
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LATENT TRAJECTORY: A NEW FRAMEWORK FOR
ACTOR-CRITIC REINFORCEMENT LEARNING WITH
UNCERTAINTY QUANTIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Uncertainty quantification for deep neural networks is crucial for building reli-
able modern AI models. This challenge is particularly pronounced in deep rein-
forcement learning, where agents continuously learn from their interactions with
stochastic environments, and the uncertainty of the value function is a key con-
cern for ensuring reliable and robust RL applications. The complexity increases
in actor-critic methods, as the training process alternates between optimizing the
actor and critic networks, whose optimization nature makes the uncertainty of the
value function hard to be quantified. To address this issue, we introduce a novel
approach to RL training that conceptualizes transition trajectories as latent vari-
ables. Building on this framework, we propose an adaptive Stochastic Gradient
Markov Chain Monte Carlo (SGMCMC) algorithm for training deep actor-critic
models. This new training method allows for the implicit integration of latent
transition trajectories, resulting in a trajectory-independent training process. We
provide theoretical guarantees for the convergence of our algorithm and offer em-
pirical evidence showing improvements in both performance and robustness of
the deep actor-critic model under our Latent Trajectory Framework (LTF). Fur-
thermore, this framework enables accurate uncertainty quantification for the value
function of the RL system, paving the way for more reliable and robust RL appli-
cations.

1 INTRODUCTION

Reinforcement learning (RL) solves sequential decision-making problems by designing an agent that
interacts with its environment to learn an optimal policy, with the goal of maximizing the value func-
tion, i.e., total amount of expected rewards. Therefore, accurately quantifying the uncertainty of the
value function has been a critical concern for ensuring reliable and robust RL applications. However,
achieving this goal in the context of deep RL is notably challenging, despite the universal approxi-
mation capabilities of deep neural networks (DNNs) having significantly expanded the applicability
of RL. The primary difficulty in uncertainty quantification for deep RL arises from two aspects: the
complex architecture of DNNs and the adaptive nature of the RL process. Even within the context
of supervised learning, accurately quantifying uncertainty for DNNs is a challenging problem (see,
e.g., (Blundell et al., 2015) and (Lakshminarayanan et al., 2017)), and the adaptive process in RL
further complicates this issue (Osband et al., 2016; Bellemare et al., 2017). A significant step to-
ward addressing this challenge has been made in Shih & Liang (2024), where deep Q-networks are
simulated from their posterior distribution under the Kalman temporal difference (KTD) framework
(Geist & Pietquin, 2010; Shashua & Mannor, 2020), enabling accurate quantification for the uncer-
tainty of the Q-value function throughout the RL process. However, their methods are challenging to
extend to deep RL settings involving actor-critic architectures. The inclusion of an additional actor
network significantly complicates the process of uncertainty quantification, as the actor’s stochastic
policy directly influences the distribution of the critic’s value estimates, creating interdependencies
that are not easily captured by traditional approaches.

To address the challenge of uncertainty quantification in actor-critic models, we propose a novel
framework for deep RL training, which conceptualizes transition trajectories in the RL process as
latent variables. Building on this perspective, we introduce an adaptive Stochastic Gradient Markov

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Chain Monte Carlo (SGMCMC) algorithm, which simultaneously updates the actor network through
a stochastic gradient descent (SGD) step and samples from the conditional distribution of the critic
network — conditioned on the current actor network — via an SGMCMC step. Under mild regu-
larity conditions, we establish the convergence of this adaptive SGMCMC algorithm. Specifically,
we show that the parameters of the actor network converge in probability to a fixed point, while
the parameters of the critic network converge weakly to a target distribution, thereby enabling accu-
rate quantification of the associated value function’s uncertainty. In summary, our study offers two
primary contributions:

• We introduce a novel latent trajectory framework for training deep actor-critic models that
inherently accounts for the dynamic nature of complex RL processes.

• We establish a convergence theory for the SGMCMC algorithm used for training deep
actor-critic models under the latent trajectory framework, which ensures effective training
for the actor network while enabling proper uncertainty quantification for the critic network
and thus the value function.

To our knowledge, this is the first work for training deep actor-critic models with uncertainty quan-
tification.

Related Works Bayesian methods has been generally considered as a standard approach for uncer-
tainty quantification in machine learning. However, a rigorous implementation of Bayesian methods
for online RL is challenging. Specifically, Bayesian methods aim to infer unknown model parame-
ters (denoted by θ) based on their posterior distribution π(θ|D) for a given dataset D of identically
distributed samples; however, in online RL, the data are drawn from a dynamic system where the
samples are non-identically distributed. Furthermore, under the deep learning setting, it is challeng-
ing to specify the prior distribution that ensure the posterior consistency property holds when the
deep neural networks involve more parameters than the training sample size. While there is existing
work on Bayesian RL, such as Fellows et al. (2024) and Osband et al. (2018), these challenges are
not adequately addressed. For instance, Osband et al. (2018) introduces uncertainty through ran-
domized priors in a maximum a posteriori (MAP) framework for approximate inference. However,
the theoretical property of posterior consistency for such randomized priors has not been established.
The actor-critic architecture introduces further complexity due to the interaction between the actor
and critic networks, which exacerbates the challenges in uncertainty quantification. Some other
methods, such as bootstrapping (Osband et al., 2016; Tasdighi et al., 2024), Gaussian processes
(Geist & Pietquin, 2010; Engel et al., 2003), distribution RL (Bellemare et al., 2017), have also been
proposed for uncertainty quantification in online RL. However, their theoretical guarantees remain
unestablished in the context of the deep actor-critic setting. In this paper, we propose an innova-
tive and theoretically rigorous framework for uncertainty quantification in online RL. Our approach
explicitly models the dynamics of online RL, ensuring that the uncertainty in the critic network is ac-
curately captured, even under the challenges posed by non-identically distributed data and multiple
deep neural networks.

2 PRELIMINARIES ON ACTOR-CRITIC MODELS

We consider discounted, finite horizon policy optimization problems. Let θ and ψ denote the pa-
rameters of the actor and critic networks, respectively. Let (s0, a0, s1, a1, . . .) be the transition
trajectory generated by a stochastic policy πθ, where each action at is sampled from the distribu-
tion πθ(at|st). At each time step t, the agent receives an immediate reward rt = r(st, at). Let
Rt =

∑T−1
τ=t γ

τ−trτ be an unbiased estimate of the Q-value, denoted by Qπθ (st, at). Let Vψ be
the critic network approximation to the value function V πθ . For convenience, we denote a single
transition of the state and action as x = (s, a), the return estimate as R. In this paper, we focus on
the advantage actor-critic algorithm (Sutton et al., 2000; Schulman et al., 2018) with the advantage
function expressed as:

Aψ(st, at) = Rt − Vψ(st), (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where Aψ indicates the dependence of the advantage function on the critic network ψ. The policy
gradient (Sutton & Barto, 2018) for the advantage actor-critic algorithm is then given by:

gacψ (θ) = Eπθ [
T−1∑
t=0

Aψ(st, at)∇θ log πθ(at|st)]. (2)

Note that different parameterization strategies can be employed for the advantage function. For
example, one can parameterize the V-function, and use temporal difference (TD) or Monte Carlo
methods to estimate the Q-function (Schulman et al., 2018). The parameters θ and ψ are then
iteratively updated using stochastic gradient optimization algorithms till convergence. However, the
convergence theory for such an iterative optimization algorithm is hard to be established except for
special cases under restrictive assumptions, such as linear function approximation (Chen et al., 2023;
Wu et al., 2022), greedy policies (Holzleitner et al., 2020). In practice, many implementations have
been proposed, such as A2C, A3C(Mnih et al., 2016), PPO(Schulman et al., 2017), SAC(Haarnoja
et al., 2018), and DDPG(Lillicrap et al., 2019), which employ different tuning techniques for policy
gradients to enhance the convergence and the stability.

R(k)

x(k)

ψk

θk−2 θk−1 θk θk+1

Figure 1: Latent Markov Sampling process, where ψk is conditionally independent of θk−1 given
x(k), and the dashed line indicates that including the latent variables (x(k),R(k)) breaks the original
dependence between ψk and θk−1.

Consider the actor-critic training process illustrated in Figure 1. Let k index the updates of θ during
training, and let x(k) = {x(k)i }ni=1 denote a batch of transition tuples drawn independently from the
stationary distribution π(x|θk−1), where x(k)i = (s

(k)
i , a

(k)
i) and n is the batch size. Additionally, let

R(k) = {R(k)
i }ni=1 be the estimated returns corresponding to x(k). At each iteration k, a transition

trajectory of size n is generated from the policy πθk−1
, ψk is then updated based on the trajectory.

Due to the stochastic nature of the RL process, ψk can be viewed as a sample drawn from the
conditional distribution π(ψk|θk−1). For mathematical clarity, we assume that x(k) is sampled from
a pseudo-population of size N , while the pseduo-pupulations can vary for different values of θk−1.
In what follows, we use πN (ψ|θ) to denote the conditional distribution of ψ for a given value of
θ. The concept of pseudo-population allows for the flexibility of using different mini-batch size at
different iterations, which determines the accuracy we can reach in inferring the target conditional
distribution π(ψ|θ).
The ultimate goal of RL is to learn an optimal policy, with transition data serving as an intermediate
step in this process. Thus, the transition trajectory (x(k),R(k)) and the value function parameter ψk
can be naturally treated as latent variables that facilitate policy optimization.This perspective allows
us to frame the training of the actor network in terms of solving the following integral equation:

g(θ) =

∫
gacψ (θ)πN (ψ|θ)dψ = 0, (3)

which can be solved using an adaptive SGMCMC algorithm (Liang et al., 2022a; Deng et al., 2019).
This will be detailed in Section 3.

3 A LATENT TRAJECTORY FRAMEWORK FOR ACTOR-CRITIC MODELS

3.1 AN OVERVIEW OF THE SGMCMC ALGORITHM

To solve the equation (3), an adaptive SGMCMC algorithm consists of two steps at each iteration:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

1. (ψ-sampling) Simulate ψk ∼ πN (ψ|θk−1) by a SGMCMC algorithm.

2. (θ-updating) Update θk = θk−1 + ωkĝ
ac
ψk

(θk−1), where ωk denotes the step size used in
the stochastic approximation procedure (Robbins & Monro, 1951), and ĝacψk(θk−1) is an
unbiased estimate of gacψk(θk−1).

Under mild conditions, we establish the convergence of the proposed algorithm. Specifically, we
show that ∥θk − θ∗∥ → 0 in probability as k → ∞, where θ∗ denotes a solution to (3). Ad-
ditionally, ψk converges weakly (in 2-Wasserstein distance) to the distribution πN (ψ|θ∗). Conse-
quently, the algorithm enables proper uncertainty quantification for ψ-related quantities, such as
the V -function and Q-value function, which are central to RL. Notably, uncertainty quantification
for value-functions is generally beyond the reach of conventional iterative optimization algorithms
used to train actor-critic models. With this latent trajectory formulation, we establish an essentially
trajectory-independent training framework for actor-critic models.

3.2 ADAPTIVE STOCHASTIC GRADIENT MCMC FOR DEEP ACTOR-CRITIC LEARNING

To perform ψ-sampling using SGMCMC, we need to evaluate the gradient ∇ψ log πN (ψk|θk−1).
This can be done using the following identity established in Song et al. (2020):

∇ψ log π(ψ|θ) =
∫

∇ψ log π(ψ|z, θ)π(z|ψ, θ)dz,

where z denotes a latent variable. By treating trajectory observation (x(k),R(k)) as latent variables,
we can derive the following formula:

∇ψ log πN (ψk|θk−1)

=

∫
∇ψ log πN (ψk|x(k),R(k), θk−1)π(x

(k),R(k)|ψk, θk−1)dx
(k)dR(k)

=

∫
∇ψ log πN (ψk|x(k),R(k))

π(x(k),R(k)|ψk, θk−1)

π(x(k),R(k)|θk−1)
π(x(k),R(k)|θk−1)dx

(k)dR(k)

=

∫
∇ψ log πN (ψk|x(k),R(k))

π(R(k)|x(k), ψk, θk−1)π(x
(k)|ψk, θk−1)

π(R(k)|x(k), θk−1)π(x(k)|θk−1)
π(x(k),R(k)|θk−1)dx

(k)dR(k)

=

∫
∇ψ log πN (ψk|x(k),R(k))

π(R(k)|x(k), ψk)

π(R(k)|x(k))
π(x(k),R(k)|θk−1)dx

(k)dR(k)

(4)

provided that the mini-batch size n has been chosen to be sufficiently large, ensuring that x(k) serves
as a good representative of the underlying pseudo-population. This guarantees that ψk is condition-
ally independent of θk−1 given x(k). Consequently, we have ∇ψ log πN (ψk|x(k),R(k), θk−1) =

∇ψ log πN (ψk|x(k),R(k)) and π(ψk|x(k)) = π(ψk|θk−1). The former leads to the second equality
in (4), while the latter leads to the last equality in (4) by the following equality:

π(x(k)|ψk, θk−1)

π(x(k)|θk−1)
=
π(ψk|x(k), θk−1)

π(ψk|θk−1)
=
π(ψk|x(k))

π(ψk|θk−1)
= 1. (5)

To facilitate evaluation of the likelihood function π(R(k)|x(k), ψk), we made the following assump-
tion regarding the distribution of Rt:

Assumption 1 The conditional distribution π(Rt|xt, ψ) is Gaussian and defined explicitly as:

Rt|xt, ψ ∼ N (Vψ(st), σ
2). (6)

Note that the Gaussian assumption for the reward has also been made under the Kalman Temporal
Difference framework, see e.g. Geist & Pietquin (2010), Tripp & Shachter (2013), and Shashua &
Mannor (2020).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Remark 1 How to evaluate ∇ψ log πN (ψk|x(k),R(k))? Based on Assumption 1, we have

∇ψ log πN (ψk|x(k),R(k)) = ∇ψ log πN (R(k)|x(k), ψk) +∇ψ log π(ψk)

=
N
n

n∑
i=1

∇ψ log π(R
(k)
i |x(k)i , ψk) +∇ψ log π(ψk)

where π(ψk) denotes the prior distribution of ψk.

Remark 2 How to evaluate the importance weight wk = π(R(k)|x(k),ψk)
π(R(k)|x(k))

? Since the numerator can
be evaluated based on Assumption 1, we consider the evaluation of the denominator in this remark.
One way is to evaluate the denominator based on the relationship:

π(R(k)|x(k)) =

∫
π(R(k)|x(k), ψk)π(ψk|x(k))dψk, (7)

i.e., estimating the denominator by averaging the density π(R(k)|x(k), ψk) over a set of samples
of ψk drawn from π(ψk|x(k)). The auxiliary samples of ψk can be simulated using a SGMCMC
algorithm based on the following gradient:

∇ψ̃ log π(ψ̃|x(k)) =

∫
∇ψ̃ log π(ψ̃|x(k), R̃)π(R̃|ψ̃,x(k))dR̃, (8)

which can be estimated based on auxiliary samples of R̃ drawn from π(R̃|ψ̃,x(k)), as defined in
Assumption 1.

Alternatively, one can estimate π(R(k)|x(k)) using the Nadaraya-Watson (NW) conditional density
kernel estimator:

π̂(R|x) =
∑n
i=1Kh2(x− x

(k)
i)Kh1(R−R

(k)
i)∑n

i=1Kh2
(x− x

(k)
i)

, (9)

where bothKh1
(·) andKh2

(·) are Gaussian kernels, and h1 and h2 are their respective bandwidths.
The NW estimator is known to be consistent provided h1 → 0, h2 → 0, and nh1h2 → ∞ as n→ ∞
(Hyndman et al., 1996). Extensions of the NW estimator based on local polynomial smoothing are
available, see e.g., Fan et al. (1996) and Gooijer & Zerom (2003). See Izbicki & Lee (2016) for an
estimator in a high-dimensional regression setting.

As a summary, we have Algorithm 1, which provides an efficient implementation for the proposed
Latent Trajectory Framework. Although the algorithm is described to perform a single update of ψ at
each sampling step, multiple updates are also allowed. This does not interfere with the convergence
theory of the algorithm.

3.3 CONVERGENCE THEORY

The LTF training process is essentially an adaptive SGMCMC algorithm. In this framework, we sim-
ulate ψk ∼ π(ψk|θk−1) with SGMCMC algorithms while θk−1 changes from iteration to iteration.
We establish the convergence theory for parameters of both actor network πθ and critic network Vψ ,
as detailed in Algorithm 1. We prove the L2-convergence of θk and the W2-convergence of ψk. This
implies that the actor network achieves an optimal policy and the critic network converges weakly
to the stationary distribution π(ψ|θ∗).

Theorem 3.1 (Convergence of θk) Suppose Assumptions 2-6 hold, and the sample size of auxiliary
ψ̃-samples is sufficiently large. If we set the learning rate sequence {ϵk}∞k=1 and the step size
sequence {ωk}∞k=1 as the form:

ϵk =
Cϵ

cϵ + kα
, ωk =

Cω
cω + kβ

, (15)

then there exists a root θ∗ ∈ {θ : g(θ) = 0} such that

E∥θk − θ∗∥2 ≤ ξωk, k ≥ k0, (16)

for some constant ξ > 0 and iteration number k0 > 0.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Latent Trajectory Framework for A2C (LT-A2C)

1: Initialize actor network πθ0 with learning rate sequence {ωk}
2: Initialize critic network Vψ0 with learning rate sequence {ϵk}
3: for k = 1, . . . ,K do
4: Generate trajectories x(k) = {x(k)i }ni=1 and returns R(k) = {R(k)

i }ni=1 with policy πθk−1

5: Step 1: Draw auxiliary samples of ψ̃
6: for j = 1, . . . ,m do
7: Presetting: If j = 1, set ψ̃0 = ψk−1

ψ̃j = ψ̃j−1 +
δj
2
∇ψ̃ log π(ψ̃|x(k)) + ẽj , (10)

where ∇ψ̃ log π(ψ̃|x(k)) = 1
L

∑L
i=1 ∇ψ̃ log π(ψ̃|x(k), R̃i) is calculated based on (8) using L aux-

iliary samples of R̃ drawn from π(R̃|ψ̃,x(k)), δj is the learning rate, and ẽj ∼ Np(0, δjIp).
8: end for
9: Step 2: Sampling ψk through SGMCMC

10: Importance weight: calculate

ŵk =
π(R(k)|x(k), ψk−1)

1
m

∑m
j=1 π(R

(k)|x(k), ψ̃j)
. (11)

11: Sampling: Draw ek ∼ Np(0,
n
N ϵkIp) and calculate

ψk = ψk−1 +
ϵk
2
∇ψL̃(θk−1, ψk−1) + ek, (12)

where the gradient term is given by

∇ψL̃(θk−1, ψk−1) = ŵk
{ n∑
i=1

∇ψ log π(R
(k)
i |x(k)i , ψk−1) +

n

N ∇ψ log π(ψk)
}
. (13)

12: end for
13: Step 3: Updating θk through SGD
14: Compute advantage function Aψk (x

(k)
i , R

(k)
i) with equation (1).

θk = θk−1 + ωk

n∑
i=1

Aψk (x
(k)
i , R

(k)
i)∇θ log πθk−1(a

(k)
i |s(k)i). (14)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Let π∗ = π(ψ|θ∗), let Tk =
∑k−1
i=0 ϵi+1, and let µTk denote the probability law of ψk. Theorem 3.2

establishes convergence of µTk in 2-Wasserstein distance.

Theorem 3.2 (W2-convergence of ψk) Suppose Assumptions 2-7 hold, the sample size of auxiliary
ψ̃-samples is sufficiently large, and {ϵk} and {ωk} are set as in Theorem 3.1. Then, for any k ∈ N,

W2(µTk , π
∗) ≤ (Ĉ0δ

1/4

L̃
+ C̃1γ

1/4
1)Tk + Ĉ2e

−Tk/cLS ,

for some positive constants Ĉ0, Ĉ1, and Ĉ2, where W2(·, ·) denotes the 2-Wasserstein distance, cLS
denotes the logarithmic Sobolev constant of π∗, and δL̃ is a coefficient as defined in Assumption 3
and reflects the variation of the stochastic gradient ∇ψL̃(θk−1, ψk).

We prove Theorems 3.1 and 3.2 by following the proof of adaptive SGLD in Liang et al. (2024). We
note that the proposed latent trajectory framework can also be implemented using adaptive SGHMC
(Liang et al., 2022b). In this case, Theorems 3.1 and 3.2 can still be established similar to the
convergence theory presented in Liang et al. (2022b).

4 EXPERIMENTS

In this section, we evaluate the performance and effectiveness of the LTF in enhancing actor-critic
algorithms. We conduct experiments in two environments: the simple Escape Environment, where
we demonstrate the ability of uncertainty quantification for LTF-enhanced algorithms, and the Py-
Bullet Environment (Ellenberger, 2018–2019), where we compare the performance of LT-A2C to
vanilla A2C on continuous control benchmarks. These experiments highlight the improvements in
training stability and performance metrics achieved through the adoption of LTF.

4.1 UNCERTAINTY QUANTIFICATION

Figure 2: Indoor escape en-
vironment

In this simple experiment, we demonstrate the ability of the proposed
method in uncertainty quantification for the Actor-Critic network us-
ing the Escape Environment designed in (Shih & Liang, 2024). Figure
2 depicts a simple escape environment, for which the state space con-
sists of 100 grids and the agent’s objective is to navigate to the goal
positioned at the top right corner. The agent starts its task from the
bottom left grid at time t = 0. For every time step t, the agent iden-
tifies its current position, represented by the coordinate s = (x, y).
Given a policy πθ, the agent chooses an action a ∈ {N,E,S,W} with
respect to the probability πθ(a|s). The action taken by the agent deter-
mines the adjacent grid to which it moves. Following each action, the
agent is awarded an immediate reward, rt, drawn from the Gaussian
distribution N (−1, 0.01).

We evaluate the performance of the proposed method from three aspects: (i) Policy Diversity: The
policy, coded by the actor network and denoted as πθ(a|s), should converge to a distribution that
assigns equal probabilities to optimal actions and zero probability to others. (ii) Value Accuracy:
The critic network is expected to accurately approximate the state value function V ∗(s) across the
entire state space. (iii) Value Uncertainty: Algorithms must be capable of quantifying the uncertainty
associated with value function.

To quantify policy diversity, we define the optimal policy distribution π∗(·|s) be a probability distri-
bution over all actions at state s, where π∗(·|s) is uniform on optimal actions and zero on sub-optimal
actions. For a given policy πθ(·|s), the Kullback-Leibler Divergence (KL Divergence) between π∗

and πθ, denoted byDKL(π
∗∥πθ), can be used to measure the diversity of the policy distribution. It’s

worth noting that for most states, actions N and E are identically optimal. Hence, the policy πθ(a|s)
should assign the same probability on these two actions. Figure 3 and Figure 4 visualize the policy
probability of πθ at each state s. The left figure demonstrates a policy with a small DKL(π

∗∥πθ),
While, the right figure shows a policy with a large DKL(π

∗∥πθ).
Suppose the actor network converges to a fixed policy πθ∗ , and the state value function Vψ(s) coded
by the critic network should be distributed around the optimal value function V ∗(s). To evaluate

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: DKL(π
∗∥πθ) small Figure 4: DKL(π

∗∥πθ) large

such estimation, we collect the last 1000 parameter updates to form a ψ-sample pool, denoted by
ψs = {ψ̂i}, which naturally induces a sample pool of value functions Vs = {Vψ(·)|ψ ∈ ψs}.
From V -sample pool, We can obtain a point estimate of the state value at s by calculating the
sample average V̂ (s) = 1

n

∑n
i=1 Vψ̂i(s, a). For interval estimation, we can achieve one-step value

tracking by constructing a 95% prediction interval with the state value samples. We replicate each
experiment 100 times and calculate the following three metrics: (1) the KL-divergence between π∗

and πθ∗ , denoted by DKL(π
∗∥πθ∗), (2) the mean squared error (MSE) between V̂ (s) and V ∗(s),

defined by MSE(V̂) = Es∈S(V̂ (s) − V ∗(s))2, where E(·) denotes the empirical average over the
state space S; and (3) the coverage rate (CR) of the 95% prediction intervals.

In Table 1, we demonstrate that with the aid of the LTF, the A2C and PPO algorithms exhibit signifi-
cant improvements in all three performance indicators. We further visualize the experimental results
in Figures 5 and 6, where LTF-enhanced algorithms, LT-A2C and LT-PPO achieve smaller MSE(V̂)
for point estimation and a nearly 95% coverage rate for interval estimation. Moreover, due to the
correct estimation of V ∗, πθ∗ converges to an approximately optimal policy distribution. In contrast,
vanilla A2C and PPO algorithms suffer from significant bias in the value function estimation. The
proposed LTF method effectively addresses this inconsistency, providing consistent estimates and
reliable uncertainty quantification for the value function.

From a computational perspective, LTF is essentially an optimization step combined with a Bayesian
sampling loop, where the sampling is performed using SGMCMC algorithms. LTF can be easily
scaled up to large neural networks, enhancing its applicability.

Table 1: Metrics for Escape Environment

Algorithm N DKL(π
∗∥πθ∗) MSE(V̂) Coverage Rate CI-Width

A2C - 4.647 (0.0729) 0.53527 (0.03974) 0.489 (0.0061) 0.413 (0.0023)
LT-A2C 10000 0.010 (0.0010) 0.00038 (0.00001) 0.947 (0.0004) 0.457 (0.0009)
LT-A2C 20000 0.014 (0.0014) 0.00039 (0.00001) 0.947 (0.0004) 0.452 (0.0010)
LT-A2C 40000 0.014 (0.0013) 0.00033 (0.00001) 0.947 (0.0004) 0.449 (0.0009)

PPO - 4.773 (0.0893) 0.56112 (0.04272) 0.487 (0.0066) 0.416 (0.0024)
LT-PPO 10000 0.011 (0.0010) 0.00041 (0.00001) 0.947 (0.0004) 0.458 (0.0009)
LT-PPO 20000 0.009 (0.0009) 0.00038 (0.00001) 0.947 (0.0005) 0.452 (0.0009)
LT-PPO 40000 0.011 (0.0011) 0.00032 (0.00001) 0.947 (0.0004) 0.449 (0.0008)

4.2 PYBULLET ENVIRONMENT

To demonstrate the applicability of the LTF-enhanced actor-critic algorithms in complex environ-
ments, we evaluate the performance of the LT-A2C algorithm on continuous control benchmarks
using the RL Baselines3 Zoo Raffin (2020) and the PyBullet environment Ellenberger (2018–2019).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: MSE of V̂

Figure 6: Coverage rate of the 95% prediction interval of the value V ∗(s)

We compare LT-A2C to vanilla A2C across four tasks: HalfCheetah, Hopper, Reacher, and Walker.
The hyperparameters for A2C follow the settings in RL Baselines3 Zoo Raffin (2020). Further
experimental settings are detailed in the Appendix.

Figure 7 presents three key metrics for evaluating algorithm performance: (i) training reward, (ii)
evaluation reward, and (iii) the best model reward up to time t. Each experiment was replicated
50 times to assess overall performance. The colored bands in the figure represent the variability in
rewards at each training step, providing insight into the robustness of the algorithms. Narrower bands
indicate lower variability, suggesting greater resistance to random initialization and environmental
stochasticity. The results demonstrate that LT-A2C consistently achieves higher training rewards
compared to vanilla A2C, while also exhibiting reduced variability. This highlights the effectiveness
of the Latent Trajectory Framework in improving policy exploration while maintaining robustness.

As shown in Algorithm 1, LT-A2C and traditional A2C share the same policy control mechanism,
specifically the use of the policy gradient. The key difference lies in the policy evaluation step, where
LT-A2C incorporates SGMCMC sampling. In previous experiments, we demonstrated that the LT
framework enhances the ability to quantify uncertainties in the value function, leading to improved
policy exploration and control. Due to the flexibility of the LT framework, it can be applied to a wide
range of existing algorithms to boost their performance by refining policy evaluation. By integrating
the latent trajectory framework, the RL model not only improves training efficiency but also reduces
variability, resulting in more robust and reliable performance across diverse environments.

5 CONCLUSION

In this paper, we introduce a novel latent trajectory framework as an alternative to conventional
optimization methods for deep actor-critic models and propose an adaptive SGMCMC algorithm
for training these models. We rigorously prove that, under mild conditions, the proposed algorithm
guarantees consistency in parameter estimation for the actor network and weak convergence in pa-
rameter sampling for the critic network. A key advantage of our method is its ability to accurately
quantify the uncertainty of the value functions central to reinforcement learning, while simultane-
ously improving performance in practical applications. Importantly, our framework achieves these
improvements without sacrificing computational complexity, making it scalable to large-scale neural
networks. The framework is also highly flexible: beyond replacing the SGLD steps with SGHMC
(Chen et al., 2014) or substituting the SGD step with Adam (Kingma & Ba, 2014), we can also
replace the policy control step with a PPO update scheme. This flexibility enables seamless inte-
gration with advanced machine learning techniques, further enhancing the framework’s potential to

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 7: PyBullet training performance

improve performance while maintaining robust uncertainty quantification, making it a powerful tool
for large-scale reinforcement learning tasks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning, 2017.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural networks. In Proceedings of the 32nd International Conference on International Confer-
ence on Machine Learning - Volume 37, ICML’15, pp. 1613–1622. JMLR.org, 2015.

Tianqi Chen, Emily B. Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte carlo. In
ICML, 2014.

Xuyang Chen, Jingliang Duan, Yingbin Liang, and Lin Zhao. Global convergence of two-timescale
actor-critic for solving linear quadratic regulator, 2023.

Wei Deng, Xiao Zhang, Faming Liang, and Guang Lin. An Adaptive Empirical Bayesian Method
for Sparse Deep Learning. In NeurIPS, 2019.

Tianning Dong, Peiyi Zhang, and Faming Liang. A stochastic approximation-langevinized ensemble
kalman filter algorithm for state space models with unknown parameters. Journal of Computa-
tional and Graphical Statistics, 32(2):448–469, 2023. doi: 10.1080/10618600.2022.2107531.
URL https://doi.org/10.1080/10618600.2022.2107531.

Benjamin Ellenberger. Pybullet gymperium. https://github.com/benelot/
pybullet-gym, 2018–2019.

Yaakov Engel, Shie Mannor, and Ron Meir. Bayes meets bellman: the gaussian process approach
to temporal difference learning. In Proceedings of the Twentieth International Conference on In-
ternational Conference on Machine Learning, ICML’03, pp. 154–161. AAAI Press, 2003. ISBN
1577351894.

Jianqing Fan, Qiwei Yao, and Howell Tong. Estimation of conditional densities and sensitivity
measures in nonlinear dynamical systems. LSE Research Online Documents on Economics, 1996.
URL https://api.semanticscholar.org/CorpusID:17065829.

Matthew Fellows, Kristian Hartikainen, and Shimon Whiteson. Bayesian bellman operators. In
Proceedings of the 35th International Conference on Neural Information Processing Systems,
NIPS ’21, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN 9781713845393.

Matthieu Geist and Olivier Pietquin. Kalman temporal differences. J. Artif. Int. Res., 39(1):483–532,
sep 2010. ISSN 1076-9757.

Jan G. De Gooijer and Dawit Zerom. On conditional density estimation. Statistica Neerlandica, 57,
2003. URL https://api.semanticscholar.org/CorpusID:122069058.

Tuomas Haarnoja, Aurick Zhou, P. Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. ArXiv, abs/1801.01290, 2018.
URL https://api.semanticscholar.org/CorpusID:28202810.

Markus Holzleitner, Lukas Gruber, José Arjona-Medina, Johannes Brandstetter, and Sepp Hochre-
iter. Convergence proof for actor-critic methods applied to ppo and rudder, 2020.

Rob J Hyndman, David M. Bashtannyk, and Gary K. Grunwald. Estimating and visualizing con-
ditional densities. Journal of Computational and Graphical Statistics, 5:315–336, 1996. URL
https://api.semanticscholar.org/CorpusID:121045552.

Rafael Izbicki and Ann B. Lee. Nonparametric conditional density estimation in a high-dimensional
regression setting. Journal of Computational and Graphical Statistics, 25:1297 – 1316, 2016.
URL https://api.semanticscholar.org/CorpusID:2886739.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

11

https://doi.org/10.1080/10618600.2022.2107531
 https://github.com/benelot/pybullet-gym
 https://github.com/benelot/pybullet-gym
https://api.semanticscholar.org/CorpusID:17065829
https://api.semanticscholar.org/CorpusID:122069058
https://api.semanticscholar.org/CorpusID:28202810
https://api.semanticscholar.org/CorpusID:121045552
https://api.semanticscholar.org/CorpusID:2886739

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17, pp. 6405–6416, Red Hook, NY, USA, 2017.
Curran Associates Inc. ISBN 9781510860964.

F. Liang, Sehwan Kim, and Yan Sun. Extended fiducial inference: Toward an automated process of
statistical inference. Journal of the Royal Statistical Society, Series B, pp. in press, 2024.

Siqi Liang, Yan Sun, and Faming Liang. Nonlinear sufficient dimension reduction with a stochastic
neural network. NeurIPS, 2022a.

Siqi Liang, Yan Sun, and Faming Liang. Nonlinear sufficient dimension reduction with a stochastic
neural network, 2022b.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning, 2019.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of The 33rd
International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pp. 1928–1937, New York, New York, USA, 20–22 Jun 2016. PMLR. URL https:
//proceedings.mlr.press/v48/mniha16.html.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration
via bootstrapped dqn. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.,
2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/
file/8d8818c8e140c64c743113f563cf750f-Paper.pdf.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems, NIPS’18, pp. 8626–8638, Red Hook, NY, USA, 2018. Curran Associates Inc.

Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/
rl-baselines3-zoo, 2020.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Herbert Robbins and Sutton Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22:400–407, 1951.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation, 2018.

Shirli Di-Castro Shashua and Shie Mannor. Kalman meets bellman: Improving policy evaluation
through value tracking. ArXiv, abs/2002.07171, 2020.

Frank Shih and Faming Liang. Fast value tracking for deep reinforcement learning. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=LZIOBA2oDU.

Q. Song, Y. Sun, M. Ye, and F. Liang. Extended stochastic gradient mcmc algorithms for large-scale
bayesian variable selection. Biometrika, 107:997–1004, 2020.

Yan Sun, Qifan Song, and Faming Liang. Consistent sparse deep learning: Theory and computation.
Journal of the American Statistical Association, 117:1981–1995, 2022.

12

https://proceedings.mlr.press/v48/mniha16.html
https://proceedings.mlr.press/v48/mniha16.html
https://proceedings.neurips.cc/paper_files/paper/2016/file/8d8818c8e140c64c743113f563cf750f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/8d8818c8e140c64c743113f563cf750f-Paper.pdf
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://openreview.net/forum?id=LZIOBA2oDU
https://openreview.net/forum?id=LZIOBA2oDU

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html.

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in Neural Information
Processing Systems (NIPS), pp. 1057–1063, 2000.

Bahareh Tasdighi, Manuel Haussmann, Nicklas Werge, Yi-Shan Wu, and Melih Kandemir. Deep
exploration with pac-bayes, 2024. URL https://arxiv.org/abs/2402.03055.

W.Y. Teh, Alexandre Thiery, and Sebastian Vollmer. Consistency and fluctuations for stochastic
gradient langevin dynamics. Journal of Machine Learning Research, 17:1–33, 2016.

Charles Edison Tripp and Ross D. Shachter. Approximate kalman filter q-learning for continuous
state-space mdps. ArXiv, abs/1309.6868, 2013. URL https://api.semanticscholar.
org/CorpusID:8719550.

Yue Wu, Weitong Zhang, Pan Xu, and Quanquan Gu. A finite time analysis of two time-scale actor
critic methods, 2022.

13

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/2402.03055
https://api.semanticscholar.org/CorpusID:8719550
https://api.semanticscholar.org/CorpusID:8719550

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOF OF THEOREM 3.1 AND THEOREM 3.2

For convenience, we denote the trajectory observation (x(k),R(k)) as zk, and assume zk ∈ Z be a
compact set. The Latent Trajectory Framework can be written in a general form as

ψk = ψk−1 + ϵk∇ψL̃(θk−1, ψk−1, zk) +
√
2ϵkek,

θk = θk−1 + ωkg̃(θk−1, ψk, zk),
(17)

where ϵk denotes the learning rate, ek is a standard Gaussian noise, ∇ψL̃(θk−1, ψk−1, zk) denotes
an unbiased estimate of ∇ψL(θk−1, ψk−1) = ∇ψ log π(ψk−1|θk−1), and g̃(θk−1, ψk, zk) is an
unbiased estimator of gacψk(θk−1). Convergence of adaptive stochastic gradient MCMC algorithms
has been studied in Deng et al. (2019), Dong et al. (2023) and Liang et al. (2024). The convergence
theory of LTF can be established by slightly modifying some of the assumptions.

Notation: We use Eψ[u(θ, ψ)] to denote the expectation of u(θ, ψ) with respect to the conditional
distribution π(ψ|θ), and use E[u(·)] to denote the expectation with respect to the joint distribution
of all the variables involved in the integrand u(·).

Assumption 2 The step size sequence {ωk}k∈N is a positive decreasing sequence of real numbers
such that

lim
k→∞

ωk = 0,

∞∑
k=1

ωk = ∞. (18)

There exist δ > 0 and a stationary point θ∗ such that for any θ ∈ Θ,

⟨θ − θ∗, g(θ)⟩ ≤ −δ∥θ − θ∗∥2,
where g(θ) = Eψ[gacψ (θ)] and, in addition,

lim inf
k→∞

2δ
ωk
ωk+1

+
ωk+1 − ωk
ω2
k+1

> 0, (19)

where ∥ · ∥ denotes the L2-norm.

Assumption 3 L(θ, ψ) is M-smooth on θ and ψ with M > 0, and (m, b)-dissipative on ψ for some
constants m > 1 and b > 0. In other words, for any ψ,ψ′, ψ′′ ∈ Ψ and θ, θ′ ∈ Θ, the following
inequalities are satisfied:

∥∇ψL(θ, ψ
′)−∇ψL(θ

′, ψ′′)∥ ≤M∥ψ′ − ψ′′∥+M∥θ − θ′∥, (20)

⟨∇ψL(θ
∗, ψ), ψ⟩ ≤ b−m∥ψ∥2, (21)

where θ∗ is a stationary point as defined in Assumption 2.

Assumption 2 is a critical and standard assumption in the convergence of SGMCMC algorithms. In
the context of deep neural networks, the dissipativity condition can be easily achieved by imposing
a Gaussian prior on the critic network parameter, which further guarantees convergence.

Lemma A.1 ∥∇ψL(θ, ψ)∥2 ≤ 3M2∥ψ∥2 + 3M2∥θ − θ∗∥2 + 3B2 for some constant B.

PROOF: Follow the proof of Lemma A.1 in Dong et al. (2023). □

Assumption 4 Let ζk = ∇ψL̃(θk, ψk, zk)−∇ψL(θk, ψk). Assume that ζk’s are mutually indepen-
dent white noises, and they satisfy the conditions

E(ζk|Fk) = 0, E∥ζk∥2 ≤ δL̃(M
2E∥ψk∥2 +M2E∥θk − θ∗∥2 +B2), (22)

where δL̃ and B are positive constants, and Fk = σ{θ1, ψ1, θ2, ψ2, . . . , θk, ψk} denotes a σ-
filtration.

Assumption 5 There exist positive constants M and B such that for all z ∈ Z ,

∥g̃(θ, ψ, z)∥ ≤M2∥θ − θ∗∥2 +M2∥ψ∥2 +B2,

where g̃(θ, ψ, z) is as defined in (17).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

By the formulation defined in section 3.2, let g(θ) = E(ψ,z)[g̃(θ, ψ, z)|θ] and η = g̃(θ, ψ, z)−g(θ).
Since E(ψ,z)[∥g̃(θ, ψ, z)∥2|θ] = ∥g(θ)∥2+E(ψ,z)[∥η∥2|θ], this implies E∥g(θ)∥2 ≤ E∥g̃(θ, ψ, z)∥2
and E∥η∥2 ≤ E∥g̃(θ, ψ, z)∥2.

Lemma A.2 (Uniform L2 bounds) Suppose Assumptions 2-5 hold. If the following conditions are
satisfied:

ϵk =
Cϵ

cϵ + kα
, ωk =

Cω
cω + kβ

, (23)

for some constants Cϵ > 0, cϵ > 0, Cω > 0, cω > 0, α, β ∈ (0, 1], and β ≤ α ≤ min{1, 2β}.
Then there exist constants Gψ and Gθ such that E∥ψk∥2 ≤ Gψ and E∥θk − θ∗∥2 ≤ Gθ for all
k = 0, 1, 2,

PROOF: Follow the proof of Lemma A.2 in Dong et al. (2023). We slightly modify Assumption 4
in Dong et al. (2023) by Assumption 5, where the stochastic gradient is replaced with ĝacψ (θ). Then
the proof is straight forward.

□

Assumption 6 (Solution of Poisson equation) For any θ ∈ Θ, ψ ∈ Ψ, and a function V(ψ) = 1 +
∥ψ∥, there exists a function µθ on Ψ that solves the Poisson equation µθ(ψ)−Tθµθ(ψ) = gacψ (θ)−
g(θ), where Tθ denotes a probability transition kernel with Tθµθ(ψ) =

∫
Ψ
µθ(ψ

′)Tθ(ψ,ψ′)dψ′,
such that

gacψk+1
(θk) = g(θk) + µθk(ψk+1)− Tθkµθk(ψk+1), k = 1, 2, (24)

Moreover, for all θ, θ′ ∈ Θ and ψ ∈ Ψ, we have ∥µθ(ψ) − µθ′(ψ)∥ + ∥Tθµθ(ψ) − Tθ′µθ′(ψ)∥ ≤
ς1∥θ − θ′∥V(ψ) and ∥µθ(ψ)∥+ ∥Tθµθ(ψ)∥ ≤ ς2V(ψ) for some constants ς1 > 0 and ς2 > 0.

PROOF OF THEOREM 3.1

PROOF: For Algorithm 1, we assume that the sample size of auxiliary ψ̃-samples is sufficiently
large, ensuring the denominator estimator in Eq. (11) converges almost surely to its mean value
(Teh et al., 2016). Therefore, the resulting stochastic gradient (13) is almost surely unbiased.

Dong et al. (2023) proved the result (16) for a more general adaptive Langevinized ensemble Kalman
filter (LEnKF) algorithm, which is equivalent to an adaptive pre-conditioned SGLD algorithm. Ex-
tending their proof to Algorithm 1 is straight forward. □

Assumption 7 The probability law µ0 of the initial hypothesis θ0 has a bounded and strictly positive
density p0 with respect to the Lebesgue measure on Rdψ , and

κ0 := log

∫
Rdψ

e∥θ∥
2

p0(θ)dθ <∞.

PROOF OF THEOREM 3.2

PROOF: This theorem is proved in Liang et al. (2024) with the same Assumptions 2-7. For Algo-
rithm 1, we only need to assume that the sample size m of auxiliary ψ̃-samples is sufficiently large,
as explained in the proof of Theorem 3.1. □

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B EXPERIMENT SETTINGS

B.1 ESCAPE ENVIRONMENT

In this experiment, both πθ and Vψ are approximated by deep neural networks with two hidden
layers of sizes (128, 128). The agent updates the network parameters every 50 interactions, for a
total of 106 action steps. Each experiment is replicated for 100 times. For initial exploration, an
entropy penalty coefficient of 0.01 is added, and gradually decay to 0. To achieve sparse deep neural
network, we follow the suggestion in Sun et al. (2022) to impose mixture Gaussian prior onto both
network parameters:

θ, ψ ∼ (1− λ)N (0, σ2
0) + λN (0, σ2

1) (25)

where λ ∈ (0, 1) is the mixture proportion and σ2
0 is usually set to a small number compare to σ2

1 .
We set σ1 = 0.01, σ0 = 0.001 and λ = 0.5 in all LTF-enhanced algorithms. For indoor escape
environment, the reward is given by N (−1, 0.01); that is, we set σ2 = 0.01. To make the estimated
return yt = Rt stationary, the reward at the goal state is set to N (−1, 0.01

1−γ2), where the discount
factor γ = 0.9. To guarantee the convergence of LTF, we set the decay policy learning rate as
ωk = O(1

k0.5) and constant critic learning rate ϵk = 2 × 10−4. The sample size L in (10) is set to
50, and the auxiliary sample size m in (11) is set to 5.

In practical implementation, drawing samples from the conditional distribution πN (ψk|xk) can be
performed with a short sub-loop of SGMCMC updates, which we set the length to be 10. That is,
for each iteration k, we repeat the ψ-sampling update 10 times. The sub-loop sampling scheme is
given by

ψk,ℓ = ψk,ℓ−1+
ϵk,ℓ
2
ŵk,ℓ

{ n∑
i=1

∇ψ log π(R
(k)
i |x(k)i , ψk,ℓ−1)+

n

N
∇ψ log π(ψk,ℓ−1)

}
+ ek,ℓ (26)

where the sub-loop is indexed by ℓ. And the importance weight can be calculated by

ŵk,ℓ =
π(R(k)|x(k), ψk,ℓ−1)

1
m+1

∑m
j=1 π(R

(k)|x(k), ψ̃j) +
1

m+1π(R
(k)|x(k), ψk,ℓ−1)

.

where m denote the number of auxiliary samples and the importance weight is bounded by m +
1. The boundedness of the importance weights ŵk,ℓ’s further ensures the stability of SGMCMC
sampling step. We note that including the ψk,l−1-term in the denominator is reasonable. As implied

by the definition of the importance weight wk = π(R(k)|x(k),ψk)
π(R(k)|x(k))

, the numerator term should be

part of the denominator and, therefore, we need to include ψk,l−1 as an auxiliary sample of ψ̃.
Furthermore, we refer to Theorem 1 of Song et al. (2020) for the sample equally weighted formula
in calculating the denominator.

In Figure 8, we present boxplots of four metrics for each algorithm. Across all metrics, LT-A2C
and LT-PPO outperform the traditional A2C and PPO algorithms, demonstrating lower MSE, lower
KL-Divergence, and higher coverage rates. Lower KL-divergence indicates that the policy distribu-
tion converges to a uniform distribution over optimal actions, leading to more efficient exploration
and robust learning. For MSE(V̂), LTF-enhanced algorithms have significantly smaller values and
tighter boxplots, indicating training stability. Regarding uncertainty quantification, only LTF algo-
rithms achieve the desired 95% coverage rate. As the pseudo population increases, more accurate
uncertainty quantification for both point and interval estimates is achieved, as evidenced by smaller
MSE and narrower interval ranges.

Regarding computation complexity, although LTF requires additional SGMCMC sampling on critic
network parameter in each iteration, the complexity for SGLD and SGHMC are the same as stochas-
tic gradient methods. Therefore, the total time complexity remains that same, which implies the
scalablility of proposed framework.

B.2 PYBULLET ENVIRONMENT

In this experiment, we conduct experiments on PyBullet environments, including Ant, HalfCheetah,
Hopper, Reacher, and Walker2D. The training framework and hyperparameters of A2C are based

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 8: Metrics for Escape environment

on RL baselines3 zoo, and our LT-A2C is implemented on top of Stable-Baselines3 Raffin et al.
(2021). The hyperparameters are given in Table 2 and 3. Actor and critic network, both have 2
hidden layers of size [64, 64]. There 3 types of learning rate, constant, linear decay and polynomial
decay. To balance between exploration and exploitation in LT-A2C, we adopt an annealing tech-
nique, where the pseudo population size increases as training steps increase, starting from 500. This
method allows the algorithm to gradually shift from exploration to exploitation, improving overall
performance and stability. A2C algorithm optimize both network with RMSprop, and LT-A2C up-
date actor network with RMSprop as well. The A2C algorithm optimizes both the actor and critic
networks using the RMSprop optimizer. LT-A2C also updates the actor network with RMSprop,
while using SGHMC for critic parameter sampling. For the prior distribution, LT-A2C employs the
same Gaussian mixture prior as used in the Escape environment.

In theory, the auxiliary sampling step requires large sample size to guarantee a good approximation.
To improve the sampling efficiency of the auxiliary sampling step, we modify the approximation
procedure of the importance weight. We replace the auxiliary samples ψk,j’s with the SGMCMC
samples ψk,ℓ derived in (26). The importance weight can then be approximated by

ŵk,ℓ̃ =
π(R(k)|x(k), ψk,ℓ̃−1)

1
ℓ̃

∑ℓ̃−1
ℓ=0 π(R

(k)|x(k), ψℓ)
.

With this modification, we can eliminate the auxiliary sampling step and further lower the compu-
tation complexity and memory complexity.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 2: Hyperparameters

Environment HalfCheetah Hopper

Hyperparameters LT-A2C A2C LT-A2C A2C

learning rate lin 0.00067 lin 0.00096 lin 0.00042 lin 0.00096
σ (observation) 0.1 - 0.1 -
N 50000 - 10000 -
γ(discount factor) 0.95 0.99 0.99 0.99
gae-λ 0.9 0.9 1.0 0.9
train batch 32 32 32 32
training steps 2e6 2e6 2e6 2e6

Table 3: Hyperparameters (cont.)

Environment Reacher Walker2D

Hyperparameters LT-A2C A2C LT-A2C A2C

learning rate lin 0.00096 lin 0.0008 lin 0.00037 lin 0.00096
σ (observation) 0.1 - 0.1 -
N 1000 - 500 -
γ(discount factor) 0.99 0.99 0.99 0.99
gae-λ 1.0 0.9 1.0 0.9
train batch 32 32 32 32
training steps 2e6 2e6 2e6 2e6

18

	Introduction
	Preliminaries on Actor-Critic Models
	A Latent Trajectory Framework for Actor-Critic Models
	An Overview of the SGMCMC Algorithm
	Adaptive Stochastic Gradient MCMC for Deep Actor-Critic Learning
	Convergence Theory

	Experiments
	Uncertainty Quantification
	PyBullet Environment

	Conclusion
	Proof of Theorem 3.1 and Theorem 3.2
	Experiment Settings
	Escape environment
	PyBullet environment

