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ABSTRACT

Federated Learning (FL) is a popular distributed learning paradigm to break down
data silo. Traditional FL approaches largely rely on gradient-based updates, facing
significant issues about heterogeneity, scalability, convergence, and overhead, etc.
Recently, some analytic-learning-based work has attempted to handle these issues
by eliminating gradient-based updates via analytical (i.e., closed-form) solutions.
Despite achieving superior invariance to data heterogeneity, these approaches are
fundamentally limited by their single-layer linear model with a frozen pre-trained
backbone. As a result, they can only achieve suboptimal performance due to their
lack of representation learning capabilities. In this paper, to enable representable
analytic models while preserving the ideal invariance to data heterogeneity for FL,
we propose our Deep Analytic Federated Learning approach, named DeepAFL.
Drawing inspiration from the great success of ResNet in gradient-based learning,
we design gradient-free residual blocks in our DeepAFL with analytical solutions.
We further introduce an efficient layer-wise protocol for training our deep analytic
models layer by layer in FL through least squares. Both theoretical analyses and
empirical evaluations validate our DeepAFL’s superior performance with its dual
advantages in heterogeneity invariance and representation learning, outperforming
state-of-the-art baselines by up to 5.68%—8.42% across three benchmark datasets.
The related codes will be made open-sourced upon the acceptance of this paper.

1 INTRODUCTION

Federated Learning (FL) has emerged as a prominent paradigm that enables distributed machine
learning to break down data silos (Fan et al., 2025c¢; |Yang et al., 2023)). The objective of FL is to
allow a group of clients to collaboratively train a powerful and robust global model, while preserving
their data privacy (Ren et al.,|2025; [Liu et al., 2024b)). Currently, the field of FL has seen substantial
growth across a wide variety of applications (Zhou et al.,|2024; |Wu et al} 2024} Rong et al., 2025).

Traditional FL methods rely on a gradient-based optimization paradigm, exemplified by the classic
FedAvg (McMabhan et al.,2017) and its following variants (Li et al.,2021bj | Yang et al.,2024). These
methods typically necessitate iterative optimization processes to achieve convergence (Wang et al.,
2024; Tan et al., [2022a)). Yet, these gradient-based techniques are widely acknowledged to suffer
from several major challenges (Ye et al.,[2023a} |Chai et al., 2024} |He et al., 2025b)), as follows.

(1) Heterogeneity Issues: The data across clients are often Not Independently and Identically
Distributed (Non-IID), which can severely impact model performance and convergence.

(2) Scalability Issues: As the number of clients increases, especially to a large scale (e.g.,
thousands of clients), the FL systems can experience substantial performance degradation.

(3) Convergence Issues: The FL methods may struggle to converge within limited aggregation
rounds, particularly in challenging scenarios of non-IID data or large-scale clients.

(4) Overhead Issues: The overall FL process incurs significant overhead from multi-epoch
training on each client and multi-round model aggregation across clients for convergence.

Many researchers have come to realize that the aforementioned challenges in FL are fundamentally
rooted in the long-standing reliance on gradient-based updates, which are inherently sensitive and
costly in the distributed FL scenario (Ye et al.,[2023a; |Fani et al., [2024; |[He et al., 2025b)). From this
perspective, existing gradient-based methods can only superficially alleviate these issues rather than
fundamentally address them. Therefore, a natural and promising avenue to fundamentally address
these gradient-related issues is to eliminate gradient-based updates entirely (He et al., 2025b)).
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Figure 1: Comparing our proposed DeepAFL with the naive approaches for representation learning.
(a) Illustration of multi-analytic layers with random projections. (b) Illustration of multi-analytic
layers with random projections & activation functions. (c) Illustration of our proposed DeepAFL.
(d) Among these, our DeepAFL exhibits the best performance improvements with increasing layers.
For all these approaches, the activation function is GELU, the random projection dimension is 1024,
the pre-trained model is the ResNet-18 used in AFL, and the evaluation dataset is the CIFAR-100.

As a prominent gradient-free technique, analytic learning has exhibited great promise by achieving
analytical (closed-form) solutions through least squares (Zhuang et al.|[2024a; |Fan et al.,|2025a). To
introduce this technique into the FL, Analytic Federated Learning (AFL) has been proposed with
the help of pre-trained models (He et al., [2025b). The core idea of AFL is to leverage frozen pre-
trained models (e.g., foundation models) for feature extraction on input data. Based on the extracted
features, AFL can then build a single-layer linear model, which has an analytical solution. Through
its specific protocols on local training and global aggregation, AFL achieves ideal invariance to data
heterogeneity, as its final aggregated global model is equivalent to the centralized analytical solution.

Despite achieving State-Of-The-Art (SOTA) performance with its unique invariance to data hetero-
geneity, AFL is significantly limited by its single-layer linear model. On the one hand, this analytic
model is foundational to AFL, as its simplicity with a convex optimization objective is a prerequisite
for deriving an analytical solution. On the other hand, it also severely limits AFL’s application, as it
can only learn a linear mapping from the frozen backbone’s features to the final output, thus funda-
mentally failing to perform representation learning within the FL systems. Consequently, due
to the limited learning capacity of the linear analytic model, AFL is prone to underfitting, especially
when the backbone itself is lightweight. Additionally, even if the backbone itself possesses sufficient
feature extraction capabilities, the linear separability of its output features may still be insufficient.

Thus, an interesting and challenging problem arises: can we deepen AFL’s analytic model to enable
its representation learning capabilities while simultaneously preserving its analytical solutions for
invariance to data heterogeneity? A quite naive approach is using a random projection after each
analytic model to construct the input features for the next layer, as displayed in Figure[T[a). Yet, this
approach brings almost no performance improvement, as all its layers are simply linear mappings.
Then, we attempt to introduce an activation function after each feature to provide non-linearity, as
illustrated in Figure[I(b). Based on the evaluation results presented in Figure[T[d), the deep activated
random projections can, to some extent, enrich the feature representations. However, as the number
of layers increases, the deepening approach (b) struggles to improve the performance very little from
representation learning. Therefore, these naive approaches fall far short of our requirements.

Drawing inspiration from the great success of ResNet in gradient-based learning (He et al., [2016),
in this paper, we adopt the similar skip connections to boost the representation of the analytic layers.
Specifically, we model this representation learning as ®; = ®;_1+¢;(®;_1), where g;(-) represents
a nonlinear feature transformation. In gradient-based learning, the residual blocks g;(®;_1) can
be easily learned, as Stochastic Gradient Descent (SGD) with backpropagation can automatically
adjust the network weights to learn appropriate representations. Given that analytic models preclude
gradient-based updates via backpropagation, a key technical challenge lies in how to effectively learn
the residual blocks g;(®;_1) for meaningful boosting within the framework of analytic learning.
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To enable representable analytic models while preserving their ideal invariance to data heterogeneity
for FL, in this paper, we propose our Deep Analytic Federated Learning approach, named DeepAFL.
Inherited from AFL, our DeepAFL also employs a pre-trained backbone for initial feature extraction.
Then, we propose to randomly project and activate these features to form the zero-layer features ®,
which can yield an immediate performance gain of about 2.1%, as shown in Figure[T[d). After this
setup, our DeepAFL continuously refines the features ®; layer by layer. Specifically, to obtain the
residual block g;(®;_1) for layer ¢, we first build a nonlinear representation F;_; from ®;_ using
a random projection layer with an activation function, as illustrated in Figure[T|c). Subsequently, we
can obtain g;(®;_1) = F;_1Q; by introducing a learnable transformation €2, to adjust and scale the
representation F';_;. We derive the optimal analytical solution for €2, via sandwiched least squares.
As shown in Figure[I[d), our DeepAFL exhibits a desired capability of deep representation learning,
as its performance continuously and markedly improves with an increasing number of layers.

Our primary contributions are summarized as follows:

* Conceptually, we propose our DeepAFL, a novel approach that can achieve gradient-free
representation learning while preserving ideal invariance to data heterogeneity in FL.

* Technically, we develop an efficient layer-wise protocol for learning deep analytic models
via least squares. In our DeepAFL, the clients only need to conduct lightweight forward-
propagation computations, so that the server can aggregate the global models layer by layer.

 Theoretically, we demonstrate two ideal properties of our DeepAFL: its invariance to data
heterogeneity and its capability of representation learning. To the best of our knowledge,
our DeepAFL represents the first to achieve both of these ideal properties simultaneously.

» Experimentally, we provide extensive evaluations on three benchmark datasets to show the
superiority of our DeepAFL, which outperforms SOTA baselines by up to 5.68%—-8.42%,
thanks to its dual advantages in heterogeneity invariance and representation learning.

2 RELATED WORK
2.1 FEDERATED LEARNING

As a prominent distributed learning paradigm, FL allows multiple clients to collaboratively train a
global model to break down data silos (Fan et al.l|2025c¢; [Yang et al.|[2023)). Existing FL techniques
are largely derived from FedAvg (McMahan et al., 2017)) and rely on gradient-based optimization.
Despite advancements in FL, their reliance on gradients also causes inherent issues about overhead,
convergence, heterogeneity, and scalability (Ye et al.| [2023a; [Chai et al.| [2024; He et al., | 2025b).
While several studies have explored representation learning in FL, such as FedRep (Collins et al.,
2021) and FedU? (Liao et al., 2024), they still fail to solve the preceding gradient-based issues.

Recently, AFL has introduced a new and promising wave that fundamentally handles these issues
by avoiding gradient-based updates via analytic learning (He et al.| |2025b). Based on it, some sub-
sequent research has extended this concept to personalized FL and federated continual learning (Fan
et al.,|2025b; Tang et al., 2025b)), achieving excellent performance. Nevertheless, a key limitation of
existing analytic-learning-based FL approaches is their lack of representation learning capability.

2.2 ANALYTIC LEARNING

Analytic learning (Zhuang et al., 2022} 2023} |2024b), also known as pseudoinverse learning (Cline}
1964;|Guo et al.,|2001), has emerged as a popular gradient-free technique to address gradient-related
issues (Toh, 2018; [Lanthaler & Nelsen, 2023} [Prabhu et al.l 2024; [Zozoulenko et al., 2025} [Fan
et al., [2025a; Bolager et al., [2023). Its core idea is to directly derive analytical (i.e., closed-form)
solutions using least squares, to eliminate gradient-based updates (Lai et al.,[2025} |Peng et al.||2025).
Currently, analytic learning has been widely applied in various modern tasks and achieved promising
results (Liu et al.l 2024c; [Li et al., 2025 He et al., [2025b; [Tang et al., [2025a; [Tran et al., |[2025)).

Despite the extensive superiority shown by analytic learning, current approaches are largely limited
by their single-layer linear models, which sacrifice the capabilities of deep representation learning.
On the other hand, achieving representable deep analytic models while preserving their closed-form
solutions stands as a great challenge, especially in the distributed scenario of FL. Drawing inspiration
from the success of ResNet (He et al.l[2016) in gradient-based learning, we fundamentally solve this
problem by carefully designing gradient-free residual blocks with closed-form solutions.
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3 OUR PrROPOSED DEEPAFL

In this section, we elaborate in detail on our proposed DeepAFL. For clarity, we consider the typical
FL setting involving one server and K clients. Moreover, to align with existing research, we use the
most prevalent task in FL, image recognition, as the prime example to describe the workflow of our
DeepAFL (Yu et al.l 20245 2025} [Yang et al., [2024; |[He et al., 2025b). Each client’s local dataset is
denoted as DF = {XF* Y*}, where X* € RNexdiuxdwxdc and Y* € RN#*C represent the N}, local
samples and their corresponding labels, respectively. Here, dy X dw X dc denotes the 3 dimensions
(height, width, and channels) of the input images, and C denotes the number of output classes.

The objective of our proposed DeepAFL is to construct a deep residual analytic network comprising
T layers for deriving the features ®7 and the corresponding global classifier W, in a distributed
and gradient-free manner. In Section [3.1] we detail the motivation and insight of the proposed deep
analytic learning in our DeepAFL, which is described from a centralized perspective for clarity. In
Section [3.2] we elaborate on the specific workflow and implementation of our DeepAFL within the
data-distributed FL scenario. In Section[3.3] we provide theoretical analyses of our DeepAFL for its
validity, privacy, and efficiency, particularly showing its dual ideal properties.

3.1 DEEP RESIDUAL ANALYTIC LEARNING OF OUR DEEPAFL

Here, we aim to introduce the key motivation and insights behind the proposed deep residual analytic
model in our DeepAFL. For clarity and brevity, we first adopt a centralized perspective and consider
a full dataset D = {X, Y} to construct the T-layer deep residual analytic network. Specifically, we
progressively learn better representations and refine the features {®;}7_, layer by layer. Based on
the features ®, for each layer ¢, we construct a corresponding analytic classifier W.

First of all, inherited from AFL (He et al.,[2025b), we employ a pre-trained backbone for our initial

feature extraction from X to obtain X € RV *dx via . This has been widely adopted as a common
practice in many recent studies of FL (Nguyen et al., 2023} |Piao et al.| 2024} Yu et al.||2024;[2025).

X = Backbone(X, ©), (D
where Backbone(-) represents the pre-trained backbone with frozen parameters . Based on this
initial feature extraction of AFL, we further incorporate the activated random projection to boost the
features’ representation, thereby forming the zero-layer features ®, € RN <% as follows.

&, — o(XA), @)
where o (-) represents the activation function, and A € R%>?® ig the random projection matrix.
This activated random projection can increase the feature dimension to a suitable size, boosting its
linear separability, as widely validated in existing studies (Cover}, 2006} Zhuang et al., [2022;|2024b;
Zhang et al.L[2025)). To progressively learn richer representations, we attempt to deepen the network.
Yet, naive approaches to deepening the network fail to achieve it effectively, as shown in Figure[l]

Drawing inspiration from the great success of ResNet in gradient-based learning (He et al., |2016),
we adopt the similar skip connections to boost the representations of the analytic layers. Specifically,
we model this representation learning process as the feature updating formula in (3)):

P, =P, 4 +gt(lI>t_1),Vt€ [1,T] 3)
Here, g:(-) represents the residual block as a nonlinear feature transformation. We will specify the
detailed gradient-free design of the residual block within our DeepAFL in (6)) later. Built upon the
obtained feature matrix ®, for each layer ¢, we can construct a corresponding analytic classifier Wy.
Specifically, consistent with other existing analytic-learning-based approaches (He et al.,2025b)), the
optimization objective for the analytic classifier W can be formulated as follows.

Wi = argmin [[Y — & Wi + AW, vt € [0, 7], @)

where A denotes the regularization parameter and || - ||2 represents the Frobenius norm. Since cross-
entropy loss does not admit a closed-form solution, we use the Mean Squared Error (MSE) loss here.
In fact, the MSE loss is widely adopted in analytic learning (Zhuang et al.| 2022;2023;2024b) and
can achieve performance comparable to that of the cross-entropy loss (Hui & Belkin| 2021)). Using
the least squares method, we can derive the optimal analytical solution to the objective (4), as given
by (3). The detailed proof of the analytical solution (5) is provided in Lemma 1 of Section

W, = (®/®, + \I)"'®/] Y, Vt € [0,T]. 6))
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After obtaining the analytic classifier W, we then proceed with deep residual representation learn-
ing to update the (¢ + 1)-th-layer features. Based on , the key to this problem is the gradient-free
design of the residual blocks, which possess analytical solutions with the properties of stochasticity,
nonlinearity, and learnability. Thus, in our DeepAFL, the residual block is instantiated as follows:

Ge+1(®r) = 0(®:By) Qe 1 =FQy11,Vt € [0,7). (6)

Here, B; € R% > represents the random projection matrix for stochasticity, akin to that provided
by SGD in gradient-based learning. Meanwhile, o (-) means the activation function for nonlinearity,
a component that is widely demonstrated to be essential in deep representation learning. Moreover,
Q.1 € R¥*de represents the trainable transformation matrix for providing learnability. In @), we
further define F; = o(®;B;) as the hidden random feature, thereby isolating the trainable £2; ;. In
Sectiond] we will provide extensive ablation studies to show the effectiveness of these components.

Then, we focus on learning the optimal €2 ; for effective representation boosting within the residual

block. Here, our objective can be written as, given a fixed classifier W, from the previous layer, to
minimize the empirical risk by optimizing the new features ®;,, = ®, + F;{2;, 1, as follows:

Qi1 = argmin [|[Y — (@, + F QW[ + 71|

) (7)

= argmin IR; — F,.QW,||2 4 ~||Q||2,Vt € [0,T).

Here, we define the residual of the current layer’s classification as R; = Y — (®; W) for notational

convenience. The optimization objective (/) can be seen as a special case of generalized Sylvester

matrix equations (Wu et al.}[2008; |Ding et al.| [2008; | Duan, 2015]), with a specific structure where the

unknown variable € is sandwiched between two known ones, F; and W,. This structure enables

the derivation of an analytical solution, as shown in (§). We term it as the sandwiched least squares
problem, and provide a detailed proof of the analytical solution (8) in Lemma 2 of Section[3.3]

Qi1 = Vi[(V/F[R,W/U,) @ (71 + diag(A}) ® diag(A}'))]U, , vt € [0,T), ®)

where F/ F; = V, AV and W, W/ = U;A U/ are spectral decompositions, while © and ®
represent element-wise division and outer product, respectively. Once we obtain the transformation
matrix 2,41, we can compute the next-layer features via the following recursive formula.

¢t+1 == (}t + FtQt+1,vt E [0, T) (9)
In summary, the construction of our deep residual analytic network proceeds in a layer-wise manner,
involving the alternating derivation of W and €2, via analytical solutions (5) and (8), respectively.
Specifically, the solution procedure follows the sequence Wg — Q1 — Wi — - —= Qp — W,
beginning with the zero-layer classifier W and concluding with the final-layer classifier Wr. For
further clarity, we provide detailed illustrations of our DeepAFL’s formulations in Figures [T4HI6]of
Appendix[H] Based on the above centralized process, we will then elaborate on the specific workflow
and implementation of our DeepAFL for the data-distributed FL scenario in Section

3.2 FEDERATED IMPLEMENTATION OF OUR DEEPAFL

In this subsection, we display the federated implementation of our DeepAFL for the data-distributed
FL scenario, where each client owns its local dataset D* = {X* Y*}. The overall implementation
workflow of our DeepAFL still follows the layer-wise procedure that is described in Section[3.1] Yet,
in the FL setting, the analytical computation of the global weights W and €2, 1 requires additional
aggregation of all clients’ local knowledge to update the global knowledge.

First of all, each client k performs feature extraction on its local data X* to obtain its local zero-layer
feature matrix ®% € RNVx*de similar to (1) and , as follows.
®F = 5(Backbone(X* @)A). (10)
Then, for each layer ¢ € [0, T, each client utilizes its features ®F and labels Y* to compute its local
Feature Auto-Correlation Matrix G¥ and Label Cross-Correlation Matrix HF, as follows.
G/ = (o) @f, Hy=(®;) Y" (11)
Then, the server needs to aggregate G+ and H}*¥ from the clients through . This process can

be implemented via existing Secure Aggregation Protocols (Bonawitz et al., 20165 [2017} |So et al.,
2023). We provide related privacy analyses in Section[3.3]

. K . K
Gif=)  Gi, Hf=3% H. (12)
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Once obtaining G} and H}*¥, the server can derive the global classifier W via (13]) and distribute
it to all clients then. As shown in Section[3.3] regardless of how the data are distributed across clients,
the global analytic classifier W, obtained through (I3)) is exactly identical to the optimal solution of
centralized analytic learning on the full dataset, thus achieving invariance to data heterogeneity.

W, = [(q,tlzK)Tq)%:K + )\I]fl (L) Ty 1K
= (GFE + ) tHE.

Then, each client is required to compute its hidden random features F¥ and local residual matrix R¥
based on the previously obtained features ®¥ and classifiers W, as follows.

Ff = o(®*B,), RF=Y"—(®'W,). (14)

(13)

Subsequently, each client utilizes the hidden random features F and local residual matrix R¥ to get
its local Hidden Auto-Correlation Matrix TI¥ and Residual Cross-Correlation Matrix Y¥ via

I = (FY)'Ff, X7 = (F))'Ry. (15)
Then, akin to G and HF, the server aggregates IT1}% and Y }*¥ from the clients via .

. K . K
e = Zk:l me, YhK = Zkzl Tk, (16)

Once obtaining IT}*¥ and Y}*¥, the server can derive ;1 via and distribute it to all clients.
Qur = VAV FT)TRIEW/U) @ (71 + ding(A]) @ diag(A)IU]
= Vi[(V/ YW/ Up) @ (71 + diag(A}) ® diag(A})] U/,

where V,, AF, U;, and A}" are obtained by spectral decompositions, as follows.

N = (Fp5) TR = VAT V], W,W/] = UANU/ . (18)

After receiving ;1 from the server, each client can thus update the next-layer features ®¥ 1 as:
Oy = PF +Fi Q. (19)
The preceding process continues layer-by-layer until the final-layer classifier W is completed. For
clarity, we summarize the detailed training and inference procedures of our DeepAFL in Algorithm([T]

and Algorithm [2] respectively, within Appendix [A] In the next subsection, we will comprehensively
provide theoretical analyses for our DeepAFL, including its validity, privacy, and efficiency.

3.3 THEORETICAL ANALYSES

Validity Analyses: Here, we provide detailed analyses of the validity of our DeepAFL. Specifically,
we first derive the analytical solutions of our DeepAFL in Lemmas 1-2, and then demonstrate our
DeepAFL’s dual properties of heterogeneity invariance and representation learning in Theorems 1-2.

Lemma 1: For any least squares problem with the following form:
W = argmin [Y — SW2 + \[W]2, 20)
it yields a distinct analytical (i.e., closed-form) solution, which can be formulated as:
W =(@'®&+\)'®'Y. (21)
Proof. See Appendix [B.1|for details.
Lemma 2: For any sandwiched least squares problem with the following form:
Q" = argmin |R — FQW|Z + 727, 22)
it yields a distinct analytical (i.e., closed-form) solution, which can be formulated as:
Q= V[(VIF'RW'U) 0 (1 + diag(A") ® diag(AV))|U T, (23)

where FTF = VAFVT and WW T = UAYUT are spectral decompositions, while @ and ®
represent element-wise division and outer product.

Proof. See Appendix [B.1|for details.
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Theorem 1 (Invariance to Data Heterogeneity): In the FL scenario, let D be the full dataset, and
P = {D',D?,..., DK} be any heterogeneous partition of D among K clients, where D; N D; = ()
fori # j and Uf\il D; = D. Given fixed seeds for the random projection matrices A and {B;}/_',

the global model weights {W,}7_, and {€2;}7_, derived from DeepAFL are invariant to any data
partition P with different heterogeneity, being identical to the centralized analytical solutions on D.

Proof. See Appendix [B.2]for details.

Theorem 2 (Capability of Representation Learning): Let the empirical risk H(®, W), i.e., the
loss function, for a given feature representation € and a classifier W be defined as:

H(®,W) =Y - W]z, 24)
where Y denotes the ground truth labels. Our DeepAFL yields a sequence of feature-classifier pairs

(P, W) ateach layer t € [0, T]. When setting regularization parameters -y and ) to 0, the sequence
of the empirical risks {H(®:, W;)}7_, in our DeepAFL keeps monotonically non-increasing, i.e.,

H(‘I’t,wt) > ’H(<I>t+1,Wt+1),Vt € [O,T) (25)
Furthermore, as the number of layers 7" within our DeepAFL increases (i.e., 7' — 00), the sequence
of empirical risks is guaranteed to converge to a limit H* < H(®q, Wy).

Proof. See Appendix B.3]for details.

Notably, Theorem 2 demonstrates our DeepAFL’s representation learning capability under the basic
condition of no regularization (7 = A = 0). In practice, we often employ regularization to enhance
generalization performance and numerical stability. Thus, we introduce Theorem 3 in Appendix
to extend our analysis to cover the regularized settings. In addition, we will further provide extensive
empirical evidence in Section 4 to support these dual advantageous properties of our DeepAFL.

Privacy Analyses: For the privacy of our DeepAFL, several previous studies have provided similar
analyses for Auto-Correlation and Cross-Correlation Matrices (Tan et al., 2022bj |He et al.| [2025b;
Fan et al.|[2025b)). Particularly, inferring each client’s raw data is challenging as the size of its local
dataset IVj remains private. Furthermore, this aggregation process is a form of Secure Multi-Party
Computation, and many existing protocols can be readily integrated into our DeepAFL to further
enhance privacy (Bonawitz et al} 2016} [2017; |So et al.,[2023). See Appendix E] for more details.

Efficiency Analyses: In our DeepAFL, the overall complexities of computation and communication
for each client are O(T'Ny(d2 + dedr + d3)) and O(T(d3 + d2)), while those for the central
server are O(T(d3 + di + Nyd2)) and O(TKC(de + dr)), respectively. See Appendix [D|for the
detailed derivations and analyses. Notably, in Section[d] we will show the superior efficiency of our
DeepAFL in comparison to existing gradient-based baselines. In our later experiments, we default
to selecting projection dimensions de = dp = 1024 to balance the effectiveness and efficiency.

4 EXPERIMENTAL EVALUATIONS

4.1 EXPERIMENTAL SETUP

Datasets & Settings. We conduct our experiments on three prominent benchmark datasets in FL:
the CIFAR-10 (Krizhevsky & Hintonl [2009), CIFAR-100 (Krizhevsky & Hintonl 2009)), and Tiny-
ImageNet (Le & Yang| 2015). To simulate diverse data heterogeneity scenarios in FL, we use two
common non-IID partitioning settings: Latent Dirichlet Allocation (Lin et al.,|2020) (as Non-IID-1)
and Sharding (Lin et al.,[2020) (as Non-IID-2). We use the parameters o and s to control the level
of heterogeneity in these two non-IID settings, respectively. In both cases, smaller parameter values
indicate more heterogeneous data distributions. Specifically, we set o € {0.1,0.05}, s € {2,4} for
CIFAR-10, while setting « € {0.1,0.01}, s € {5,10} for CIFAR-100 and Tiny-ImageNet.

Baselines & Metrics. We compare our DeepAFL against 7 traditional gradient-based baselines,
including FedAvg (McMahan et al., [2017)), FedProx (Li et al.,|2020) and MOON (L1 et al., 2021a)),
FedGen (Zhu et al.|[2021)), FedDyn (Acar et al.,2021), FedNTD (Lee et al.,[2022), and FedDisco (Ye
et al.} 2023b)). Moreover, we also include the analytic learning-based method AFL (He et al., 2025b))
as a baseline to further highlight our advantages. For fair comparisons, we align the experimental
benchmark with those of AFL (He et al.l 2025b) and use the same pre-trained ResNet-18 backbone
for all methods. We employ the accuracy (%), computational cost (s), and communication cost (MB)
as the main metrics. See Appendix for more details of our experimental implementation.
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Table 1: Performance comparisons of the top-1 accuracy (%) among our DeepAFL and the baselines,
on the CIFAR-100 and Tiny-ImageNet. The best result is highlighted in bold, and the second-best
result is underlined. All the experiments were conducted three times, and the results are shown as
Mean i standard Error- All the improvements of our DeepAFL were validated by Chi-squared tests.
The results of all baselines are directly obtained from the given benchmark in AFL (He et al.||[2025b).

CIFAR-100 Tiny-ImageNet
Baseline Non-IID-1 | Non-IID-2 Non-IID-1 | Non-IID-2
a=01 a=001 | s=10 s=5 a=01 a=001 | s=10 s=5
FedAvg (2017) 56.624012 32994020 | 55.761013 48.3310.15 | 46.041027  32.6310.19 | 39.061026  29.66+019
FedProx (2020l 56.4510,22 33.3710_09 55-80i0.16 48.29i0_14 46.47i0_23 32.26i0_14 38.97i0_23 29-17i0.16
MOON (2021a) 56.5840.02 33.344011 | 55.701005 48341019 | 46.214014  32.38:020 | 38.79+014 29.244030
FedGen (2021) 56.484017 33.094000 | 60.931017 48121006 | 46.2710.14 32.3310.14 | 38821016 29.37+025
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FedNTD (2022:! 56.6010.14 32.5910.21 54.69i0_15 47~00i0.19 46-17i0.16 31.86i0.44 37-55i0.09 29-01i0.14
FedDisco (2023bil 55.7910,04 257210,08 54.65i0_09 45.86i0_18 47.48i0_05 27-15i0.10 38.86i0.12 27-72i0.18
AFL (2025b) 58.56+0.00  58.56+0.00 | 58.56+0.00  58.56+0.00 | 54671000 54671000 | 54.67+000  54.67+0.00
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DeepAFL (T = 10) | 65.9610.05 65.9640.05 | 65.9640.05 65.9640.05 | 61.3740.07 61.3710.07 | 61.3740.07  61.3710.07
DeepAFL (T = 20) | 66.98.004 66.9810.04 | 66.98:001 66.9810.04 | 62.351001 62.351001 | 62.3510.01 62.3550.01
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Figure 2: Efficiency evaluations on the CIFAR-100 dataset.
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Figure 3: Efficiency evaluations on the Tiny-ImageNet dataset.

4.2 EXPERIMENTAL RESULTS

Main Comparisons. Here, we compare our DeepAFL extensively against baselines across various
datasets and settings, as shown in Tables|I| and@ For a fair comparison, we included the benchmark
of the AFL (He et al.}[2025b) and show our DeepAFL’s performance under 7" € {5, 10, 20}. Notably,
even with a small value of 7' = 5, our DeepAFL already surpasses all SOTA baselines, thanks to its
dual advantages in heterogeneity invariance and representation learning. As 7' increases (5 — 20),
the testing accuracy of our DeepAFL consistently enhances and eventually reaches 86.43%, 66.98%,
and 62.35% for the CIFAR-10, CIFAR-100, and Tiny-ImageNet, respectively, achieving impressive
improvements of up to 5.68%-8.42% over the SOTA baselines. See Appendixfor more details.

Invariance Analyses. In Tables[I]and 2} our DeepAFL shows invariant performance across various
Non-IID settings on the same dataset, akin to the AFL. In contrast, other gradient-based baselines
commonly suffer performance degradation as the degree of heterogeneity increases. This invariance
property of our DeepAFL can be further extended to the number of clients. As shown in Figure[7} the
superiority of our DeepAFL over the gradient-based baseline progressively widens with an increased
number of clients (100 — 1000) for the large-scale scenarios. These results empirically validate the
ideal invariance of our DeepAFL as shown in Theorem 1. See Appendix [E.3.2]for more details.
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Representation Analyses. Another key advantage of our DeepAFL is its capability of deep repre-
sentation learning. As shown in Tables our DeepAFL exhibits a stable improvement in both
training and testing accuracy as the number of layers 7" increases. This consistent gain shows its
effective ability to learn deep representations, handling the common issue of underfitting in tradi-
tional analytic learning. Moreover, while our main results only report our DeepAFL’s performance
at T € {5,10,20}, we observe its performance continues to improve as 7" further increases. Specif-
ically, on the complex CIFAR-100 and Tiny-ImageNet, our DeepAFL'’s testing accuracy at 7' = 50
improves by over 1.5% compared to that at T' = 20. See Appendix for more details.

Efficiency Evaluations. We further give efficiency evaluations to show DeepAFL’s superior balance
between accuracy and efficiency. As shown in Figures 2H3] we show that, in addition to its SOTA
performance, our DeepAFL also achieves superior efficiency compared to existing gradient-based
baselines. In Tables[9}-[11] and Figures [@H¢] the total time cost of DeepAFL for 100 clients shows a
minimal marginal increase with each additional layer, adding 1-2s per layer for the CIFAR-10 and
CIFAR-100, and 3s per layer for the Tiny-ImageNet. Thus, when set to 7' = 50, our DeepAFL can
achieve more than 9% performance improvements compared to AFL on the complex CIFAR-100 and
Tiny-ImageNet, with a time cost that is less than twice that of AFL, as the primary time-consuming
backbone’s forward pass only needs to be performed once. See Appendix for more details.

Parameter Analyses. Then, we provide comprehensive parameter sensitivity analyses of our Deep-
AFL, including the regularization parameters A, -, the activation function o(-), and the projection
dimensions dg, dr. Specifically, as shown in Tables[3H4] for the regularization parameters, our Deep-
AFL is insensitive to A but more sensitive to . For the simple CIFAR-10, we observe satisfactory
performance with y € [0.1,0.5]. For the more complex datasets, CIFAR-100 and Tiny-ImageNet,
the optimal value for + is a smaller 0.01. In Table[5] the activation function exhibits a notable im-
pact on performance, with a difference of about 2%. Here, GELU is the optimal activation function,
while Softshrink is the poorest yet still beats the model with no activation. As shown in Tables
larger dimensions for both dg and df lead to better performance. Nonetheless, overly large dimen-
sions can not only incur significant overhead due to their quadratic complexity, but also impact the
numerical stability, causing crashing when dg = dp = 2'3. See Appendix for more details.

Ablation Studies. Finally, we conduct extensive ablation studies for the individual contributions of
our DeepAFL’s key components. Specifically, we compared our DeepAFL and four distinct ablation
models across different layers on various datasets, as shown in Tables[12HI7]and Figures[8HIO] First,
we observe that the residual skip connection in our DeepAFL has a dual role: it not only accelerates
performance improvement as the number of layers 7" increases, but also enhances the final converged
performance. Second, ablating the random projection B, of each layer with an identity matrix shows
that the stochasticity provided by B, is vital for DeepAFL to escape local optima and saddle points.
Third, ablating the activation function o (-) proves the necessity of its nonlinearity in our DeepAFL.
Fourth, ablating the trainable transformation €2, renders the ablation model ineffective, indicating
that its provided learnability is also indispensable. See Appendix[E.3.6|for more details. Meanwhile,
we also provide comparisons of our DeepAFL against other deepening strategies in Appendix [E.3.7]

5 CONCLUSION AND DISCUSSION

In this paper, we propose DeepAFL, as the first attempt in FL to achieve gradient-free representation
learning while preserving strong invariance to data heterogeneity. By identifying and addressing a
fundamental limitation in existing analytic-learning-based approaches, our DeepAFL exhibits dual
advantages in both heterogeneity invariance and representation learning. By virtue of its gradient-
free nature, our DeepAFL also achieves high efficiency by eliminating costly iterative computations
and communications on gradients. Given its theoretical and empirical superiority, we believe our
DeepAFL means a great advancement for the SOTA in the fields of both analytic learning and FL.

For future work, a natural and promising direction is to extend our deep residual analytic models in
our DeepAFL to other well-suited fields for analytic learning. Specifically, we will go on to aim at
continual learning, where all data arrives online and historical data is not accessible. While analytic
learning has been proven to be effective in solving the catastrophic forgetting problem of continual
learning, applying our DeepAFL to this field remains non-trivial. This is because the features learned
from a previous phase may become invalid in a subsequent one if updating the weights layer by layer.
As a result, we would need a new approach to incorporate the phase-wise recursions as well. Some
further discussion is provided in Appendix [F] and our usage of LLMs is declared in Appendix
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ETHICS STATEMENT

The authors have read and adhere to the ICLR Code of Ethics. We have carefully considered the
potential ethical implications of our work and believe that our proposed approach, DeepAFL, aligns
with the principles outlined in the provieded ICLR Code of Ethics.

Our research is situated within the FL paradigm, which is specifically designed to address privacy
and security concerns by enabling collaborative model training without requiring the sharing of raw,
sensitive user data. Our proposed DeepAFL operates exclusively in a decentralized setting, with
all local client data remaining on the respective devices. We provide detailed privacy analyses in
our paper and discuss how our DeepAFL can be enhanced with existing proven privacy-preserving
protocols. The empirical evaluations presented in this paper are based on well-established, publicly
available benchmark datasets (i.e., CIFAR-10, CIFAR-100, and Tiny-ImageNet). This work did not
involve any human subjects, the collection of new private data, or the use of sensitive information.

Furthermore, a core contribution of our proposed DeepAFL is its superior performance in FL, with
its dual advantages in heterogeneity invariance and representation learning. To the best of our knowl-
edge, the process of our DeepAFL does not introduce additional fairness and bias issues. On the
contrary, its ability to achieve superior and invariant performance across various heterogeneous FL.
environments can help foster more equitable and generalizable models in real-world applications.

Lastly, in line with the principles of research reproducibility, we are committed to making our code
open-source upon the paper’s acceptance. We believe this will allow the broader research community
to verify our findings, build upon our work, and ensure full transparency of our methodology.

REPRODUCIBILITY STATEMENT

To ensure the full reproducibility of our research, we have made extensive efforts to provide all the
necessary details. We provide detailed procedures of our proposed approach in our paper, including
comprehensive descriptions of the algorithmic steps and design choices. For our theoretical claims,
the complete proofs and analyses are included in the Appendix. The experimental results, including
hyperparameters and data preprocessing steps for the benchmark datasets, are elaborated in the
Appendix. Upon acceptance, our codes will be made publicly available as open-source, allowing
the broader research community to verify our findings and build upon our work.
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A APPENDIX FOR PROCEDURES OF OUR DEEPAFL

Algorithm 1 The Training Procedure of our Proposed DeepAFL

Input: The clients’ local datasets {D!, D?, ... DK}
Output: The transformation matrices {€2;}7_, and the analytic classifiers {W,}7_.
1: for each layert € {0,1,2,--- ,T} do

A R A A R

T T T N T N N S N T N N S S
A A R ol A ol <R AN A I S S s

29:

// (a) Local Computation for Analytic Classifier Construction (Client side)
for each clientk € {1,2,--- , K} do
if constructing the first layer, i.e., ¢ = 0 then
Extract and construct its local zero-layer feature matrix ®§ via
Compute its local Feature Auto-Correlation Matrix G} using ®F via ;
Compute its local Label Cross-Correlation Matrix HY using ®F and Y} via ;
Transmit {GF, HF} to the server;
// (b) Information Aggregation for Analytic Classifier Construction (Server side)
Aggregate {GF}H< | and {HF}< | to obtain G}*¥ and H}X via (12);
Derive the global classifier W, using the obtained G}/ and H}** via (13);
Transmit the global classifier W, to all clients;
// (¢) Local Computation for Residual Block Construction (Client side)
for each client k € {1,2,--- , K} do
if layer requirement not satisfied, i.e., ¢ < 7" then
Compute its local hidden random feature F¥ using ®F via ;
Compute its local residual matrix R¥ using ®¥ and W, via ;
Compute its local Hidden Auto-Correlation Matrix TIF using F¥ via (15);
Compute its local Residual Cross-Correlation Matrix X¥ using F and R} via (13);
Transmit {II¥, Y5} to the server;
// (d) Information Aggregation for Residual Block Construction (Server side)
if layer requirement not satisfied, i.e., ¢ < 7" then
Aggregate {IIf }/< | and {YF}/ | to obtain II}** and Y}*X via (16);
Derive the transformation matrix €2, using IT}*¥ and Y }¥ via (17) and ;
Transmit the transformation matrix €2, to all clients;
// (e) Feature Updating for Next Layer Construction (Client side)
if layer requirement not satisfied, i.e., ¢ < T then
for each client k € {1,2,--- , K} do
Update its local feature matrix & to obtain &, , via (19);

30: Return: The transformation matrices {€2;}7_; and the analytic classifiers {W;}Z .

Algorithm 2 The Inference Procedure of our Proposed DeepAFL

Input: Local sample x?, transformation matrices {€2;}7_;, and analytic classifiers {W;}7_.
Output: Predicted label j°.

. Extract and construct its local zero-layer feature ®}) using x* via
: for each layert € {1,2,--- ,T} do

Compute its local hidden random feature F% via ;
Update its local feature ®%_, to obtain ®! using €2, and F? via ;

: Calculate the predicted score vector §* = ®5Wr;
: Calculate the predicted label §° = arg max($*);
: Return: Predicted label .
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B APPENDIX FOR VALIDITY ANALYSES

In this section, we thoroughly analyze the validity of our DeepAFL, theoretically establishing sev-
eral key propositions. First of all, in Appendix [B.1] we derived the analytical solutions for the least
squares problems addressed in this paper, which also constitute the centralized analytical solution.
Next, in Appendix we demonstrate that the deep residual analytic networks derived from our
DeepAFL is equivalent to the centralized closed-form solutions and remain invariant to data hetero-
geneity. Finally, in Appendix we validate DeepAFL’s representation learning capacity, proving
that the empirical risk of our DeepAFL is monotonically non-increasing with increasing layer depth.

B.1 DERIVATION OF ANALYTICAL LEAST SQUARES SOLUTIONS

Here, we theoretically derive the analytical solutions to the least squares problems and ad-
dressed in this paper. In fact, these solutions constitute the centralized analytical solutions for both
the global classifier and the transformation matrix. The detailed proofs are as follows.

Lemma 1: For any least squares problem with the following form:
W = argmin [[Y — @WI|; + AW/, (26)
it yields a distinct analytical (i.e., closed-form) solution, which can be formulated as:
W= (®'®@+ ) 'd'Y. 27)
Proof. Our proof strategy involves computing the derivative of the loss function in (26) with respect

to W and subsequently setting it to zero to derive the optimal W*. Specifically, we first denote the
loss function of the aforementioned least squares problem as follows:

J(W) =Y — @W|i + AWz (28)

Subsequently, to facilitate subsequent differentiation, we expand the loss function @]) as follows:
T(W) = Y — @W|2 + A[W|3
=Tr((Y — ®W) (Y — ®W)) + ATr(W W) (29)
=Tr(Y'Y) +2Tr(Y ' ®W) + Tr(W & ®dW) + \Tr(W ' W),

where Tr(-) represents the trace of a matrix. To minimize the objective function, we further compute
the derivative of 7 (W) with respect to W as follows:

% = 28"Y 428 ®W + 2\W. (30)

By setting the derivative to zero, we can obtain:
(®T®+AN)W* =Y. (31)
Since (<I’T<I> + AI) is full rank and hence invertible, the closed-form solution for the optimal W*

can be obtained as follows:
W =(®'®+ )" 'o'Y. (32)

Lemma 2: For any least squares problem with the following form:

Q" = argmin [R ~ FOW]2 + [ 0Z, (33)

it yields a distinct analytical (i.e., closed-form) solution, which can be formulated as:
Q* =V[(VIF'RW'U) @ (71 + diag(AF) @ diag(AV))|U T, (34)

where @ and ® represent element-wise division and outer product, respectively, while F'F =
VAFVT and WW T = UAYUT are spectral decompositions.
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Proof. Similar to the proof of Lemma 1, we begin by computing the derivative of the loss function
in with respect to €2 and then set this derivative to zero to derive the optimal 2*. Specifically,
we denote the loss function of the aforementioned least squares problem (33) as follows:

L(Q) = |R - FOW| + [ 2], (35)
which can be further expanded into the following form:
L(Q) = |R - FOW|{ + 1]
=Tr(R - FOW) (R — FOW)) +Tr(27 Q) (36)
=Tr(R'R) — 2Tr(R"FQW) + Tr(W ' Q F'FQW) +1Tr(Q' Q).

Subsequently, by further differentiating (36)), we can obtain:

AL(K)

—a = —F'RW' +2F T FOQOWW ' + 270Q. (37)

By setting the derivative to zero, we can obtain:

F FO'WW' 470" =F'RW'. (38)

Since F'F and WW T are real symmetric matrices, we can spectrally decompose them to obtain:
F'F=VA'VT, ww' =uAVU", (39)

where VTV =Tand U'U = I, and I denotes the identity matrix. By denoting S = V " *U and
substituting (39) into (38), we obtain:

F'FO'WW' +7Q* =F RW'
— VAFVTQUAYUT +7Q* =F RW '
— VIVAFSAYUTU+4V Q' U=V'F'RW'U
— AFSAY +4S=V'F ' RW'U.

(40)

Since AF and AW are both diagonal matrices, we proceed to expand them element-wise. Specifi-
cally, let A} and A} denote the i-th and j-th diagonal elements of A" and AY, respectively. Con-

currently, we denote the (4, 7)-th entry of S and VIFTRW U by S, ; and (V'FTRW 'U), ;,
respectively. According to (@0), we obtain:

A S A + 48 = (VIFTRWTU), ;. (41)

Meanwhile, we can further obtain:

V'F'RW'U), ;
Sij = ( F\W ) < (42)
NiA
Based on (#2)), we can extend S; ; to the entire matrix S, yielding:
S=(V'F'RW'U) 0 (71 + diag(A") ® diag(A"Y)), (43)

where 1 is the all-ones matrix, while © and ® represent element-wise division and outer product.
Finally, leveraging the orthogonality of V and U, we can obtain 2* = VSU . Substituting
into this expression, we can obtain:

Q" =V(V'FTRW'U) 0 (71 + diag(AF) @ diag(AV))U". (44)
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B.2 OUR DEEPAFL’S INVARIANCE TO DATA HETEROGENEITY

Here, we demonstrate that the deep residual analytic network derived from our DeepAFL exhibits
ideal invariance to data heterogeneity, remaining invariant to any data partition across clients with
different heterogeneity. Specifically, as established in Lemma 1 and Lemma 2, we have derived the
centralized analytical solutions for both the global classifier and the transformation matrix. Here,
we additionally prove that the solution obtained from our DeepAFL is identical to these centralized
analytical solutions. The detailed proofs are as follows.

Theorem 1 (Invariance to Data Heterogeneity): In the FL scenario, let D be the full dataset, and
P = {D',D?,..., DX} be any heterogeneous partition of D among K clients, where D; N D; = ()
for i # j and Uf\il D; = D. Given fixed seeds for the random projection matrices A and {B;}/',

the global model weights {W,}Z_; and {€2;}]_; derived from DeepAFL are invariant to any data
partition P with different heterogeneity, being identical to the centralized analytical solutions on D.

Proof. As established in Lemma 1 and Lemma 2, for the complete dataset D = {X1 K YK} the
centralized analytical solutions for {W,}Z_; and {€2;}; can be expressed as:

W, =[(@/5) @ + A7 (@)Y, (45)
Qi1 = Vi [(V] (FI)TRIEW]UY) @ (71 + diag(Af) ® diag(AY)]U/),  (46)

where (FFE)TFIE = VAT V] and W, W[ = U, AU/ are spectral decompositions, while ©
and ® represent element-wise division and outer product, respectively.

In fact, any heterogeneous partition P can be viewed as a permutation of the sample ordering within

the complete dataset D. Accordingly, for any heterogeneous partition P = {D*, D?,... DK}, we
define the corresponding permuted complete dataset as D = {X £ YK which satisfies:
Xl:K — 7TX1:K ?I:K — ﬂ,leK7 (47)

where 7 is the corresponding permutation matrix and satisffes 7' = = I. Next, we employ mathe-

matical induction to rigorously demonstrate that the global model weights {W,}7_, and {Q,}7_,
obtained by our DeepAFL under any heterogeneous partition P are identical to their centralized
analytical solutions, as presented in (3] and (@6).

For the base case, we demonstrate that the initial W and € obtained via our DeepAFL precisely
satisfy (@5) and (#6). It can be readily deduced that the complete zero-layer feature matrix similarly

satisfies @55 = 7®} K. According to , the expression for W can be given by:
Wo = (G§™ + A1)~ H X

[((i)(l):K)Ti)(l):K + )\I]_l (‘i)(l):K)T?lzK

[(‘I)(l):K)TWTW(I)(l):K + /\I}il (i)(l):K)T?l:K

[((I)(l):K)Tq)(l):K + )\I]fl(é(l):K)T?lzK'

(48)

It is evident that Wy coincides precisely with the corresponding centralized analytical solution .
Consequently, the residual corresponding to each sample matches that obtained through centralized
training, differing only in sample order. Thus, the complete residual matrix satisfies Ré:K = rR{E.
Similarly, the complete hidden random features also satisfy f‘(l):K = 7F{¥. Drawing from and

, the Q; is given by:
01 = Vo[(Vg X5 W Up) @ (11 + diag(Af) ® diag(Ay)]Ug
= Vo[(V{ (F5™) TRGT W Up) @ (71 + diag(Af) @ diag(AF))]Ug
— Vo[(V] (F5)Tr T 7REE W] Ug) © (11 + diag(Af) @ diag(A}))] U7
= Vo[(Vq (Fg™) "Ry™ W Up) @ (1 + diag(Ap) @ diag(Ag))]Ug ,

where the spectral decomposition results are also identical to those in the preceding formula ([@6):
(FEFE)TEEE = (FYE) TrTaF K = (FFE)TFEE = VoAFV] and WoW(] = WoW( =
UyAY U, . It can be observed that the initial Q; derived from our DeepAFL also precisely matches
the centralized analytical solution. Thus, the base case holds for the theorem.

(49)
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For the inductive step, assume the preceding (¢ — 1) layers {W,; }!=} and {Q;}!_, satisfy and
. We further demonstrate that, based on these assumptions, the subsequent layer W, and €21
obtained via our DeepAFL also satisfy and . Since the previous (¢ — 1) layers’ global model

weights exactly match the centralized analytical solution, the complete feature matrix ®}% and the
complete hidden random features F}¥ satisfy ®}'% = 7@K and F}E = 7F}FE. According to
ll the expression for W, is thus obtained as follows:

W, = (GyF + A1) 'H ™

(@)@ + A~ (&) TY K
(@37 Tr @i + AL~ (@) TY R
[(@F7) @ + 217 (&) TY K,

(50)

It is evident that the global classifier W, satisfy li , and thus the complete residual matrix satisfies

f{tl’K = 7R}, Subsequently, analogously to (49), we derive the analytical expression for flt_H
yielded by our DeepAFL as follows:

Qeir = VUV TEWU) @ (71 + diag(A]) ® diag(A}))]U/

= Vi[(V[ (FI) TRIFWU,) @ (41 + diag(A}) @ diag(AY))]U/

= Vi[(V] (Fy ) Tn TaRyE W, Uy) @ (71 + diag(Af) @ diag(A}))[U[
= Vi[(V[(F) TRIFWU,) @ (41 + diag(A}) @ diag(AY))]U/,

where the spectral decomposition results are also identical to those in the preceding formula @o):

(FFO)TFEE = (FpR)TrTaFps = (FPF)TEFR = VATV and WW/] = WW/[ =

U;AVU/. As aresult, the transformation matrix ;. derived from our DeepAFL also precisely
matches the centralized analytical solution. Thus, the inductive step also holds for the theorem.

(S

In summary, based on the aforementioned base case and inductive step, we establish via mathemati-
cal induction that the global model weights {W;}1_, and {€2;}7_, derived from our DeepAFL are
invariant to any data partition P with different heterogeneity. In fact, the results obtained from our
DeepAFL are identical to the centralized analytical solutions ({#3]) and (46).

B.3 OUR DEEPAFL’S CAPABILITY OF REPRESENTATION LEARNING

Here, we further demonstrate that the empirical risk monotonically non-increases with increasing
layer depth and is guaranteed to converge to a limit, thus validating DeepAFL’s representation learn-
ing capability. To begin, we analyze the general scenario without considering the regularization
term in Theorem 2, proving that under this scenario, the empirical risk derived from our DeepAFL
monotonically non-increases with increasing layer depth and converges to a limit.

Theorem 2 (Capability of Representation Learning): Let the general empirical risk H(®, W)
(i.e., the loss function), for a given feature representation ® and a classifier W be defined as:

H(®, W)=Y - 2W|Z, (52)

where Y denotes the ground truth labels. Our DeepAFL yields a sequence of feature-classifier pairs
(P4, W) ateach layer t € [0, T]. When setting regularization parameters -y and ) to 0, the sequence
of the empirical risks {H(®;, W)}, in our DeepAFL keeps monotonically non-increasing, i.e.,

H(By, W) > H(Pri1, Wiy1), ¥t € [0,T). (53)

Furthermore, as the number of layers 7" within our DeepAFL increases (i.e., 7' — 00), the sequence
of empirical risks is guaranteed to converge to a limit H* < H(®q, Wy).

Proof. According to Algorithm [1} the construction of each feature-classifier pair (®¢41, We41)
proceeds in two alternating steps: (1) fixing the classifier W, to construct the feature representation
@, 1; (2) fixing the updated feature representation ®,, ;1 to optimize the classifier W;;. We will
prove that the empirical risks in each of these substeps are non-increasing, thereby demonstrating
that the sequence of empirical risks {#(®;, W;)}Z_ is monotonically non-increasing.
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First, let’s focus on the substep of constructing the feature representation ®,,; while keeping the
global classifier W, fixed. At this stage, the intermediate empirical risk for the feature-classifier
pair (®;41, W;) can be expressed as:

H(Pr1, W) = [Y — @, W7, (54)

where @, obtained through our DeepAFL satisfies ®,,1 = ®, + F;€;. Therefore, the afore-
mentioned empirical risk in our DeepAFL can be further expressed as:

H(Pry1, W) = [Y — (@1 + Fi Q1) W (55)
According to Lemma 2, the €21 derived through our DeepAFL represents the optimal solution that
minimizes the aforementioned empirical risk, thereby satisfying:
H(Pri1, W) = Y — (B + FiQu ) Wi < [[Y — (@4 + F, )W, |F, v, (56)
where, as a special case when {2 = 0, it holds that:
Y — (@, + F,O)W,[F = [Y — &, W, |7 = H(®:, W,). (57)

Thus, it follows that:
H(Pir1, Wi) < H(Py, Wy). (58)

Second, we further analyze the substep of constructing the global classifier W, ; while keeping the
feature representation ®;,; fixed. When the regularization parameter \ is set to zero, the Wy
derived through our DeepAFL is obtained by minimizing the following empirical risk:

Wiy = argmin Y — &, W|3E = arg min H(Pry1, W). (59)

According to Lemma 1, the W, derived through our DeepAFL represents the optimal solution
that minimizes the aforementioned empirical risk. We can obtain:

H(®rr1, Wi1) = |[Y = @i Wi [ < Y — @ WE, YW, (60)
where, as a special case when W = W, it holds that:
1Y — @101 W[ = H(Prr1, Wy). 61)
Thus, it follows that:
H(Pip1, Wip1) <H(Pig1, Wo). (62)

In summary, based on and (62),, it holds for each feature-classifier pair (®;11, Wy41) that:
H(®, W) > H(Pi1, W) > H(Pig1, Wig1), VE€[0,T). (63)

Therefore, the sequence of empirical risks {H(®;, W;)}]_, is monotonically non-increasing.
Given that H(®;, W;) > 0 and the sequence is monotonically non-increasing, by the Monotone
Convergence Theorem, it necessarily converges to a limit 2* > 0. Moreover, since the sequence
begins at H(®o, W) and decreases at each layer, it holds that H* < H (P, Wy).

Considering our employment of regularization to enhance generalization performance and numerical
stability, we further extend Theorem 2 to incorporate the regularized setting. To this end, we begin
by analyzing the regularization terms in the regularized empirical risk, thereby defining it for the
subsequent theorem, as detailed below:

(1) From the perspective of empirical risk, the empirical risk is a function of the global classifier W,
and the feature representation ®,. Accordingly, both should be subject to regularization. The feature
representation ®; is obtained through layer-by-layer updates and can essentially be expressed as:

t
=P 1+ (F1) =Bro+ (P + Feo) = =@+ ) Fiaf, (64)

where F;_; is not trainable, providing stochasticity and nonlinearity to the features via fixed acti-
vation functions and random projections, whereas €2; constitutes the trainable component for rep-
resentation learning. Thus, regularizing all {€2,}!_; can be seen as a form of regularizing ®;. In
addition, the global classifier W is itself trainable, and should be regularized directly.
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(2) From the perspective of the model architecture, the global model derived from our DeepAFL
after constructing the first ¢ layers encompasses the final global classifier W; and all transformation
matrices {€2; }!_,. Therefore, regularization terms need to be introduced for both W and {€2;}!_;.

Building upon the foregoing analyses of the regularized empirical risk, we further provide its explicit
definition in (65). Moreover, in Theorem 3, we theoretically prove that the empirical risk of the
resulting model is monotonically non-increasing as the layer depth increases.

Theorem 3 (Regularized Capability of Representation Learning): In our DeepAFL, we define
the regularized empirical risk G(t) (i.e., the regularized loss function) for each layer ¢ € [0, T as:

2 2 ¢ 2
G(t) = |[Y =& W +A [WellE+> |l (65)
N——— —— =1 -
[€)) 2) (3)

where v > 0 and A > 0 are non-negative regularization parameters. Moreover, ®;, W, and €2, are
the feature representation, the analytic classifier, and the learned transformation in our DeepAFL at
the layer ¢t. Here, the term (1) is the original empirical risk H(®:, W), while the terms (2) and (3)
are the regularization in our DeepAFL. The sequence of the regularized empirical risks {G(¢)}~_,
in our DeepAFL remains monotonically non-increasing, i.e.,

Gt)>G(t+1),vte[0,T). (66)
Furthermore, as the number of layers 1" within our DeepAFL increases (i.e., T’ — 00), the sequence
of the regularized empirical risks is guaranteed to converge to a limit G* < G(0).

Proof. Analogous to Theorem 2, we sequentially analyze the construction of the feature represen-
tation ®;; (i.e., deriving the transformation matrix €2, 1) and the global classifier Wy, at each
layer, thereby demonstrating that the regularized empirical risks {G(¢)}Z_, in our DeepAFL remain
monotonically non-increasing.

First, let’s focus on the substep of constructing the feature representation ®;,; and the learned
transformation €2, while fixing the global classifier W, and other transformations {€2;}!_,. For
notational convenience, we denote the intermediate regularized empirical risk between layers ¢ and
t + 1 (i.e., the risk associated with ®;,1, Wy, and {£2; fi}) as Q(t), which can be expressed as:

~ t+1

G(t) = I[Y = @01 W[+ A[W[[Z + Zizl V19117, (67)
where @, obtained through our DeepAFL satisfies ®,,1 = ®; + F;Q, 1. Therefore, the afore-
mentioned regularized empirical risk can be further expressed as:

~ t+1
G(t) = 1Y — (®¢ + FiQup )W+ AIWLlIE+ > A1l (68)

According to Lemma 2, the €2, ; derived through our DeepAFL represents the optimal solution that
minimizes the regularized empirical risk:

Qi1 = argmin [[Y — (@, + F Q)W & + 7(|€2]%. (69)

Therefore, we can obtain:
1Y — (®; + FiQ 1) Wi|[Z + Y@ [ <Y — (@ + F QW[ +1(12]F, v,  (70)
where € = 0 serves as a special case, from which we further derive:
Y = (¢ + FeQe 1) We[g + 7[1Qe1 [ < [[Y — 2, W 2. (71)
By adding \|W||2 and 3"¢_, 7]|€2]2 to both sides of inequality , we obtain:
G(1) = Y — (@ + P Wil + AW 2+ 50 e

(72)
t
<Y — @ W+ AIWE+ 3 Il = 6(0).

Second, we further analyze the substep of constructing the global classifier W ,.; while keeping the
feature representation ®;; and transformation matrices {€2;}/1] fixed. According to Lemma 1,

the W, represents the optimal solution that minimizes the regularized empirical risk:
W1 = argmin [[Y — @, W[ + AW (73)
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Therefore, we can obtain:
IY = @0y W[4+ AW < [Y = @0 WIZ + A[WZ, YW, (74)
where W = W, serves as a special case, from which we further derive:

1Y = @i Wit [§+ A Wera[[F < Y = @00 W [E + AW lE. (75)
By adding Zfii 7|/€2; |2 to both sides of inequality , we obtain:

t+1
Glt+1) =Y = @ Wi [lf + AW |+ Zi:l Y19ullE
) ) 41 . (76)
<Y = @40 W[ + A[We|f + Zizl V€ lF = G(1).

In summary, based on and (7€), it holds for each layer that:
G(t) = G(t) > G(t + 1), Vi € [0,7). 77

Therefore, the sequence of the regularized empirical risks {G(t)}Z_, in our DeepAFL remains
monotonically non-increasing. Given that G(¢) > 0, by the well-known Monotone Convergence
Theorem, it necessarily converges to a limit G* > 0. Moreover, since the sequence begins at G(0)
and decreases at each layer, it holds that G* < G(0).

C APPENDIX FOR PRIVACY ANALYSES

In this section, we provide detailed privacy analyses of our DeepAFL, providing multi-layered anal-
yses to substantiate our DeepAFL’s robust privacy preservation, as follows:

First, in our DeepAFL, all clients need only submit their locally computed Auto-Correlation and
Cross-Correlation Matrices, and numerous studies (Tan et al., [2022b; [He et al., 2025b; |[Fan et al.|
2025b) have shown the privacy advantages of uploading such information. Specifically, according
to , the uploaded Cross-Correlation Matrices TIF and Y are essentially prototype matrices,
where each column corresponds to the unaveraged class and residual prototypes for the correspond-
ing class. Consequently, the information uploaded within DeepAFL is akin to that of prototype-
based FL methods (Tan et al.| [2022b)), which have provided a detailed introduction to the inher-
ent privacy benefits of transmitting prototypes. Additionally, existing analytical learning-based FL
methods (He et al.l 2025b; |[Fan et al.| [2025b) also require the uploading of Auto-Correlation and
Cross-Correlation Matrices similarly. Thus, our DeepAFL shares the same privacy advantages as
these existing methods.

Second, since clients are not required to upload their local dataset sizes Ny, it is pretty hard to
infer the clients’ private data (i.e., X*, Y*, ®* F¥ and R}) from the information they upload.
Specifically, in our DeepAFL, each client uploads only its local matrices G¥ € Rde>xde HF ¢
RdexC Hf € R%¥*dr apnd Tf € R XC, Evidently, clients need not upload their local dataset sizes
N}, which also cannot be deduced from the dimensions of the aforementioned matrices. Moreover,
the dimensions of all private data are directly tied to Ny, i.e., X* € RNk xduxdwxde yk ¢ RNexC,
®F ¢ RNexde Fhk ¢ RNexdr and RF € RN:*C. Therefore, without knowledge of Ny, the
dimensions of the aforementioned private data cannot be determined. This results in infinitely many
possible instantiations, rendering it fundamentally impossible to infer the clients’ private data.

Third, many existing privacy-preserving techniques can be directly integrated into our DeepAFL, en-
abling the server to operate without requiring access to each client’s specific matrices. Specifically,
in our DeepAFL, the server only needs to utilize the aggregated values of the clients’ uploaded ma-
trices for constructing the global classifier and residual block, without needing the individual client
upload results. Therefore, this can be regarded as a form of Secure Multi-Party Computation. Exist-
ing Secure Aggregation Protocols (Bonawitz et al.l 20165 2017; So et al.,[2023)) can be employed to
aggregate clients’ uploaded matrices without accessing their specific matrices. Additionally, tech-
niques such as Homomorphic Encryption (Hu & Li,[2025)) and Differential Privacy (Hu et al., [2024])
can also be integrated into our DeepAFL to further preserve client privacy.
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D APPENDIX FOR EFFICIENCY ANALYSES

In this section, we provide detailed efficiency analyses of our DeepAFL, focusing on the com-
putation and communication complexities on both the client and server sides. Overall, for con-
structing all 7" layers, the total computation and communication complexities of each client are
O(T Ny, (d3 +dedr+d2)) and O(T(d% +d3)), while those for the server are O(T'(d3, +di+ Ny.d2))
and O(TKC(ds + dr)) respectively. Notably, although the complexities of our DeepAFL are ap-
proximately 7" times greater than those of AFL to construct a deep network for superior performance,
they remain far lower than those of gradient-based methods. The detailed analyses are as follows:

Analysis of Computation Complexity: Here, we thoroughly analyze the computation complex-
ity within our DeepAFL. Notably, each layer’s construction within our DeepAFL merely requires
single-round lightweight analytic computation by the clients and server, obviating the need for multi-
round gradient-based iterative updates.

e The Client Side: First, for the construction of each layer ¢, each client & computes its local
Feature Auto-Correlation Matrix Gf and Label Cross-Correlation Matrix Hf via . Given
that ®F € RVx*de and YF € RM+*C, the computation complexity of the above calculations is
O(Nyd% +CNyds). Second, each client further constructs its local hidden random features F¥ and
local residual matrix R via 1) with a complexity of O(Nydedr + CNydg). Third, each client
computes its local Hidden Auto-Correlation Matrix II¥ and Residual Cross-Correlation Matrix ¥
via (15). Given that F¥ € RV+*d and R¥ € R%*C, the computation complexity of executing
can be calculated O(Nyd2 + CNydg). Fourth, the client update the next-layer feature ® '\ with a
complexity of O(Nydedr). In summary, the complexity for each client to construct each layer is
O(CNy(dr +do) + Ni(d% + dedy + d2)), and the overall complexity for constructing all 7 layers
is O(TCNy(dp + dg) + TNy (d% + dedr + d3)).

o The Server Side: First, for the construction of each layer ¢, the server aggregates all received
{GF}E | and {HF}X | and subsequently derive the global classifier W via (12) and (13). Given
that G € R4e*de and HF € R9**C, the computation complexity of these calculations is O(d3, +
Kd% + Cd% + KCds). Second, the server aggregates all received {ITf}<  and {YF}E | via
with a complexity of O(Kd2 + KCdg). Third, the server performs spectral decompositions
and subsequently derives the transformation matrix €2, via and (T8) with a computation
complexity of O(d} + Cd% + Nid2 + CNidg). In summary, the complexity for the server to
construct each layer is O(d3, + di + Nyd2 + (K + C)(d2 + d2%) + C(Kdg + kdr + Nidr)), and the
overall complexity for constructing all T layers is O(T'(d3 + di + Nid2) + T(K + C)(d3 + d3,) +
TC(Kdg + kdg + deF)).

Analysis of Communication Complexity: Here, we further thoroughly analyze the communica-
tion complexity within our DeepAFL. Notably, DeepAFL requires only a single communication
exchange between the client and server for constructing each layer, in contrast to gradient-based
methods that depend on multiple rounds of communication.

e The Client Side: According to Algorithm[T} during the construction of each layer ¢, each client k is
only required to upload its local Feature Auto-Correlation Matrix G¥, Label Cross-Correlation Ma-
trix HE, Hidden Auto-Correlation Matrix TI¥, and Residual Cross-Correlation Matrix Tf. Given
that G% € Rdexde HE ¢ Rd2*C TIF ¢ RJFXdF, and Y¥ € R%*C, the client’s total communica-
tion complexity for constructing all T" layers can be derived as O(T'(d3, + d2) + TC(de + dF)).

o The Server Side: For each layer t, the server similarly needs only to transmit once to all clients the
global classifier W, € R% *C and the transformation matrix £, € R%*C with a communication
complexity of O(KC(dg + dr)). Consequently, the server’s total communication complexity for
constructing all 7" layers can be expressed as O(T' K C(dg + dF)).

Simplification of Complexity Results: Considering the complexity of the complexity results de-
rived earlier, we further simplify them based on the relative magnitudes of their constituent terms.
Specifically, in practical scenarios, the total number of layers 7', the number of clients K, and the
number of classes C are substantially smaller than the sample size [N} in each client’s local dataset,
as well as the feature dimensions dg and dg. Consequently, the computation complexity for each
client and the server can be simplified to O(T'Ny,(d3 + dedr + dE)) and O(T(d3, + df + Nyd3)).
Similarly, the communication complexity for each client can also be simplified to O(T'(d3, + d)).
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E APPENDIX FOR EXPERIMENTAL EVALUATIONS
E.1 ADDITIONAL RESULTS FOR EXPERIMENTAL EVALUATIONS

Table 2: Performance comparisons of the top-1 accuracy (%) among our DeepAFL and the baselines,
on the CIFAR-10. The best result is highlighted in bold, and the second-best result is underlined. All
the experiments were conducted three times, and the results are shown as Mean. gtandard Error- All
the improvements of our DeepAFL were validated by Chi-squared tests at the level of p < 0.05. The
results of all baselines are directly obtained from the given benchmark in AFL (He et al.| |2025b).

CIFAR-10
Baseline Non-IID-1 ‘ Non-IID-2
a=01 a=005 | s=4 s=2
FCdA\/g (2017! 64.02i0.13 60.52i0.39 68.47i0'13 57.81i0'03
FedProx (2020! 64-07i0.08 60.39i0>09 68.46i0_08 57.61i0_12
MOON (2021a) 63.8440.03 60.2840.17 | 68471015 H7.7240.15
FedGen (202“ 64‘14:(:()‘24 60‘65:(:()‘19 68.24:{;0(28 57-02:!:[]18
FedDyn (2021) 64.77i0'11 6(].35i0'54 73-50i0,11 64.07i0,09
FedNTD (2022) 64.644+0.02 61.161033 | 70.244011  58.7740.18
FedDisco (2023b) | 63.83100s 59.901005 | 65.041011  58.7810.02
AFL (2025b) 80.7540.00  80.75+0.00 | 80.7540.00  80.75+0.00
DCGPAFL (T = 5) 85.20i0.05 85.20i0.05 85.20i0405 85.20i0405
DeepAFL (T = 10) 85.93i0>09 85.93i0>09 85.93i0_09 85.93i0_09
DeepAFL (T = 20) 86.43i()_(]7 86.43i()_(]7 86.43i[]_()7 86.43i[]_()7
Irnprovement T 5.68p<[)A()5 5.68p<[)<()5 5.68 p<0.05 5.68p<()'05

Table 3: Accuracy of our DeepAFL under varying regularization parameters .

Datasets Layers A=0.01 A =0.05 A=0.1 A=05 A=1 A=5 A=10

T=5 | 8.14+005 85154004 85.141003 85.1110.05 85.1310.04 85.1710.05 85.20+0.05
CIFAR-10 T =10 | 85.8710.08 85.90+0.09 85.8610.08 85.9210.08 85.9110.08 85.9210.10 85.93+0.00
T =20 | 86.3410.07 86.31409.08 86.37+0.07 86.2740.06 86.3340.08 86.39+0.08 86.4310.07

T=5 |64.6li001 64.624002 64591002 64.6110.02 64.624002 64.6410.01 64.66.10.02
CIFAR-100 T =10 | 65.9510.07 65964006 65.9541008 65941006 659441006 659141004 65914005
T =20 | 66911006 66914006 66.924006 6096, 005 66.941903 66.871003 66.9540.03

T=5 60.23410.02 60.241002 60.254001 60.2441002 60.224002 60.264002 60.231¢ 02
Tiny-ImageNet | T'=10 | 61.341+0.08 61.33+0.08 61.35+0.07 61.3610.07 61.341008 61.3210.08 61.32+0.07
T =20 | 62341002 62.3310.04 62.344002 62.324002 62351003 62.331002 62.34109.01

Table 4: Accuracy of our DeepAFL under varying regularization parameters .

Datasets Layers | v=0.01 v =0.05 v=0.1 v=0.5 vy=1 vy=5 v =10

T=5 85.06+0.05 85.1410.06 85151004 85.10+0.02 85.1040.04 85.0410.04 84.9940.04
CIFAR-10 T =10 | 85.87+0.06 85.90+0.07 8591i026 85.8610.10 85.8440.08 85.78+0.08 85.65+0.07
T=20| 86214009 86.21+0.08 86.32+0.08 86.3710.06 86.33+09.08 86.26+0.07 86.2340.07

T=5 64.721 007 64.661002 64.6310.01 64.5840.04 64494000 63.77+0.07 63.211010
CIFAR-100 T =10 | 6596005 659441006 65.9541008 65814008 65.694005 64.8210.15 64.2640.15
T =20 6698004 66941004 66941003 66821007 66.741007 66.2010.00 65.6110.16

T=5 |6031904 60281002 60245002 60.134004 59.8910.01 59.041004 58.4110.05
Tiny—ImageNet T=10 61.37i()‘07 61.3610‘07 61.35i0‘03 61.28i0A12 61.19i()‘11 60.44i()‘04 59.65i0_07
T=20| 62351001 62.3300.00 062.261002 62244005 62141002 61.5310.03 60.9810.02
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Table 5: Accuracy of our DeepAFL under varying activation functions o (-).

Datasets Layers None GELU ReLU LeakyReLU Tanh Hardwish  Softshrink
T=5 | 83231010 85131004 84.37r000 84494012 84424007 84.7810.03 83.77+0.12

CIFAR-10 T =10 | 83.0840.17 85.89.1010 85.041p12 845410949 84.92.012 85.411904 84.1310.05
T =201 82991006 86341005 85471017 83.851148 85.621005 86.0510.06 84.25410.07

T=5 60.8210.09 64.621001 64.261002 64.2941001 63.28410.12 64.021002 62.891013

CIFAR-100 T =101 60.8240.00 65981008 653941000 654841010 64.2740.17 65.074020 63.9140.14
T =20 | 60.8310.09 66951002 66.681008 66.721010 64.021102 66.041006 64.7810.08

T=5 | 56711007 60231001 60.174004 60.161002 58.77+0.04 59.40+0.04 58.80+0.07

Tiny-ImageNet | T =10 | 56.7040.08 61.3340.07 61.3540.05 61.36.( .08 59.6840.07 60.48410.00 59.83+0.04
T =20 | 56.7010.08 62331002 62311006 62311007 60.741004 61.471001 60.70£0.00

Table 6: Accuracy of our DeepAFL under varying dimensions dg. For a comprehensive and consis-
tent analysis, all the experimental results were obtained by fixing the other dimension dg at 1024.

Datasets Layers (14) =27 (l.,p =28 dq, =29 (14) =210 (14) =2l (l.,p =212 dq, =213
T=5 |81.481030 83.31012 84.5810.08 85.0710.02 85484003 8576107 85.571033

CIFAR-10 T =10 | 82.28 030 844110901 85.55+10.11 8596010 85941001 85941912 85.77410.28
T =20 | 82.6840.27 84.954013 86.014001 86.2840.15 86.4141001 86.48: 011 83.1240.39

T=5 57.614903 62.214014 64.064007 64.6341002 65.3940.05 66.46410912 67.46-( 01

CIFAR-100 T =10 | 58.2040.19 63.4510.19 65.2941007 65931010 66.3610.04 67.201006 67.1940.44
T =20 | 58514025 64.291036 66.641010 66.93£0.04 67.39+0.06 67.85+0.05 67.94+0.02

T=5 |44941024 56914014 59291026 60.2110.04 60.774023 61.8410.19 62.7540.02

Tiny—ImageNet T=10 44-11i0.11 57.51i0_1g 60.68i0_24 61.43i0_04 61.90i0_15 62.42i0_24 63.13i0_41
T =20 | 43.1040.19 58.0940.15 61.7040.19 62.3340.03 62.884018 63.111929 63.7040.19

Table 7: Accuracy of our DeepAFL under varying dimensions dg. For a comprehensive and consis-
tent analysis, all the experimental results were obtained by fixing the other dimension dg at 1024.

Datasets Layers dp =27 dp =28 dp =29 dp =210 dp = 211 dp =212 dp =213
T=5 |84810.10 83.764000 84241014 85.141004 86.1640.06 86.5110.04 85.55+0.11

CIFAR-10 T =10 | 83.5810.11 84.03409.10 84.84100s 85.8940.09 86.50410135 86.421004 84.9040.09
T =20 | 83831011 84.4940.00 85.3440.04 86.3140.08 86.53+0.05 85.591010 83.4040.10

T=5 | 61224006 61.824011 63.111011 64.6310.01 66.49+0.12 67.811001 67.3810.09

CIFAR-100 T =10 | 61.5440.10 62.57+0.10 64.08+0.04 65.9610.08 67.59+0.06 67.9210.08 66.1210.04
T=20| 61921914 63411912 65.2341918 66941003 68201003 67.141007 64.1040.10

T=5 |569210.02 57.5540.11 58.6910.05 60.2410.02 61.824007 63.3610.08 63.82.0.04

Tiny—ImageNet T=10 57~23i0.07 58.30i0_09 59458i0.08 61.34i0_07 62.89i0_06 63.84i0>10 62.89i0_04
T =20 | 57.79410.05 59.18410.08 60.86+0.03 62.341003 63.851011 63.48:003 60.8140.08

Table 8: Accuracy of our DeepAFL under varying dimensions dg and dg. For a comprehensive and

consistent analysis, all the experimental results were obtained by ensuring de = dp = d.

Datasets Layers d=2" d=28 d=2° d=2% d=2" d=2"2 d=21

T=5 | 77014031 80.6210.17 83.5410.09 85.0410.12 86.1940.03 86.5410.04 /

CIFAR-10 T =10 | 77964021 81.6240.19 84.2441008 85.7710.04 86.581004 86.474012 /
T =20 | 786941011 82.38410.08 85.0710.07 86.221002 86.7110135 84.76.¢.34 /

T=5 49.88 1007 57.1540.10 61.744004 64.6310.00 66.8640.13 68.594100s /

CIFAR-100 T =10 | 51.36+0.13 58.76+0.12 63.2240.02 65.9610.06 68.20+0.06 69.10-0.03 /
T=20| 53211010 60261007 064.724011 66.9310.03 68.75+0.06 69.1210.08 /

T=5 44944003 53114013 57444005 60.224003 62.294005 63.95.0.07 /

Tiny—ImageNet T=10 44-20i0.09 54-47i0.21 58.72i0_07 61.17i0_01 63~13i0.06 64.63i0_10 /
T =20 | 43.8340.12 56.1840.11 59.924002 62.3440.02 64.084006 64.68 (4 /
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Table 9: Analyses of our DeepAFL’s representation learning capability on the CIFAR-10 with in-
creasing network depth. “Training Acc” and “Testing Acc” show the accuracy (%) on the training
and test sets. “Time Cost” denotes the required training time (s). The symbol A represents the dif-
ference between two consecutive cases, which reflects the marginal effect of deepening the network.

Layers | Training Acc Araining Acc Testing Acc Aresting Ace Time Cost ATime Cost
AFL 83.814+0.00 / 80.75+0.00 / 52.364+0.24 /
T=0 85.35+0.02 1.5440.02 83.2940.20 2.5410.20 58.0240.17 5.66+0.13
T= 89.03+0.03 3.6840.02 85.13+0.08 1.8440.08 65.0810.39 7.06+0.22
T=10 90.61+0.05 1.5840.03 85.8940.09 0.7540.11 71.9140.08 6.83+0.29
T=15 91.80+0.04 1.1940.04 86.1810.08 0.2940.04 78.8610.24 6.95+0.15
T=20| 92741003 0.9410.01 86.34+0.06 0.16+0.06 85.7140.22 6.85+0.17
T=25 93.4910.02 0.75+0.01 86.40+0.06 0.06+0.06 92.5710.19 6.86+0.11
T =30 94.1040.03 0.6140.01 86.4640.06 0.06+0.05 99.2940.33 6.7240.19
T =35 94.63+0.03 0.5340.03 86.724+0.06 0.2640.01 105.7940.31 6.5040.21
T=140 95.08+0.03 0.4410.02 86.76+0.06 0.0449.02 112.4010.21 6.61+0.06
T=45| 95.4310.03 0.3510.01 86.7710.06 0.01+0.00 119.00+0.17 6.60+0.13
T=50 95.79+0.03 0.36+0.00 86.7210.06 —0.05+0.11 125.7210.31 6.7210.08

Table 10: Analyses of our DeepAFL’s representation learning capability on the CIFAR-100 with
increasing network depth. “Training Acc” and “Testing Acc” show the accuracy (%) on the training
and test sets. “Time Cost” denotes the required training time (s). The symbol A represents the dif-
ference between two consecutive cases, which reflects the marginal effect of deepening the network.

Layers | Training Acc Afrgining Ace Testing Acc ATesting Ace Time Cost A-Time Cost
AFL | 61.5540.00 / 58.56.40.00 / 50.05.10.20 /
T=0 65.6640.04 4114904 60.8140.15 2.2540.15 56.9040.17 6.8540.19
T=5 74.9340.04 9.2740.04 64.6210.02 3.8140.08 66.4810.21 9.58.40.23
T=10 79.4140.08 4.48.10.04 65.9810.13 1.36+0.00 75.2510.33 8.77+0.03
T=15| 82.69+0.00 3.2840.04 66.5910.03 0.61+0.09 83.5010.12 8.2540.09
T=20 85.1510.03 2.4510.06 66.9510.04 0.36+0.02 91.7410.29 8.2410.22
T =25 87.2140.02 2.0640.03 67.4040.10 0.4510.05 100.36¢.37 8.6240.18
T=30| 88.8410.06 1.6310.03 67.71+0.06 0.31+0.03 108.37+0.09 8.0110.03
T=235 90.1440.06 1.30+0.00 67.9710.12 0.26+0.07 116.50+0.19 8.13+0.11
T =40 | 91.2910.00 1.1540.02 68.19+0.07 0.2240.03 124.74 4017 8.2410.03
T=45 92.1540.11 0.86+0.01 68.3210.11 0.13+0.05 133.06+0.00 8.3240.02
T =50 9293006 0.78+0.03 68.51.9.09 0.1949.02 141.38. s 8.3240.03

Table 11: Analyses of our DeepAFL’s representation learning capability on the Tiny-ImageNet with
increasing network depth. “Training Acc” and “Testing Acc” show the accuracy (%) on the training
and test sets. “Time Cost” denotes the required training time (s). The symbol A represents the dif-
ference between two consecutive cases, which reflects the marginal effect of deepening the network.

Layers | Training Acc ATrgining Acc Testing Acc Aesting Ace Time Cost ATime Cost
AFL | 57.3950.00 / 54.67-0.00 / 125.3140.38 /
T= 0 60.30+0.02 2.9140.02 56.7210.14 2.05+0.14 130.7210.22 5.4140.08
T= 66.89+0.06 6.59+0.02 60.2440.02 3.5210.07 145.7310.13 15.01+0.11
T= 1 70.14+0.03 3.2410.02 61.34+0.13 1.10+0.06 160.7540.23 15.0240.03
T=15 72.6410.05 2.5040.02 61.944 908 0.60+0.11 175.7610.34 15.0140.02
T =20 T4.7540.02 2114003 62.3440.02 0.4049.03 190.0149.09 14.2540.11
T =25 76.5840.03 1.8340.01 62.66+0.05 0.3240.02 204.6440.12 14.6340.13
T =230 78.3110.02 1.7310.02 62.9410.03 0.2910.02 219.56+0.11 14.92410.03
T=35| 79.87+0.03 1.5640.01 63.2410.16 0.30+0.09 234.9940.23 15.5310.07
T = 40 81.32i()‘()3 1-45;&0,02 63~48i()‘18 0-24:t0.05 249~95i()‘13 14~94i[)‘04
T =45 82.6240.04 1.3040.03 63.6540.18 0.16+0.01 264.3140.05 14.3640.11
T =50 83.82.0.09 1.2040.03 63.74 004 0.10+0.08 279.6810.14 15.37+0.13
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Table 12: Ablation study of our DeepAFL’s training accuracy on the CIFAR-10. We evaluate four
distinct ablation models to explore the contributions of our key components in the representations:
(1) Ablating the residual skip connection, (2) Ablating the random projection By, (3) Ablating the
activation function o (-), and (4) Ablating the trainable transformation €2, . The value in parenthe-
ses (/) indicates the performance drop compared to our full DeepAFL under identical conditions.

Layers | DeepAFL Ablation (1) Ablation (2) Ablation (3) Ablation (4)

T=0 | 85351002 85.3540.02 (L 0.00) 85.3540.02 (/0.00) 85.3510.02 (/0.00) 85.3510.02 (| 0.00)
T=5 | 89031003 85231005 () S 80) 86.8610.03 (4 2.17) 85.3510.02 (I 3.68) 86.1310.03 (1 2.90)
T =10 | 90.61:005 85.2840.05 () 5.33) 86.9740.03 (. 3.64) 85.3510.02 (| 5.26) 86.3040.04 (| 4.31)
T=15| 918010014 85.3210.07 (| 6. 48) 87.0340.04 (4 4.77)  85.3510.02 (1 6.45) 86.3840.04 (1 5.42)
T=20 192741003 85331007 (}7.41) 87.0610.03 (}5.68) 85.3510.02 (| 7.39) 86.4310.04 (| 6.31)
T=25|9349.002 85.3440.06 (/. 8.15) 87.0710.03 (| 6 42)  85.3540.02 (| 8.14) 86.4540.03 (| 7.04)
T=30| 94101003 85.3710.06 (4 8.73) 87.09+0.03 (I 7.01) 85.3510.02 (| 8.75) 86.481¢.02 (| 7.62)
T =35 | 94.631003 85.3940.06 (1 9.24) 87.1040.03 (. 7.53)  85.3610.02 (1 9.27) 86.4510.04 (| 8.18)
T =40 | 95.08.003 85411005 (}9.67) 87.1040.03 (} 7.98) 85.3510.02 (1 9.73) 86.4710.01 (| 8.61)
T =45 | 9543003 85.4040.05 (L 10.0) 87.1140.03 (. 8.32) 85.3540.02 (L 10.1)  86.4540.02 (| 8.98)
T =50 | 95791003 85.4240.04 (} 10.4) 87.1140.02 (/. 8.68) 85.3510.02 (| 10.4)  86.4710.04 (| 9.32)

Table 13: Ablation study of our DeepAFL’s testing accuracy on the CIFAR-10. We evaluate four
distinct ablation models to explore the contributions of our key components in the representations:
(1) Ablating the residual skip connection, (2) Ablating the random projection By, (3) Ablating the
activation function o (-), and (4) Ablating the trainable transformation €2, 1. The value in parenthe-
ses (/) indicates the performance drop compared to our full DeepAFL under identical conditions.

Layers | DeepAFL Ablation (1) Ablation (2) Ablation (3) Ablation (4)

T=0 83'29i0.20 83.29:{:0‘20 ( ) 83.29:‘:0‘20 ( ()()) 83. 29j:0 20 (\L 0. J()) 83~29i0.20 (\L (J()())
T=5 85.13.00s 83.0310.08 ( 2 10) 83.9240.21 (J 1.21) 83.3310.23 (. 1.80) 83.8740.16 (| 1.26)
T =10 | 85.8910.00 83.0610.07 (}2.83) 83.9941¢.21 (J 1. 90) 83.3440.23 (1 2.55)  83.9510.14 (1 1.94)
T=15| 86181008 83.0510.08 (}3.13) 84.0010.24 (} 2.18) 83.3310.23 (| 2.85) 84.081¢.28 (| 2.10)
T =20 | 8634006 83.0310.0s (3.31) 84.0149.25 (| 2. 33) 83.3240.23 () 3 02) 84.0249.92 (| 2.32)
T=25]| 86401006 82.991011 (}3.41) 84.0010.29 (}2.40) 83.3310.23 (1 3.07) 84.0810.27 (1 2.32)
T =30 | 86461006 83.0240.11 (}3.44) 84.0140.27 (. 2.45) 83.3340.23 (/. 3.13) 84.0640.34 (| 2.40)
T =35 86721006 82.941012 (] 3.78) 83.991¢.27 (| 2. 73) 83.3310.24 (1 3.39)  84.0340.33 (1 2.69)
T =40 | 86.7610.06 82.9310.16 ( 3.83) 84.021¢.25 (J 2.74) 83.3310.24 (| 3.43) 84.0040.28 (| 2.76)
T =45 | 86.7710.06 82.9610.15 (. 3.81) 84.014¢.0s (| 2. 76) 83.3440.23 (1 3.43)  83.9140.31 (| 2.86)
T =50 | 86.7210.06 82.9710.16 (} 3.75) 84.021¢.28 (| 2.70) 83.3410.24 (| 3.38) 83.9710.25 (1 2.75)

Table 14: Ablation study of our DeepAFL’s training accuracy on the CIFAR-100. We evaluate four
distinct ablation models to explore the contributions of our key components in the representations:
(1) Ablating the residual skip connection, (2) Ablating the random projection By, (3) Ablating the
activation function o (-), and (4) Ablating the trainable transformation €. The value in parenthe-

ses (/) indicates the performance drop compared to our full DeepAFL under identical conditions.

Layers | DeepAFL Ablation (1) Ablation (2) Ablation (3) Ablation (4)

T=0 65.66.0 04 65.6610.04 (1 0.00) 65.6610.04 (I 0.00) 65.6610.04 (1 0.00) 65.66+0.04 (1 0.00)
T=5 74931004 65.8110.04 (1 9.12) 69.8040.11 (L 5.13)  65.6610.04 (1 9.27) 65.6710.07 (1 9.26)
T=10 | 79411908 66.321003 (} 13.1) 70.1610.10 (J 9.25) 65.6610.04 (| 13.8)  65.7010.06 (| 13.7)
T =15 | 82.6910.09 66.6040.11 (} 16.1) 70.3840.09 ( 12.3) 65.6610.03 (| 17.0) 65.7240.0s (| 17.0)
T =20 | 85.15.0,03 66.86+0.08 (| 18.3) 70.4610.08 (I 14.7) 65.66+0.03 (1 19.5) 65.7240.09 (I 19.4)
T=25 87.21;&0_02 67.10:&()‘12 (L 20. l) 70.571()‘03 (l, 16. ()) 65.67:&0_04 (\L 21.5 ) 65.74;&0_10 (l 21.5)
T =30 | 8884006 67.2540.09 (}21.6) 70.6340.10 (} 18.2) 65.6710.03 (| 23.2) 65.7740.10 (| 23.1)
T=35 90'14i0‘06 67. 40i0 11 (\L 22. I) 70-65i0A10 (l, 19. )) 65.67i0,04 (\L 24. )) 65~76i0,08 (\L 2—1—1)
T=40 | 91.29.1009 67.5640.12 (} 23.7) 70.6940.09 (| 20.6) 65.6840.04 (| 25.6) 65.7840.09 (| 25.5)
T =45 | 9215:011 67.7010.08 (1 24.5) 70.7310.10 (1 21.4)  65.6810.04 (1 26.5) 65.770.08 (| 26.4)
T =50 |9293.006 67.8040.11 (}25.1) 70.7840.09 (}22.2) 65.6710.04 (| 27.3) 65.7640.06 (| 27.2)
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Table 15: Ablation study of our DeepAFL’s testing accuracy on the CIFAR-100. We evaluate four
distinct ablation models to explore the contributions of our key components in the representations:
(1) Ablating the residual skip connection, (2) Ablating the random projection By, (3) Ablating the
activation function o (-), and (4) Ablating the trainable transformation €2, . The value in parenthe-
ses (/) indicates the performance drop compared to our full DeepAFL under identical conditions.

Layers | DeepAFL Ablation (1) Ablation (2) Ablation (3) Ablation (4)

T=0 | 6081915 60.814¢.15 ()} 0.00) 60.814¢.15 () 0.00) 60.814¢.15 () 0.00) 60.814¢.15 (| 0.00)
T=5 | 64621002 60.91:015(}3.71) 62.4310.09 (J2.19) 60.8010.16 (| 3.82) 60.80+0.10 ({ 3.82)
T=10 | 6598013 61.1740.10 (}4.81) 62.5540.06 () 3.43) 60.8140.16 (} 5.17) 60.8240.05 (| 5.16)
T=15] 6659003 61.48:006 (}5.11) 62.5540.08 (} 4.04) 60.8210.16 (| 5.77) 60.8510.05 (1 5.74)
T =20 | 66951004 61.821910 (}5.13) 62.5510.09 (1 4.40) 60.8240.16 (| 6.13)  60.8410.12 (| 6.11)
T=25|67401010 61.954011 (}5.45) 62.6140.05 (L 4.79) 60.8210.16 (| 6.58) 60.8310.07 (| 6.57)
T=30| 67711906 62121012 (}5.59) 62.6010.09 (J 5.11) 60.8210.16 (| 6.89) 60.7710.04 (| 6.94)
T=35|67971012 62264013 ([ 5.71) 62.6340.11 (1 5.34) 60.8310.16 (| 7.14)  60.8140.06 (| 7.16)
T =40 | 68.191007 62.28:0.06 (}5.91) 62.6410.0s (} 5.55) 60.8210.15 (| 7.37) 60.8810.05 (| 7.31)
T =45 | 68321011 62.3740.12 (1 5.95) 62.6340.12 (1 5.69) 60.8310.16 (. 7.49) 60.8940.11 (| 7.43)
T =50 | 68511009 62394013 (}6.12) 62.6440.11 (L 5.87) 60.8410.16 (| 7.67) 60.8940.06 (| 7.62)

Table 16: Ablation study of our DeepAFL’s training accuracy on the Tiny-ImageNet. We evaluate
four distinct ablation models to explore the contributions of our key components in the representa-
tions: (1) Ablating the residual skip connection, (2) Ablating the random projection By, (3) Ablating
the activation function o(+), and (4) Ablating the trainable transformation €2, . The value in paren-
theses () indicates the performance drop compared to our full DeepAFL under identical conditions.

Layers | DeepAFL Ablation (1) Ablation (2) Ablation (3) Ablation (4)

T=0 60'30i0.02 60.30:{:0‘02 ( 0) 60.30:‘:0‘02 ( ()()) 60. 3Oj:0 02 (\L 0. J()) 60~30i0.02 ( J 0 (J)
T=5 66.89. 006 60.8410.03 (] 6.05) 63.2140.03 (1 3.68) 60.3010.01 (1 6.59) 60.3110.02 (| 6.58)
T=10 | 70141003 61.8710.05 (}8.27) 63.4610.03 (6.68) 60.3010.01 (1 9.84) 60.3140.01 (1 9.83)
T=15| 72641005 62.5310.04 (J 10.1) 63.5910.03 (J 9.05) 60.3110.01 (| 12.3) 60.3210.02 (| 12.3)
T =20 | 74751002 62.9740.03 (} 11.8) 63.6840.03 (L 11.1) 60.3140.01 (} 14.4) 60.3340.02 (| 14.4)
T=25]76581003 63301002 () 13.3) 63.7410.03 (} 12.8) 60.3110.01 (| 16.3) 60.3310.03 (| 16.3)
T =30 | 78311002 63.5840.04 (} 14.7) 63.7740.03 (L 14.5) 60.3140.01 (} 18.0) 60.3540.02 (| 18.0)
T=35]|79871003 63761002 (}16.1) 63.8040.03 (J 16.1) 60.3140.01 (1 19.6) 60.3610.02 (1 19.5)
T =40 | 81.321911 63.8510.02 (J 17.5)  63.8210.02 (J 17.5) 60.3110.01 (1 21.0)  60.3510.02 (| 21.0)
T =45 | 82621004 63.9840.03 (} 18.6) 63.8440.02 ( 18.8) 60.3140.01 (| 22.3) 60.3540.02 (| 22.3)
T =50 | 83821009 64.0710.01 (J19.8) 63.8610.01 (4 20.0) 60.3110.01 (1 23.5) 60.3610.01 (4 23.5)

Table 17: Ablation study of our DeepAFL’s testing accuracy on the Tiny-ImageNet. We evaluate
four distinct ablation models to explore the contributions of our key components in the representa-
tions: (1) Ablating the residual skip connection, (2) Ablating the random projection By, (3) Ablating
the activation function o (+), and (4) Ablating the trainable transformation €2, . The value in paren-
theses () indicates the performance drop compared to our full DeepAFL under identical conditions.

Layers | DeepAFL Ablation (1) Ablation (2) Ablation (3) Ablation (4)

T=0 |5672:014 56.72:014 (1 0.00) 56.72:014 (1 0.00) 56.7250.14 (1 0.00)  56.7240.14 (| 0.00)
T=5 | 60241002 57.39:0.11 (1 2.85) 58.1610.24 (| 2.08) 56.6910.13 (1 3.55) 56.69+10.11 (| 3.55)
T =10 61'34i0.13 58.423:()‘16 (\L 2. (']2) 58-22j:0A17 (i, 3. 12) 56.703:0.13 (\L 4. f)—l) 56.69i0‘14 (\L 4.6 ))
T=15| 6194005 59.0110.10 (| 2.93) 58201014 (} 3.74) 56.7010.13 (1 5.24)  56.6940.12 (| 5.25)
T =20 | 62341002 59.21:0.0s (1 3.13) 58.2510.10 (1 4.09) 56.7010.13 (| 5 04) 56.6840.12 (| 5.66)
T =25 | 62.66:1005 59.37+0.14 (1 3.29) 58.251016 () 4.41) 56.7010.14 (1 5.96)  56.70£0.10 (| 5.96)
T =30 | 6294005 59.49:0.10 (| 3.45) 58.2410.17 (1 4.70) 56.7010.14 (1 6.24) 56.7010.12 (| 6.24)
T=35 63'24i0‘16 59.54i()‘07 (\L 3.7( )) 58-27i0A18 (l, 4. ()7) 56~70i0.14 (\L 6. )—l) 56~72i0‘12 (\L 6.5° )
T =40 | 63481015 59.6610.0s (| 3.82) 58.3410.16 (| 5.14) 56.7010.14 (1 6.78)  56.7310.12 (| 6.75)
T =45 63'65i0.18 59.72:{:0'10 (\L 3. Q{) 58.35:‘:0‘13 ( 5. 3()) 56-70j:0.14 (\L 6. ()5) 56~72i0.10 (\L 6. ‘H)
T =50 | 63741000 59.811011 (13.93) 58.3910.15 (| 5.35)  56.7010.14 (1 7.04)  56.72.0.08 (| 7.02)
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Table 18: Training accuracy comparison of our DeepAFL against the other four deepening strategies
for the analytic networks on the CIFAR-10, including (1) cascades w/ random feature, (2) cascades
w/ random feature & label encoding, (3) cascades w/ activated random feature, (4) cascades w/
activated random feature & label encoding. All the strategies share the same zero-layer features to
ensure fairness. The value in parentheses (/) indicates the performance lags behind our DeepAFL.

Layers | DeepAFL Strategy (1) Strategy (2) Strategy (3) Strategy (4)

T=0 85.3510.02 85.3510.02 (1 0.00) 85.3510.02 (1 0.00) 85.3510.02 (1 0.00) 85.3510.02 (1 0.00)
T=5 89'03i0.03 85.353:0‘02 (i 3()8) 85.36:‘:0‘03 (l, 5()7) 85.68i0,01 (\L 3.35 ) 85.68i0,02 (\L 3. 5))
T =10 | 90.61:005 85.3540.03 (}5.26) 85.3640.03 (. 5.25) 85.6810.01 (| 4.93) 85.6710.02 (| 4.94)
T=15| 918010014 85.3510.03 (] 6. 40) 85.3540.03 (4 6.45)  85.7040.00 (1 6.10) 85.6840.03 (| 6.12)
T=20192741003 85.3510.03 (7.39) 85.3510.03 () 7.39) 85.70+0.01 (| 7.04) 85.67+0.01 (L 7.07)
T=25|9349.002 85.3540.03 (}8.14) 85.3540.03 (/. 8.14) 85.714¢.01 (| 7.78) 85.6810.02 (| 7.81)
T=30| 94101003 85.3610.03 (}8.74) 85.3510.03 (1 8.75) 85.7110.01 (1 8.39) 85.6710.03 (| 8.43)
T =35 | 94631003 85.3640.03 (1 9.27) 85.3540.03 (. 9.28) 85.714¢.01 (. 8.92) 85.6840.03 (| 8.95)
T =40 | 95.08.0.03 85.3510.02 (49.73) 85.3510.03 (1 9.73) 85.7140.01 (1 9.37) 85.6810.03 (1 9.40)
T =45 | 9543003 85.3540.03 (L 10.1) 85.3540.03 (L 10.1)  85.7140.00 (| 9.72)  85.6940.03 (| 9.74)
T =50 | 95791003 85.3640.03 (L 10.4) 85.3540.03 (. 10.4)  85.7040.01 ( 10.1)  85.6840.03 (| 10.1)

Table 19: Testing accuracy comparison of our DeepAFL against the other four deepening strategies
for the analytic networks on the CIFAR-10, including (1) cascades w/ random feature, (2) cascades
w/ random feature & label encoding, (3) cascades w/ activated random feature, (4) cascades w/
activated random feature & label encoding. All the strategies share the same zero-layer features to
ensure fairness. The value in parentheses (/) indicates the performance lags behind our DeepAFL.

Layers | DeepAFL Strategy (1) Strategy (2) Strategy (3) Strategy (4)

T=5 85131008 83.3010.22 (i l 83) 83.3140.24 (L 1 82) 83.6240.20 (i 1 ol) 83.61i0_20 (J 1.52)
T =10 | 85891009 83.2910.23 (| 2.60) 83.3140.23 (| 2.58) 83.6310.25 (| 2.26) 83.6010.20 (| 2. ZJ)
T=15 86.18i0‘08 83~32i023 (\L 2. 86) 83-31i023 (i, 2 8() 83.62i0.20 (\L 2. )()) 83.60i0‘19 (\L 2.5 )
T =20 | 8634006 83.2940.24 (1 3.05) 83.3140.24 (. 3.03) 83.6210.20 (| 2.72) 83.6240.23 (| 2.72)
T=25]| 86401006 83291024 (}3.11) 83.311¢.23 (3.09) 83.6310.22 (1 2.77) 83.6310.21 (L 2.77)
T =30 | 86461006 83.3140.24 (}3.15) 83.2940.23 (. 3.17) 83.6440.20 (| 2.82) 83.6040.22 (| 2.86)
T =35 86721006 83.3010.23 (}3.42) 83.311¢.24 (| 3.41) 83.6410.22 (1 3.08) 83.59410.20 (L 3.13)
T =140 | 86.7610.06 83.311025 (}3.45) 83.3210.24 ( 3.44) 83.6610.20 (| 3.10) 83.6210.20 (| 3.14)
T =45 | 86.7710.06 83.3140.24 (1 3.46) 83.3040.24 (| 3.47) 83.6510.23 (| 3.12) 83.6040.22 (| 3.17)
T =50 | 86.7210.06 83.3110.23 (}3.41) 83.3010.24 (| 3.42) 83.6410.22 (| 3.08) 83.6010.22 (| 3.12)

Table 20: Training accuracy comparison of our DeepAFL against the other four deepening strategies
for the analytic networks on the CIFAR-100, including (1) cascades w/ random feature, (2) cascades
w/ random feature & label encoding, (3) cascades w/ activated random feature, (4) cascades w/
activated random feature & label encoding. All the strategies share the same zero-layer features to
ensure fairness. The value in parentheses (/) indicates the performance lags behind our DeepAFL.

Layers | DeepAFL Strategy (1) Strategy (2) Strategy (3) Strategy (4)

T=0 | 65664:004 65.66410.04 (}0.00) 65.66410.04 (0.00) 65.6610.04 (. 0.00) 65.6610.04 (| 0.00)
T=5 | 74931004 65.644006 (}9.29) 65.5840.07 (. 9.35) 66.184¢.0s (| 8.75) 65.3040.05 (| 9.63)
T=10 | 7941008 65.6440.05 (}13.8) 65.5840.06 (| 13.8) 66.6710.0s (| 12.7) 65.3940.06 (| 14.0)
T =15 | 82.6910.09 65.6440.05 (L 17.0) 65.5840.06 (L 17.1) 67.1140.11 ( 15.6) 65.5140.04 (| 17.2)
T =20 | 85151003 65.6410.06 (}19.5) 65.58410.07 (I 19.6) 67.5240.11 (| 17.6) 65.6040.07 (1 19.6)
T =25 | 87211002 65.6440.05 () 21.6) 65.5740.07 (L 21.6) 67.8610.13 (/. 19.4) 65.7040.12 (| 21.5)
T =30 | 8884006 65.641005 () 23.2) 65.5640.07 (] 23.3) 68144011 (1 20.7) 65.7410.12 (| 23.1)
T=35|9014.006 65.6440.05 () 24.5) 65.5840.06 (] 24.6) 68.4040.12 (| 21.7) 65.8410.09 (| 24.3)
T =40 | 91.291009 65.6440.05 (} 25.6) 65.5840.05 (| 25.7) 68.6410.14 (| 22.6) 65.9510.15 (| 25.3)
T =45 92'15i0.11 65.643:0'0{ (\L 26.° ) 65.58:‘:0‘07 (l, 26. ()) 68.82i0.10 (\L 23. 5) 66.04i()'17 (\L 26.1 )
T =50 | 9293006 65.6440.05 () 27.3) 65.5940.07 (L 27.3) 68991019 (| 23.9) 66.1640.15 (| 26.8)
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Table 21: Testing accuracy comparison of our DeepAFL against the other four deepening strategies
for the analytic networks on the CIFAR-100, including (1) cascades w/ random feature, (2) cascades
w/ random feature & label encoding, (3) cascades w/ activated random feature, (4) cascades w/
activated random feature & label encoding. All the strategies share the same zero-layer features to
ensure fairness. The value in parentheses (/) indicates the performance lags behind our DeepAFL.

Layers | DeepAFL Strategy (1) Strategy (2) Strategy (3) Strategy (4)

T=0 60.81..15 60.8110.15 () 0.00) 60.814¢.15 (}0.00) 60.8149.15 (/. 0.00) 60.8140.15 (¢ 0. 00)
T=5 64.621002 60.8010.13 (| 3.82) 60.7510.14 (I 3.87)  61.2310.07 (1 3.39)  60.5710.04 (1 4.05)
T =10 | 65980135 60.7840.10 ( 5.20) 60.7430.11 (1 5.24) 61.6710.09 (| 4.31) 60.6940.05 (| 5. 29)
T=15166.591003 60.78:012 (}5.81) 60.7410.11 (} 5.85) 61.9840.03 (| 4.61) 60.85410.02 (1 5.74)
T=201 66951004 60.7910.10 (}6.16) 60.7310.11 (J 6.22) 62.2140.02 (| 4.74) 60.9510.07 (L 6.00)
T=25| 67401010 60.7840.10 (}6.62) 60.7240.11 (] 6.68) 62.3140.04 (| 5.09) 60.9940.06 (| 6.41)
T =30 67'71i0.06 60.783:0‘12 (\L 6. Q{) 60-73j:OA11 (l, 6. ()8) 62. 53j:0 08 (\L 5. 18) 61~12i0,08 (\L 6. )())
T=235|67971012 60.7840.12 (1 7.19) 60.7240.10 (|, 7.25) 62.7340.12 (1 5.24)  61.1640.06 (| 6.81)
T =40 | 68.191007 60.7810.12 (} 7.41) 60.7410.10 (} 7.45) 62.8210.11 (1 5.37) 61.2040.01 (L 6.99)
T =45 | 68321011 60.7840.11 (L 7.54) 60.7340.11 (L 7.59)  62.9640.11 (| 5.36) 61.2740.01 (| 7.05)
T =50 | 68511009 60.7740.12 (L 7.74) 60.7140.10 (L 7.80) 63.0540.11 (| 5.46) 61.3710.06 (| 7.14)

Table 22: Training accuracy comparison of our DeepAFL against the other four deepening strategies
for the analytic networks on the Tiny-ImageNet, including (1) cascades w/ random feature, (2)
cascades w/ random feature & label encoding, (3) cascades w/ activated random feature, (4) cascades
w/ activated random feature & label encoding. All the strategies share the same zero-layer features to
ensure fairness. The value in parentheses (/) indicates the performance lags behind our DeepAFL.

Layers | DeepAFL Strategy (1) Strategy (2) Strategy (3) Strategy (4)

T=0 60'30i0.02 60.30:{:0‘02 ( ) 60.30:‘:0‘02 ( ()()) 60~30j:0.02 ( () J()) 60. 30i0 02 (\L 0. ()())
T=5 66.89.00s 60.2010.02 (| () 0)) 59.8440.02 (L 7.05)  59.9240.03 (. 6.97) 56.1440.0s (| 10.8)
T =10 | 70.141003 60.2040.01 (L 9.94) 59.8310.01 (/. 10.3)  60.0040.02 (| 10.1)  54.7849.07 (| 15.4)
T=15| 72641005 60.211001 (} 12.4) 59.821¢.04 (} 12.8) 60.08+0.03 (| 12.6) 54.4040.07 (| 18.2)
T =20 | 747510.02 60.2040.01 (} 14.5) 59.814¢.01 ( 14.9) 60.1710.04 (| 14.6) 54.2310.11 (| 20.5)
T=25 76.58i0,03 60.193:0‘01 (\L 16. —1) 59.80:‘:()‘02 (l, 16. 8) 60~25j:0.04 (\L 16.3 ) 54. 12i0 11 (\L 22. 3)
T =30 | 78311002 60.214001 (}18.1) 59.8140.04 () 18.5) 60.3340.04 (| 18.0) 54.0340.12 (| 24.3)
T=35]|79871003 60211001 (}19.7) 59.8140.02 (4 20.1) 60.4440.07 (1 19.4) 54.0640.12 (1 25.8)
T =40 | 81.3219.11 60.2010.01 (4 21.1)  59.801¢.03 (4 21.5)  60.5210.05 (1 20.8)  53.9910.12 (| 27.3)
T =45 | 82.624004 60.2040.01 (22.4) 59.8040.03 (| 22.8) 60.6210.06 (| 22.0) 54.0740.0s (| 28.6)
T =50 | 83.8210.09 60.2040.02 (1 23.6) 59.7840.03 (1 24.0)  60.7140.05 (| 23.1)  54.0540.11 (1 29.8)

Table 23: Testing accuracy comparison of our DeepAFL against the other four deepening strategies
for the analytic networks on the Tiny-ImageNet, including (1) cascades w/ random feature, (2)
cascades w/ random feature & label encoding, (3) cascades w/ activated random feature, (4) cascades
w/ activated random feature & label encoding. All the strategies share the same zero-layer features to
ensure fairness. The value in parentheses (/) indicates the performance lags behind our DeepAFL.

Layers | DeepAFL Strategy (1) Strategy (2) Strategy (3) Strategy (4)
T=0 |5672:014 56.7210.14 (1 0. ()0) 56.7210.14 (L 0.00)  56.7240.14 (1 0.00)  56.724¢.14 ({ 0.00

) ) )

T=5 | 60241002 56.6910.12 (1 3.55) 56.3210.10 (1 3.92) 56.3110.10 (1 3.93) 53.26.10.12 (| 6.98)
T=10 | 61.341135 56.6110.15 (| 4 7;) 56.2640.11 (1 5. ox) 56.40.10.06 (| 4. 04) 52.0110.06 (1 9.33)
T =15 | 6194005 56.6210.14 (1 5.32) 56.2550.13 (| 5.69) 56.4910.10 (1 5.45) 51.74.40.12 (| 10.2)
T =20 | 62341002 56.6410.14 (| 5. 70) 56.23.10.08 (| 6. 11) 56.6140.10 (| 5 75) 51.6310.00 (1 10.7)
T =25 | 62.66:1005 56.621+0.14 (1 6.04) 56.270.00 (} 6.39) 56.66-0.12 (| 6.00) 51.66.0.16 (| 11.0)
T =30 | 6294003 56.6310.00 (1 6.31) 56.2310.00 (| 6.71) 56.7510.01 (1 6.19) 5147016 (| 11.5)
T=35 63'24i0‘16 56.61i()‘14 (\L 6.6 3) 56.22i004 (l, 7. 02) 56~79i0.15 (\L 6. —1)) 51~51i0,21 (\L 117)
T =140 | 63481015 56.6210.12 (1 6.86) 56.2610.02 (| 7.22) 56.8310.04 (1 6.65) 5147015 (| 12.0)
T =45 63'65i0.18 56.61:{:0'13 (\L 7.04 ) 56.22:‘:0‘09 (l, 7. —13) 56.99i0.20 (\L 6. ()()) 51~42i0.09 (\L 122)
( ) ( ) ( ) ( )

T =50 | 63.74+0.04 56.6140.14 (} 7.13) 56.2340.13 (| 7.01) 57.1149.18 (L 6.63) 51.4740.12 (] 12.3
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Figure 4: Accuracy-Efficiency balance of our DeepAFL on the CIFAR-10.
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Figure 5: Accuracy-Efficiency balance of our DeepAFL on the CIFAR-100.
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Figure 6: Accuracy-Efficiency balance of our DeepAFL on the Tiny-ImageNet.
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Figure 7: Scalability analyses of our DeepAFL against baselines with different numbers of clients.
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Figure 8: Ablation study of our DeepAFL on the CIFAR-10.
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Figure 9: Ablation study of our DeepAFL on the CIFAR-100.
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Figure 10: Ablation study of our DeepAFL on the Tiny-ImageNet.
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Figure 11: Comparison of our DeepAFL with other deepening strategies on the CIFAR-10.
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Figure 12: Comparison of our DeepAFL with other deepening strategies on the CIFAR-100.
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Figure 13: Comparison of our DeepAFL with other deepening strategies on the Tiny-ImageNet.
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E.2 IMPLEMENTATION DETAILS OF THE EXPERIMENTS

Here, we detail the implementation details of our experiments. Specifically, the number of clients is
set to 100 for all methods. To simulate diverse data heterogeneity scenarios, two common non-IID
partitioning settings are employed: LDA (Lin et al.,[2020) (as Non-IID-1) and Sharding (Lin et al.|
2020) (as Non-IID-2). Under the Non-IID-1 setting, the dataset is allocated to all clients via the
Dirichlet distribution, with the parameter a modulating the heterogeneity level. Under the Non-IID-
2 setting, the dataset is sorted by label and divided into equal-sized shards for distribution among
clients, where the number of shards per client s controls the heterogeneity level. Smaller values of
« and s both indicate more heterogeneous data distributions. We set « € {0.1,0.05} and s € {2, 4}
for CIFAR-10, while setting o € {0.1,0.01} and s € {5, 10} for CIFAR-100 and Tiny-ImageNet.

To ensure a fair comparison, in our main experiments, the results of all baselines are directly taken
from the provided data in AFL (He et al.,[2025b)). Furthermore, for all three datasets (i.e., CIFAR-10,
CIFAR-100, and Tiny-ImageNet), we adopted exactly the same pre-processing procedure as AFL,
resizing all input images to 224 x 224. Regarding the specific parameters of our DeepAFL, we
adopt the following default settings. First, we employ GELU as the activation function and set the
projection dimensions to de = dr = 1024 across all three datasets. Additionally, the regularization
parameter A is set to 10 for CIFAR-10, and 1 for both CIFAR-100 and Tiny-ImageNet. Then, for
the regularization parameter vy, we set it to 0.1 for CIFAR-10, and 0.01 for both CIFAR-100 and
Tiny-ImageNet. To ensure experimental transparency, we provide the detailed parameter settings
for each experiment in the extended analyses of our evaluation in Section

As for the metrics employed in our experiments, we adopt the top-1 accuracy on the testing sets as
the primary metric for evaluating the performance of all approaches. In addition, since the top-1
accuracy on the training sets also serves as a strong indicator of the representation learning capabil-
ity, we extensively employ this metric to analyze how the representations of different models evolve
with increasing network depth. Moreover, to assess the efficiency of all approaches, we measure the
required training time (s) and the volume of transmitted data (MB) as indicators of computational
and communication cost, respectively. To analyze the marginal effect of increasing network depth,
we use the symbol A to denote the difference between two consecutive cases of the the metric.

All the experiments in our paper are executed three times per setting, and we report the mean and
standard error of the experimental results. Furthermore, all the experimental evaluations in this
paper are conducted using PyTorch on NVIDIA RTX 4090 GPUs. Notably, for transparency, the
related codes will be made publicly accessible as open-sourced upon the acceptance of this paper,
allowing the broader research community to verify our findings and build upon our work.

E.3 DETAILED ANALYSES ON EXPERIMENTAL EVALUATIONS
E.3.1 MAIN COMPARISONS

In our main results reported in Tables[T|Jand[2] we employ GELU as the activation function and set the
projection dimensions to dp = dp = 1024 across all three datasets. The regularization parameter
A is fixed at 10 for CIFAR-10 and at 1 for both CIFAR-100 and Tiny-ImageNet. Similarly, the
regularization parameter -y is set to 0.1 for CIFAR-10 and 0.01 for CIFAR-100 and Tiny-ImageNet.
To ensure a fair comparison, the results of all baselines in Tables [T and [2] are directly taken from
the benchmark data provided in AFL (He et al.,[2025b). It is worth noting that, since our DeepAFL
involves random projections, its performance may vary under different random seeds. To mitigate
the influence of randomness, all main experiments in this paper were repeated three times, and the
results are reported as Mean 4+ Standard Error. The improvements of our DeepAFL were validated
by Chi-squared tests, all of which were found to be statistically significant at the p = 0.05 level.

From the results, we observe that the performance of DeepAFL is consistent across different levels
of heterogeneity, which empirically supports the heterogeneity invariance in Theorem 1. Moreover,
as the network depth T increases, DeepAFL consistently achieves significant performance gains,
empirically supporting its representation learning capability in Theorems 2-3. It is also worth noting
that although we report the performance of DeepAFL under 7' € {5, 10,20} in the main results,
its performance continues to improve as 1" increases. This is further confirmed by our extended
experiments with 7' € [0, 50]. Specifically, on the more complex CIFAR-100 and Tiny-ImageNet
datasets, the testing accuracy of DeepAFL at T' = 50 surpasses that at 7" = 20 by more than 1.5%.
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E.3.2 INVARIANCE ANALYSES

Here, we conduct detailed analyses to demonstrate DeepAFL’s ideal property of invariance to data
heterogeneity. As shown in Tables[I]and 2] the performance of all gradient-based methods deterio-
rates markedly as data heterogeneity increases (i.e., as the partitioning parameters « or s decrease).
In contrast, due to its ideal property of invariance to data heterogeneity, our DeepAFL maintains
stable performance. This property of DeepAFL can be further extended to invariance with respect
to the number of clients. As shown in Figure [/| the performance of DeepAFL remains entirely
consistent across all scenarios, while its advantage over gradient-based methods (e.g., FedAvg) be-
comes increasingly pronounced as the number of clients K grows. Quantitatively, at K = 100,
DeepAFL achieves performance gains of 10.41% and 18.65% over FedAvg on the CIFAR-100 and
Tiny-ImageNet, respectively, which expand to 25.97% and 32.8% at K’ = 1000. Notably, the results
of AFL and FedAvg in Figureare also taken from the given data in AFL (He et al.| | 2025b).

E.3.3 REPRESENTATION ANALYSES

Here, we provide a comprehensive analysis of DeepAFL’s capability for deep representation learn-
ing. To this end, we examine how its training accuracy and testing accuracy evolve as the number of
layers T increases, as shown in Tables [OHIT]} As observed, on the simple CIFAR-10 dataset, Deep-
AFL’s performance improves steadily, reaching optimality at 7" = 45. On the complex CIFAR-100
and Tiny-ImageNet datasets, it scales without overfitting up to 7" = 50, yielding over 1.5% improve-
ment relative to 7" = 20. This indicates that for datasets with higher complexity, deeper models can
be constructed to enhance representation capacity and achieve superior performance. Moreover, a
particularly interesting and evident observation is that AFL exhibits consistently low training accu-
racy, which can likely be attributed to the underfitting limitations of its simple single-layer linear
model. In contrast, DeepAFL is able to significantly improve training accuracy by deepening the
network, showing that its representation learning capability can effectively overcome the underfitting
issues in traditional analytic learning. In fact, our DeepAFL only requires minimal computational
overhead when increasing depth, with more detailed analyses presented in Appendix [E.3.4]

E.3.4 EFFICIENCY EVALUATIONS

Here, we present the comprehensive efficiency evaluations of our DeepAFL. To highlight its superior
balance between accuracy and efficiency, Figures 2H3|compare DeepAFL with baselines in terms of
computational and communication cost. Specifically, to ensure a fair comparison, we selected the
baseline with the lowest computational and communication cost (i.e., FedAvg) as the representative
benchmark to highlight the superiority of our DeepAFL. Notably, the computational costs of all
baselines are directly adopted from the existing results reported in AFL (He et al., [2025b)). More-
over, Tables [OHIT] and Figures [dH6| provide further details on how our DeepAFL achieves a balance
between accuracy and efficiency through the flexible adjustment of 7T'.

Specifically, as shown in Figures PH3] compared with gradient-based baselines, our DeepAFL (with
T = 20) achieves at least a 99.7% reduction in computational cost and a 50.2% reduction in commu-
nication cost on the CIFAR-100. On the Tiny-ImageNet, the advantages of DeepAFL correspond to
a 99.6% reduction in computational cost and a 70.1% reduction in communication cost. By flexibly
adjusting the number of layers 7', for example, setting 7" = 5, users can obtain greater efficiency ad-
vantages. In summary, although the cost of our DeepAFL is inevitably higher than that of AFL due to
the additional deep layers required for enhanced representations, it remains substantially lower than
that of gradient-based baselines. This advantage stems from our DeepAFL’s gradient-free manner,
which avoids the iterative costly computation and communication associated with gradients.

Subsequently, we also report the detailed accuracy-efficiency balance of our DeepAFL with varying
numbers of layers, as shown in Tables OHIT] and Figures BH6] Encouragingly, the construction of
each additional layer in DeepAFL requires no more than 3s across all three datasets, providing an
intuitive demonstration of its efficiency. Compared with AFL, even when building a 50-layer deep
network, DeepAFL incurs less than a twofold increase in training time while delivering performance
improvements of at most up to 31.38% on the training set and 9.95% on the testing set. It is worth
noting that, there is considerable potential for our DeepAFL to further reduce communication cost
in the future through compression techniques such as matrix factorization, as its primary communi-
cation information is the Auto-Correlation and Cross-Correlation Matrices.
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E.3.5 PARAMETER ANALYSES

Here, we provide comprehensive analyses for the parameter sensitivity of our DeepAFL, encompass-
ing the regularization parameters ), -y, the activation function o(-), and the projection dimensions
ds, dgr. Specifically, we keep all parameters’ default settings, varying only the parameter under
investigation to assess its sensitivity. The specific analyses for each parameter are detailed below:

First, we explore the regularization parameters A and -y, which regularize the global classifier and
the transformation matrix, respectively. As illustrated in Tables[3H4] DeepAFL is insensitive to \ but
sensitive to . This evidence may stem from the fact that our deep residual network employs only
the final global classifier during inference, yet relies on all transformation matrices. Specifically, on
the simple CIFAR-10 dataset, the best performance is achieved when A = 10 and y € [0.1, 0.5]. For
the complex CIFAR-100 and Tiny-ImageNet datasets, the optimal values of A are found to be highly
dispersed, while the optimal -y consistently occurs at the smaller value of v = 0.01.

Second, we further analyze the impact of different activation functions on DeepAFL’s performance.
The detailed experimental results are shown in Table [5] The selection of the activation function
markedly influences DeepAFL’s performance. More specifically, a performance variance of about
2% can be observed among different activation functions, with GELU emerging as the optimal
choice and Softshrink as the least effective. Moreover, compared to omitting the activation function
entirely, employing GELU yields up to 5% gains, underscoring its critical role. More comprehensive
analysis of this significance is available in the corresponding ablation study in Appendix [E.3.6]

Third, we study the effects of varying projection dimensions dg and dr on our DeepAFL in Tables|[6}-
[8l As these projection dimensions increase, DeepAFL’s performance rises initially before declining.
This behavior can be attributed to the fact that, while larger dimensions can enhance the model’s
expressive power by capturing more information, they also concurrently increase the propensity for
overfitting and compromise numerical stability. Notably, the model crashes when dgp = dp = 2'3.
Furthermore, as detailed in Appendix [D] the complexity of DeepAFL scales at least quadratically
with these dimensions, and excessively large values incur substantial overhead, cautioning against
the indiscriminate pursuit of larger dimensions. That’s why we select dg = dr = 2'° as default.

E.3.6 ABLATION STUDIES

Here, we present the detailed analyses of our ablation studies to dissect the individual contributions
of residual skip connections, random projections, activation functions, and trainable transformations
in our DeepAFL. Specifically, we construct four ablation models, with each omitting one of these
key components, and compare them against our full DeepAFL across varying layer depths on diverse
datasets, as shown in Tables and Figures Moreover, the ablation studies are conducted
under identical conditions for fair comparisons, with all parameters aligned with those used in the
main experiments. The detailed analyses are provided below:

First, we focus on analyzing the contribution of the residual skip connections in our DeepAFL, with
the corresponding ablation model denoted as Ablation (1). For the simple CIFAR-10, ablating the
residual connections prevents performance improvements as the network depth increases, as shown
in Tables[T2HT3|and Figure 8] indicating that this dataset is highly sensitive to such skip connections.
On the CIFAR-100 and Tiny-ImageNet datasets, performance continues to improve even without
skip connections, exhibiting an initial rise followed by convergence, as shown in Tables and
Figures Meanwhile, the ablation model attains respectable performance on Tiny-ImageNet,
yet exhibits markedly limited gains on CIFAR-100. These disparities across datasets may stem from
their differing complexities, with CIFAR-10, CIFAR-100, and Tiny-ImageNet containing 10, 100,
and 200 classes, respectively. Notably, compared to DeepAFL, the ablation model yields substan-
tially inferior performance across all cases. This degradation stems from the fact that, without skip
connections, the model encounters an information bottleneck akin to that in gradient-based deep
learning. Crucially, the importance of residual skip connections is theoretically grounded, as their
ablation would invalidate Theorems 2 and 3. Specifically, the residual skip connections are crucial
because they enable a special case: if the transformation matrix is a zero matrix, no update is applied
to the representation features. This functionality guarantees that the representation features learned
at each layer will be at least as good as those from the preceding layer. Thus, without the resid-
ual skip connections, each layer essentially constructs new representation features from the hidden
random features, thereby forfeiting these valuable theoretical guarantees.
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Second, we further analyze the contributions of the random projections, which give the stochasticity
to our DeepAFL. Ablating the random projections {B;}Z_; can be achieved by simply setting them
to the identity matrices, and we denote this ablated model as Ablation (2). While this ablated model
still yields performance improvements across all datasets, its performance growth rate is markedly
slower compared to DeepAFL, and it reaches convergence earlier. Specifically, at 7' = 10, the abla-
tion model reaches convergence across all three datasets, exhibiting performance gaps of 3.64% to
9.25% on the training set and 1.90% to 3.43% on the testing set compared to our DeepAFL. Subse-
quently, DeepAFL’s performance continues to improve with increasing layers, further widening the
performance gap. By T' = 50, this gap further expands to 8.68% to 22.2% on the training set and
2.70% to 5.87% on the testing set. In Figures we can observe that without random projections
to introduce the essential stochasticity, the model tends to converge to local optima or saddle points,
even though the projection itself does not alter the feature dimensionality, as dg = dp = 21°.

Third, we focus on analyzing the contributions of the activation function in our DeepAFL, which
introduces nonlinearity to our DeepAFL. The corresponding ablation model is named Ablation (3).
It can be observed that the performance of this ablation model remains nearly invariant as the layer
depth T increases. Specifically, the performance fluctuation from 7' = 0 to T' = 50 consistently
falls below 0.05% across all datasets, thereby underscoring the critical importance of the activation
function in DeepAFL. This is because, without the activation function, each residual block merely
performs a purely linear transformation on the feature representations, fundamentally limiting the
model’s representative power and preventing further performance improvement with added depth.

Fourth, we study the contributions of the trainable transformation €21, which imparts learnability
to our DeepAFL. The corresponding ablation model is denoted as ablation (4). As illustrated in
Figures[8HIO] this ablation model exhibits modest performance gains followed by rapid convergence
on the simple CIFAR-10, while showing nearly no improvement on the complex CIFAR-100 and
Tiny-ImageNet. This evidence arises because, without the trainable transformation for learnability,
each residual block essentially functions as a fixed random nonlinear feature updater. For the simple
CIFAR-10, these updaters can fortuitously render random features progressively more discriminative
to a limited extent. For complex CIFAR-100 and Tiny-ImageNet, relying solely on random feature
updates fails to capture the high-level features, leading to negligible performance improvement.

E.3.7 COMPARING DEEPAFL WITH OTHER DEEPENING STRATEGIES

Here, we further compare our DeepAFL with the other four alternative deepening strategies to high-
light its superiority. Specifically, we design four distinct deepening strategies: (1) cascades with
random features, (2) cascades with random features and label encoding, (3) cascades with activated
random features, and (4) cascades with activated random features and label encoding. Notably, the
strategies (1) and (3) here are similar to the naive approaches (a) and (b) in Figure However, in our
comparison, strategies (1) and (3) additionally incorporate random projection and activation after the
backbone to form the zero-layer features ®(, thereby aligning more closely with our DeepAFL at
the starting point to ensure fairness in comparison. These two naive strategies are consistent with
most existing attempts in the literature to deepen analytic networks (Low et al.,2019). Meanwhile,
strategies (2) and (4) are essentially extensions of (1) and (3) through the incorporation of label
encoding, which is an established technique in analytic learning that introduces an additional linear
mapping for the labels at each layer to facilitate the training of deep analytic networks (Zhuang et al.,
2021;[2025). The detailed experimental results are presented in Tables [T8H23]and Figures [[ IHI3]

From the results, our DeepAFL consistently outperforms all other deepening strategies across all
datasets, thereby underscoring its superiority. Across all datasets, strategies (1) and (2) achieve
very similar performance, exhibiting nearly no improvement with an increasing number of layers.
Next, we turn our attention to strategies (3) and (4), which differ in that strategy (4) incorporates
additional label encoding. On the CIFAR-10, strategies (3) and (4) yield comparable performance,
both showing some improvement followed by rapid convergence. On the CIFAR-100, strategy (4)
lags substantially behind strategy (3), despite both showing gains with increasing layer depth. This
disparity widens further on the Tiny-ImageNet, where strategy (4) experiences a pronounced perfor-
mance decline from added depth. The varying effects of label encoding across datasets may stem
from differences in the number of classes, as these datasets contain 10, 100, and 200 classes, respec-
tively. Taken together, these results suggest that existing deepening strategies are of very limited
effectiveness and fall far short of the performance achieved by our proposed DeepAFL.
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F ADDITIONAL DISCUSSION

Beyond the discussion in our main text, we provide additional discussion here. A key feature of
our DeepAFL is its capability to perform gradient-free representation learning after the feature ex-
traction backbone. This stands in contrast to traditional methods that typically apply representation
learning directly to the backbone model. A natural question arises: what are the differences and
advantages of our approach compared to direct representation learning on the backbone?

Direct representation learning on the backbone typically involves two main strategies.

* The first strategy is to fine-tune the backbone during the FL training process. This aims to
adapt the model to the data distribution within the FL system. However, this approach re-
quires enabling gradient-based training in the FL training, which can be severely impacted
by data heterogeneity. Moreover, there is a high risk of damaging the knowledge acquired
during pre-training, known as catastrophic forgetting. As many existing works have shown
that fine-tuning the backbone with gradients during FL training may be counterproductive,
it is precisely why we developed DeepAFL for gradient-free representation learning.

* The second strategy is to build a more complex backbone during the pre-training process,
leveraging massive pre-training datasets to enhance its robustness. Our approach is orthog-
onal to this strategy, as our DeepAFL is designed to further improve the representations
during the FL training process, given any fixed, pre-trained backbone. This training-process
representation learning is both necessary and meaningful, as the pre-trained backbone will
inevitably exhibit a domain shift when applied to a new FL system.

In addition, another noteworthy aspect of our work is the effectiveness of residual connections in our
DeepAFL, especially since its gradient-free nature seems to be at odds with the original gradient-
based motivation for these connections in ResNet. We believe that it is a profound theoretical ques-
tion that warrants future research. Here, we would like to offer several intuitive explanations for it:

* First, our comprehensive ablation studies show that the model without residual connections
struggles to improve its training accuracy as the number of layers increases, let alone testing
accuracy. This situation mirrors the challenges faced by gradient-based deep networks be-
fore the introduction of ResNet. Deep networks without residual connections can similarly
suffer from an information bottleneck as they continually update feature representations.
By adding a skip connection, each layer’s representation learning is built upon the previous
layer’s foundation, enabling continuous and cumulative improvements in representations.

» Second, as we prove in Theorems 2 and 3, our DeepAFL’s representation learning capabil-
ity is primarily reflected in the non-increasing nature of its empirical risk with added layers.
This beneficial property is ensured by the use of skip connections. When network features
converge, each residual block can be just set to zero, at a minimum, to achieve an unchang-
ing empirical risk, thereby guaranteeing that the overall empirical risk of our DeepAFL will
not increase. Without this design, the ablated model would no longer be able to guarantee
these theorems, severely compromising its representation learning capability.

* Third, the philosophy of our DeepAFL intrinsically aligns with that of Gradient Boosting.
Specifically, under the chosen MSE loss function, the negative gradient of the loss function
is precisely the residual. Therefore, by continuously fitting the residuals from previous lay-
ers, our DeepAFL can be seen as learning pseudo-gradients. This perspective may further
help unify the understanding of both gradient-based and gradient-free learning approaches.

In summary, we believe our DeepAFL represents a significant first step. There is substantial potential
for future theoretical and practical exploration based on this foundation, which we hope will further
advance various fields, including FL, analytic learning, and representation learning, etc.

G STATEMENT ON THE USAGES OF LARGE LANGUAGE MODELS

In adherence to the ICLR 2026 policy, we report the use of Large Language Models (LLMs) during
the preparation of this paper. Here, the only usages of LLMs were to aid and polish the writing
and illustration. Specifically, the LLMs were utilized to improve sentence structure, enhance clarity,
ensure grammatical accuracy, and optimize the illustration. Furthermore, all the core scientific con-
tributions (including the hypothesis formulations, the theoretical analyses, the experimental designs,
the data analyses, and the final conclusions, etc.) are the original work of the human authors.
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Figure 14: The training process for each layer in our DeepAFL.
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Figure 15: Layer-wise reduction of empirical risk in our DeepAFL.
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Figure 16: The sandwiched least-squares process in our DeepAFL.
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Table 24: Performance comparisons of the top-1 accuracy (%) among our DeepAFL and two new
baselines (i.e., Fed AWA (Shi et al., [2025) and (Liu et al.| [2024d)) on CIFAR-10, CIFAR-100, and
Tiny-ImageNet. The best result is highlighted in bold, and the second-best result is underlined.

CIFAR-10 CIFAR-100 Tiny-ImageNet
Baseline a=01 a=005a=01 a=01|a=01 a=0.1
Fed AWA 79.42%  7637% | 58.94%  50.48% | 59.07% = 52.33%
FedLPA (2024a 4957%  42.56% | 40.04% 22.55% | 39.48%  26.67%
AFL (2025b 80.75%  80.75% | 58.56% 58.56% | 54.67%  54.67%

DeepAFL (T = 5) 8520%  8520% | 64.72% 64.72% | 60.31%  60.31%
DeepAFL (T'=10) | 8593% 8593% | 65.96% 65.96% | 61.37%  61.37%
DeepAFL (T = 20) | 86.43% 86.43% | 66.98% 66.98% | 62.35%  62.35%
Improvement 1 5.68% 5.68 % 8.04% 8.42% 3.28% 7.68 %

H MORE EXPLANATIONS ON THE DETAILED PROCESS OF DEEPAFL

Here, we provide comprehensive descriptions of our DeepAFL process to enhance clarity. Specifi-
cally, as illustrated in Figures[T4HI6] we elaborate on the training process of each layer, demonstrate
the layer-by-layer empirical risk reduction, and visually depict the sandwiched least-squares mech-
anism that underpins our DeepAFL. Further details are presented below.

First of all, let’s focus on the training process for each layer in our DeepAFL. As illustrated in
Figure [I4] each layer entails the sequential update and computation of the trainable transformation
matrix €21, the feature matrix IT; 1, and the analytic classifier W ;. Specifically, for each (¢ +
1)-th layer, the trainable transformation matrix €21 is initially derived through the sandwiched least
squares process, utilizing the preceding analytic classifier W; alongside F; and R;. Subsequently,
based on the newly acquired €2, 1, the feature matrix is updated to yield ®,, ; according to Equation
(equation [9). Finally, employing the derived feature matrix ®,1, the analytic classifier is further
updated to obtain W, ; using the least squares process. Notably, as a special case, the zero-layer
feature matrix ® is obtained directly via feature extraction using Equations (I)) and (@), thereby
eliminating the need to compute a trainable transformation matrix €2y. The aforementioned process
is executed layer-by-layer, adhering to the update sequence ®5 +— Wg — - +— Wrp_1 — Qp —
@& — W until the network construction is complete.

Subsequently, we present intuitive and visual explanations of the monotonic decrease in empirical
risk as the depth of our DeepAFL increases. The empirical risk H(®;, W) is determined by the
feature matrix ®, and the analytic classifier W,. As previously analyzed, within each layer, Deep-
AFL sequentially updates the feature matrix and the analytic classifier to yield improved ®,,; and
W,;. Consequently, the empirical risk undergoes two reductions within each layer, as depicted
in Figure T3] We now detail these two reduction steps within each layer. Specifically, the fea-
ture matrix ®, is first updated to obtain ®,; via the trainable transformation matrix €2;1, which
constitutes the optimal solution to Equation (7) for minimizing the empirical risk with respect to
feature optimization. Thus, the updated empirical risk H(®;1, W) is lower than the initial risk
H(®:, W¢). Subsequently, with @, held fixed, the new analytic classifier W1 is computed as
the optimal solution to Equation (@) for minimizing the local empirical risk. Thus, the final empirical
risk H(®;1, Wy41) is also lower than the risk H(®.1, W;). By executing this procedure layer-
by-layer, the empirical risk is progressively reduced, thereby leading to enhanced performance.

Finally, as we term this optimization process for €2 as the sandwiched least squares problem, we
would like to provide a detailed illustration of its process. Specifically, the optimization objective in
Equation (7) can be viewed as a special case of generalized Sylvester matrix equations
2008}, [Ding et al. 2008, [Duan|, 2015). This structure is characterized by the unknown variable
being sandwiched between two known matrices, F and W. In this context, the “sandwich” structure,
therefore, refers to this three-matrix product form FQW. The empirical risk minimization aims to
minimize the residual, meaning the sandwich term should be as close as possible to the residual
target R. Meanwhile, the regularization term ||€2||2 is applied to constrain the magnitude of 2 and
prevent it from becoming excessively large. Consequently, this particular structure facilitates the
derivation of a distinct analytical solution, as presented in Equation (g).
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Table 25: Accuracy of gradient-based baselines with varying layers on CIFAR-100.

Layers | TT=1 T=2 T=5 T=10 T=20

FedAvg | 56.62% 55.83%  <5% <3% <1%
FedDyn | 57.55% 57.22% 56.26%  <3% <1%

I MORE EXPERIMENTAL RESULTS ON RECENT BASELINES

Following a reviewer’s suggestion, we implemented two new baselines (i.e., Fed AWA
[2025) and FedLPA [2024a))) across the three benchmark datasets utilized in our main ex-
periment: CIFAR-10, CIFAR-100, and ImageNet-R. All experimental settings were maintained to
be consistent with the other baselines established in our manuscript. Specifically, because FedLPA
is classified as a one-shot communication FL. method, and we empirically observed that its perfor-
mance essentially converges within 50 local epochs, we set the local epochs to 50 for this baseline.
This setting allows us to mitigate unnecessary computational overhead for FedLPA, thereby more
fully demonstrating its potential for efficiency. We present the results of these two new baselines
alongside AFL and our DeepAFL for additional comparison, as shown in Table 24]

In terms of accuracy, FedAWA exhibits very strong results, approaching (on CIFAR-10) or even
surpassing AFL (on CIFAR-100 and Tiny-ImageNet) when o = 0.1. Notably, even though FedAWA
outperforms AFL, our DeepAFL still consistently achieves the best performance across all scenarios.
Furthermore, as a gradient-based one-shot method, FedLPA’s performance is compromised by data
heterogeneity, as it lacks the inherent invariance demonstrated by our DeepAFL. Consequently,
despite our best efforts to tune its hyperparameters, FedLPA still performs poorly. Furthermore, as
the degree of Non-IID data increases, a pronounced performance degradation is observed for both of
the newly introduced gradient-based baselines (i.e., Fed AWA and FedLPA). This observation further
highlights the advantage of the inherent invariance property of our DeepAFL.

In terms of efficiency, using the CIFAR-100 dataset as an example, Fed AWA requires approximately
10 hours, while FedLPA requires approximately 2.5 hours. In sharp contrast, our DeepAFL com-
pletes the task in less than 100 seconds (specifically, 91.74 seconds), achieving a speedup exceeding
90x. Notably, even though FedLPA is also classified as a one-shot FL approach, and we have already
minimized its number of local epochs to fully reflect its efficiency potential, its overall overhead re-
mains significantly higher than that of DeepAFL. This phenomenon is primarily due to FedLPA still
being gradient-based and facing time-consuming backpropagation. Conversely, our DeepAFL is in
a forward-only manner, further highlighting its efficiency advantage beyond its one-shot nature.

J MORE EXPLANATIONS ON OUR DEEPAFL’S EXPERIMENTAL SETUP

Here, we would like to clarify our experimental setup. To maintain fairness in comparisons, the
results for all baselines in our paper are directly employed from the benchmark provided in the
original AFL paper 2025b). Specifically, the gradient-based approaches in the original
AFL paper adhered to a similar setup as AFL, where the backbone network is entirely frozen during
the FL process, and only the one-layer classifier is trained.

Moreover, to address potential concerns that gradient-based baselines might benefit from multiple
trainable layers, we conduct additional experiments on FedAvg and FedDyn with multiple trainable
layers (T € {2,5,10,20}) on CIFAR-100 under the Dirichlet distribution (o« = 0.1). For these
experiments, the feature dimensions of the additional layers are aligned with those of our DeepAFL
(i.e., 1024) to ensure consistency. Detailed results are presented in Table 23]

Through these results, we can observe that the performance of the gradient-based methods gradually
and constantly degrades as 7' increases. Specifically, when 7" increases beyond a certain threshold
(e.g., T' > 10), the excessive number of parameters, combined with the Non-IID data in the FL
scenario, may cause the training process to collapse. These findings fully indicate that directly in-
creasing the number of trainable layers after the backbone for these baselines, similar to our Deep-
AFL setup, has a detrimental effect on their performance. Consequently, far from benefiting from
multiple trainable layers, these gradient-based baselines exhibit significantly inferior performance
under such configurations, thereby validating the propriety of our experimental setup.
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K MORE ANALYSES ON DEEPAFL’S GENERALIZATION

Here, we present detailed analyses of the generalization ability of our DeepAFL. To capture the full
scope of this attribute, we dissect our analyses into two key aspects: (1) generalization from training
data to test data, and (2) generalization (or transferability) from IID to Out-Of-Distribution (OOD).
The detailed analyses are presented below.

First, let’s focus on the generalization from training data to test data. Specifically, we have already
established a strong theoretical guarantee in Theorems 2 and 3, which prove the monotonic decrease
of empirical risk in DeepAFL. In this case, we assume that the training and test data remain IID,
which is the common practice and prerequisite in almost all supervised statistical learning theory.
More encouragingly, these theoretical guarantees can be further extended to imply a better Gener-
alization Error Bound (GEB) in statistical learning theory, as the complexity of the linear analytic
classifier remains constant at each layer.

Below, we provide detailed theoretical explanations of the GEB. Specifically, in statistical learning
theory, the GEB typically follows the core form:

R(f) < R(f) + Complexity Term, (78)

where R (f) denotes the generalization risk (or generalization error) and R(f) denotes the empirical
risk, which is identical to H defined in Theorem 2. The complexity term (i.e., complexity gap) mea-
sures the model’s complexity, which is typically related to the sample size, the feature dimension,
and the data’s geometric structure. The size of the GEB, B(f), is what we are concerned with:

B(f) = R(f) + Complexity Term. (79)

According to standard VC-dimension and Rademacher complexity generalization bounds
|& Bengio, 2016; [Vapnik, [1999), for an analytic linear hypothesis class in R?, the generalization
gap/complexity is bounded by O(y/ds log(N/J)/N). Since N (data size), dg = 1024 (feature
dimension), and 0 € (0, 1) (confidence level) remain constant in our DeepAFL, the linear analytic
classifiers at each layer of our DeepAFL can be considered to share the same complexity term.
Furthermore, the aforementioned bound implicitly relies on the assumption that the input features
are bounded. This prerequisite is rigorously satisfied in our DeepAFL, as we enforce constant L.2-
normalization as a constraint throughout the training process, as detailed in Equations (@) and (7).

Subsequently, considering the analytic classifiers f; and f;; trained on the representations of layer
t and (t + 1) respectively, we have:

B(f;) = R(f,) + Complexity Term,, (80)

B(fi+1) = R(ft+1) + Complexity Term,_ ;. (81)
As we have established that the complexity term is constant across layers, and our paper proves
that the empirical risk is non-increasing (i.e., R(f;) > R(fi+1)), it directly follows that B(f;) >
B(fi+1). In this way, we successfully show that the theory introduced in our paper can be easily
extended to deduce that the GEB of the analytic classifier is also non-increasing. This result pro-
vides stronger evidence for the effectiveness and training-to-testing generalization of our DeepAFL’s
representation learning capabilities.

Second, we further turn our attention to the discussion of IID-to-OOD generalization (i.e., transfer-
ability), which signifies the capacity of learned features to be effectively applied to cross-domain
applications. It is important to note that transferability is not a necessary prerequisite for successful
representation learning but pertains to the distinct field of transfer learning. In fact, the vast majority
of current gradient-based supervised methods also fall far short of robust transferability, as they tend
to focus narrowly on the current task and inherently suffer when faced with out-of-distribution data.
As the development of analytic-learning-based methods is still in its nascent stages, our current core
aim is to achieve direct performance improvement with marginal additional cost. Consequently,
since we make no explicit claims regarding the transferability of our DeepAFL, the absence of
immediate cross-domain capabilities does not constitute a severe weakness for our current work.
Furthermore, we believe that exploring how to improve the transferability of the underlying model
is a promising and interesting direction for future work.
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L. MORE ANALYSES ON DEEPAFL’S SCALABILITY WITH VIT BACKBONES

Table 26: Analyses of DeepAFL’s scalability with the ViT-B-16-I-1K backbone on CIFAR-100.

Layers TeSting Acc A"I‘esting Acc AAFL Acc Time Cost ATime Cost AAFL Cost
AFL 75.45% / / 107.19s / /
DeepAFL (T' = 5) 78.05% 2.60% 2.60% 118.97s 11.78s 11.78s
DeepAFL (T = 10) 79.01% 0.96% 3.56% 126.55s 7.58s 19.37s
DeepAFL (T = 15) 79.73% 0.72% 4.28% 133.79s 7.24s 26.60s
DeepAFL (T = 20) 80.13% 0.40% 4.68% 141.02s 7.23s 33.83s
DeepAFL (T' = 25) 80.33% 0.20% 4.88% 148.56s 7.54s 41.37s
DeepAFL (T = 30) 80.51% 0.18% 5.06% 156.21s 7.65s 49.02s

Table 27: Analyses of DeepAFL’s scalability with the ViT-B-16-1-21K backbone on CIFAR-100.

Layers TESting Acc ATcsling Acc AAFL Acc Time Cost ATim(: Cost AAFL Time
AFL 86.35% / / 107.19s / /
DeepAFL (T' = 5) 87.711% 1.36% 1.36% 118.97s 11.78s 11.78s
DeepAFL (T' = 10) 88.15% 0.44% 1.80% 126.55s 7.58s 19.37s
DeepAFL (T = 15) 88.49% 0.34% 2.14% 133.79s 7.24s 26.60s
DeepAFL (T' = 20) 88.80% 0.31% 2.45% 141.02s 7.23s 33.83s
DeepAFL (T = 25) 88.95% 0.15% 2.60% 148.56s 7.54s 41.37s
DeepAFL (T' = 30) 89.08% 0.13% 2.73% 156.21s 7.65s 49.02s

Here, we present detailed analyses of DeepAFL’s practical scalability with ViT backbones. Given
that our DeepAFL is built upon AFL [2025b), which uses ResNet-18 as its primary back-
bone, we also employ the aligned backbone in our main experiments. This alignment facilitates a
clearer and more transparent comparison between the two methods. Here, we further extend our
evaluation by adopting larger ViT models to investigate our DeepAFL’s practical scalability.

Specifically, we select two versions of the ViT-B-16 backbone: ViT-B-16-1-1K (pre-trained on the
ImageNet-1K with approximately 1.28 million image) and ViT-B-16-I-21K (pre-trained on the
larger ImageNet-21K dataset with approximately 14 million images). Owing to the significantly
broader pre-training scale, ViT-B-16-1-21K typically yields better performance than ViT-B-16-1-1K.
Since the backbone sizes of both ViT models are identical (Base-16), the runtime for our DeepAFL
on both models remains essentially the same. Furthermore, all experiments are conducted on the
CIFAR-100 dataset with 100 clients using a single NVIDIA RTX 4090 GPU.

The detailed results are presented in Tables[26H27, where “Testing Acc” and “Time Cost” represent
the test accuracy and total wall-clock runtime. The A columns denote the step-wise change relative
to the preceding row, while the Aap. columns indicate the cumulative difference from AFL.

From these results, it is evident that applying DeepAFL to both ViT backbones leads to significant
performance improvements with minimal time cost, thereby demonstrating its robust scalability.
Specifically, at 7' = 30, our DeepAFL achieves an accuracy gain of 5.06% over AFL with the ViT-B-
16-I-1K backbone, and an improvement of 2.73% with the ViT-B-16-1-21K backbone. Remarkably,
these substantial improvements are achieved with a runtime of merely 156.21 s, which is only 49.02 s
higher than AFL. It is important to note that this reported runtime encompasses the cumulative time
consumed by all 100 clients to complete the training process across all layers on a single 4090 GPU.
Thus, the average cost per client is less than 1.56 s. In stark contrast, even the simplest and most
efficient FL baseline (e.g., FedAvg) requires a Total Wall-Clock Runtime of over 33,000 s.

Furthermore, although we observe that the performance improvement of DeepAFL exhibits dimin-
ishing marginal returns, this phenomenon is entirely expected and normal. First, as the backbone
capability strengthens, the feature representations are already highly optimized, making it increas-
ingly challenging to extract further performance gains beyond such a high baseline. Second, while
increasing the number of layers enhances the fitting capacity of DeepAFL, the fixed volume of
training data inevitably leads to a saturation limit in model performance. Notably, such diminishing
returns are also common in gradient-based methods. Therefore, the ability of DeepAFL to achieve
stable and significant improvements across various backbones without increasing any training data
volume is highly noteworthy. Especially when considering the negligible runtime cost, the perfor-
mance gains delivered by DeepAFL can be regarded as incurring virtually no time overhead.
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M MORE ANALYSES ON PARTIAL CLIENT PARTICIPATION

Table 28: Performance evaluation of DeepAFL on CIFAR-100 under partial client participation.

Consistent Participation Inconsistent Participation
7 =100% n=90% n=280% n="170% n=060% n=>50%|n=100% n=90% n=_80% n="70% n==60% n=>50%
T=5| 6472% 64.53% 64.38% 63.92% 62.85% 61.54% | 64.72% 6421% 64.03% 64.05% 62.19% 61.36%
T =10| 6596% 6546% 6526% 6449% 64.76% 63.17% | 65.96% 6536% 65.05% 64.45% 64.09% 62.93%

=15] 66.56% 66.39% 6620% 6538% 65.17% 65.08% | 66.56% 66.22% 66.17% 65.64% 64.60% 64.98%
=20| 66.98% 66.76% 66.66% 6647% 6627% 65.14% | 66.98% 66.57% 66.51% 66.32% 65.50% 64.81%

Layers

T
T

Here, we provide detailed analyses of our DeepAFL’s performance in scenarios involving partial
client participation, thereby further highlighting its robustness. The detailed analyses are as follows.

First, let’s focus on the minor mechanism adjustments required to accommodate partial client par-
ticipation. As detailed in Section [3.2} constructing each new layer in DeepAFL entails two rounds
of communication, corresponding to the computation of the classifier weights W, and the trainable
transformation matrix €2;,1. For notational convenience, let S denote the complete set of clients,
where the total number of clients is |S| = K. Consequently, the aggregation processes for Wy (i.e.,
Equation (T2)) and €2+ (i.e., Equation (I6)) can be expressed as:

Gf=Gi=) G H=H{=3} H (82)

mpf =Ty =% I, n=ri=0 Ty (83)
When only a partial set of clients participates in the aggregation for DeepAFL, we denote the subset
of clients contributing to the classifier construction at layer ¢ as SV, and the subset contributing to
the trainable transformation matrix construction as Si2. Consequently, the aggregated matrices will
be constructed using contributions from only these participating subsets:

sV _ k sV _ k
G = Zkesy" Gi, HY = Zkesy‘/ H 84)

SP_ k SP_ k
Ht L= Zke&“ Ht’ Tt = Zke&ﬂ Tt. )

Subsequently, the server utilizes these aggregated matrices from the partial participants to compute
W, and €2, as before. Notably, since only a subset of clients contributed data, the effective full
dataset should be redefined as the union of data held by all participating clients. Thus, the invari-
ance property of our DeepAFL needs to be redefined as being identical to the centralized analytical
solution over the effective full dataset comprising the data of the participating clients. In summary,
our DeepAFL can handle partial participation easily and effectively without substantial procedural
adjustments, while maintaining its analytical advantage of being invariant to data heterogeneity.

Second, we conducted experiments to evaluate the performance of our DeepAFL under varying
client participation rates 7. For simplicity, we assume that the participation rate remains consistent
across aggregation processes within the same layer, i.e., n = |[SWV|/|S| = |S{?|/|S|. Furthermore,
the client subsets S and S{? corresponding to 7 are randomly sampled from S. Specifically, to
ensure a comprehensive evaluation, we consider two distinct cases: (1) Consistent Participation
and (2) Inconsistent Participation. These cases dictate whether the client subsets for the two
aggregation processes within the same layer are identical or distinct, i.e., V¢, SW = S{? or V¢, SV #
S£2. Intuitively, the case (2) presents a greater challenge for DeepAFL, as the inconsistency within
a single layer may heighten the risk of model instability.

Building upon these two cases, and using full participation (n = 100%) as the control group, we
conducted a broad range of analyses with 7 ranging from 90% to 50%, to thoroughly assess the per-
formance variation of our DeepAFL on CIFAR-100. As shown in Table 28] our DeepAFL exhibits
substantial robustness to partial client participation in both cases. Specifically, for a high participa-
tion rate of > 70%, the maximum accuracy degradation observed at 7" = 20 remains below 0.7%
across both cases. Furthermore, even under the extremely challenging scenario of 7 = 50%, where
up to half of the clients drop out, DeepAFL still maintains high accuracy at 7' = 20, achieving
65.14% and 64.81% for both cases. Even at a low layer count (7" = 5) and the most severe dropout
rate (n = 50%), the performance of our DeepAFL (61.54% and 61.36%) still significantly outper-
forms the AFL’s accuracy (58.56%) achieved under the condition of 100% client participation. This
underscores the strong robustness of DeepAFL in handling partial client participation scenarios.
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N MORE ANALYSES ON IMPERFECT BACKBONE

Here, we analyze the theoretical guarantees of our DeepAFL under the imperfect backbone, which
include our DeepAFL’s invariance to data heterogeneity and non-increasing empirical risk. Further-
more, we also investigate the impact of imperfect backbones on our DeepAFL’s performance. The
detailed analyses are presented below.

First, let’s focus on analyzing the invariance of our DeepAFL under the imperfect backbone. Specif-
ically, as demonstrated in Theorem 1, the invariance of our DeepAFL essentially states that the
training result of our DeepAFL is identical to the centralized analytical solutions obtained on the
full dataset D = {X, Y }. The backbone’s primary function is to obtain the local zero-layer feature
matrix ®% € RNVx*de for each client &, given by:

®F = 5(Backbone(X* @)A). (86)

When the shared backbone is imperfect (e.g., noisy) and affects feature extraction for each client,
the same effect also applies to the centralized feature extraction, as follows:

P, = o(Backbone(X, ®)A). (87)

Therefore, regardless of the backbone’s quality (even if it were an identity mapping), the core con-
clusion that the results obtained by our DeepAFL are identical to the centralized analytical solutions
remains unchanged. Thus, our DeepAFL’s invariance to data heterogeneity always holds.

Second, we analyze the non-increasing empirical risk of our DeepAFL under the imperfect back-
bone. Specifically, as demonstrated in Theorems 2 and 3, the empirical risk of the analytic classifier
is monotonically non-increasing as the number of layers increases. This theoretical guarantee of our
DeepAFL stems from the convex optimization result provided by least squares for the objectives ()
and (7) in our paper. Since the derived closed-form solution for our DeepAFL is always the optimal
one for objectives (@) and (7)), the worst-case scenario is that the empirical risk equals that of the
previous layer (i.e., convergence), and it is impossible for the empirical risk of a given layer to be
greater than that of the previous layer. Thus, the non-increasing empirical risk of our DeepAFL
always holds no matter how the backbone changes.

Third, we further analyze the impact of imperfect backbones on our DeepAFL’s performance.
Specifically, our DeepAFL does experience performance degradation when the backbone deterio-
rates, which stems from the reduced expressiveness of the features extracted by the imperfect back-
bone. A poor backbone will reduce the representational capacity of the extracted zero-layer features
®(. In particular, the mutual information between the features ® and the labels Y may become
very low. Consequently, while our DeepAFL can still perform further optimization and enhance-
ment, its performance ceiling is ultimately limited by the low information content provided by the
weaker features ®(. Furthermore, while the performance dependency on the quality of the backbone
is indeed a limitation of DeepAFL, it does not diminish the primary advantage of DeepAFL: grant-
ing the analytic classifier the capability of representation learning while preserving its gradient-free
manner. This allows it to move beyond merely learning linear mappings on the extracted features,
enabling the learning of more complex non-linear relationships. In fact, our experiments have al-
ready validated DeepAFL’s direct and effective improvement, where DeepAFL achieves superior
performance while reducing computational costs by more than 99% compared to gradient-based
methods, further highlighting its unique benefits.

Furthermore, in fact, the analytic learning community has already initiated efforts to address the
dependency on frozen backbones 2025a). We believe that integrating such techniques
with our DeepAFL to achieve even stronger performance represents a promising avenue for future
research. Nevertheless, this current attempt to unfreeze the backbone fundamentally adopts a mixed
gradient-based and gradient-free approach, which inevitably compromises the invariance property.
In contrast, the core philosophy of DeepAFL is distinctly different: we aim to provide direct and
efficient performance enhancements for AFL while strictly preserving its crucial theoretical advan-
tages in the FL setting. These advantages allow our DeepAFL to transcend mere linear mappings
on extracted features, enabling the learning of more complex non-linear relationships from features
with high efficiency. In summary, while the dependency on the quality of the backbone is indeed a
limitation, it does not diminish the primary advantage of our DeepAFL, and addressing this limita-
tion presents an interesting avenue for future work.
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O MORE DISCcUSSIONS ON DEEPAFL’S ROBUSTNESS TO NOISES

Table 29: Performance evaluation of DeepAFL on CIFAR-100 under noisy training environments.

Layers T=0% T =10% 7 =20% T =30% T =40% 7 =50%
DeepAFL (T = 5) 64.72% 64.20% 63.63% 63.25% 62.51% 60.91%
DeepAFL (T = 10) 65.96% 65.43% 65.09% 63.96% 62.98% 60.99%
DeepAFL (T = 15) 66.56% 66.11% 65.66% 64.29% 63.15% 60.97%
DeepAFL (T = 20) 66.98% 66.38% 66.11% 64.69% 63.35% 60.45%

Here, we further demonstrate that our DeepAFL, utilizing the MSE loss, is less sensitive to noise
compared to gradient-based methods employing the CE loss. Specifically, we elaborate on this point
from both logical and experimental perspectives, as detailed below.

From the logical perspective, a crucial factor that makes a method sensitive to noise is overfitting.
Specifically, if a method tends to overfit, then when there is even slight noise in the input data, it
will tend to fit this noise. In contrast, the analytic learning methods using MSE loss are inherently
less susceptible to overfitting, typically exhibiting a tendency toward underfitting instead. Indeed,
addressing this underfitting limitation by augmenting the model’s fitting capacity through deep rep-
resentation learning is the primary motivation for proposing our DeepAFL.

Furthermore, Tables [OHTT]in Appendix [E-T]list the training and testing accuracies for AFL and our
DeepAFL across various datasets, corroborating that analytic learning methods are not prone to
overfitting. Taking the CIFAR-100 dataset as an example, the training set accuracy for AFL is only
61.55%, which is quite low, especially compared to its testing set accuracy of 58.56%. This phe-
nomenon suggests that AFL suffers from severe underfitting. Moreover, when we gradually increase
the depth 7" from O to 50 in our DeepAFL, both training and testing accuracies rise steadily. The
fact that testing accuracy improves commensurately with training accuracy confirms that DeepAFL
avoids overfitting, even at depths of up to 50 layers.

More specifically, DeepAFL’s ability to maintain superior representation learning without overfitting
stems from the fact that its analytic classifier with MSE loss is linear. Because of this, its model
complexity is quite low, making it very difficult to overfit and thus robust to noise. In contrast, CE
loss is designed to induce steeper gradients to facilitate backpropagation optimization. While this
characteristic accelerates training, it simultaneously renders gradient-based methods more prone to
overfitting and hypersensitive to data noise. Consequently, noise robustness constitutes the inherent
advantage of our DeepAFL (with MSE loss) compared to gradient-based methods (with CE loss).

From the experimental perspective, we further verify the noise robustness of our DeepAFL by ex-
plicitly simulating noisy training environments. Specifically, we simulate the noise in the training
data by randomly flipping the labels of a proportion 7 of the training data. The selected samples have
their labels randomly changed to another class label. Using 7 = 0% as the control group, we con-
duct extensive analyses with 7 € {10%, 20%, 30%, 40%, 50%} to thoroughly assess performance
variations of our DeepAFL on CIFAR-100. The detailed results are reported in Table [29]

These results demonstrate that DeepAFL exhibits substantial robustness to data noise. Specifically,
under moderate noise levels (7 < 20%), the maximum accuracy drop for our DeepAFL (at T = 20)
is less than 1%. Furthermore, even under the extremely challenging scenario of 7 = 50%, where
half of the training labels are corrupted, DeepAFL maintains high accuracy. Crucially, even at a low
layer count (7" = 5) and the most severe noise rate (7 = 50%), the performance of our DeepAFL
(i.e., 60.91%) still significantly outperforms the AFL’s accuracy (i.e., 58.56%) achieved under the
condition of 100% accurate data labels with no noise. Since AFL represents the state-of-the-art
baseline on Non-IID-1 for CIFAR-100, these results also imply that our DeepAFL, even with 50%
label corruption, outperforms all gradient-based baselines under ideal label accuracy.

Additionally, as detailed in Appendix [M] we also examine the robustness of DeepAFL under partial
client participation. Similar experiments conducted with client dropout rates ranging from 10% to
50% show that DeepAFL maintains highly stable and superior performance. Notably, DeepAFL’s
performance under label flipping is slightly weaker than under client dropouts. This is expected, as
client dropouts simply reduce training data volume, whereas label flipping introduces the additional
negative effect of data poisoning. Moreover, the performance gap between these two scenarios
remains small, which further substantiates DeepAFL’s superior robustness.
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P MORE DISCUSSIONS ON REDUCING REDUNDANT REPRESENTATIONS

Table 30: Analyses of reducing representation redundancy within our DeepAFL on the CIFAR-100
dataset. “Train” and “Testing” denote the accuracy (%) on the training set and testing set. “Orig.”
and “Mod.” refer to the original and modified DeepAFL after reducing redundant representations.
The symbol A indicates the performance difference between the original and modified DeepAFL.

Layers Train (Orig.) Train (Mod.) ATrain Test (Orig.) Test (Mod.) ATest
AFL 61.55% 61.55% \ 58.56% 58.56% \

DeepAFL (T = 0) 65.71% 65.71% 0.00% 60.81% 60.81% 0.00%
DeepAFL (T = 5) 74.93% 77.00% 2.07% 64.62% 65.11% 0.49%
DeepAFL (T = 10) 79.41% 82.21% 2.80% 65.98% 66.66% 0.68%
DeepAFL (T = 15) 82.69% 85.65% 2.96% 66.59% 67.60% 1.01%
DeepAFL (T = 20) 85.15% 88.05% 2.90% 66.95% 68.02% 1.07%
DeepAFL (T = 25) 87.21% 89.94% 2.73% 67.40% 68.23% 0.83%
DeepAFL (T = 30) 88.84% 91.72% 2.88% 67.71% 68.60% 0.89%

Here, we provide detailed discussions on reducing representation redundancy within our DeepAFL
to enhance its performance. Specifically, in the current design of DeepAFL, each new layer’s resid-
ual block g1 (®;) is built upon the feature from the immediately preceding layer ®, as shown in
Equations () and (9). Consequently, if the feature ®, already exhibits strong linear separability
or fitting capabilities, subsequent layers may indeed have little room to learn additional useful in-
formation, potentially leading to representational redundancy. To address this, we propose the idea
of adding a reconstruction loss during the feature optimization process to promote feature diversity.
Furthermore, we introduce a modified version of DeepAFL to verify whether reducing representa-
tion redundancy contributes to performance improvement. Detailed discussions are presented below.

First, let’s focus on discussing the idea of adding a reconstruction loss to promote feature diversity.
Recall that our original feature optimization is guided by the sandwiched least squares problem in
Equation (7). In fact, we can augment this objective with a reconstruction-based term, transforming
it into a multi-objective optimization problem, as follows:

Qi1 = argngn p|Y — (@, + F QW [E + (1— )[R0 — (2 + FiQ)Q[F + /|27 (88)

Here, the first term is the original empirical risk minimization, the second term is the reconstruction-
based objective (similar to an auto-encoder with MSE), and the third term is the regularization.
The parameter p serves as a weighting factor to balance the prediction loss and the reconstruction
loss. Specifically, the term ®,,1 = (®; + F;Q) can be considered the encoded feature, and the
projection matrix QQ; can be viewed as a decoder to map the feature back to the initial feature
®,. Theoretically, this approach would ensure that the newly constructed feature ®,,; at each
layer contains information necessary to reconstruct the initial feature ®,. Nevertheless, deriving
the closed-form solution for this new and coupled objective is significantly more complex than for
our original sandwiched least squares problem. Consequently, we confine our discussion to the
high-level idea and omit a formal derivation for brevity, positioning it as a direction for future work.

Second, we further introduce a simple modification to DeepAFL to verify whether reducing repre-
sentation redundancy indeed helps boost performance. Specifically, we can readily extend DeepAFL
by directly altering the input of the residual block g;41(+). For instance, the simplest modification is
to decouple the residual block at each layer from the immediately preceding features ®; and instead
link it to the initial feature ®. Since the initial feature ®( has not yet been modified or adjusted by
DeepAFL, it is expected to retain a richer set of information from the original input. The modified
formula is described as follows:

D1 =P +9141(Po),  gi+1(Po) = o (PoBy) Q1. (89)

Based on this modification, we experiment with the modified DeepAFL and report the results in Ta-
ble 30} The results show that leveraging the initial features ® consistently improves both training
and testing accuracy, yielding gains of over 2% and approximately 0.5% to 1%, respectively. Cru-
cially, at 7' = 30, the test accuracy of the modified version is already comparable to the performance
of the original version at 7" = 50, effectively saving the computational cost of 20 layers. Thus, we
confirm that reducing representational redundancy does enhance DeepAFL’s performance. Despite
potential for redundant representations, we retain the current version of DeepAFL in the main text
based on considerations of clarity and accessibility for readers.
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Q MORE DiscUSSIONS ON DEEPAFL’S USE CASES

Here, we provide detailed discussions on DeepAFL’s use cases. Specifically, our DeepAFL requires
a given backbone to serve as an effective feature extractor for training, but it does not mandate how
this backbone is obtained. Indeed, leveraging pretrained models or foundation models as the back-
bone in FL has emerged as a very common and popular research practice in recent years
et al} 2023}, [Piao et all 2024} [Yu et al, 2024} 2025). Accordingly, we elaborate below on several
common ways for obtaining such pretrained backbones, corresponding to different use cases of our
DeepAFL, as well as the pervasiveness of pre-trained backbones in FL and the necessity of FL even
with such backbones. The detailed discussions are presented as follows:

First, we want to highlight that our DeepAFL requires a pretrained backbone for feature extraction,
but it does not mandate how this backbone is obtained. For the sake of brevity, we do not discuss
this in detail within the main text. Herein, we introduce three common ways for obtaining pretrained
backbones, which collectively illustrate DeepAFL’s various use cases:

* Supervised Pre-training: This is the most prevalent case and constitutes the primary set-
ting for the experimental comparisons presented in our paper. In this scenario, our Deep-
AFL can be viewed as a collaborative fine-tuning approach for FL, where clients adapt a
shared public backbone to private data with different feature distributions.

* Self-Supervised Pre-training: With the emergence of large-scale pre-trained models,
there is frequently insufficient labeled data for supervised pre-training. In such cases, self-
supervised backbones have gained prominence (such as auto-encoders via reconstruction,
and DINO series via contrastive learning). These self-supervised models, however, inher-
ently lack an integrated classifier or regressor, possessing only robust generalizable feature
extraction capabilities without direct predictive functionality. Therefore, deploying such
backbones in FL necessitates training a matching classifier or regressor. In this context,
our DeepAFL serves as a direct and highly efficient FL training approach to obtain this
classifier or regressor, effectively leveraging the backbone’s established capabilities.

* Domain Adaptation: If the pre-trained backbone presents a domain shift relative to the
FL system’s target data, the server can also perform initial feature domain adaptation by
fine-tuning the backbone (using a set of domain-specific or compliant public data). Once
this adaptation is complete, the backbone is then frozen, and our DeepAFL can be imple-
mented for subsequent FL training. This case can be viewed as an engineering strategy to
mitigate the issues arising from a cross-domain backbone. Given that domain adaptation
can be performed centrally by the server and DeepAFL incurs only negligible time costs,
the aggregate overhead across both stages is still considered to be very small.

In summary, DeepAFL can not only leverage backbones obtained through supervised pre-training,
as demonstrated in our experiments, but also effectively utilize other types of backbones for differ-
ent use cases. Specifically, when using backbones from self-supervised pre-training, our DeepAFL
effectively solves the meaningful problem of constructing task-specific classifier in FL. Further-
more, when faced with the potential for domain gaps, this problem can be mitigated through domain
adaptation as described above, which can be viewed as an engineering strategy.

Second, we further discuss the pervasiveness of pre-trained backbones in FL and the necessity of
FL even with such backbones. Indeed, incorporating pre-trained backbones is a widely embraced
practice in recent research to introduce prior knowledge and stabilize FL. (Nguyen et al} 2023} [Piao]
et al}, 2024} [Yu et al. 2024} [2025)). Specifically, a key commonality between our work and these
studies is the focus on using foundation models for conducting FL, rather than using FL for building
foundation models. Notably, many existing pre-trained model-based FL works are mechanistically
constrained to necessitate large foundation models. In contrast, DeepAFL accommodates backbones
of varying sizes and capabilities, which renders it particularly suitable for resource-constrained edge
environments compared to related works. Moreover, we demonstrate that a pre-trained backbone
does not negate the need for FL. Leveraging results from the original AFL paper on CIFAR-100
(o = 0.1 and K = 100) [2025Db), we observe that purely local training without global ag-
gregation yields maximum and average test accuracies of merely 16.36% and 12.04%. Conversely,
traditional FL method FedAvg and AFL achieve 56.62% and 58.56%, while our DeepAFL (T = 20)
further elevates performance to 66.98%. These results conclusively demonstrate that despite the
availability of a pre-trained backbone, FL remains indispensable for achieving high performance.
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R MORE DiSCUSSIONS ON DEEPAFL’S REPRESENTATION LEARNING

In this section, we present detailed discussions on the representation learning capabilities of Deep-
AFL. Specifically, we first outline how the capacity of DeepAFL aligns with fundamental character-
istics of representation learning. We then analyze the intermediate features produced by DeepAFL
as empirical evidence supporting these capabilities. The specific discussions are provided below.

R.1 ANALYSES ON THE CONCEPT OF REPRESENTATION LEARNING

Here, we demonstrate that the capabilities of DeepAFL align with the fundamental characteristics
of representation learning. To this end, we first outline these fundamental characteristics and then
conduct a point-by-point analysis showing how our DeepAFL satisfies each one. Subsequently, we
further substantiate our claim by analyzing the architectural similarities between DeepAFL and the
Multi-Layer Perceptron (MLP). The detailed analyses are presented below.

First of all, drawing upon the seminal work of Bengio et al. (Bengio et al.l 2013), we can concep-
tually distill two fundamental characteristics of representation learning: (1) Automated Feature
Extraction: This entails learning feature transformations (which are often non-linear) directly from
the data, thereby avoiding the complexity and reliance on expert knowledge associated with man-
ual feature engineering. (2) Utility for Downstream Tasks: The extracted features are beneficial
and useful for adapting to specific downstream tasks, meaning they provide utility when building
predictors (e.g., classifiers), ultimately leading to enhanced model performance.

In fact, our DeepAFL directly satisfies these two foundational characteristics: (1) The feature trans-
formations involve trainable parameters €2, which are automatically learned from the data via the
“sandwiched” least squares. Moreover, the use of the activation function o(-) ensures necessary
non-linearity in the layer-wise transformations. (2) The feature transformations show evident and
significant benefits for our downstream task (i.e., classification). Specifically, when coupled with
an analytic classifier, the accuracy of our DeepAFL consistently improves on the training and test
sets as 1" increases (as shown in Tables|§|—|'1;f|of our paper). In summary, based on these conceptual
analyses, our DeepAFL indeed aligns with the fundamental concept of representation learning.

Subsequently, to further clarify our DeepAFL’s alignment with fundamental representation learning
concepts, we further draw an analogy between our DeepAFL and the MLP. Given that the MLP is
recognized as the most fundamental DNN, which indisputably achieves representation learning, this
analogy serves to demonstrate that our DeepAFL similarly achieves these capabilities.

Specifically, since our DeepAFL incorporates a residual block structure, we also introduce skip
connections into the MLP, which does not impair its representation learning capability (but rather
makes it easier to train). At this point, what the residual block of the MLP learns is nothing more
than subjecting the features from the previous layer to an affine transformation Wy followed by an
activation function o(-). Here, the affine transformation W1 constitutes the learnable parameters
of the MLP, as follows:

9t+1(‘1’t) = U(‘I’tWt+1)~ (90)
Consequently, when multiple layers are stacked, the MLP functions as a continuous alternation
of affine transformations and non-linear activation functions. Crucially, a clear parallel emerges
between our DeepAFL and the MLP, as DeepAFL similarly involves an alternating stack of affine
transformations and non-linear activation functions:

Gt+1(®r) = 0(®:By) Q41 on

The primary distinction is that the learnable parameters W ; in the MLP are applied prior to the
activation function, while the parameters €2, in our DeepAFL are applied after the activation. This
localized difference is effectively diminished when multiple layers are stacked. Furthermore, more
complex DNNs also share this philosophy of feature re-weighting via affine transformations and
non-linear activation functions. For instance, a CNN can be broadly viewed as an MLP with weight
sharing and local connectivity. Therefore, the inherent structural similarity between DeepAFL and
the MLP confirms that DeepAFL is aligned with the core concepts of representation learning.

Based on the analyses above, our DeepAFL not only satisfies the fundamental characteristics of rep-
resentation learning but also exhibits a strong structural similarity to the MLP. This dual validation
confirms that DeepAFL aligns with the core concepts of representation learning.

49



Under review as a conference paper at ICLR 2025

R.2 ANALYSES ON INTERMEDIATE FEATURES

Table 31: Separability analyses of DeepAFL’s intermediate features on CIFAR-100.

Layer Training CSR  Testing CSR Training IFS Testing IFS Training DM Testing DM
DeepAFL (T' = 0) 1.583 1.529 3.25 3.13 3.21 3.09
DeepAFL (T" = 5) 1.565 1.520 3.20 3.11 3.16 3.07
DeepAFL (T = 10) 1.555 1.516 3.17 3.10 3.14 3.06
DeepAFL (T = 15) 1.546 1.513 3.15 3.09 3.12 3.05
DeepAFL (T' = 20) 1.539 1.510 3.13 3.08 3.11 3.04

Here, we present experimental analyses of the intermediate features generated by DeepAFL to em-
pirically validate its representation learning capabilities. Specifically, we first conduct additional ex-
periments designed to assess the separability of the intermediate features produced by our DeepAFL,
thereby substantiating the model’s advanced learning capacity. Furthermore, we analyze DeepAFL’s
utility for the downstream task to further validate its representation learning capabilities.

First, let’s focus on the additional experiments for investigating the separability of intermediate
features produced by our DeepAFL, which are conducted using the following three metrics:

* Compactness-Separation- Ratio (CSR): This metric evaluates the ratio of the average
intra-class squared distance (i.e., compactness) to the average inter-class squared distance
(i.e., separation). A lower CSR value indicates better separability.

* Inverse Fisher Score (IFS): It is defined as the reciprocal of the Fisher Score, which is a
widely adopted metric to distinguish different classes. The IFS is calculated by the ratio of
the intra-class variance to inter-class variance. A lower FS value implies better separability.

* Discriminative Measure (DM): It is a metric derived from the core principles of the Linear
Discriminant Analysis (LDA), quantifying the ratio of within-class scatter to between-class
scatter. A lower DM value signifies better separability.

In summary, all the additional metrics are unified such that a lower value indicates better represen-
tation separability. Using these metrics, we conducted additional experiments on the CIFAR-100
dataset to analyze the intermediate features generated by our DeepAFL. The detailed experimental
results are presented in Table @ From the results, it is evident that all these metrics show better
separability as the layer count of our DeepAFL increases on both the training and test sets, which
further substantiates our DeepAFL’s representation learning capabilities. Furthermore, we observe
that the metrics on the test set generally perform better (i.e., yield lower values) than those on the
training set. This is likely because the training set contains a much more samples, leading to greater
inherent noise and, consequently, slightly inflated metric values.

Meanwhile, we can also observe that DeepAFL exhibits a diminishing marginal returns phenomenon
as the layer count increases, but this is entirely expected and normal since we did not increase any
training data volume. This phenomenon is also common in gradient-based methods. For instance,
simply increasing the depth of a DNN can not lead to continuous accuracy improvement up to 100%
without encountering a bottleneck. Even the high performance achieved by LLMs is a result of
scaling the model alongside vast increases in training data volume (i.e., the scaling law).

Second, as discussed in Appendix [R]] the utility for the downstream task (i.e., classification accu-
racy) is the most direct and fundamental metric to validate the representation learning capabilities
of DeepAFL. This perspective also aligns with the classical work by Yoshua Bengio et al.
2016), which asserts that better linear separability is indicative of a more meaningful repre-
sentation. In fact, in Tables [OHIT] we have reported the training and testing accuracies achieved by
our DeepAFL when utilizing intermediate features from various depths (i.e., DeepAFL with differ-
ent numbers of layers). Let’s take the results on the CIFAR-100 dataset as an example. The baseline
AFL struggles with severe underfitting, achieving a training accuracy of only 61.55%. In stark con-
trast, our DeepAFL (at T" = 20) propels the training accuracy to 85.15%, representing a massive
absolute improvement of 23.6%. This improved representation translates directly to generalization,
yielding a substantial 8.39% increase in test accuracy. Crucially, these gains are achieved with high
efficiency. The total runtime for our DeepAFL is only 91.74 s, which is a marginal increase of less
than 42 s compared to AFL (50.05 s). These results show that DeepAFL learns significantly more
discriminative and useful representations than AFL.
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