the original architecture as the surrogate model architecture.325

We find that the performance of ME attacks is similar for the different architectures – the exception is326

GM-ME which fails for different surrogate architectures.327

8 Conclusion328

In this work, we study the model IP protection capability of SFL and its resistance to model extraction329

(ME) attack. We propose five viable ME attack methods for the threat model where gradient query330

is allowed but prediction query is not allowed. For the case when there are enough number of331

layers in server-side model, model IP can be protected well and transfer adversarial attack is not332

successful. However, data privacy could be compromised and so this factor needs to be considered333

in the development of such schemes. We also point out a possible way of defending such attacks334

through regularization and plan to expand on it in the near future.335

Broader Impact. This work points out the vulnerability of Split Federated Learning (SFL), to model336

extraction attacks, and should prevent a naive adoption of SFL as a model IP protection method. We337

believe that the attacks presented here would initiate research in the development of defense schemes338

to mitigate such attacks, help design a more robust SFL and possibly help in the design of neural339

network models that are inherently resilient to such attacks.340
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