
All Life is Problem Creation: Learning to Generate
Environments that Maximize Performance Gain

Anonymous Author(s)
Affiliation
Address
email

Abstract

Intelligent agents can achieve mastery not just by learning on well-defined problems,1

but also by creating their own experiences that maximise learning. While current2

methods for automatic curriculum generation often rely on heuristics such as task3

novelty or difficulty, these proxies are often misaligned with the ultimate task.4

An agent can be endlessly captivated by novel-but-unlearnable environments or5

stymied by difficult-but-irrelevant challenges. We propose a framework where a6

generative ‘Proposer’ agent learns to create environments that explicitly maximise7

‘Solver’ agents’ performance gain on a target task. To make the curriculum adaptive,8

the Proposer is conditioned on the Solver’s policy, obtained by probing its behaviour9

on a small set of diagnostic environments. This conditioning mechanism enables10

the Proposer to generate a sequence of training environments, targeting the Solver’s11

evolving weaknesses. We validate our approach in maze environments, where our12

method learns to generate a curriculum of environments that are distinct from the13

target task distribution. Our experiments demonstrate that this approach accelerates14

the Solver’s learning on both in-distribution and out-of-distribution tasks compared15

to training directly on the target distribution.16

1 Introduction17

Much of the history of artificial intelligence has focused on building supervised learning, generative18

modelling, and planning algorithms to solve well-defined problems. Though this aligns with the19

philosophical view that "All life is problem solving" (Popper, 1994), it overlooks the higher-order20

skill of posing the very problems that are most valuable to solve for building general competence.21

Indeed, intelligent agents can achieve mastery by solving self-prescribed problems (Schmidhuber,22

2009). In this paper, we study machines that learn to propose problems themselves, envisioning23

agents that improve by designing their own curricula. These agents set and accomplish tasks to24

maximise their competence in an open-ended way, continually searching for novel and learnable25

challenges (Schmidhuber, 2012). This capability would allow an agent to discover questions that lie26

beyond the boundaries of existing data and learn in a truly unsupervised open-ended fashion.27

Recent progress in large language models, while impressive, has already approached the limits of28

human-generated data in various domains such as software development and reasoning (Guo et al.,29

2025). Furthermore, even when environments are abundant, learning from uncurated experience is30

often inefficient. An expert chess-playing agent, for instance, gains little from repeatedly playing31

full games against itself (Silver et al., 2016) or practicing standard openings it has already mastered.32

Instead, an ideal agent should learn to imagine specific, challenging endgame puzzles that target its33

current weaknesses.34

This raises a central question: how can an agent learn to generate useful learning experiences for itself?35

Prior work has proposed several proxies for usefulness, most prominently task novelty (Schmidhuber,36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



1. Solver Probing 2. Curriculum Creation 3. Solver Training 4. Solver Evaluation

-3

-7

-14

-15

(    )
-3

-7

-14

-15

Figure 1: Overview of our method. We train a generative Proposer (πp) to create an adaptive
curriculum that maximizes the performance of a Solver (πs). The process is a loop: (1) The Proposer
is conditioned on the Solver’s current policy by probing its behavior on a set of diagnostic tasks. (2)
The Proposer then generates a batch of P environments at each step l ∈ {1, ..., L} for the Solver to
train on. (3) Finally, the Proposer receives a reward calculated from the Solver’s total performance
gain after L steps on a random held-out set of target tasks.

1991b; Storck et al., 1995; Bellemare et al., 2016; Tang et al., 2017; Pathak et al., 2017), difficulty37

(Sukhbaatar et al., 2017; Zhao et al., 2025b), and compressibility (Schmidhuber, 2010). While such38

heuristics can drive exploration, they are limited. Pure novelty-seeking, for example, often rewards39

unpredictability without regard for learnability, leading to the situation in which agents are endlessly40

distracted by stochastic but uninformative signals (Schmidhuber, 2010, 2012). Similarly, maximising41

difficulty is unreliable: a task may be hard but irrelevant, or so unsolvable that it provides no signal42

for improvement. Crucially, the utility of any task depends on the student: useful tasks for a novice43

may be trivial for an expert.44

In this work, we study these proxy objectives and propose a more direct approach. We frame problem45

generation as a principled optimisation problem, where a generative model is explicitly conditioned46

on the current policy of the learning agent. This conditioning is achieved by probing the agent’s47

behaviour on a small set of diagnostic tasks, allowing the generative model to create a compact48

representation of the agent’s current weaknesses. Its sole objective is to generate environments49

and tasks that maximise the agent’s performance gain on a target distribution of tasks. Importantly,50

the proposed tasks are not subtasks of the target task and may even be different from the target51

task distribution, much like a football player practicing toe-bounce drills rather than playing a full52

90-minute match.53

We demonstrate that agents trained with our method learn faster in both in-distribution and out-54

of-distribution target environments compared to baselines trained on random target environments.55

Furthermore, we analyse the emergent curriculum, showing that the generative model learns to create56

a structured and interpretable sequence of tasks. We study the properties of this curriculum, showing57

that our agent can learn to recognise what constitutes a useful experience and how it correlates with58

measures of progress.59

2 Related Work60

Our approach is most related to curriculum learning, which selects tasks to guide training, self-61

training, which generates problems that the agent can learn from, and hierarchical reinforcement62

learning, which decomposes complex problems into subgoals and skills.63

Curriculum Learning. Curriculum learning aims to accelerate training by structuring the order64

of experiences (Bengio et al., 2009; Narvekar et al., 2020; Portelas et al., 2020). Early works relied65

on manually designed task sequences. Later, seminal work by Graves et al. (2017) and Matiisen66

et al. (2019) introduced the teacher–student framework, where a teacher adaptively selects tasks67

based on the student’s progress. A significant body of work (Fan et al., 2018; Katharopoulos and68

Fleuret, 2018) focusses on optimal data selection, where the teacher learns to filter, reweight, or69

select the most impactful examples from a fixed dataset. In contrast, our method aims to generate the70

optimal experience, potentially substantially different from the original training distribution. Based71

on this idea, the follow-up methods explored various task generation strategies, including Reverse72

Curriculum Generation (Florensa et al., 2017), GoalGAN (Florensa et al., 2018), and ALP-GMM73

(Portelas et al., 2019), which adapt task difficulty within a predefined family of environments.74

2



Another important dimension is how the teacher itself is optimised. Most existing approaches rely75

on short-term or local criteria, such as maintaining a target success rate (Florensa et al., 2018),76

maximising local learning progress (Portelas et al., 2019), or adversarially generating environments77

based on immediate regret signals (Dennis et al., 2020; Jiang et al., 2021). While effective, these78

methods emphasise short-term progress rather than long-term student performance. In contrast, our79

method remains goal-directed: the teacher adaptively proposes auxiliary tasks —-potentially distinct80

from the original goal —- but is optimised solely for the long-term success of the student on one81

predefined complex objective.82

Self-Training. Another line of related research concerns agents that create their own learning83

signals, moving beyond fixed datasets or pre-defined reward functions. This concept has roots in84

the study of intrinsic motivation, where agents are rewarded for exploring novel states or improving85

their own world models, such as artificial curiosity (Schmidhuber, 1991b). This paradigm includes86

asymmetric self-play, where a "teacher" agent learns to propose challenging yet solvable goals for a87

"student" (Sukhbaatar et al., 2018), and frameworks like PowerPlay, which explicitly search for novel88

and learnable problems to drive open-ended skill acquisition (Schmidhuber, 2012).89

More recently, this paradigm has been revitalised in the context of large language models. For90

example, R-Zero and Absolute Zero (Huang et al., 2025; Zhao et al., 2025a) show that pretrained91

large language models can be finetuned with reinforcement learning by autonomously generating,92

solving, and verifying their own tasks, similarly to self-generated challenges and world models93

(Schmidhuber, 1992, 2015). Other approaches generate diverse auxiliary tasks, such as asymmetric94

self-play (Sukhbaatar et al., 2018), where one agent generates challenges for another, and POET95

(Wang et al., 2019), which co-evolves environments and agents to discover diverse auxiliary problems.96

In a related vein, Self-Rewarding Language Models use the model’s own judgment to provide reward97

signals for iterative fine-tuning (Yuan et al., 2024). While our framework shares the spirit of self-98

training, its objective is fundamentally different. Unlike curiosity-driven or open-ended systems that99

reward novelty or solvability on a set of tasks, our Proposer learns to condition on the current Solver’s100

abilities and is rewarded exclusively for the Solver’s performance gain on an external target objective.101

Hierarchical Reinforcement Learning (HRL). HRL tackles long-horizon problems by decompos-102

ing them into manageable subtasks. Early concepts in HRL involved using recurrent neural networks103

as subgoal generators, which learned to propose intermediate steps for a reinforcement learning agent104

(Schmidhuber, 1991a). The options framework (Sutton et al., 1999) formalised temporally extended105

actions, later extended by the Option-Critic architecture (Bacon et al., 2017) to enable end-to-end106

option learning. Other approaches include FeUdal Networks (Vezhnevets et al., 2017), which employ107

manager–worker structures with abstract subgoals, and unsupervised skill discovery methods such as108

VIC (Gregor et al., 2016) and DIAYN (Eysenbach et al., 2019), which learn diverse reusable skills109

for downstream tasks.110

Unlike HRL, which decomposes tasks into subgoals or skills directly tied to the target objective, our111

teacher proposes auxiliary tasks that may be semantically distinct yet still beneficial for learning (e.g.112

“kick football” instead of “play 90-minute football game ”), thus broadening the training signal while113

remaining explicitly optimised for the final objective.114

3 Method115

Our objective is to train a generative model, the Problem Proposer πp, which samples environments116

to maximise the performance of a learning agent, the Solver πs, on a target task distribution.117

We formalise this as a reinforcement learning (RL) problem where the Proposer, πp, is an RL118

agent whose action is to generate a batch of training environments. It receives a reward based119

on the subsequent performance gain of the Solver, πs, on the target task. This section details our120

framework: we first describe the generative model of the Problem Proposer (§3.1). Since the optimal121

training curriculum is not static but should adapt to the Solver’s evolving capabilities, in (§3.2), we122

introduce the mechanism for conditioning Proposer πp on the Solver’s policy πs. We then define123

the performance gain reward used to train the Proposer (§3.3) and outline the sequential generation124

process that allows the curriculum to adapt dynamically (§3.4).125

3



3.1 Generative model126

The Proposer network, πp, is a generative model that outputs a batch of P problems at each step.127

The model’s objective is to generate a problem distribution that is more effective for training the128

current Solver than randomly sampling directly from the target distribution. While this approach is129

similar to training agents in generated worlds (Ha and Schmidhuber, 2018), a key difference is that130

our generative model is explicitly optimised via reinforcement learning to be useful for the Solver.131

The Proposer’s goal is to generate an entire batch of P problems. For example, in the maze navigation132

task, the Proposer would generate P number of new mazes for the Solver to train and learn from133

on. Capturing the joint distribution over these environments is desirable as it allows the model to134

control batch-level properties like task diversity. However, modelling the joint distribution naively135

(e.g. autoregressively) is computationally expensive for large P (we use P = 128). To maintain136

efficiency, we model the problems as conditionally independent of each other given the Solver’s137

policy πs. The Proposer architecture consists of a decoder that receives two inputs: (1) a conditioning138

vector representing the Solver’s policy πs (detailed in §3.2), and (2) a Fourier encoding of the problem139

index p ∈ {1, ..., P}. The decoder then outputs the categorical parameters for the p-th problem. This140

design allows the Proposer to learn to sample a diverse set of problems within a single batch, as141

observed in our experiments.142

3.2 Conditioning on a Probed Solver’s Policy143

The optimal training experience for an agent depends on its current weaknesses. For example, a chess144

agent that has mastered openings benefits more from practicing complex endgames. To this end, our145

Proposer πp is conditioned on the current state of the Solver’s policy πs.146

To obtain a representation of the Solver’s policy, πs, we first execute it on a set of C probe envi-147

ronments sampled from the target distribution. For each environment, we collect both the states148

(e.g. the 2D mazes) and the corresponding action logits (e.g. probabilities for going up, down, left149

and right at each cell) produced by the Solver’s policy network. These states and logit tensors are150

then concatenated and processed by a convolutional neural network (Fukushima, 1980; LeCun et al.,151

1998) to form a fixed-size conditioning vector. This vector serves as the representation of the Solver152

and is an input to the Proposer network. In our experiments, we randomly sample C = 16 probing153

environments.154

Notably, this conditioning mechanism does not require πp to accurately evaluate the Solver’s policy155

or predict its value function, a task known to be difficult (Faccio et al., 2022). Instead, πp only needs156

to recognise patterns indicative of the Solver’s performance. For instance, a coach may not know157

the exact probability of winning a football match but can observe that a player is struggling with a158

specific skill (e.g. running) and generate problems to target that weakness. Similarly, πp learns to159

identify where πs performs poorly and proposes relevant problems accordingly.160

3.3 Training with Performance Gain Reward161

We simultaneously train both the Proposer πp and the Solver πs from scratch using Proximal Policy162

Optimization (PPO) (Schulman et al., 2017). The reward for the Proposer is designed to directly163

optimise for the Solver’s performance.164

Specifically, we define the Proposer’s reward as the performance gain of the Solver on a held-out165

set of target tasks. Let π(0)
s be the Solver’s policy before a curriculum begins, and let π(L)

s be the166

policy after training for L steps. Let Rs(π,Dtarget) be the expected return of a policy π on the target167

problem distribution Dtarget. The total gain for the full curriculum is:168

Rp,total = Rs

(
π(L)
s ,Dtarget

)
− Rs

(
π(0)
s ,Dtarget

)
.

In practice, this expectation is estimated over a fixed validation batch of E problems from Dtarget.169

A new validation batch is randomly sampled for each of the Proposer’s main policy update steps.170

However, to reduce the variance of the reward signal, this same batch is used to evaluate the171

performance gain for all parallel rollouts within that single update step.172

To provide a denser learning signal for the Proposer, we distribute this total reward over the L-step173

curriculum. At each step l ∈ {1, ..., L}, the Proposer receives an intermediate reward, r(l)p , equal to174

4



Figure 2: Quantitative Results. (Top Row) Learning curves showing Solver success rate vs. training
update steps for in-distribution (ID) and out-of-distribution (OOD) evaluation tasks. Our method and
the ablation show significantly faster initial learning compared to the target task training baseline.
(Bottom Row) Sample efficiency, measured as the number of updates to reach 80% success rate. Our
method is notably more efficient on the ID task.

the marginal performance gain from that single step:175

r(l)p = Rs

(
π(l)
s ,Dtarget

)
− Rs

(
π(l−1)
s ,Dtarget

)
, l = 1, . . . , L.

The cumulative return for the Proposer’s L-step episode, with a discount factor of γ = 1, is equivalent176

to the total performance gain, Rp,total. This formulation provides a step-by-step learning signal that177

facilitates more stable training without introducing greedy bias. This reward can be negative if a178

particular step causes the Solver’s performance to drop.179

Our objective contrasts with methods that reward performance on the generated tasks themselves180

(Zhao et al., 2025a). By focussing on the target distribution, we ensure that the curriculum remains181

grounded in the ultimate goal. The number of Solver updates, L, is a key hyperparameter. A small L182

may lead to myopic curricula that maximise immediate gain, while a larger L encourages curricula183

with better long-term benefits at a higher computational cost.184

3.4 Step-by-step generation185

A potential design choice is to have πp generate a full curriculum of L × P problems at once.186

However, Solver’s learning trajectory is inherently ambiguous and stochastic (e.g. solver’s policy and187

its learning progress are hard predict) and therefore a static approach will be suboptimal. Instead,188

we employ a sequential generation process where the Proposer adapts to the Solver’s progress at189

each step of the inner training loop. The process is as follows: at each curriculum step l ∈ {1, ..., L},190

the Proposer πp conditions on the Solver’s current policy π
(l)
s and generates a batch of P problems.191

The Solver then performs one or more gradient updates on this batch to produce an updated policy,192

π
(l+1)
s . This updated policy is then used to condition the Proposer for the next step. This iterative193

loop, summarised in Figure 1, allows the curriculum to be highly responsive to the stochastic Solver’s194

learning trajectory.195

5



4 Experiments196

Our experiments are designed to investigate four key questions. First, does a proposer-generated197

curriculum accelerate learning and improve final performance compared to standard RL? Second, is198

the performance gain reward essential, or can a simpler heuristic like task difficulty achieve similar199

results? Third, does the emergent curriculum also accelerate learning on out-of-distribution (OOD)200

tasks? Finally, what are the qualitative characteristics of the curricula our method discovers?201

4.1 Experimental Setup202

The experiments are conducted in a procedurally generated 2D maze environment of size 10× 10,203

containing a start location, a goal location, and obstacles. The Solver agent selects from four discrete204

actions (up, down, left, right) and receives a sparse reward of +1 only upon reaching the goal, with205

an episode terminating if a step limit is exceeded. It is rewarded to complete the task in fewer steps206

by adding a per-step penalty of α (we use α = 0.01).207

A central element of our experimental design is the use of two narrow and distinct task distributions,208

created via different underlying data generation mechanisms, to rigorously test our claims. Our209

primary benchmark, which we refer to as the in-distribution (ID) target task, is a narrow distribution210

of mazes procedurally generated with a fixed shortest path distance of 12 and 40% obstacle density.211

This distribution serves as the consistent benchmark for evaluating all agents and is used to train the212

baselines. This setup allows us to verify that our Proposer learns a curriculum that is not merely213

samples from the target environment distribution, but is verifiably different (e.g. has different number214

of obstacles or a different optimal path length). To measure generalization, we also introduce a more215

challenging Out-of-Distribution (OOD) Target Task with a path distance of 14 and 50% obstacle216

density. This distribution allows us to test whether the emergent curriculum enables the Solver to217

acquire more robust and generalizable skills.218

The Solver is parameterized by a UNet architecture (Ronneberger et al., 2015), which takes the full219

maze as input and outputs action logits and a value estimate for each cell. For data collection, the220

policy is executed for a fixed horizon of 25 steps per environment. If an episode terminates early221

(e.g. by reaching the goal), the agent’s position is reset, allowing it to sample multiple trajectories222

from the same maze within this horizon. The collected experience is then used to perform eight PPO223

update steps with a learning rate of 2.5× 10−4, a discount factor γ = 0.99, a generalized advantage224

estimation (GAE) parameter λ = 0.95, and a clipping parameter ϵ = 0.2. The loss function includes225

an entropy coefficient of 0.01, a value function coefficient of 0.5, and the gradient norm is clipped at226

1.0. We train all agents for a total of 750 such data collection and update cycles.227

The Proposer agent is parameterized by a convolutional neural network that receives the Solver’s228

policy representation and outputs the categorical parameters for a batch of P = 128 mazes. At the229

start of each curriculum episode, the Proposer is conditioned on the Solver by probing its policy on a230

set of 16 probing environments. The Solver then trains for a period of L = 50 update steps on the231

curriculum generated by the Proposer. After these 50 steps, the Proposer’s reward is calculated as232

the Solver’s performance gain, estimated over a fixed, held-out set of 75 target tasks. This entire233

sequence constitutes one data collection rollout for the Proposer. We gather experience from 16 such234

parallel rollouts before updating the Proposer’s policy for 3 updates, with each update consisting of235

16 epochs. The remaining PPO hyperparameters, such as the learning rate and discount factor, are236

identical to those used for the Solver.237

We compare our method, Proposer (Perf. Gain), against two primary baselines. The Random238

Target Task baseline represents the standard RL approach, where the Solver trains on problems239

sampled directly from the ID Target Task distribution. The second, Proposer (Task Difficulty), is240

a crucial ablation of our method. It employs the identical Proposer-Solver architecture but rewards241

the Proposer for generating tasks that are maximally difficult for the Solver, rather than those that242

maximize performance gain. All methods are evaluated on their sample efficiency, defined as the243

mean number of updates to achieve an 80% success rate, and through learning curves that plot the244

mean success rate over the course of training. For statistical robustness, all results are averaged245

across 5 runs with different random seeds, and the learning curves are presented with 95% confidence246

intervals.247

6



Figure 3: Visualization of the emergent curriculum generated by our Proposer at different
training update steps (columns). We show the first two environments (rows) from each batch of
P = 128. The curriculum clearly progresses from simple mazes with short solution paths in early
training (left) to more complex and diverse challenges in later stages (right). Note that these generated
environments, with their varying path lengths and obstacle counts, are demonstrably different from
the fixed target task distribution.

4.2 Quantitative Results248

Our primary finding is that a curriculum generated to maximise performance gain accelerates learning.249

As shown in the learning curves in Figure 2 (top row), our method (Ours) and the ablation (Ablation)250

begin learning almost immediately. In contrast, the baseline that trains only on the target task (Target251

task training) experiences a long initial phase of stagnation, failing to achieve any meaningful252

progress for the first 150 update steps. This demonstrates the effectiveness of a generated curriculum253

in bootstrapping the learning process, an advantage that holds for both in-distribution (ID) and254

out-of-distribution (OOD) evaluation.255

The sample efficiency results, shown in Figure 2 (bottom row), further quantify this advantage.256

On the ID task, our method requires substantially fewer training updates to reach the 80% success257

threshold compared to the target task training baseline. Our method also shows a slight, though258

not statistically significant, improvement in initial learning speed over the difficulty-based ablation,259

whose performance lies within the confidence intervals of our own. On the more challenging OOD260

task, all methods eventually converge to a high success rate and exhibit comparable sample efficiency.261

The key advantage of our approach, therefore, lies in its ability to dramatically speed up the initial262

acquisition of skills.263

4.3 Analysis of the Emergent Curriculum264

To understand the mechanism behind these results, we analyse the curricula generated by our Proposer.265

Figure 3 provides a qualitative snapshot, visualising mazes generated at different points in the Solver’s266

training. Note that our method samples P = 128 environments jointly; here, we choose to visualise267

the first 2. The curriculum begins with simple, open mazes with short solution paths. As the Solver268

improves, the Proposer adaptively increases task complexity, introducing more intricate obstacle269

patterns and longer paths that are demonstrably different from the fixed target task.270

We hypothesise that this emergent strategy is effective for two primary reasons. First, the initial271

phase of simple short-distance tasks likely provides a denser reward signal, which could be crucial272

for bootstrapping the learning process. This may help the Solver overcome the severe challenge of273

reward scarcity that causes the baseline agent to stagnate (as seen in Figure 2). Second, a potential274

benefit of these shorter initial episodes is that they allow more trajectories to be sampled within a275

fixed computational budget. This, in turn, might lead to lower variance gradient estimates and more276

stable policy updates during the critical early stages of training.277

7



Figure 4: A comparison of the Proposer’s effectiveness over time, measured by both the maximum
(left) and average (right) performance gain. Early in training, both metrics are high, showing the
Proposer consistently generates useful curricula. As training progresses, a clear divergence emerges:
the maximum gain remains positive, which demonstrates that the Proposer still successfully finds
and generates rare, high-impact environments. In contrast, the average gain diminishes and becomes
negative, indicating that useful problems become increasingly difficult to find as the Solver masters
the task.

This focus on generating useful learning environments is reflected in the Proposer’s own learning278

process, as shown in Figure 4. Initially, the Proposer consistently generates environments that yield279

high performance gains on average (right plot), effectively bootstrapping the Solver. As training280

progresses, a divergence between the maximum and average gain emerges. The maximum gain281

remains positive, demonstrating that the Proposer continues to successfully identify and generate282

useful environments even for a proficient Solver. In contrast, the average gain diminishes and becomes283

negative, highlighting that finding useful problems becomes increasingly difficult and that a generic284

challenging environment is often detrimental to an expert agent. This confirms that the Proposer285

learns not just to generate problems, but to conduct a targeted search for the specific experiences that286

are most beneficial at each stage of learning.287

5 Conclusion288

In this work, we introduced a new framework for curriculum generation that moves beyond common289

heuristics, such as novelty or difficulty. Our method trains a generative Proposer agent to create290

environments by directly optimising for the Solver agent’s performance on a target task. A key291

component of our approach is its adaptive nature, achieved by conditioning the Proposer on a292

representation of the Solver’s current policy. This representation is efficiently obtained by probing293

the Solver’s behaviour on a small set of diagnostic tasks, allowing the curriculum to be tailored to294

the agent’s weaknesses. Our experiments demonstrated that this goal-directed curriculum generation295

leads to significantly accelerated learning on both in-distribution and out-of-distribution tasks.296

Limitations. The primary limitation of our method is the computational cost associated with the297

Proposer’s reward calculation. The reward is based on the Solver’s performance gain after training298

for L steps, requiring a full inner-loop training and evaluation cycle to compute a single reward signal299

for the Proposer. This introduces a trade-off: a small L reduces computational overhead but may300

lead to myopic, greedier curricula, while a large L provides a more farsighted training signal at a301

significantly higher cost.302

Future Work. Looking forward, our work opens several exciting avenues. While our framework is303

focused on a predefined target task, a long-term research goal is to investigate its asymptotic properties304

in a more open-ended setting: Can such a system continually expand its capabilities by defining305

its own sequence of ever-more-ambitious goals? Another promising direction is to move beyond306

training from scratch and explore how this framework can be used to fine-tune large, pre-trained307

models, generating targeted data to elicit or enhance specific capabilities.308

8



References309

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of the310

Thirty-First AAAI Conference on Artificial Intelligence, pages 1726–1734. AAAI Press, 2017. 3311

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.312

Unifying count-based exploration and intrinsic motivation. Advances in neural information313

processing systems, 29, 2016. 2314

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In315

Proceedings of the 26th annual international conference on machine learning, pages 41–48, 2009.316

2317

Michael D Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,318

and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment319

design. In Advances in Neural Information Processing Systems, volume 33, pages 13049–13061,320

2020. 3321

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you322

need: Learning skills without a reward function. In International Conference on Learning323

Representations, 2019. 3324

Francesco Faccio, Aditya Ramesh, Vincent Herrmann, Jean Harb, and Jürgen Schmidhuber. General325

policy evaluation and improvement by learning to identify few but crucial states. arXiv preprint326

arXiv:2207.01566, 2022. 4327

Yang Fan, Fei Tian, Tao Qin, Xiang-Yang Li, and Tie-Yan Liu. Learning to teach. arXiv preprint328

arXiv:1805.03643, 2018. 2329

Carlos Florensa, Yan Duan, and Pieter Abbeel. Reverse curriculum generation for reinforcement330

learning. In Conference on Robot Learning, pages 482–495. PMLR, 2017. 2331

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Automatic goal332

generation for reinforcement learning agents. In Proceedings of the 35th International Conference333

on Machine Learning, pages 1515–1528. PMLR, 2018. 2, 3334

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of335

pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193–202, 1980. 4,336

13337

Alex Graves, Marc Bellemare, Jacob Menick, Rémi Munos, and Koray Kavukcuoglu. Automated338

curriculum learning for neural networks. arXiv preprint arXiv:1707.00183, 2017. 2339

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. In340

International Conference on Learning Representations, 2016. 3341

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,342

Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou,343

Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei344

Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai,345

Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting346

Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian347

Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen,348

Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai349

Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,350

Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,351

Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,352

Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.353

Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,354

Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng355

Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng356

Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan357

Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,358

9



Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,359

Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,360

Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,361

Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,362

Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia363

He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong364

Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,365

Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,366

Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,367

Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen368

Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.369

URL https://arxiv.org/abs/2501.12948. 1370

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evo-371

lution. In Advances in Neural Information Processing Systems 31, pages 2451–372

2463. Curran Associates, Inc., 2018. URL https://papers.nips.cc/paper/373

7512-recurrent-world-models-facilitate-policy-evolution. https:374

//worldmodels.github.io. 4375

Chengsong Huang, Wenhao Yu, Xiaoyang Wang, Hongming Zhang, Zongxia Li, Ruosen Li, Jiaxin376

Huang, Haitao Mi, and Dong Yu. R-zero: Self-evolving reasoning llm from zero data. arXiv377

preprint arXiv:2508.05004, 2025. 3378

Minqi Jiang, Michael D Dennis, Jack Parker-Holder, Jakob Foerster, Tim Rocktäschel, and Edward379

Grefenstette. Prioritized level replay. In Proceedings of the 38th International Conference on380

Machine Learning, pages 4940–4950. PMLR, 2021. 3381

Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning with382

importance sampling. In International conference on machine learning, pages 2525–2534. PMLR,383

2018. 2384

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to385

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. 4, 13386

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-student curriculum387

learning. IEEE Transactions on Neural Networks and Learning Systems, 31(9):3732–3740, 2019.388

2389

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, and Peter Stone.390

Curriculum learning for reinforcement learning domains: A framework and survey. Journal of391

Machine Learning Research, 21(181):1–50, 2020. 2392

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by393

self-supervised prediction. In International conference on machine learning, pages 2778–2787.394

PMLR, 2017. 2395

Karl R. Popper. All Life is Problem Solving. Routledge, London; New York, 1994. 1396

Raphaël Portelas, Cédric Colas, Lionel Weng, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher397

algorithms for curriculum learning of deep rl in continuous action spaces. In Proceedings of the398

28th International Joint Conference on Artificial Intelligence, pages 3388–3396, 2019. 2, 3399

Raphaël Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Automatic curriculum400

learning for deep rl: A short survey. In Proceedings of the Twenty-Ninth International Joint401

Conference on Artificial Intelligence, pages 4819–4825, 2020. 2402

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical403

image segmentation. In MICCAI, 2015. 6, 13404

Jürgen Schmidhuber. Learning to generate sub-goals for action sequences. In Artificial neural405

networks, pages 967–972, 1991a. 3406

10

https://arxiv.org/abs/2501.12948
https://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution
https://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution
https://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution
https://worldmodels.github.io
https://worldmodels.github.io
https://worldmodels.github.io


Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural407

controllers. In Proc. of the international conference on simulation of adaptive behavior: From408

animals to animats, pages 222–227, 1991b. 1, 3409

Jürgen Schmidhuber. Learning factorial codes by predictability minimization. Neural Computation,410

4(6):863–879, 1992. 3411

Jürgen Schmidhuber. Ultimate cognition à la gödel. Cognitive Computation, 1(2):177–193, 2009. 1412

Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE413

transactions on autonomous mental development, 2(3):230–247, 2010. 2414

Jürgen Schmidhuber. On learning to think: Algorithmic information theory for novel combina-415

tions of reinforcement learning controllers and recurrent neural world models. arXiv preprint416

arXiv:1511.09249, 2015. 3417

Jürgen Schmidhuber. Powerplay: Training an increasingly general problem solver by continually418

searching for the simplest still unsolvable problem, 2012. URL https://arxiv.org/abs/1112.419

5309. 1, 2, 3420

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy421

optimization algorithms. arXiv preprint arXiv:1707.06347, 2017. 4422

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,423

Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,424

Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine425

Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with426

deep neural networks and tree search. Nature, 529(7587):484–489, 2016. doi: 10.1038/nature16961.427

1428

Jan Storck, Sepp Hochreiter, Jürgen Schmidhuber, et al. Reinforcement driven information acquisition429

in non-deterministic environments. In Proceedings of the international conference on artificial430

neural networks, Paris, volume 2, pages 159–164, 1995. 2431

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Rob432

Fergus. Intrinsic motivation and automatic curricula via asymmetric self-play. arXiv preprint433

arXiv:1703.05407, 2017. 2434

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Rob Fergus.435

Intrinsic motivation and automatic curricula via asymmetric self-play. In International Conference436

on Learning Representations, 2018. 3437

Richard S. Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A framework438

for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1-2):181–211, 1999.439

3440

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John441

Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration442

for deep reinforcement learning. Advances in neural information processing systems, 30, 2017. 2443

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,444

Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von445

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, edi-446

tors, Advances in Neural Information Processing Systems, volume 30. Curran Associates,447

Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/448

3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf. 14449

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David450

Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In451

Proceedings of the 34th International Conference on Machine Learning, pages 3540–3549. PMLR,452

2017. 3453

11

https://arxiv.org/abs/1112.5309
https://arxiv.org/abs/1112.5309
https://arxiv.org/abs/1112.5309
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired open-ended trailblazer (poet):454

Endlessly generating increasingly complex and diverse learning environments and their solutions.455

In Proceedings of the Genetic and Evolutionary Computation Conference, pages 142–151, 2019. 3456

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason457

Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 3, 2024. 3458

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Yang Yue, Matthieu Lin, Shenzhi Wang,459

Qingyun Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with460

zero data, 2025a. URL https://arxiv.org/abs/2505.03335. 3, 5461

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Yang Yue, Matthieu Lin, Shenzhi Wang,462

Qingyun Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with463

zero data, 2025b. URL https://arxiv.org/abs/2505.03335. 2464

12

https://arxiv.org/abs/2505.03335
https://arxiv.org/abs/2505.03335


A Supplementary Material465

This supplement provides additional details on the network architectures, training procedures used in466

our experiments, and additional qualitative results.467

A.1 Hyperparameter Details468

Table 1 lists the full set of hyperparameters used for our experiments.469

Table 1: Hyperparameters for the Solver and Proposer agents.

Parameter Value Description
PPO Algorithm

Learning Rate 2.5× 10−4 Adam optimizer learning rate
Discount (γ) 0.99 Reward discount factor
GAE Lambda (λ) 0.95 Generalized Advantage Estimation lambda
Clipping (ϵ) 0.2 PPO clip range
Entropy Coeff. 0.01 Weight of the entropy bonus
Value Function Coeff. 0.5 Weight of the value loss
Max Grad Norm 1.0 Gradient clipping threshold
PPO Epochs 8 Number of PPO epochs step
Update Steps 750 Update steps in the outer Solver’s training loop

Proposer-Specific
Lookahead (L) 50 Solver steps per Proposer reward
Probe Environments (C) 16 Mazes for Solver conditioning
Evaluation Environments (E) 75 Mazes for performance gain eval
Parallel Rollouts 16 Proposer rollouts per update

A.2 Solver Implementation470

Architecture. The Solver’s policy and value functions are jointly parameterized by a U-Net471

architecture (Ronneberger et al., 2015), which processes the entire H × W maze to produce a472

dense per-cell policy and value map. The network takes observations of shape [B,H,W,C] as473

input. The backbone is a U-Net with a depth of 2, using DoubleConv blocks with GroupNorm and474

ReLU activations. The encoder progresses through channel dimensions of 64 → 128 → 256 with475

max-pooling for downsampling, while the decoder uses bilinear upsampling and skip connections.476

The network terminates in two separate 1x1 convolutional heads: a policy head producing per-cell477

action logits of shape [B,A,H,W ] (where A = 4 actions), and a value head producing a value map478

of shape [B, 1, H,W ]. To obtain the action logits and value for the agent’s current state, we index479

these output tensors at the agent’s cell coordinates. All layers are initialized orthogonally.480

Training. The Solver is trained using Proximal Policy Optimization (PPO). At each update step, we481

collect experience by executing the policy in a batch of P environments for a fixed horizon of 25 steps.482

If an episode terminates early (e.g. the goal is reached), the agent’s position is reset, allowing it to483

sample multiple trajectories from the same maze within this horizon. The collected experience is then484

used to perform 8 PPO update epochs. Key hyperparameters include a learning rate of 2.5× 10−4, a485

discount factor γ = 0.99, a GAE parameter λ = 0.95, and a PPO clipping parameter of ϵ = 0.2.486

A.3 Proposer Implementation487

Architecture. The Proposer is a convolutional neural network (Fukushima, 1980; LeCun et al.,488

1998) that outputs categorical actions corresponding to discretized environment parameters. Each489

action specifies a bin for the obstacle fraction (M bins) and a bin for the shortest-path distance (N490

bins), resulting in an action space of size M ×N .491

The conditioning process, which provides the Solver’s state to the Proposer, is as follows. First,492

we probe the Solver’s policy πs on a batch of C mazes sampled from the target distribution. For493

each maze, we obtain the full policy logit map [A,H,W ] and concatenate it with the maze state494

13



Figure 5: A visual comparison of randomly sampled environments from the in-distribution (ID),
out-of-distribution (OOD), and our Proposer-generated distributions. The ID and OOD tasks
are structurally complex with fixed shortest path lengths of 12 and 14, respectively. In contrast, the
Proposer’s curriculum (shown here from early in training) consists of visibly simpler environments
with significantly shorter path lengths and fewer obstacles. This highlights the Proposer’s strategy of
generating a distinct distribution of tasks to bootstrap the learning process.

channels. This combined tensor is processed by a CNN encoder. The resulting feature maps from all495

C examples are then aggregated via average pooling to produce a single context vector g ∈ R128.496

To generate a diverse batch of P problems, we append a 16-band Fourier encoding (Vaswani et al.,497

2017) of each problem index p ∈ {1, . . . , P} to the context vector g. This combined vector is then498

passed through a shared 2-layer MLP to produce the action logits for each of the P problems.499

Performance-Gain Estimator. In practice, the stepwise performance gain is estimated on a fixed500

validation batch E of E problems: r
(l)
p = 1

E

∑
e∈E

[
r(π

(l)
s , e)− r(π

(l−1)
s , e)

]
. The sum of these501

stepwise gains,
∑L

l=1 r
(l)
p , is an unbiased estimator of the total true gain, Rp,total. Using a fixed batch502

E for all L steps within a single Proposer update is a key variance reduction technique. To prevent the503

Proposer from overfitting to this specific batch, we resample a new batch E for each main Proposer504

update.505

Training. The Proposer is also trained with PPO. An episode for the Proposer consists of the Solver506

training for L = 50 steps. At each step l ∈ {1, . . . , L}, the Proposer receives a reward equal to507

the Solver’s marginal performance gain on a held-out set of target tasks. The total return for the508

episode is the undiscounted sum of these stepwise gains. We collect experience from 16 such parallel509

Proposer rollouts before performing 3 policy updates, with each update consisting of 16 epochs. The510

PPO hyperparameters (learning rate, γ, etc.) are identical to those used for the Solver.511

A.4 Baselines Implementation512

To ensure a fair comparison, the Solver agent in all baselines uses an identical architecture and set of513

training hyperparameters to our main method. The Target task training baseline trains this Solver514

directly on environments sampled from the ID Target Task distribution. Our ablation, Proposer515

(Task Difficulty), uses the same Proposer-Solver architecture as our proposed method, with the sole516

modification being a reward function based on task difficulty instead of performance gain, where517

the Proposer’s reward is calculated as one minus the Solver’s success rate on the generated batch of518

environments. This incentivizes the Proposer to generate tasks that the current Solver finds maximally519

difficult.520

A.5 Computational Resources521

Our experiments were conducted on a heterogeneous cluster of consumer-grade GPUs, including522

NVIDIA V100, 3080, and A5000 models. A single training run for our method completes in523

14



approximately 10 hours on 8 GPUs. The Proposer’s rollouts, while computationally intensive, are524

independent and highly parallelizable.525

A.6 Additional Qualitative Results526

Figure 5 provides a visual comparison between environments sampled from the target distributions527

and those generated by our Proposer early in training. The figure displays four randomly sampled528

mazes from the in-distribution (ID) target task, the out-of-distribution (OOD) target task, and our529

generated curriculum. A clear structural difference is apparent: while the ID and OOD tasks are530

complex, with fixed shortest path distances of 12 and 14 respectively, the Proposer’s environments531

are visibly simpler. These generated tasks often feature fewer obstacles and significantly shorter532

path lengths (e.g. 3 to 5), which visually confirms that our method discovers a distinct and simpler533

distribution of problems to bootstrap the learning process.534

15



NeurIPS Paper Checklist535

1. Claims536

Question: Do the main claims made in the abstract and introduction accurately reflect the537

paper’s contributions and scope?538

Answer: [Yes]539

Justification: The abstract and introduction claim that our method, which trains a Proposer540

agent to maximize a Solver’s performance gain, leads to faster and more generalizable541

learning. These claims are directly supported by our experimental results in Section 5.542

2. Limitations543

Question: Does the paper discuss the limitations of the work performed by the authors?544

Answer: [Yes]545

Justification: The Conclusion section includes a dedicated paragraph on limitations, dis-546

cussing the computational cost of our method and the trade-offs associated with the looka-547

head hyperparameter L.548

3. Theory assumptions and proofs549

Question: For each theoretical result, does the paper provide the full set of assumptions and550

a complete (and correct) proof?551

Answer: [NA]552

Justification: This paper is empirical and does not present any theoretical results, theorems,553

or formal proofs.554

4. Experimental result reproducibility555

Question: Does the paper fully disclose all the information needed to reproduce the main ex-556

perimental results of the paper to the extent that it affects the main claims and/or conclusions557

of the paper (regardless of whether the code and data are provided or not)?558

Answer: [Yes]559

Justification: Section 5.1 provides a detailed description of the environment, agent architec-560

tures, data collection procedures, training loops, and all key hyperparameters necessary to561

reproduce our experiments.562

5. Open access to data and code563

Question: Does the paper provide open access to the data and code, with sufficient instruc-564

tions to faithfully reproduce the main experimental results, as described in supplemental565

material?566

Answer: [Yes]567

Justification: Our environment is procedurally generated, and we will release the code for568

the environment to ensure full reproducibility.569

6. Experimental setting/details570

Question: Does the paper specify all the training and test details (e.g. data splits, hyper-571

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the572

results?573

Answer: [Yes]574

Justification: Section 5.1 details the experimental setup, including the environment, agent575

architectures, task distributions, baselines, and all relevant hyperparameters for both the576

Solver and Proposer agents.577

7. Experiment statistical significance578

Question: Does the paper report error bars suitably and correctly defined or other appropriate579

information about the statistical significance of the experiments?580

Answer: [Yes]581

Justification: All of our experimental results are averaged over 5 random seeds. The582

learning curves in our plots are presented with 95% confidence intervals to show statistical583

significance.584

16



8. Experiments compute resources585

Question: For each experiment, does the paper provide sufficient information on the com-586

puter resources (type of compute workers, memory, time of execution) needed to reproduce587

the experiments?588

Answer: [Yes]589

Justification: We add a subsection to the appendix detailing the compute resources used (e.g.590

GPU type, number of hours) for our experiments to ensure transparency.591

9. Code of ethics592

Question: Does the research conducted in the paper conform, in every respect, with the593

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?594

Answer: [Yes]595

Justification: The research involves training reinforcement learning agents in a simulated596

environment and does not involve human subjects, sensitive data, or any other aspects that597

would violate the NeurIPS Code of Ethics.598

10. Broader impacts599

Question: Does the paper discuss both potential positive societal impacts and negative600

societal impacts of the work performed?601

Answer: [No]602

Justification: This work is foundational research on algorithmic methods for improving603

agent learning efficiency. While more capable agents could eventually be applied in ways604

with societal impact, our work does not have a direct path to such applications, and we have605

therefore omitted a broader impact statement.606

11. Safeguards607

Question: Does the paper describe safeguards that have been put in place for responsible608

release of data or models that have a high risk for misuse (e.g. pretrained language models,609

image generators, or scraped datasets)?610

Answer: [NA]611

Justification: Our work does not introduce or use high-risk models or datasets, such as612

large-scale language models or scraped web data, that would necessitate specific safeguards613

for release.614

12. Licenses for existing assets615

Question: Are the creators or original owners of assets (e.g. code, data, models), used in616

the paper, properly credited and are the license and terms of use explicitly mentioned and617

properly respected?618

Answer: [NA]619

Justification: Our work is self-contained. The environment and models were implemented620

by us, and we do not use any external datasets, models, or codebases that require discussion621

of licenses.622

13. New assets623

Question: Are new assets introduced in the paper well documented and is the documentation624

provided alongside the assets?625

Answer: [Yes]626

Justification: The code for our method and experiments will be released with a README627

file providing instructions for use and reproduction of our results.628

14. Crowdsourcing and research with human subjects629

Question: For crowdsourcing experiments and research with human subjects, does the paper630

include the full text of instructions given to participants and screenshots, if applicable, as631

well as details about compensation (if any)?632

Answer: [NA]633

17

https://neurips.cc/public/EthicsGuidelines


Justification: This research does not involve any crowdsourcing or experiments with human634

subjects.635

15. Institutional review board (IRB) approvals or equivalent for research with human636

subjects637

Question: Does the paper describe potential risks incurred by study participants, whether638

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)639

approvals (or an equivalent approval/review based on the requirements of your country or640

institution) were obtained?641

Answer: [NA]642

Justification: This research does not involve any experiments with human subjects and643

therefore did not require IRB approval.644

16. Declaration of LLM usage645

Question: Does the paper describe the usage of LLMs if it is an important, original, or646

non-standard component of the core methods in this research? Note that if the LLM is used647

only for writing, editing, or formatting purposes and does not impact the core methodology,648

scientific rigorousness, or originality of the research, declaration is not required.649

Answer: [No]650

Justification: Large language models were not used as a component of our core methodology.651

Their use was limited to assisting with writing and refining the text of the manuscript.652

18


	Introduction
	Related Work
	Method
	Generative model
	Conditioning on a Probed Solver's Policy
	Training with Performance Gain Reward
	Step-by-step generation

	Experiments
	Experimental Setup
	Quantitative Results
	Analysis of the Emergent Curriculum

	Conclusion
	Supplementary Material
	Hyperparameter Details
	Solver Implementation
	Proposer Implementation
	Baselines Implementation
	Computational Resources
	Additional Qualitative Results


