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ABSTRACT

Uncertainty quantification for deep neural networks is crucial for building reli-
able modern AI models. This challenge is particularly pronounced in deep rein-
forcement learning, where agents continuously learn from their interactions with
stochastic environments, and the uncertainty of the value function is a key con-
cern for ensuring reliable and robust RL applications. The complexity increases
in actor-critic methods, as the training process alternates between optimizing the
actor and critic networks, whose optimization nature makes the uncertainty of the
value function hard to be quantified. To address this issue, we introduce a novel
approach to RL training that conceptualizes transition trajectories as latent vari-
ables. Building on this framework, we propose an adaptive Stochastic Gradient
Markov Chain Monte Carlo (SGMCMC) algorithm for training deep actor-critic
models. This new training method allows for the implicit integration of latent
transition trajectories, resulting in a trajectory-independent training process. We
provide theoretical guarantees for the convergence of our algorithm and offer em-
pirical evidence showing improvements in both performance and robustness of
the deep actor-critic model under our Latent Trajectory Framework (LTF). Fur-
thermore, this framework enables accurate uncertainty quantification for the value
function of the RL system, paving the way for more reliable and robust RL appli-
cations.

1 INTRODUCTION

Reinforcement learning (RL) solves sequential decision-making problems by designing an agent that
interacts with its environment to learn an optimal policy, with the goal of maximizing the value func-
tion, i.e., total amount of expected rewards. Therefore, accurately quantifying the uncertainty of the
value function has been a critical concern for ensuring reliable and robust RL applications. However,
achieving this goal in the context of deep RL is notably challenging, despite the universal approxi-
mation capabilities of deep neural networks (DNNs) having significantly expanded the applicability
of RL. The primary difficulty in uncertainty quantification for deep RL arises from two aspects: the
complex architecture of DNNs and the adaptive nature of the RL process. Even within the context
of supervised learning, accurately quantifying uncertainty for DNNs is a challenging problem (see,
e.g., (Blundell et al., 2015) and (Lakshminarayanan et al., 2017)), and the adaptive process in RL
further complicates this issue (Osband et al., 2016; Bellemare et al., 2017). A significant step to-
ward addressing this challenge has been made in Shih & Liang (2024), where deep Q-networks are
simulated from their posterior distribution under the Kalman temporal difference (KTD) framework
(Geist & Pietquin, 2010; Shashua & Mannor, 2020), enabling accurate quantification for the uncer-
tainty of the Q-value function throughout the RL process. However, their methods are challenging to
extend to deep RL settings involving actor-critic architectures. The inclusion of an additional actor
network significantly complicates the process of uncertainty quantification, as the actor’s stochastic
policy directly influences the distribution of the critic’s value estimates, creating interdependencies
that are not easily captured by traditional approaches.

To address the challenge of uncertainty quantification in actor-critic models, we propose a novel
framework for deep RL training, which conceptualizes transition trajectories in the RL process as
latent variables. Building on this perspective, we introduce an adaptive Stochastic Gradient Markov
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Chain Monte Carlo (SGMCMC) algorithm, which simultaneously updates the actor network through
a stochastic gradient descent (SGD) step and samples from the conditional distribution of the critic
network — conditioned on the current actor network — via an SGMCMC step. Under mild regu-
larity conditions, we establish the convergence of this adaptive SGMCMC algorithm. Specifically,
we show that the parameters of the actor network converge in probability to a fixed point, while
the parameters of the critic network converge weakly to a target distribution, thereby enabling accu-
rate quantification of the associated value function’s uncertainty. In summary, our study offers two
primary contributions:

• We introduce a novel latent trajectory framework for training deep actor-critic models that
inherently accounts for the dynamic nature of complex RL processes.

• We establish a convergence theory for the SGMCMC algorithm used for training deep
actor-critic models under the latent trajectory framework, which ensures effective training
for the actor network while enabling proper uncertainty quantification for the critic network
and thus the value function.

To our knowledge, this is the first work for training deep actor-critic models with uncertainty quan-
tification.

Related Works Bayesian methods has been generally considered as a standard approach for uncer-
tainty quantification in machine learning. However, a rigorous implementation of Bayesian methods
for online RL is challenging. Specifically, Bayesian methods aim to infer unknown model parame-
ters (denoted by θ) based on their posterior distribution π(θ|D) for a given dataset D of identically
distributed samples; however, in online RL, the data are drawn from a dynamic system where the
samples are non-identically distributed. Furthermore, under the deep learning setting, it is challeng-
ing to specify the prior distribution that ensure the posterior consistency property holds when the
deep neural networks involve more parameters than the training sample size. While there is existing
work on Bayesian RL, such as Fellows et al. (2024) and Osband et al. (2018), these challenges are
not adequately addressed. For instance, Osband et al. (2018) introduces uncertainty through ran-
domized priors in a maximum a posteriori (MAP) framework for approximate inference. However,
the theoretical property of posterior consistency for such randomized priors has not been established.
The actor-critic architecture introduces further complexity due to the interaction between the actor
and critic networks, which exacerbates the challenges in uncertainty quantification. Some other
methods, such as bootstrapping (Osband et al., 2016; Tasdighi et al., 2024), Gaussian processes
(Geist & Pietquin, 2010; Engel et al., 2003), distribution RL (Bellemare et al., 2017), have also been
proposed for uncertainty quantification in online RL. However, their theoretical guarantees remain
unestablished in the context of the deep actor-critic setting. In this paper, we propose an innova-
tive and theoretically rigorous framework for uncertainty quantification in online RL. Our approach
explicitly models the dynamics of online RL, ensuring that the uncertainty in the critic network is ac-
curately captured, even under the challenges posed by non-identically distributed data and multiple
deep neural networks.

2 PRELIMINARIES ON ACTOR-CRITIC MODELS

We consider discounted, finite horizon policy optimization problems. Let θ and ψ denote the pa-
rameters of the actor and critic networks, respectively. Let (s0, a0, s1, a1, . . . ) be the transition
trajectory generated by a stochastic policy πθ, where each action at is sampled from the distribu-
tion πθ(at|st). At each time step t, the agent receives an immediate reward rt = r(st, at). Let
Rt =

∑T−1
τ=t γ

τ−trτ be an unbiased estimate of the Q-value, denoted by Qπθ (st, at). Let Vψ be
the critic network approximation to the value function V πθ . For convenience, we denote a single
transition of the state and action as x = (s, a), the return estimate as R. In this paper, we focus on
the advantage actor-critic algorithm (Sutton et al., 2000; Schulman et al., 2018) with the advantage
function expressed as:

Aψ(st, at) = Rt − Vψ(st), (1)
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where Aψ indicates the dependence of the advantage function on the critic network ψ. The policy
gradient (Sutton & Barto, 2018) for the advantage actor-critic algorithm is then given by:

gacψ (θ) = Eπθ [
T−1∑
t=0

Aψ(st, at)∇θ log πθ(at|st)]. (2)

Note that different parameterization strategies can be employed for the advantage function. For
example, one can parameterize the V-function, and use temporal difference (TD) or Monte Carlo
methods to estimate the Q-function (Schulman et al., 2018). The parameters θ and ψ are then
iteratively updated using stochastic gradient optimization algorithms till convergence. However, the
convergence theory for such an iterative optimization algorithm is hard to be established except for
special cases under restrictive assumptions, such as linear function approximation (Chen et al., 2023;
Wu et al., 2022), greedy policies (Holzleitner et al., 2020). In practice, many implementations have
been proposed, such as A2C, A3C(Mnih et al., 2016), PPO(Schulman et al., 2017), SAC(Haarnoja
et al., 2018), and DDPG(Lillicrap et al., 2019), which employ different tuning techniques for policy
gradients to enhance the convergence and the stability.

R(k)

x(k)

ψk

θk−2 θk−1 θk θk+1

Figure 1: Latent Markov Sampling process, where ψk is conditionally independent of θk−1 given
x(k), and the dashed line indicates that including the latent variables (x(k),R(k)) breaks the original
dependence between ψk and θk−1.

Consider the actor-critic training process illustrated in Figure 1. Let k index the updates of θ during
training, and let x(k) = {x(k)i }ni=1 denote a batch of transition tuples drawn independently from the
stationary distribution π(x|θk−1), where x(k)i = (s

(k)
i , a

(k)
i ) and n is the batch size. Additionally, let

R(k) = {R(k)
i }ni=1 be the estimated returns corresponding to x(k). At each iteration k, a transition

trajectory of size n is generated from the policy πθk−1
, ψk is then updated based on the trajectory.

Due to the stochastic nature of the RL process, ψk can be viewed as a sample drawn from the
conditional distribution π(ψk|θk−1). For mathematical clarity, we assume that x(k) is sampled from
a pseudo-population of size N , while the pseduo-pupulations can vary for different values of θk−1.
In what follows, we use πN (ψ|θ) to denote the conditional distribution of ψ for a given value of
θ. The concept of pseudo-population allows for the flexibility of using different mini-batch size at
different iterations, which determines the accuracy we can reach in inferring the target conditional
distribution π(ψ|θ).
The ultimate goal of RL is to learn an optimal policy, with transition data serving as an intermediate
step in this process. Thus, the transition trajectory (x(k),R(k)) and the value function parameter ψk
can be naturally treated as latent variables that facilitate policy optimization.This perspective allows
us to frame the training of the actor network in terms of solving the following integral equation:

g(θ) =

∫
gacψ (θ)πN (ψ|θ)dψ = 0, (3)

which can be solved using an adaptive SGMCMC algorithm (Liang et al., 2022a; Deng et al., 2019).
This will be detailed in Section 3.

3 A LATENT TRAJECTORY FRAMEWORK FOR ACTOR-CRITIC MODELS

3.1 AN OVERVIEW OF THE SGMCMC ALGORITHM

To solve the equation (3), an adaptive SGMCMC algorithm consists of two steps at each iteration:

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

1. (ψ-sampling) Simulate ψk ∼ πN (ψ|θk−1) by a SGMCMC algorithm.

2. (θ-updating) Update θk = θk−1 + ωkĝ
ac
ψk

(θk−1), where ωk denotes the step size used in
the stochastic approximation procedure (Robbins & Monro, 1951), and ĝacψk(θk−1) is an
unbiased estimate of gacψk(θk−1).

Under mild conditions, we establish the convergence of the proposed algorithm. Specifically, we
show that ∥θk − θ∗∥ → 0 in probability as k → ∞, where θ∗ denotes a solution to (3). Ad-
ditionally, ψk converges weakly (in 2-Wasserstein distance) to the distribution πN (ψ|θ∗). Conse-
quently, the algorithm enables proper uncertainty quantification for ψ-related quantities, such as
the V -function and Q-value function, which are central to RL. Notably, uncertainty quantification
for value-functions is generally beyond the reach of conventional iterative optimization algorithms
used to train actor-critic models. With this latent trajectory formulation, we establish an essentially
trajectory-independent training framework for actor-critic models.

3.2 ADAPTIVE STOCHASTIC GRADIENT MCMC FOR DEEP ACTOR-CRITIC LEARNING

To perform ψ-sampling using SGMCMC, we need to evaluate the gradient ∇ψ log πN (ψk|θk−1).
This can be done using the following identity established in Song et al. (2020):

∇ψ log π(ψ|θ) =
∫

∇ψ log π(ψ|z, θ)π(z|ψ, θ)dz,

where z denotes a latent variable. By treating trajectory observation (x(k),R(k)) as latent variables,
we can derive the following formula:

∇ψ log πN (ψk|θk−1)

=

∫
∇ψ log πN (ψk|x(k),R(k), θk−1)π(x

(k),R(k)|ψk, θk−1)dx
(k)dR(k)

=

∫
∇ψ log πN (ψk|x(k),R(k))

π(x(k),R(k)|ψk, θk−1)

π(x(k),R(k)|θk−1)
π(x(k),R(k)|θk−1)dx

(k)dR(k)

=

∫
∇ψ log πN (ψk|x(k),R(k))

π(R(k)|x(k), ψk, θk−1)π(x
(k)|ψk, θk−1)

π(R(k)|x(k), θk−1)π(x(k)|θk−1)
π(x(k),R(k)|θk−1)dx

(k)dR(k)

=

∫
∇ψ log πN (ψk|x(k),R(k))

π(R(k)|x(k), ψk)

π(R(k)|x(k))
π(x(k),R(k)|θk−1)dx

(k)dR(k)

(4)

provided that the mini-batch size n has been chosen to be sufficiently large, ensuring that x(k) serves
as a good representative of the underlying pseudo-population. This guarantees that ψk is condition-
ally independent of θk−1 given x(k). Consequently, we have ∇ψ log πN (ψk|x(k),R(k), θk−1) =

∇ψ log πN (ψk|x(k),R(k)) and π(ψk|x(k)) = π(ψk|θk−1). The former leads to the second equality
in (4), while the latter leads to the last equality in (4) by the following equality:

π(x(k)|ψk, θk−1)

π(x(k)|θk−1)
=
π(ψk|x(k), θk−1)

π(ψk|θk−1)
=
π(ψk|x(k))

π(ψk|θk−1)
= 1. (5)

To facilitate evaluation of the likelihood function π(R(k)|x(k), ψk), we made the following assump-
tion regarding the distribution of Rt:

Assumption 1 The conditional distribution π(Rt|xt, ψ) is Gaussian and defined explicitly as:

Rt|xt, ψ ∼ N (Vψ(st), σ
2). (6)

Note that the Gaussian assumption for the reward has also been made under the Kalman Temporal
Difference framework, see e.g. Geist & Pietquin (2010), Tripp & Shachter (2013), and Shashua &
Mannor (2020).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Remark 1 How to evaluate ∇ψ log πN (ψk|x(k),R(k))? Based on Assumption 1, we have

∇ψ log πN (ψk|x(k),R(k)) = ∇ψ log πN (R(k)|x(k), ψk) +∇ψ log π(ψk)

=
N
n

n∑
i=1

∇ψ log π(R
(k)
i |x(k)i , ψk) +∇ψ log π(ψk)

where π(ψk) denotes the prior distribution of ψk.

Remark 2 How to evaluate the importance weight wk = π(R(k)|x(k),ψk)
π(R(k)|x(k))

? Since the numerator can
be evaluated based on Assumption 1, we consider the evaluation of the denominator in this remark.
One way is to evaluate the denominator based on the relationship:

π(R(k)|x(k)) =

∫
π(R(k)|x(k), ψk)π(ψk|x(k))dψk, (7)

i.e., estimating the denominator by averaging the density π(R(k)|x(k), ψk) over a set of samples
of ψk drawn from π(ψk|x(k)). The auxiliary samples of ψk can be simulated using a SGMCMC
algorithm based on the following gradient:

∇ψ̃ log π(ψ̃|x(k)) =

∫
∇ψ̃ log π(ψ̃|x(k), R̃)π(R̃|ψ̃,x(k))dR̃, (8)

which can be estimated based on auxiliary samples of R̃ drawn from π(R̃|ψ̃,x(k)), as defined in
Assumption 1.

Alternatively, one can estimate π(R(k)|x(k)) using the Nadaraya-Watson (NW) conditional density
kernel estimator:

π̂(R|x) =
∑n
i=1Kh2(x− x

(k)
i )Kh1(R−R

(k)
i )∑n

i=1Kh2
(x− x

(k)
i )

, (9)

where bothKh1
(·) andKh2

(·) are Gaussian kernels, and h1 and h2 are their respective bandwidths.
The NW estimator is known to be consistent provided h1 → 0, h2 → 0, and nh1h2 → ∞ as n→ ∞
(Hyndman et al., 1996). Extensions of the NW estimator based on local polynomial smoothing are
available, see e.g., Fan et al. (1996) and Gooijer & Zerom (2003). See Izbicki & Lee (2016) for an
estimator in a high-dimensional regression setting.

As a summary, we have Algorithm 1, which provides an efficient implementation for the proposed
Latent Trajectory Framework. Although the algorithm is described to perform a single update of ψ at
each sampling step, multiple updates are also allowed. This does not interfere with the convergence
theory of the algorithm.

3.3 CONVERGENCE THEORY

The LTF training process is essentially an adaptive SGMCMC algorithm. In this framework, we sim-
ulate ψk ∼ π(ψk|θk−1) with SGMCMC algorithms while θk−1 changes from iteration to iteration.
We establish the convergence theory for parameters of both actor network πθ and critic network Vψ ,
as detailed in Algorithm 1. We prove the L2-convergence of θk and the W2-convergence of ψk. This
implies that the actor network achieves an optimal policy and the critic network converges weakly
to the stationary distribution π(ψ|θ∗).

Theorem 3.1 (Convergence of θk) Suppose Assumptions 2-6 hold, and the sample size of auxiliary
ψ̃-samples is sufficiently large. If we set the learning rate sequence {ϵk}∞k=1 and the step size
sequence {ωk}∞k=1 as the form:

ϵk =
Cϵ

cϵ + kα
, ωk =

Cω
cω + kβ

, (15)

then there exists a root θ∗ ∈ {θ : g(θ) = 0} such that

E∥θk − θ∗∥2 ≤ ξωk, k ≥ k0, (16)

for some constant ξ > 0 and iteration number k0 > 0.
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Algorithm 1 Latent Trajectory Framework for A2C (LT-A2C)

1: Initialize actor network πθ0 with learning rate sequence {ωk}
2: Initialize critic network Vψ0 with learning rate sequence {ϵk}
3: for k = 1, . . . ,K do
4: Generate trajectories x(k) = {x(k)i }ni=1 and returns R(k) = {R(k)

i }ni=1 with policy πθk−1

5: Step 1: Draw auxiliary samples of ψ̃
6: for j = 1, . . . ,m do
7: Presetting: If j = 1, set ψ̃0 = ψk−1

ψ̃j = ψ̃j−1 +
δj
2
∇ψ̃ log π(ψ̃|x(k)) + ẽj , (10)

where ∇ψ̃ log π(ψ̃|x(k)) = 1
L

∑L
i=1 ∇ψ̃ log π(ψ̃|x(k), R̃i) is calculated based on (8) using L aux-

iliary samples of R̃ drawn from π(R̃|ψ̃,x(k)), δj is the learning rate, and ẽj ∼ Np(0, δjIp).
8: end for
9: Step 2: Sampling ψk through SGMCMC

10: Importance weight: calculate

ŵk =
π(R(k)|x(k), ψk−1)

1
m

∑m
j=1 π(R

(k)|x(k), ψ̃j)
. (11)

11: Sampling: Draw ek ∼ Np(0,
n
N ϵkIp) and calculate

ψk = ψk−1 +
ϵk
2
∇ψL̃(θk−1, ψk−1) + ek, (12)

where the gradient term is given by

∇ψL̃(θk−1, ψk−1) = ŵk
{ n∑
i=1

∇ψ log π(R
(k)
i |x(k)i , ψk−1) +

n

N ∇ψ log π(ψk)
}
. (13)

12: end for
13: Step 3: Updating θk through SGD
14: Compute advantage function Aψk (x

(k)
i , R

(k)
i ) with equation (1).

θk = θk−1 + ωk

n∑
i=1

Aψk (x
(k)
i , R

(k)
i )∇θ log πθk−1(a

(k)
i |s(k)i ). (14)

6
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Let π∗ = π(ψ|θ∗), let Tk =
∑k−1
i=0 ϵi+1, and let µTk denote the probability law of ψk. Theorem 3.2

establishes convergence of µTk in 2-Wasserstein distance.

Theorem 3.2 (W2-convergence of ψk) Suppose Assumptions 2-7 hold, the sample size of auxiliary
ψ̃-samples is sufficiently large, and {ϵk} and {ωk} are set as in Theorem 3.1. Then, for any k ∈ N,

W2(µTk , π
∗) ≤ (Ĉ0δ

1/4

L̃
+ C̃1γ

1/4
1 )Tk + Ĉ2e

−Tk/cLS ,

for some positive constants Ĉ0, Ĉ1, and Ĉ2, where W2(·, ·) denotes the 2-Wasserstein distance, cLS
denotes the logarithmic Sobolev constant of π∗, and δL̃ is a coefficient as defined in Assumption 3
and reflects the variation of the stochastic gradient ∇ψL̃(θk−1, ψk).

We prove Theorems 3.1 and 3.2 by following the proof of adaptive SGLD in Liang et al. (2024). We
note that the proposed latent trajectory framework can also be implemented using adaptive SGHMC
(Liang et al., 2022b). In this case, Theorems 3.1 and 3.2 can still be established similar to the
convergence theory presented in Liang et al. (2022b).

4 EXPERIMENTS

In this section, we evaluate the performance and effectiveness of the LTF in enhancing actor-critic
algorithms. We conduct experiments in two environments: the simple Escape Environment, where
we demonstrate the ability of uncertainty quantification for LTF-enhanced algorithms, and the Py-
Bullet Environment (Ellenberger, 2018–2019), where we compare the performance of LT-A2C to
vanilla A2C on continuous control benchmarks. These experiments highlight the improvements in
training stability and performance metrics achieved through the adoption of LTF.

4.1 UNCERTAINTY QUANTIFICATION

Figure 2: Indoor escape en-
vironment

In this simple experiment, we demonstrate the ability of the proposed
method in uncertainty quantification for the Actor-Critic network us-
ing the Escape Environment designed in (Shih & Liang, 2024). Figure
2 depicts a simple escape environment, for which the state space con-
sists of 100 grids and the agent’s objective is to navigate to the goal
positioned at the top right corner. The agent starts its task from the
bottom left grid at time t = 0. For every time step t, the agent iden-
tifies its current position, represented by the coordinate s = (x, y).
Given a policy πθ, the agent chooses an action a ∈ {N,E,S,W} with
respect to the probability πθ(a|s). The action taken by the agent deter-
mines the adjacent grid to which it moves. Following each action, the
agent is awarded an immediate reward, rt, drawn from the Gaussian
distribution N (−1, 0.01).

We evaluate the performance of the proposed method from three aspects: (i) Policy Diversity: The
policy, coded by the actor network and denoted as πθ(a|s), should converge to a distribution that
assigns equal probabilities to optimal actions and zero probability to others. (ii) Value Accuracy:
The critic network is expected to accurately approximate the state value function V ∗(s) across the
entire state space. (iii) Value Uncertainty: Algorithms must be capable of quantifying the uncertainty
associated with value function.

To quantify policy diversity, we define the optimal policy distribution π∗(·|s) be a probability distri-
bution over all actions at state s, where π∗(·|s) is uniform on optimal actions and zero on sub-optimal
actions. For a given policy πθ(·|s), the Kullback-Leibler Divergence (KL Divergence) between π∗

and πθ, denoted byDKL(π
∗∥πθ), can be used to measure the diversity of the policy distribution. It’s

worth noting that for most states, actions N and E are identically optimal. Hence, the policy πθ(a|s)
should assign the same probability on these two actions. Figure 3 and Figure 4 visualize the policy
probability of πθ at each state s. The left figure demonstrates a policy with a small DKL(π

∗∥πθ),
While, the right figure shows a policy with a large DKL(π

∗∥πθ).
Suppose the actor network converges to a fixed policy πθ∗ , and the state value function Vψ(s) coded
by the critic network should be distributed around the optimal value function V ∗(s). To evaluate

7
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Figure 3: DKL(π
∗∥πθ) small Figure 4: DKL(π

∗∥πθ) large

such estimation, we collect the last 1000 parameter updates to form a ψ-sample pool, denoted by
ψs = {ψ̂i}, which naturally induces a sample pool of value functions Vs = {Vψ(·)|ψ ∈ ψs}.
From V -sample pool, We can obtain a point estimate of the state value at s by calculating the
sample average V̂ (s) = 1

n

∑n
i=1 Vψ̂i(s, a). For interval estimation, we can achieve one-step value

tracking by constructing a 95% prediction interval with the state value samples. We replicate each
experiment 100 times and calculate the following three metrics: (1) the KL-divergence between π∗

and πθ∗ , denoted by DKL(π
∗∥πθ∗), (2) the mean squared error (MSE) between V̂ (s) and V ∗(s),

defined by MSE(V̂ ) = Es∈S(V̂ (s) − V ∗(s))2, where E(·) denotes the empirical average over the
state space S; and (3) the coverage rate (CR) of the 95% prediction intervals.

In Table 1, we demonstrate that with the aid of the LTF, the A2C and PPO algorithms exhibit signifi-
cant improvements in all three performance indicators. We further visualize the experimental results
in Figures 5 and 6, where LTF-enhanced algorithms, LT-A2C and LT-PPO achieve smaller MSE(V̂ )
for point estimation and a nearly 95% coverage rate for interval estimation. Moreover, due to the
correct estimation of V ∗, πθ∗ converges to an approximately optimal policy distribution. In contrast,
vanilla A2C and PPO algorithms suffer from significant bias in the value function estimation. The
proposed LTF method effectively addresses this inconsistency, providing consistent estimates and
reliable uncertainty quantification for the value function.

From a computational perspective, LTF is essentially an optimization step combined with a Bayesian
sampling loop, where the sampling is performed using SGMCMC algorithms. LTF can be easily
scaled up to large neural networks, enhancing its applicability.

Table 1: Metrics for Escape Environment

Algorithm N DKL(π
∗∥πθ∗) MSE(V̂ ) Coverage Rate CI-Width

A2C - 4.647 (0.0729) 0.53527 (0.03974) 0.489 (0.0061) 0.413 (0.0023)
LT-A2C 10000 0.010 (0.0010) 0.00038 (0.00001) 0.947 (0.0004) 0.457 (0.0009)
LT-A2C 20000 0.014 (0.0014) 0.00039 (0.00001) 0.947 (0.0004) 0.452 (0.0010)
LT-A2C 40000 0.014 (0.0013) 0.00033 (0.00001) 0.947 (0.0004) 0.449 (0.0009)

PPO - 4.773 (0.0893) 0.56112 (0.04272) 0.487 (0.0066) 0.416 (0.0024)
LT-PPO 10000 0.011 (0.0010) 0.00041 (0.00001) 0.947 (0.0004) 0.458 (0.0009)
LT-PPO 20000 0.009 (0.0009) 0.00038 (0.00001) 0.947 (0.0005) 0.452 (0.0009)
LT-PPO 40000 0.011 (0.0011) 0.00032 (0.00001) 0.947 (0.0004) 0.449 (0.0008)

4.2 PYBULLET ENVIRONMENT

To demonstrate the applicability of the LTF-enhanced actor-critic algorithms in complex environ-
ments, we evaluate the performance of the LT-A2C algorithm on continuous control benchmarks
using the RL Baselines3 Zoo Raffin (2020) and the PyBullet environment Ellenberger (2018–2019).
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Figure 5: MSE of V̂

Figure 6: Coverage rate of the 95% prediction interval of the value V ∗(s)

We compare LT-A2C to vanilla A2C across four tasks: HalfCheetah, Hopper, Reacher, and Walker.
The hyperparameters for A2C follow the settings in RL Baselines3 Zoo Raffin (2020). Further
experimental settings are detailed in the Appendix.

Figure 7 presents three key metrics for evaluating algorithm performance: (i) training reward, (ii)
evaluation reward, and (iii) the best model reward up to time t. Each experiment was replicated
50 times to assess overall performance. The colored bands in the figure represent the variability in
rewards at each training step, providing insight into the robustness of the algorithms. Narrower bands
indicate lower variability, suggesting greater resistance to random initialization and environmental
stochasticity. The results demonstrate that LT-A2C consistently achieves higher training rewards
compared to vanilla A2C, while also exhibiting reduced variability. This highlights the effectiveness
of the Latent Trajectory Framework in improving policy exploration while maintaining robustness.

As shown in Algorithm 1, LT-A2C and traditional A2C share the same policy control mechanism,
specifically the use of the policy gradient. The key difference lies in the policy evaluation step, where
LT-A2C incorporates SGMCMC sampling. In previous experiments, we demonstrated that the LT
framework enhances the ability to quantify uncertainties in the value function, leading to improved
policy exploration and control. Due to the flexibility of the LT framework, it can be applied to a wide
range of existing algorithms to boost their performance by refining policy evaluation. By integrating
the latent trajectory framework, the RL model not only improves training efficiency but also reduces
variability, resulting in more robust and reliable performance across diverse environments.

5 CONCLUSION

In this paper, we introduce a novel latent trajectory framework as an alternative to conventional
optimization methods for deep actor-critic models and propose an adaptive SGMCMC algorithm
for training these models. We rigorously prove that, under mild conditions, the proposed algorithm
guarantees consistency in parameter estimation for the actor network and weak convergence in pa-
rameter sampling for the critic network. A key advantage of our method is its ability to accurately
quantify the uncertainty of the value functions central to reinforcement learning, while simultane-
ously improving performance in practical applications. Importantly, our framework achieves these
improvements without sacrificing computational complexity, making it scalable to large-scale neural
networks. The framework is also highly flexible: beyond replacing the SGLD steps with SGHMC
(Chen et al., 2014) or substituting the SGD step with Adam (Kingma & Ba, 2014), we can also
replace the policy control step with a PPO update scheme. This flexibility enables seamless inte-
gration with advanced machine learning techniques, further enhancing the framework’s potential to
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Figure 7: PyBullet training performance

improve performance while maintaining robust uncertainty quantification, making it a powerful tool
for large-scale reinforcement learning tasks.
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A PROOF OF THEOREM 3.1 AND THEOREM 3.2

For convenience, we denote the trajectory observation (x(k),R(k)) as zk, and assume zk ∈ Z be a
compact set. The Latent Trajectory Framework can be written in a general form as

ψk = ψk−1 + ϵk∇ψL̃(θk−1, ψk−1, zk) +
√
2ϵkek,

θk = θk−1 + ωkg̃(θk−1, ψk, zk),
(17)

where ϵk denotes the learning rate, ek is a standard Gaussian noise, ∇ψL̃(θk−1, ψk−1, zk) denotes
an unbiased estimate of ∇ψL(θk−1, ψk−1) = ∇ψ log π(ψk−1|θk−1), and g̃(θk−1, ψk, zk) is an
unbiased estimator of gacψk(θk−1). Convergence of adaptive stochastic gradient MCMC algorithms
has been studied in Deng et al. (2019), Dong et al. (2023) and Liang et al. (2024). The convergence
theory of LTF can be established by slightly modifying some of the assumptions.

Notation: We use Eψ[u(θ, ψ)] to denote the expectation of u(θ, ψ) with respect to the conditional
distribution π(ψ|θ), and use E[u(·)] to denote the expectation with respect to the joint distribution
of all the variables involved in the integrand u(·).

Assumption 2 The step size sequence {ωk}k∈N is a positive decreasing sequence of real numbers
such that

lim
k→∞

ωk = 0,

∞∑
k=1

ωk = ∞. (18)

There exist δ > 0 and a stationary point θ∗ such that for any θ ∈ Θ,

⟨θ − θ∗, g(θ)⟩ ≤ −δ∥θ − θ∗∥2,
where g(θ) = Eψ[gacψ (θ)] and, in addition,

lim inf
k→∞

2δ
ωk
ωk+1

+
ωk+1 − ωk
ω2
k+1

> 0, (19)

where ∥ · ∥ denotes the L2-norm.

Assumption 3 L(θ, ψ) is M-smooth on θ and ψ with M > 0, and (m, b)-dissipative on ψ for some
constants m > 1 and b > 0. In other words, for any ψ,ψ′, ψ′′ ∈ Ψ and θ, θ′ ∈ Θ, the following
inequalities are satisfied:

∥∇ψL(θ, ψ
′)−∇ψL(θ

′, ψ′′)∥ ≤M∥ψ′ − ψ′′∥+M∥θ − θ′∥, (20)

⟨∇ψL(θ
∗, ψ), ψ⟩ ≤ b−m∥ψ∥2, (21)

where θ∗ is a stationary point as defined in Assumption 2.

Assumption 2 is a critical and standard assumption in the convergence of SGMCMC algorithms. In
the context of deep neural networks, the dissipativity condition can be easily achieved by imposing
a Gaussian prior on the critic network parameter, which further guarantees convergence.

Lemma A.1 ∥∇ψL(θ, ψ)∥2 ≤ 3M2∥ψ∥2 + 3M2∥θ − θ∗∥2 + 3B2 for some constant B.

PROOF: Follow the proof of Lemma A.1 in Dong et al. (2023). □

Assumption 4 Let ζk = ∇ψL̃(θk, ψk, zk)−∇ψL(θk, ψk). Assume that ζk’s are mutually indepen-
dent white noises, and they satisfy the conditions

E(ζk|Fk) = 0, E∥ζk∥2 ≤ δL̃(M
2E∥ψk∥2 +M2E∥θk − θ∗∥2 +B2), (22)

where δL̃ and B are positive constants, and Fk = σ{θ1, ψ1, θ2, ψ2, . . . , θk, ψk} denotes a σ-
filtration.

Assumption 5 There exist positive constants M and B such that for all z ∈ Z ,

∥g̃(θ, ψ, z)∥ ≤M2∥θ − θ∗∥2 +M2∥ψ∥2 +B2,

where g̃(θ, ψ, z) is as defined in (17).
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By the formulation defined in section 3.2, let g(θ) = E(ψ,z)[g̃(θ, ψ, z)|θ] and η = g̃(θ, ψ, z)−g(θ).
Since E(ψ,z)[∥g̃(θ, ψ, z)∥2|θ] = ∥g(θ)∥2+E(ψ,z)[∥η∥2|θ], this implies E∥g(θ)∥2 ≤ E∥g̃(θ, ψ, z)∥2
and E∥η∥2 ≤ E∥g̃(θ, ψ, z)∥2.

Lemma A.2 (Uniform L2 bounds) Suppose Assumptions 2-5 hold. If the following conditions are
satisfied:

ϵk =
Cϵ

cϵ + kα
, ωk =

Cω
cω + kβ

, (23)

for some constants Cϵ > 0, cϵ > 0, Cω > 0, cω > 0, α, β ∈ (0, 1], and β ≤ α ≤ min{1, 2β}.
Then there exist constants Gψ and Gθ such that E∥ψk∥2 ≤ Gψ and E∥θk − θ∗∥2 ≤ Gθ for all
k = 0, 1, 2, . . . .

PROOF: Follow the proof of Lemma A.2 in Dong et al. (2023). We slightly modify Assumption 4
in Dong et al. (2023) by Assumption 5, where the stochastic gradient is replaced with ĝacψ (θ). Then
the proof is straight forward.

□

Assumption 6 (Solution of Poisson equation) For any θ ∈ Θ, ψ ∈ Ψ, and a function V(ψ) = 1 +
∥ψ∥, there exists a function µθ on Ψ that solves the Poisson equation µθ(ψ)−Tθµθ(ψ) = gacψ (θ)−
g(θ), where Tθ denotes a probability transition kernel with Tθµθ(ψ) =

∫
Ψ
µθ(ψ

′)Tθ(ψ,ψ′)dψ′,
such that

gacψk+1
(θk) = g(θk) + µθk(ψk+1)− Tθkµθk(ψk+1), k = 1, 2, . . . . (24)

Moreover, for all θ, θ′ ∈ Θ and ψ ∈ Ψ, we have ∥µθ(ψ) − µθ′(ψ)∥ + ∥Tθµθ(ψ) − Tθ′µθ′(ψ)∥ ≤
ς1∥θ − θ′∥V(ψ) and ∥µθ(ψ)∥+ ∥Tθµθ(ψ)∥ ≤ ς2V(ψ) for some constants ς1 > 0 and ς2 > 0.

PROOF OF THEOREM 3.1

PROOF: For Algorithm 1, we assume that the sample size of auxiliary ψ̃-samples is sufficiently
large, ensuring the denominator estimator in Eq. (11) converges almost surely to its mean value
(Teh et al., 2016). Therefore, the resulting stochastic gradient (13) is almost surely unbiased.

Dong et al. (2023) proved the result (16) for a more general adaptive Langevinized ensemble Kalman
filter (LEnKF) algorithm, which is equivalent to an adaptive pre-conditioned SGLD algorithm. Ex-
tending their proof to Algorithm 1 is straight forward. □

Assumption 7 The probability law µ0 of the initial hypothesis θ0 has a bounded and strictly positive
density p0 with respect to the Lebesgue measure on Rdψ , and

κ0 := log

∫
Rdψ

e∥θ∥
2

p0(θ)dθ <∞.

PROOF OF THEOREM 3.2

PROOF: This theorem is proved in Liang et al. (2024) with the same Assumptions 2-7. For Algo-
rithm 1, we only need to assume that the sample size m of auxiliary ψ̃-samples is sufficiently large,
as explained in the proof of Theorem 3.1. □
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B EXPERIMENT SETTINGS

B.1 ESCAPE ENVIRONMENT

In this experiment, both πθ and Vψ are approximated by deep neural networks with two hidden
layers of sizes (128, 128). The agent updates the network parameters every 50 interactions, for a
total of 106 action steps. Each experiment is replicated for 100 times. For initial exploration, an
entropy penalty coefficient of 0.01 is added, and gradually decay to 0. To achieve sparse deep neural
network, we follow the suggestion in Sun et al. (2022) to impose mixture Gaussian prior onto both
network parameters:

θ, ψ ∼ (1− λ)N (0, σ2
0) + λN (0, σ2

1) (25)

where λ ∈ (0, 1) is the mixture proportion and σ2
0 is usually set to a small number compare to σ2

1 .
We set σ1 = 0.01, σ0 = 0.001 and λ = 0.5 in all LTF-enhanced algorithms. For indoor escape
environment, the reward is given by N (−1, 0.01); that is, we set σ2 = 0.01. To make the estimated
return yt = Rt stationary, the reward at the goal state is set to N (−1, 0.01

1−γ2 ), where the discount
factor γ = 0.9. To guarantee the convergence of LTF, we set the decay policy learning rate as
ωk = O( 1

k0.5 ) and constant critic learning rate ϵk = 2 × 10−4. The sample size L in (10) is set to
50, and the auxiliary sample size m in (11) is set to 5.

In practical implementation, drawing samples from the conditional distribution πN (ψk|xk) can be
performed with a short sub-loop of SGMCMC updates, which we set the length to be 10. That is,
for each iteration k, we repeat the ψ-sampling update 10 times. The sub-loop sampling scheme is
given by

ψk,ℓ = ψk,ℓ−1+
ϵk,ℓ
2
ŵk,ℓ

{ n∑
i=1

∇ψ log π(R
(k)
i |x(k)i , ψk,ℓ−1)+

n

N
∇ψ log π(ψk,ℓ−1)

}
+ ek,ℓ (26)

where the sub-loop is indexed by ℓ. And the importance weight can be calculated by

ŵk,ℓ =
π(R(k)|x(k), ψk,ℓ−1)

1
m+1

∑m
j=1 π(R

(k)|x(k), ψ̃j) +
1

m+1π(R
(k)|x(k), ψk,ℓ−1)

.

where m denote the number of auxiliary samples and the importance weight is bounded by m +
1. The boundedness of the importance weights ŵk,ℓ’s further ensures the stability of SGMCMC
sampling step. We note that including the ψk,l−1-term in the denominator is reasonable. As implied

by the definition of the importance weight wk = π(R(k)|x(k),ψk)
π(R(k)|x(k))

, the numerator term should be

part of the denominator and, therefore, we need to include ψk,l−1 as an auxiliary sample of ψ̃.
Furthermore, we refer to Theorem 1 of Song et al. (2020) for the sample equally weighted formula
in calculating the denominator.

In Figure 8, we present boxplots of four metrics for each algorithm. Across all metrics, LT-A2C
and LT-PPO outperform the traditional A2C and PPO algorithms, demonstrating lower MSE, lower
KL-Divergence, and higher coverage rates. Lower KL-divergence indicates that the policy distribu-
tion converges to a uniform distribution over optimal actions, leading to more efficient exploration
and robust learning. For MSE(V̂ ), LTF-enhanced algorithms have significantly smaller values and
tighter boxplots, indicating training stability. Regarding uncertainty quantification, only LTF algo-
rithms achieve the desired 95% coverage rate. As the pseudo population increases, more accurate
uncertainty quantification for both point and interval estimates is achieved, as evidenced by smaller
MSE and narrower interval ranges.

Regarding computation complexity, although LTF requires additional SGMCMC sampling on critic
network parameter in each iteration, the complexity for SGLD and SGHMC are the same as stochas-
tic gradient methods. Therefore, the total time complexity remains that same, which implies the
scalablility of proposed framework.

B.2 PYBULLET ENVIRONMENT

In this experiment, we conduct experiments on PyBullet environments, including Ant, HalfCheetah,
Hopper, Reacher, and Walker2D. The training framework and hyperparameters of A2C are based
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Figure 8: Metrics for Escape environment

on RL baselines3 zoo, and our LT-A2C is implemented on top of Stable-Baselines3 Raffin et al.
(2021). The hyperparameters are given in Table 2 and 3. Actor and critic network, both have 2
hidden layers of size [64, 64]. There 3 types of learning rate, constant, linear decay and polynomial
decay. To balance between exploration and exploitation in LT-A2C, we adopt an annealing tech-
nique, where the pseudo population size increases as training steps increase, starting from 500. This
method allows the algorithm to gradually shift from exploration to exploitation, improving overall
performance and stability. A2C algorithm optimize both network with RMSprop, and LT-A2C up-
date actor network with RMSprop as well. The A2C algorithm optimizes both the actor and critic
networks using the RMSprop optimizer. LT-A2C also updates the actor network with RMSprop,
while using SGHMC for critic parameter sampling. For the prior distribution, LT-A2C employs the
same Gaussian mixture prior as used in the Escape environment.

In theory, the auxiliary sampling step requires large sample size to guarantee a good approximation.
To improve the sampling efficiency of the auxiliary sampling step, we modify the approximation
procedure of the importance weight. We replace the auxiliary samples ψk,j’s with the SGMCMC
samples ψk,ℓ derived in (26). The importance weight can then be approximated by

ŵk,ℓ̃ =
π(R(k)|x(k), ψk,ℓ̃−1)

1
ℓ̃

∑ℓ̃−1
ℓ=0 π(R

(k)|x(k), ψℓ)
.

With this modification, we can eliminate the auxiliary sampling step and further lower the compu-
tation complexity and memory complexity.
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Table 2: Hyperparameters

Environment HalfCheetah Hopper

Hyperparameters LT-A2C A2C LT-A2C A2C

learning rate lin 0.00067 lin 0.00096 lin 0.00042 lin 0.00096
σ (observation) 0.1 - 0.1 -
N 50000 - 10000 -
γ(discount factor) 0.95 0.99 0.99 0.99
gae-λ 0.9 0.9 1.0 0.9
train batch 32 32 32 32
training steps 2e6 2e6 2e6 2e6

Table 3: Hyperparameters (cont.)

Environment Reacher Walker2D

Hyperparameters LT-A2C A2C LT-A2C A2C

learning rate lin 0.00096 lin 0.0008 lin 0.00037 lin 0.00096
σ (observation) 0.1 - 0.1 -
N 1000 - 500 -
γ(discount factor) 0.99 0.99 0.99 0.99
gae-λ 1.0 0.9 1.0 0.9
train batch 32 32 32 32
training steps 2e6 2e6 2e6 2e6
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