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Abstract
The local and global interpretability of various
ML models has been studied extensively in recent
years. However, despite significant progress in
the field, many known results remain informal
or lack sufficient mathematical rigor. We pro-
pose a framework for bridging this gap, by using
computational complexity theory to assess local
and global perspectives of interpreting ML mod-
els. We begin by proposing proofs for two novel
insights that are essential for our analysis: (i) a
duality between local and global forms of expla-
nations; and (ii) the inherent uniqueness of certain
global explanation forms. We then use these in-
sights to evaluate the complexity of computing
explanations, across three model types represent-
ing the extremes of the interpretability spectrum:
(i) linear models; (ii) decision trees; and (iii) neu-
ral networks. Our findings offer insights into both
the local and global interpretability of these mod-
els. For instance, under standard complexity as-
sumptions such as P ̸= NP, we prove that selecting
global sufficient subsets in linear models is com-
putationally harder than selecting local subsets.
Interestingly, with neural networks and decision
trees, the opposite is true: it is harder to carry out
this task locally than globally. We believe that
our findings demonstrate how examining explain-
ability through a computational complexity lens
can help us develop a more rigorous grasp of the
inherent interpretability of ML models.

1. Introduction
Interpretability is becoming an increasingly important as-
pect of ML models, as it plays a key role in ensuring
their safety, transparency and fairness (Doshi-Velez & Kim,
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2017). The ML community has been studying two notions
of interpretability: global interpretability, aimed at under-
standing the overall decision logic of an ML model; and
local interpretability, aimed at understanding specific de-
cisions made by that model (Zhang et al., 2021; Du et al.,
2019). The correlation between a model’s local and global
interpretability levels is not always entirely evident. For in-
stance, (Molnar, 2020) argues that while the weights linked
to a linear classifier can be used in interpreting its local
decisions, this may not be the case for its global behavior.

Despite significant progress in ML interpretability tech-
niques, there still remains a notable lack of mathematical
rigor in our comprehension of the inherent interpretability
of different ML models. The work of (Barceló et al., 2020)
proposes addressing this gap by analyzing interpretability
through the perspective of computational complexity the-
ory. There, the goal is to deepen our understanding of
interpretability by exploring the computational complexity
involved in generating different kinds of explanations for
various ML models. A model is considered interpretable if
an explanation can be computed efficiently; and conversely,
if deriving an explanation is computationally intractable, the
model is regarded as uninterpretable.

The study on the complexity of obtaining explanations in-
cludes various ML models and diverse forms of explana-
tions (Marques-Silva et al., 2020; Arenas et al., 2021a; 2022;
Wäldchen et al., 2021; Marques-Silva et al., 2021). However,
this prior work focused mainly on local forms of explana-
tions — enabling the formal analysis of local interpretability
across various contexts, rather than addressing the overarch-
ing global interpretability of these models.

Our contributions. We present a formal computational-
complexity-based framework for evaluating both the local
and global interpretability levels of ML models. We do
this by analyzing the complexity associated with computing
different forms of explanation, distinguishing between those
that are local (specific to a particular instance x) and global
(applicable to any potential instance x).

Our study focuses on the analysis of formal notions of
explanations that satisfy logical and mathematical guaran-
tees — a sub-field often referred to as formal explainable
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Figure 1. Illustration of complexity separations between local and global explanations. In linear models, it is harder to identify the smallest
global sufficient subset (highlighted in gray) compared to a local one (highlighted in blue). Interestingly, this reverses in neural networks
and decision trees, where selecting the smallest global sufficient subsets is computationally simpler than finding the smallest local ones.

AI (Marques-Silva & Ignatiev, 2022). The ability to deliver
explanations with mathematically provable guarantees is
crucial in safety-critical systems, and it also makes it pos-
sible to rigorously assess the computational complexity of
obtaining such explanations. In this context, we focus on a
few, commonly used formal notions of explanations:

1. Sufficient Reason Feature Selection. In the feature
selection setting, users typically choose the k most sig-
nificant input features. This selection can be executed
either locally (selecting features that influence a par-
ticular prediction) or globally (selecting features that
affect all instances within the domain). We examine
the widely recognized sufficiency criterion, and explore
the complexity of selecting subsets of features with the
smallest possible cardinality while still maintaining
sufficiency.

2. Necessary and Redundant Features. We analyze
the computational complexity involved in identifying
features that are either highly important or highly re-
dundant. This type of analysis can be carried out in
either a local or a global setting.

3. Completion Count. We consider a relaxed version of
the former explainability forms, which computes the
relative portion of assignments that maintain a predic-
tion, given that we fix some subset of features. This
form relates to the probability of obtaining a prediction,
and can also be computed either locally or globally.

While the complexity of some of the local variants of these
explanation forms has been studied previously, we focus
here on their global variants. As part of our analysis, we
present two novel theoretical insights: (i) a duality between

local and global forms of explanations; and (ii) a result on
the uniqueness of global sufficiency-based explanations, in
stark contrast to the exponential abundance of their local
counterparts. Using these insights, we are able to establish
hitherto unknown complexity results on three model types
that are frequently mentioned in the literature as being at
the extremities of the interpretability spectrum: (i) decision
trees; (ii) linear models; and (iii) neural networks.

In some cases, our complexity results rigorously justify prior
claims. For example, we establish that linear models are
indeed easier to interpret locally than globally under some
contexts (Molnar, 2020) — selecting local sufficient subsets
in these models can be performed in polynomial time, but
selecting global sufficient subsets is coNP-Complete.

In other cases, however, our results actually defy intuition.
For example, we discover that selecting global sufficient
subsets is more tractable than local sufficient subsets, both
for neural networks and decision trees (see illustration in fig-
ure 1). In the case of decision trees, for instance, the global
form of this task can be performed in polynomial time, but
the task becomes NP-Complete for its local counterpart. A
similar phenomenon occurs with respect to identifying re-
dundant features — this task is computationally harder to
perform locally than globally, both for neural networks and
decision trees.

We believe that these findings underscore the importance
of rigorously analyzing the complexity of obtaining expla-
nations, in order to enhance our understanding of model
interpretability. While our study, like others in this field,
is constrained by the specific explanation forms evaluated,
we believe it provides a solid basis for deeper insights into
both local and global interpretability, and paves the way for
future exploration of additional explanation forms.
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Due to space limitations, we provide a brief outline of the
proofs for some of our claims within the paper, while the
full proofs for all claims are relegated to the appendix.

2. Preliminaries
Complexity Classes. The paper assumes basic familiarity
with the common complexity classes of polynomial time
(PTIME) and nondeterministic polynomial time (NP, co-
NP). We also mention classes of the second order of polyno-
mial hierarchy, i.e., ΣP

2 , which describes the set of problems
that could be solved in NP given an oracle that solves prob-
lems of co-NP in constant time, and ΠP

2 , which describes
the set of problems that could be solved in co-NP given an
oracle that solves problems of NP in constant time. Both NP
and co-NP are contained in both ΣP

2 and ΠP
2 , and it is also

widely believed that this containment is strict i.e., PTIME⊊
NP, co-NP⊊ ΣP

2 , ΠP
2 (Arora & Barak, 2009). We also dis-

cuss the class #P, which corresponds to the total number
of accepting paths of a polynomial-time nondeterministic
Turing machine. It is also widely believed that #P strictly
contains the second order of the polynomial hierarchy, i.e.,
that ΣP

2 , ΠP
2 ⊊ #P (Arora & Barak, 2009).

Setting. We assume a set of n input feature assignments
x := (x1, . . . , xn), and use F := {0, 1}n to denote the entire
feature space. Our goal is to interpret the prediction of a
classifier f : F → {0, 1}. In the local case, we seek the
reason behind the prediction f(x) for a specific instance x.
In the global case, we seek to explain the general behavior
of f . We follow common practice and use boolean input
and output values to simplify the presentation (Arenas et al.,
2021a; Wäldchen et al., 2021; Barceló et al., 2020). We
note, however, that many of our results carry over to the
real-valued case as well; see appendix K for additional
information.

Explainability Queries. To cope with the abstract nature
of interpretability, prior work often uses a construct called
an explainability query (Barceló et al., 2020), denoted Q,
which defines an explanation of a specific type. As prior
work focused mainly on local explanation forms, the input
of Q is usually comprised of both f and a specific x, and
its output is an answer providing information regarding the
interpretation of f(x). For any given explainability query
Q, we define its corresponding global form of explanation
as G-Q. In contrast to Q, the input of G-Q does not include
a specific instance x, and the output conditions hold for any
x ∈ F. We provide the full formalization of each local and
global explainability query in Section 3.

3. Local and Global Explanation Forms
Although model interpretability is subjective, there are sev-
eral commonly used notions of local and global explana-

tions, on which we focus here:

Sufficient Reason Feature Selection. In the feature se-
lection setting, it is common for users to choose the top k
features participating in a model’s decision. We consider
the widely recognized sufficeincy criterion for this selection,
which aligns with common explainability methods (Ribeiro
et al., 2018; Carter et al., 2019; Ignatiev et al., 2019a). We
follow common conventions and define a local sufficient
reason as a subset of features, S ⊆ {1, . . . , n}, such that
when features in S are fixed to their corresponding values
in x, the prediction is determined to be f(x), regardless of
other features’ assignments. Formally, S is a local sufficient
reason with respect to ⟨f, x⟩ iff it holds that:

∀(z ∈ F). [f(xS ; zS̄) = f(x)] (1)

Here, (xS ; zS̄) represents an assignment where the values
of elements of S are taken from x, and the remaining values
S are taken from z.

In the global feature selection setting, it is common to
choose the top features contributing to all instances (Wang
et al., 2015). We define a set S ⊆ {1, . . . , n} as a global
sufficient reason of f if it is a local sufficient reason for all
x. More formally:

∀(x, z ∈ F). [f(xS ; zS̄) = f(x)] (2)

We denote suff(f, x, S) = 1 when S is a local sufficient
reason of ⟨f, x⟩, and suff(f, x, S) = 0 otherwise. Similarly,
we denote suff(f, S) = 1 when S is a global sufficient
reason of f , and suff(f, S) = 0 otherwise.

A common notion in the literature suggests that smaller
sufficient reasons (i.e., with smaller |S|), whether local or
global, are more meaningful than larger ones (Ribeiro et al.,
2018; Carter et al., 2019; Ignatiev et al., 2019a; Halpern &
Pearl, 2005). Consequently, it is common to consider the
complexity of obtaining subsets of features of minimal car-
dinality (also known as minimum sufficient reasons). This
leads us to our first explainability query:

MSR (Minimum Sufficient Reason):
Input: Model f , input x, and integer k
Output: Yes if there exists some S such that suff(f, x, S) =
1 and |S| ≤ k, and No otherwise

To differentiate between the local and global setting, we
use G-MSR to refer to the explainability query that obtains
a cardinally minimal global sufficient reason of f . Due
to space limitations, we relegate the full formalization of
global queries to appendix A.

To better understand the complexity of the MSR and G-MSR
queries, we also consider the analysis of a refined version
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of this query, which instead of obtaining a cardinally min-
imal sufficient reason, is concerned with simply checking
whether a subset of features is a sufficient reason:

CSR (Check Sufficient Reason):
Input: Model f , input x, and subset of features S
Output: Yes if suff(f, x, S) = 1, and No otherwise

Similarly, G-CSR denotes the explainability query for check-
ing whether a subset of features is a global sufficient reason.
This formalization (along with all other global queries in
this section) appears in appendix A.

Identifying Necessary and Redundant Features. When in-
terpreting a model, it is common to measure the importance
of each feature to a prediction. For a better understanding
of the complexity of local and global computations, we con-
sider here the complexity of identifying the two extreme
cases: features that are either necessary or redundant to
a prediction. We use the formal notation of necessity and
redundancy proposed by (Huang et al., 2023); and note that
this notation also aligns with other formal frameworks that
deal with bias detection and fairness (Arenas et al., 2021a;
Darwiche & Hirth, 2020; Ignatiev et al., 2020a). There, nec-
essary features can be regarded as biased features, whereas
redundant features are protected features, which should not
be used for decision making — such as gender, age, etc.
(see appendix L for more information).

Formally, we define feature i as locally necessary for ⟨f, x⟩
if it is contained in all sufficient reasons of ⟨f, x⟩. Equiva-
lently, removing i from any sufficient reason S causes it to
cease being sufficient; i.e., for any S ⊆ {1, . . . , n} it holds
that suff(f, x, S) = 1→ suff(f, x, S \ {i}) = 0.

In the global case, we seek to determine whether i is globally
necessary to f , meaning it is necessary to all instances of
⟨f, x⟩. Formally, for any x ∈ F and for any S ⊆ {1, . . . , n}
it holds that suff(f, x, S) = 1→ suff(f, x, S \ {i}) = 0.

FN (Feature Necessity):
Input: Model f , input x, and integer i
Output: Yes if i is necessary with respect to ⟨f, x⟩, and No
otherwise

Conversely, a feature i is termed locally redundant regarding
⟨f, x⟩ if its removal from any sufficient reason S does not
change S’s sufficiency. Formally, for any S ⊆ {1, . . . , n}
it holds that suff(f, x, S) = 1 → suff(f, x, S \ {i}) = 1.
This is equivalent to i not being contained in any minimal
sufficient reason.

FR (Feature Redundancy):
Input: Model f , input x, and integer i.
Output: Yes, if i is redundant with respect to ⟨f, x⟩, and No
otherwise.

We say that a feature is globally redundant if it is locally
redundant with respect to all inputs; i.e., for any x ∈ F
and S ⊆ {1, . . . , n} it holds that suff(f, x, S) = 1 →
suff(f, x, S \ {i}) = 1.

Counting completions. Lastly, we explore a relaxed ver-
sion of the previous forms, which is commonly analyzed in
other formal frameworks (Barceló et al., 2020; Wäldchen
et al., 2021; Izza et al., 2021). This explanation form is
based on exploring the relative portion of assignment com-
pletions that maintain a specific classification. This relates
to the probability that a prediction remains the same, as-
suming the other features are uniformly and independently
distributed. We define the local completion count c of S
as the relative portion of completions which maintain the
prediction of f(x):

c(S, f, x) :=
|{z ∈ {0, 1}|S|, f(xS ; zS̄) = f(x)}|

|{z ∈ {0, 1}|S||
(3)

In the global completion count case, we count the number
of completions for all possible assignments x ∈ F:

c(S, f) :=
|{x ∈ F, z ∈ {0, 1}|S|, f(xS ; zS̄) = f(x)}|

|{x ∈ F, z ∈ {0, 1}|S||
(4)

CC (Count Completions):
Input: Model f, input x, and subset of features S
Output: The completion count c(S, f, x)

We acknowledge that other explanation forms can be used,
and do not argue that one form is superior to others; rather,
our goal is to study some local and global versions of com-
mon explanation forms as a means of assessing the local
and global interpretability of different ML models.

4. Properties of Global Explanations
We now present several novel results concerning the char-
acteristics of the aforementioned local and global forms of
explanation. Subsequently, in Section 5 we illustrate how
these results significantly affect the complexity of comput-
ing such explanations.

4.1. Duality of Local and Global Explanations

Our analysis shows that there exists a dual relationship
between local and global explanations. To better under-
stand this relationship, we make use of the definition of
contrastive reasons, which describes subsets of features
that, when altered, may cause the classification to change.
Formally, a subset of features S is a contrastive reason
with respect to ⟨f, x⟩ iff there exists some z ∈ F such that
f(xS̄ ; zS) ̸= f(x).
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While sufficient reasons provide answers to “why?” ques-
tions, i.e., “why was f(x) classified to class i?”, contrastive
reasons seek to provide answers to “why not?” questions.
Clearly, S is a sufficient reason of ⟨f, x⟩ iff S is not a con-
trastive reason of ⟨f, x⟩. Contrastive reasons are also well
related to necessity. This is shown by the following theorem,
whose proof appears in appendix C:

Theorem 1 A feature i is necessary with respect to ⟨f, x⟩
if and only if {i} is a contrastive reason of ⟨f, x⟩.

We can similarly define a global contrastive reason as a
subset of features that may cause a misclassification for any
possible input. Formally, for any x ∈ F there exists some
z ∈ F such that f(xS̄ ; zS) ̸= f(x). This leads to a first dual
relationship between local and global explanations:

Theorem 2 Any global sufficient reason of f intersects with
all local contrastive reasons of ⟨f, x⟩, and any global con-
trastive reason of f intersects with all local sufficient rea-
sons of ⟨f, x⟩.

This formulation can alternatively be expressed through
the concept of hitting sets (additional details appear in ap-
pendix C). In this context, global sufficient reasons corre-
spond to hitting sets of local contrastive reasons, while local
contrastive reasons correspond to hitting sets for global suffi-
cient reasons. It follows that the minimum hitting set (MHS;
see appendix C) aligns with cardinally minimal reasons.
Formally:

Theorem 3 The MHS of all local contrastive reasons of
⟨f, x⟩ is a cardinally minimal global sufficient reason of f ,
and the MHS of all local sufficient reasons of ⟨f, x⟩ is a
cardinally minimal global contrastive reason of f .

For instance, suppose the set of all local contrastive reasons
of f is C := {{1, 2}, {2, 3, 4}, {4, 5, 6}} (these may cor-
respond to different local inputs x ∈ F). The smallest set
intersecting all subsets in C (hence representing its MHS)
is {2, 4}, thus {2, 4} is the cardinally minimal global suf-
ficient reason for f . Conversely, if C represents all local
sufficient reasons, {2, 4} represents the cardinally minimal
global contrastive reason for f .

4.2. Uniquness of Global Explanations

As stated earlier, small sufficient reasons are often assumed
to provide a better interpretation than larger ones. Conse-
quently, we are interested in minimal sufficient reasons, i.e.,
explanation sets that cease to be sufficient reasons as soon
as even one feature is removed from them. We note that
minimal sufficient reasons are not necessarily cardinally
minimal, and we can also consider subset minimal sufficient
reasons (alternatively referred to as locally minimal). The

choice of the terms cardinally minimal and subset minimal
is deliberate, to reduce confusion with the concepts of global
and local explanations.

A greedy approach for computing subset minimal sufficient
reasons appears in Algorithm 1 (similar schemes appear
in (Ignatiev et al., 2019a) and (Bassan & Katz, 2023)). It
starts with the entire set of features, and then gradually
attempts to remove features until converging to a subset min-
imal sufficient reason. Notably, the validation step at Line 3
within the algorithm, which determines the sufficiency of a
feature subset, is not straightforward. In Section 5, we delve
into a detailed discussion of the computational complexities
associated with this process.

Algorithm 1 Local Subset Minimal Sufficient Reason
Input f , x

1: S ← {1, . . . , n}
2: for each i ∈ {1, ..., n} by some arbitrary ordering do
3: if suff(f, x, S \ {i}) = 1 then
4: S ← S \ {i}
5: end if
6: end for
7: return S ▷ S is a subset minimal local sufficient reason

While Algorithm 1 converges to a subset-minimal local suf-
ficient reason, it is not necessarily a cardinally minimal
sufficient reason. This is due to the algorithm’s strong sensi-
tivity to the order in which we iterate over features (Line 2).
The number of subset-minimal and cardinally minimal suf-
ficient reasons depends on the function f . Nevertheless,
it can be shown that their prevalence is, in the worst case,
exponential in the number of features n:

Proposition 1 There exists some f and some x ∈ F such
that there are Θ( 2n√

n
) local subset minimal or cardinally

minimal sufficient reasons of ⟨f, x⟩.

A similar, greedy approach for computing subset minimal
global sufficient reasons appears in Algorithm 2:

Algorithm 2 Global Subset Minimal Sufficient Reason
Input f

1: S ← {1, . . . , n}
2: for each i ∈ {1, ..., n} by some arbitrary ordering do
3: if suff(f, S \ {i}) = 1 then
4: S ← S \ {i}
5: end if
6: end for
7: return S ▷ S is a subset minimal global sufficient

reason

Given that the criteria for a subset of features to constitute
a global sufficient reason are more stringent than those for
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the local case, it is natural to ask whether they are also
exponentially abundant. To start addressing this question,
we establish the following proposition:

Proposition 2 If S1 and S2 are two global sufficient rea-
sons of some non-trivial function f , then S1 ∩ S2 = S ̸= ∅,
and S is a global sufficient reason of f .

From Proposition 2 now stems the following theorem:

Theorem 4 There exists one unique subset-minimal global
sufficient reason of f .

Thus, while the local form of explanation presents us with a
worst-case scenario of an exponential number of minimal
explanations, the global form, on the other hand, offers only
a single, unique minimal explanation. As we demonstrate
later, this distinction causes significant differences in the
complexity of computing such explanations. We can now
derive the following corollary:

Proposition 3 For any possible ordering of features in
Line 2 of Algorithm 2, Algorithm 2 converges to the same
global sufficient reason.

The uniqueness of global subset-minimal sufficient reasons
also carries implications for the assessment of feature neces-
sity and redundancy, as follows:

Proposition 4 Let S be the subset minimal global sufficient
reason of f . For all i, i ∈ S if and only if i is locally
necessary for some ⟨f, x⟩, and i ∈ S if and only if i is
globally redundant for f .

In other words, subset S, which is the unique minimal global
sufficient reason of f , categorizes the features into two pos-
sible sets: those necessary to a specific instance x, and those
that are globally redundant. This fact is further exemplified
by the subsequent corollary:

Proposition 5 Any feature i is either locally necessary for
some ⟨f, x⟩, or globally redundant for f .

The proofs for all propositions and theorems discussed in
this section can be found in appendix C for claims related to
duality, and in appendix D for those concerning uniqueness.

5. The Computational Complexity of Global
Interpretation

We seek to comprehensively analyze the computational com-
plexity of producing local and global explanations, of the
forms discussed in Section 3. We perform this analysis
on three classes of models: free binary decision diagrams
(FBDDs), which are a generalization of decision trees; Per-
ceptrons; and Multi-Layer Perceptrons (MLPs) with ReLU

activation units. A full formalization of these model classes
is provided in appendix B.

We use Q(C) (respectively, G-Q(C)) to denote the compu-
tational problem of solving the local (respectively, global)
explainability query Q on models of class C. Table 1 sum-
marizes our results, and indicates the complexity classes for
model class and explanation type pairs.

As these results demonstrate, there is often a strict disparity
in computational effort between calculating local and global
explanations, emphasizing the need for distinct assessments
of local and global forms. We further study this disparity and
investigate the comparative computational efforts required
for local and global explanations across various models
and forms of explanations. This examination enables us to
address the fundamental question of whether certain models
exhibit a higher degree of interpretability at a global level
compared to their interpretability at a local level, within
different contextual scenarios.

Local vs. Global Interpretability

We say that a model is more locally interpretable for a given
explanation type if computing the local form of that expla-
nation is strictly easier than computing the global form, and
say that it is more globally interpretable in the opposite case.
We use the notation of c-interpretablity (computational in-
terpretability) (Barceló et al., 2020) to study the disparity
between local and global computations of our analyzed
query forms. More formally:

Definition 1 Let Q denote an explainability query and C
a class of models, and suppose Q(C) is in class K1 and
G-Q(C) is in class K2. Then:

1. C is strictly more locally c-interpretable with respect
to Q iff K1 ⊊ K2 and G-Q(C) is hard for K2.

2. C is strictly more globally c-interpretable with respect
to Q iff K2 ⊊ K1 and Q(C) is hard for K1.

We divide our discussion into scenarios where computing
an explanation is more challenging in the local setting, in
the global setting, or equally difficult in both settings.

5.1. The Locally Interpretable Case

We start with the Perceptron model, where a strict complex-
ity gap exists between local and global computations. Our
findings reveal that in linear models, global feature selection
is computationally harder than local feature selection. As
shown in Table 1, there is a disparity in feature selection
queries (CSR and MSR) between local and global forms. Lo-
cal forms are achievable in polynomial time, whereas global
forms are coNP-Complete, leading to our first corollary:
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Table 1. Complexity classes for pairs of explainability queries and model classes. Cells highlighted in blue represent novel results,
presented here; whereas the remaining results were already known previously.

FBDDs MLPs Perceptrons
Local Global Local Global Local Global

CSR PTIME PTIME coNP-C coNP-C PTIME coNP-C
MSR NP-C PTIME ΣP

2 -C coNP-C PTIME coNP-C
CC PTIME PTIME #P-C #P-C #P-C #P-C
FR coNP-C PTIME ΠP

2 -C coNP-C coNP-C coNP-C
FN PTIME PTIME PTIME coNP-C PTIME PTIME

Theorem 5 Perceptrons are strictly more locally c-
interpretable with respect to CSR and MSR.

The complexity difference arises from the intrinsic proper-
ties of linear models. Previous work showed that in linear
models, selecting cardinally minimal local sufficient rea-
sons can be performed in polynomial time (Barceló et al.,
2020; Marques-Silva et al., 2020). The feasibility of such
algorithms stems from the understanding that the local value
xi of a feature i, along with its corresponding weight wi,
can be utilized to calculate the exact contribution of feature
i to the local prediction f(x).

However, we are able to prove that for global sufficient
reasons, the situation is different, as the sufficiency criterion
for the selection process considers all inputs x, rather than a
specific x. This property makes the task of selecting global
sufficient reasons for linear models intractable:

Proposition 6 For Perceptrons, solving G-CSR and G-MSR
is coNP-Complete, while solving CSR and MSR can be done
in polynomial time.

Proof Sketch. We prove in appendix E that for G-CSR, mem-
bership in coNP holds from guessing certificates x ∈ F and
z ∈ F and validating whether S is not sufficient. For G-MSR,
membership is a consequence of Proposition 4, which shows
that any feature that is contained in the subset minimal
global sufficient reason is necessary for some ⟨f, x⟩, or is
globally redundant otherwise. Hence, we can guess n assign-
ments x1, . . . , xn, and for each feature i ∈ {1, . . . n}, vali-
date whether i is locally necessary for ⟨f, xi⟩, and whether
this holds for more than k features. We prove hardness
with similar reductions for both G-CSR and G-MSR using
a reduction from the SSP (subset-sum problem), which is
coNP-Complete.

This result is particularly interesting since it provides evi-
dence of a lack of global interpretability in linear models,
in contrast to their inherent local interpretability, supporting
intuition raised by previous works (Molnar, 2020).

Another case where local computations were found to be
strictly less complex than global ones is identifying neces-
sary features in neural networks:

Theorem 6 MLPs are strictly more locally c-interpretable
with respect to FN.

This disparity was only found in MLPs, as demonstrated in
the following proposition:

Proposition 7 For FBDDs and Perceptrons, FN and G-FN
can be solved in polynomial time. However, for MLPs, FN
can be solved in polynomial time, while solving G-FN is
coNP-Complete.

Proof Sketch. We prove in appendix F that membership in
coNP can be obtained using Theorem 1. We then prove
hardness for MLPs by reducing from TAUT, a classic coNP-
Complete problem that checks whether a boolean formula
is a tautology. For Perceptrons and FBDDs we suggest
polynomial algorithms whose correctness is derived from
Theorem 1.

5.2. The Globally Interpretable Case

The fact that a model is more locally interpretable may seem
intuitive. Nevertheless, it is rather surprising that, in certain
instances, we can prove that the global explanation forms
are easier to compute than the local forms. We demonstrate
that this is sometimes the case both in neural networks and
in decision trees. Specifically, in these models, local feature
selection is computationally harder than global feature se-
lection. This contrasts with linear models, where the local
variant of feature selection was easier than the global:

Theorem 7 FBDDs and MLPs are strictly more globally
c-interpretable with respect to MSR.

Unlike linear models, decision trees and neural networks do
not possess the characteristics that enable a polynomial se-
lection of cardinally minimal local sufficient reasons, which
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is NP-Complete for decision trees, and even less tractable
(ΣP

2 -Complete) for neural networks (Barceló et al., 2020).
Intuitively, NP-Hardness in decision trees stems from the
need to explore an exponential number of possible subsets
to find the smallest one. In neural networks, this complexity
increases further because not only are there exponentially
many subsets to consider, but verifying if one specific subset
is a sufficient reason is already coNP-Complete, leading to
the overall ΣP

2 complexity.

However, we have demonstrated that both models have
strictly lower complexity when addressing global sufficient
reasons, primarily due to the uniqueness property of subset-
minimal global sufficient reasons established in Theorem 4.
This contrasts with their exponential abundance in the lo-
cal version (Proposition 1). We note that the complexity
of checking whether a subset is sufficient is akin to local
and global computations (CSR and G-CSR). However, when
obtaining cardinally minimal sufficient reasons (MSR, G-
MSR) there exists a strict disparity between local and global
computations since the complexity is obviously tied to the
number of possible subset candidates. This difference ren-
ders the global query version simpler to compute than the
local, due to the underlying uniqueness property:

Proposition 8 For FBDDs, G-CSR and G-MSR can be
solved in polynomial time, while MSR is NP-Complete.
Moreover, in MLPs, solving G-CSR and G-MSR is coNP-
Complete, while solving MSR is ΣP

2 -Complete.

Proof Sketch. We prove these results in appendix G. For
FBDDs, we provide polynomial algorithms for the global
queries, based on the observation that one can identify
global sufficient reasons by iterating over pairs of leaf nodes,
instead of iterating over single leaf nodes (which is how we
identify local sufficient reasons). For MLPs, membership
trivially holds, and the same hardness results used for Per-
ceptrons hold here as well.

On the practical side, this finding demonstrates that obtain-
ing cardinally minimal global sufficient reasons is feasible
in some cases. For decision trees, accomplishing this task is
feasible within polynomial time. When it comes to neural
networks, the task can be executed with a linear number
of calls to a coNP oracle, such as neural network verifica-
tion tools (Wang et al., 2021b; Brix et al., 2023; Wu et al.,
2024a).

This contrasts sharply with the local variant of this problem,
which is ΣP

2 complete and thus necessitates an exponen-
tially large number of verification queries, making this task
infeasible, even with the use of neural network verifiers.

The phenomenon observed in the MSR query, where global
explanations are easier to compute for decision trees and
neural networks, is mirrored in the feature-redundancy (FR)

query: it is computationally harder to identify locally redun-
dant features than globally redundant ones in these models:

Theorem 8 FBDDs and MLPs are strictly more globally
c-interpretable with respect to FR.

The complexity of identifying redundant features is closely
linked to that of the MSR query. Recall that identifying a
redundant feature is akin to validating whether a feature is
not part of any subset minimal sufficient reason. While this
is computationally challenging in the local scenario due to
the exponential number of subset-minimal local sufficient
reasons, it becomes more tractable in the global context.

Proposition 9 For FBDDs, G-FR can be solved in polyno-
mial time, while solving FR is coNP-Complete. Moreover,
in MLPs, solving G-FR is coNP-Complete, while solving
FR is ΠP

2 -Complete.

These results imply an intriguing observation regarding the
complexity of identifying local and global necessary and
redundant features in the specific case of MLPs:

Observation 1 For MLPs, global necessity (G-FN) is
strictly harder than local necessity (FN), whereas global re-
dundancy (G-FR) is strictly less hard than local redundancy
(FR).

Another interesting insight from the previous theorems is the
comparison between MLPs and Perceptrons. Since Percep-
trons are a specific case of MLPs with one layer, analyzing
the complexity difference between them can provide in-
sights into the influence of hidden layers on model intricacy.
Our findings indicate that while hidden layers influence the
local queries we examined, they do not impact the global
queries.

Observation 2 Obtaining CSR, MSR, and FR is strictly
harder for MLPs compared to MLPs with no hidden layers.
However, this disparity does not exist for G-CSR, G-MSR,
and G-FR.

5.3. The Equally Difficult Case

Finally, we explore the cases in which local and global com-
putations are complete for the same complexity class. First,
we demonstrate that detecting redundant features at both
local and global levels in Perceptrons is coNP-Complete:

Proposition 10 For Perceptrons, solving FR and G-FR are
both coNP-Complete.

This stands in sharp contrast with decision trees and neural
networks, where the global structure of the query is strictly
simpler than its local counterpart. This difference is at-
tributable, again, to the intrinsic properties of linear models,
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which lead to a diminished level of global interpretability,
as discussed in subsection 5.1.

Next, we show that in all of our analyzed models, the com-
plexity of the count-completion (CC) query remains the
same across the local and global versions of computation:

Proposition 11 For FBDDs, both CC and G-CC can be
solved in polynomial time. Moreover, for Perceptrons and
MLPs, solving both CC and G-CC are #P -Complete.

Proof Sketch. We prove these complexity results in ap-
pendix J. Membership in #P is straightfowrad. For the
hardness in the case of Perceptrons/MLPs, we reduce from
(local) CC of Perceptrons which is #P -complete. For FB-
DDs, we propose a polynomial algorithm.

We recall that the CC query is a relaxed counting version of
the CSR query, which seeks the relative portion of a subset
S, instead of posing a decision problem about S. This
complexity result highlights a notable distinction between
decision problems (which exhibit a complexity gap between
local and global forms) and counting problems, where such
a complexity gap is absent.

6. Related Work
Our work contributes to Formal XAI (Marques-Silva et al.,
2020), which focuses on the analysis of explanations with
mathematical guarantees. Several papers have explored
the computational complexity of obtaining such explana-
tions (Barceló et al., 2020; Wäldchen et al., 2021; Arenas
et al., 2022; 2021a;b; Ordyniak et al., 2023; Blanc et al.,
2021; 2022; Van den Broeck et al., 2022; Marques-Silva
et al., 2021; Audemard et al., 2020; Huang et al., 2022; Au-
demard et al., 2021; Izza & Marques-Silva, 2021); however,
these notable efforts primarily focused on local forms of
explanations, while our framework offers a comprehensive
approach for analyzing and contrasting both local and global
explanations.

Certain terms used in our work have been referred to by ad-
ditional names in the literature: “sufficient reasons” are also
known as abductive explanations (Ignatiev et al., 2019b),
while minimal sufficient reasons are sometimes referred as
prime implicants in Boolean formulas (Shih et al., 2018). A
notion similar to the CC query is the δ-relevant set (Wäld-
chen et al., 2021; Izza et al., 2021), which asks whether
the completion count exceeds a threshold δ. Similar dual-
ity properties to the ones studied here were shown to hold
considering the relationship between local sufficient and
contrastive reasons (Ignatiev et al., 2020b), and between
absolute sufficient reasons and adversarial attacks (Ignatiev
et al., 2019b). Minimal absolute sufficient reasons are the
smallest-sized subsets among all possible inputs for a spe-
cific prediction and rely on partial input assignments. In

our global sufficient reason definition, we do not rely on
particular inputs or partial assignments (see appendix L for
more details).

The necessity and redundancy queries that we discussed
were studied previously (Huang et al., 2023) and were also
explored under the context of bias detection (Arenas et al.,
2021a; Darwiche & Hirth, 2020; Ignatiev et al., 2020a). We
acknowledge, of course, that there exist many other notions
of bias and fairness (Mehrabi et al., 2021).

7. Conclusion
We present a theoretical framework using computational
complexity theory to assess both local and global perspec-
tives of interpreting ML models. Our work uncovers new
insights, including a duality between local and global expla-
nations and the uniqueness inherent in some global explana-
tion forms. We then build upon these insights and propose
novel proofs for complexity classes tied to various explana-
tion forms, enabling us to formally measure interpretability
across different local and global contexts. While some of
our findings justify folklore claims, others are unexpected.
We believe that these discoveries illustrate the importance
of applying computational complexity theory to gain a thor-
ough understanding of the interpretability of ML models,
paving the way for further research.
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Appendix
The appendix contains formalizations and proofs that were mentioned throughout the paper:

Appendix A formalizes the set of global explainability queries.
Appendix B formalizes the classes of models that were assessed in the paper.
Appendix C contains the proofs regarding the duality between local and global forms of explanations.
Appendix D contains the proofs concerning the inherent uniqueness of global forms of explanations.
Appendix E contains the proof of Proposition 6 (Complexity of G-CSR and G-MSR for Perceptrons)
Appendix F contains the proof of Proposition 7 (Complexity of FN and G-FN for FBDDs, Perceptrons, and MLPs)
Appendix G contains the proof of Proposition 8 (Complexity of G-CSR and G-MSR for FBDDs and MLPs)
Appendix H contains the proof of Proposition 9 (Complexity of G-FR for FBDDs and MLPs)
Appendix I contains the proof of Proposition 10 (Complexity of FR and G-FR for Perceptrons)
Appendix J contains the proof of Proposition 11 (Complexity of G-CC for FBDDs, Perceptrons, and MLPs)
Appendix K contains details on various extensions of this work.
Appendix L provides details on the terminologies and forms of explanation that are relevant to those discussed here.

A. Global forms of model explanations
In this section, we present the global forms of the explainability queries previously mentioned, which were initially
formulated in the paper for their local configuration.

G-CSR (Global Check Sufficient Reason):
Input: Model f ,and subset of features S.
Output: Yes, if S is a global sufficient reason of f (i.e., suff(f, S) = 1), and No otherwise.

G-MSR (Global Minimum Sufficient Reason):
Input: Model f , and integer k.
Output: Yes, if there exists a global sufficient reason S for f (i.e., suff(f, S) = 1) such that |S| ≤ k, and No otherwise.

G-FR (Global Feature Redundancy):
Input: Model f , and integer i.
Output: Yes, if i is globally redundant with respect to f , and No otherwise.

G-FN (Global Feature Necessity):
Input: Model f , and integer i.
Output: Yes, if i is globally necessary with respect to f , and No otherwise.

G-CC (Global Count Completions):
Input: Model f , and subset S.
Output: The global completion count c(S, f)

B. Model Classes
Next, we describe in detail the various model classes that were taken into account within this work:

Free Binary Decision Diagram (FBDD). A BDD is a graph-based model that represents a Boolean function f : F →
{0, 1} (Lee, 1959). The arbitrary Boolean function is realized by an acyclic (directed) graph, for which the following holds:
(i) every internal node v corresponds with a single binary input feature (1, . . . , n); (ii) every internal node v has exactly two
output edges, that represent the values {0, 1} assigned to v; (iii) each leaf node corresponds to either a True, or False, label;
and (iv) every variable appears at most once, along every path α of the BDD.

Hence, any assignment to the inputs x ∈ F corresponds to one unique path α from the BDD’s root to one of its leaf nodes,
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and any path α corresponds to some partial assignment xS . We denote f(x) := 1 if the label of the leaf node is true, and
f(x) := 0 if it is false. Moreover, we regard the size of a BDD (i.e., |f | ) to be the overall number of edges in the BDD’s
graph. In this work, we focus on the popular variant of Free BDD (FBDD) models, for which different paths, α, α′ are
allowed to have different orderings of the input variables {1, . . . , n} and on every path α no two nodes have the same label.
A decision tree can be essentially described as an FBDD whose foundational graph structure is a tree.

In our representation of the path α, we denote the nodes participating in the path as {α1, α2, . . . , αt}, where t represents the
total number of nodes in α. Each node αi within the path α, is defined similarly to any general node in the FBDD. However,
while any node possesses two output edges, we specify that a path node possesses a single path output edge. This edge
corresponds to the value assigned to the binary feature associated with node αi (either 1 or 0) in its corresponding partial
assignment.

Multi-Layer Perceptron (MLP). A Multi-Layer Perceptron (Gardner & Dorling, 1998; Ramchoun et al., 2016) f with
t − 1 hidden layers (gj for j ∈ {1, . . . , t − 1}) and a single output layer (gt), is recursively defined as follows: g(j) :=
σ(j)(g(j−1)W (j) + b(j)) (j ∈ {1, . . . , t}), given t weight matrices W (1), . . . ,W (t), t bias vectors b(1), . . . , b(t), and also
t activation functions σ(1), . . . , σ(t).

The MLP f outputs the value f := g(t), while g(0) := x ∈ {0, 1}n is the input layer that receives the input of the model. The
biases and weight matrices are defined by a series of positive values d0, . . . , dt that represent their dimensions. Furthermore,
we assume that all the weights and biases possess rational values, denoted as W (j) ∈ Qdj−1×dj and b(j) ∈ Qdj , which have
been acquired during the training phase. Due to our focus on binary classifiers over {1, . . . , n}, it necessarily holds that:
d0 = n and dt = 1. In this work, we focus on the popular ReLU(x) = max(0, x) activation function, with the exception of
the single activation in the last layer, that is typically a sigmoid function. Nonetheless, given our emphasis on post-hoc
interpretations, it is without loss of generality that we may assume the last activation function is represented by the step
function, i.e., step(z) = 1 ⇐⇒ z > 0.

Perceptron. A Perceptron (Ralston et al., 2003) is a single-layered MLP (i.e., t = 1): f(x) = step((w · x) + b), for b ∈ Q
and w ∈ Qn×d1 . Thus, for a Perceptron f the following holds w.l.o.g.: f(x) = 1 ⇐⇒ (w · x) + b ≥ 0.

C. The Duality of Local and Global Explanations
Minimum Hitting Set (MHS). Given a collection S of sets from a universe U, a hitting set h for S is a set such that
∀S ∈ S, h ∩ S ̸= ∅. A hitting set h is said to be minimal if none of its subsets is a hitting set, and minimum when it has the
smallest possible cardinality among all hitting sets.

Theorem 1 A feature i is necessary with respect to ⟨f, x⟩ if and only if {i} is a contrastive reason of ⟨f, x⟩.

Proof. For the first direction, let us begin by assuming that {i} is a contrastive reason with respect to ⟨f, x⟩. It then
follows, from the definition of sufficient and contrastive reasons, that {1, . . . , n} \ {i} is not a sufficient reason for ⟨f, x⟩.
Consequently, any subset S ⊆ {1, . . . , n} \ {i} is also not a sufficient reason for ⟨f, x⟩, which is equivalent to saying that
for any S ⊆ {1, . . . , n} it holds that suff(f, x, S \ {i}) = 0. This is true whether S is or is not a sufficient reason (and hence
is particularly true for the case where it is one, i.e., suff(f, x, S) = 1). As a direct consequence, for any S ⊆ {1, . . . , n} the
following condition holds: suff(f, x, S) = 1→ suff(f, x, S \ {i}) = 0.

For the second direction, let us assume that i is necessary with respect to ⟨f, x⟩, which particularly means that for all
S ⊆ {1, . . . , n} it holds that suff(f, x, S) = 1 → suff(f, x, S \ {i}) = 0. We now assume, by contradiction, that {i} is
not a contrastive reason for ⟨f, x⟩. Therefore, it follows, from the very definition of sufficient and contrastive reasons, that
{1, . . . , n}\{i} is a sufficient reason for ⟨f, x⟩. Moreover, it clearly holds that the entire set {1, . . . , n} is a sufficient reason
with respect to ⟨f, x⟩, which is a property that holds for any f and any x (fixing all features necessarily determines that the
prediction remains the same). Overall, we get that:

suff(f, x, {1, . . . , n}) = 1 ∧ suff(f, x, {1, . . . , n} \ {i}) = 1 (5)

This is in contradiction to the assumption that i is necessary with respect to ⟨f, x⟩.

Theorem 2 Any global sufficient reason of f intersects with all local contrastive reasons of ⟨f, x⟩ and any global contrastive
reason of f intersects with all local sufficient reasons of ⟨f, x⟩.
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Proof. For the first part, given some f and some x, let us assume, by contradiction, that there exists some global sufficient
reason S of f and some local contrastive reason S′ of ⟨f, x⟩ for which it holds that S ∩ S′ = ∅. Given that S ∩ S′ = ∅, it
naturally follows that S′ ⊆ S. Taking into account that S is a global sufficient reason of f , we can infer that S is also a
local sufficient reason of ⟨f, x⟩. Therefore, from the definition of sufficient and contrastive reasons, S does not qualify as a
contrastive reason with respect to ⟨f, x⟩, leading to the implication that no subset of S can be a contrastive reason either.
This assertion, however, contradicts the previously established S′ ⊆ S.

The second part of the claim will be almost identical to the first part: given some f and x, we can again assume, by
contradiction, that there exists some global contrastive reason S of f and some local sufficient reason S′ of ⟨f, x⟩ for which
it holds that: S ∩ S′ = ∅. Given that S ∩ S′ = ∅, it naturally follows that S′ ⊆ S. Since S is a global contrastive reason of
f it also acts as a local contrastive reason for ⟨f, x⟩. As a consequence, from the very definition of sufficient and contrastive
reasons, S can not be a sufficient reason for ⟨f, x⟩. This implies that no subset of S can serve as a sufficient reason for ⟨f, x⟩,
creating a contradiction with the premise that S′ ⊆ S.

Theorem 3 The MHS of all local contrastive reasons of ⟨f, x⟩ is a cardinally minimal global sufficient reason of f , and the
MHS of all local sufficient reasons of ⟨f, x⟩ is a cardinally minimal global contrastive reason of f .

Given some f , we denote S as the set of all local sufficient reasons of ⟨f, x⟩ and denote C as the set of all local contrastive
reasons of ⟨f, x⟩. As a direct consequence of Theorem 2, we can determine the following claim:

Lemma 1 A subset S is a global sufficient reason of f if and only if S is a hitting set of S and is a global contrastive reason
of f if and only if S is a hitting set of C.

As a consequence of Lemma 1, it directly follows that cardinally minimal local contrastive reasons are with correspondence
to MHSs of S, and cardinally minimal local sufficient reasons are with correspondence to MHSs of C.

The importance of the MHS duality. An essential finding when dealing with inconsistent sets of clauses lies in a similar
MHS duality between Minimal Unsatisfiable Sets (MUSes) and Minimal Correction Sets (MCSes) (Birnbaum & Lozinskii,
2003; Bacchus & Katsirelos, 2015). In this context, MCSes are MHSs of MUSes, and vice versa (Bailey & Stuckey,
2005; Liffiton & Sakallah, 2008). This discovery has played a pivotal role in the advancement of algorithms designed for
MUSes and MCSes and this result has found applications in various contexts (Bacchus & Katsirelos, 2015; Liffiton et al.,
2016). While the majority of this research focuses on propositional theories, others focus on Satisfiability Modulo Theories
(SMT) (De Moura & Bjørner, 2008).

Within the context of explainable AI, previous research has shown similar duality principles considering the relationship
between local contrastive and sufficient reasons (Ignatiev et al., 2020b) as well as the relationship between absolute sufficient
reasons and adversarial attacks (Ignatiev et al., 2019b). This relationship was shown to be critical in the exact computation
of local sufficient reasons for various ML models such as decision trees (Izza et al., 2022), tree ensembles (Audemard et al.,
2023; 2022; Izza & Marques-Silva, 2021; Ignatiev et al., 2022; Boumazouza et al., 2021), and neural networks (Bassan &
Katz, 2023; Malfa et al., 2021). In neural networks, obtaining exact formal explanations presents substantial computational
challenges. However, these explanations can be approximated with neural network verifiers, which are increasingly utilized
for this purpose (Bassan et al., 2023; Bassan & Katz, 2023; Malfa et al., 2021; Wu et al., 2024b; Huang & Marques-Silva,
2023; Fel et al., 2023) and for formally verifying other properties (Casadio et al., 2022; Amir et al., 2021b; 2022; 2023b;c).
More recently, (Bassan et al., 2023) demonstrated that leveraging the MHS duality may have an even larger effect of
efficiency enhancement when computing sufficient reasons in neural networks, particularly within the domain of reactive
systems, a domain in which formal analysis is extensively developed (Amir et al., 2021a; Corsi et al., 2022; Yerushalmi
et al., 2022; 2023; Amir et al., 2023a; Corsi et al., 2024a;b; Mandal et al., 2024).

D. The Uniqueness of Global Explanations
Proposition 1 There exists some f and some x ∈ F such that there are Θ( 2n√

n
) local subset minimal or cardinally minimal

sufficient reasons of ⟨f, x⟩.

Proof. We construct f as follows:

f(y) =

{
1 if

∑n
i=1 yi ≥ ⌊

n
2 ⌋

0 otherwise
(6)
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We define the instance x := 1. Clearly any subset S of size ⌊n2 ⌋ or larger is a local sufficient reason of ⟨f, x⟩ (since fixing
the values of S to x determines that the prediction remains: 1). Furthermore, every one of these subsets is minimal due to the
fact that any subset of size ⌊n2 ⌋ − 1 or smaller is not a sufficient reason of ⟨f, x⟩ (it may cause a misclassification to class 0).
Thus, it satisfies that there are

(
n

⌊n
2 ⌋
)

subset minimal local sufficient reasons of ⟨f, x⟩. From Stirling’s approximation, it
holds that:

lim
n→∞

2
√
2π

e2
· 2

n

√
n
≤

(
n

⌊n2 ⌋

)
≤ e

π
· 2

n

√
n

(7)

This implies that
(

n
⌊n

2 ⌋
)
= Θ( 2n√

n
). Given that no local sufficient reason of size smaller than ⌊n2 ⌋ is present, these are, also

cardinally-minimal sufficient reasons.

Proposition 2 If S1 and S2 are two global sufficient reasons of some non-trivial f , then S1 ∩ S2 = S ̸= ∅, and S is a
global sufficient reason of f .

Proof. Our proof focuses on non-trivial functions, i.e., functions that do not always output 0 or always output 1. In other
words, there exist some x,y ∈ F such that f(x) = 1 and f(y) = 0. However, it is important to point out that the general
uniqueness property we will prove later (Theorem 4) is independent of whether f is non-trivial.

We begin by proving the following lemma:

Lemma 2 For any f and x ∈ F, if S is a sufficient reason of ⟨f, x⟩ then there does not exist any y ∈ F such that
f(y) = ¬f(x) and there exists some S′ ⊆ S that is a sufficient reason of ⟨f,y⟩.

Proof. Given that S is sufficient for ⟨f, x⟩, it follows that:

∀(z ∈ F). [f(xS ; zS̄) = f(x)] (8)

By contradiction, let us assume that there exists some y ∈ F for which f(y) = ¬f(x) and there exists some S′ ⊆ S that is
a sufficient reason of ⟨f,y⟩. Since S′ ⊆ S is a sufficient reason for ⟨f,y⟩, this also implies that S is sufficient for ⟨f,y⟩. In
other words, the following condition holds:

∃(y ∈ F), ∀(z ∈ F). [f(yS̄ ; zS) = f(y) ̸= f(x)] (9)

Given that Equation 9 is valid for any z ∈ F, it is, consequently, applicable specifically to x ∈ F. In other words:

∃(y ∈ F) [f(yS̄ ; xS) = f(y) ̸= f(x)] (10)

This is inconsistent with the assertion that S is sufficient for ⟨f, x⟩.

Lemma 3 For a non-trivial function f , if S is a sufficient reason of ⟨f, x⟩ then any S′ ⊆ S is not a global sufficient reason
of f .

Proof. Given that S serves as a sufficient reason for ⟨f,x⟩, it follows from Lemma 2 that there does not exist any y ∈ F for
which f(y) = ¬f(x) and S is sufficient for ⟨f,y⟩. Consequently, if there indeed exists some y ∈ F for which S serves as a
sufficient reason for ⟨f,y⟩, it necessarily follows that f(x) = f(y).

Let us, by contradiction, assume the existence of some S′ ⊆ S that serves as a global sufficient reason of f . This implication
further entails that S is also a global sufficient reason for f . Consequently, from the definition of global sufficient reasons, S
is also a local sufficient reason for ⟨f,y⟩ for any y ∈ F. Given the property highlighted earlier, it holds that for any y ∈ F,
we have f(y) = f(x), which stands in contradiction to the premise that f is non-trivial.

We are now in a position to prove the first part of proposition 2:

Lemma 4 If S1 and S2 are two global sufficient reasons of some non-trivial f , then S1 ∩ S2 ̸= ∅.
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Proof. Let us assume, to the contrary, that S1 ∩ S2 = ∅. Hence, it follows that S1 ⊆ S2. Given that S2 is a global sufficient
reason for f , it naturally follows that it is also a local sufficient reason for some ⟨f, x⟩. Since S2 is a local sufficient reason
for some ⟨f, x⟩, Lemma 3 determines that there does not exist any S′ ⊆ S2 that can be a global sufficient reason for f . This
is in direct contradiction with our earlier inference that S1 ⊆ S2 is a global sufficient reason for f .

We now can proceed to prove the second part of proposition 2:

Lemma 5 If S1 and S2 are global sufficient reasons of some non-trivial f ,then S = S1 ∩ S2 is a global sufficient reason
of f .

Proof. First, from Lemma 4, it holds that S ̸= ∅. In instances where either S1 ⊆ S2 or S2 ⊆ S1, the claim is straightforwardly
true. Therefore, our remaining task is to prove the claim for a non-empty set S with the conditions S ⊊ S1 and S ⊊ S2.

Consider an arbitrary vector x ∈ F. Our aim is to prove that S is a local sufficient reason with respect to ⟨f, x⟩. Should this
hold true for an arbitrary x, it follows that S constitutes a global sufficient reason of f .

Given that S1 and S2 are global sufficient reasons, it holds that:

∀(z ∈ F). [f(xS1 ; zS̄1
) = f(x) = f(xS2 ; zS̄2

)] (11)

To demonstrate that S is a local sufficient reason for ⟨f, x⟩, let us assume, by contradiction, that it is not. Therefore, it
satisfies that:

∃(z ∈ F). [f(xS ; zS̄) ̸= f(x)] ⇐⇒
∃(z ∈ F). [f(xS ; zS2\S ; zS̄2

) ̸= f(x)]
(12)

Recall that S2 is a global sufficient reason of f . Thus, assigning the features of S to the corresponding values in x determines
the prediction. This also implies that fixing the features of S to the corresponding values x and assigning those of S2 \ S to
the specific values of z from equation 12, determines that the prediction remains the same (which in this case is not the value
f(x)). Formally put:

∀(z′ ∈ F). [f(xS ; zS2\S ; z′S̄2
) = f(xS ; zS2\S ; zS̄2

) ̸= f(x)] (13)

Let us define the set S′ = {1, . . . , n} \ {S1 ∪ S2}. We now can equivalently express equation 13 as:

∀(z′ ∈ F). [f(xS ; zS2\S ; z′S1\S ; z′S′) ̸= f(x)] (14)

But we know that S1 is also a global sufficient reason and hence fixing the values of S1 to x determines that the prediction
is f(x). Particularly, fixing the values of S1 to x and the values of S2 \ S to z (from equation 12) still determines that the
prediction is always f(x).

∀(z′ ∈ F). [f(xS1
; zS2\S ; z′S′∪S) = f(x)] (15)

Since the preceding statement remains valid for any partial assignment of the features in S′ ∪ S, we can consider a specific
assignment where the features in S are set to their respective values in x; thus, it is established that:

∀(z′ ∈ F). [f(xS ; xS1
; zS2\S ; z′S′) = f(x)] (16)

This particularly implies that:

∃(z′ ∈ F). [f(xS ; zS2\S ; xS1\S ; z′S′) = f(x)] (17)

which contradicts Equation 14.
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Theorem 4 There exists one unique subset-minimal global sufficient reason of f .

Proof. First, for the scenario in which f is trivial (always outputs 1 or always outputs 0) it holds that any subset S is a global
sufficient reason. Therefore, S = ∅ is a unique subset-minimal global sufficient reason. Let us now consider a non-trivial
function f . Let us assume, by contradiction, that two distinct subset minimal global sufficient reasons of f exist: S1 ̸= S2.
Since S1 and S2 are subset minimal, it clearly holds that S1 ̸⊆ S2 and S2 ̸⊆ S1. Moreover, from Proposition 2 it can be
asserted that S1 and S2 are not disjoint, i.e., S1 ∩ S2 ̸= ∅. Now, we can use Proposition 5, and conclude that S = S1 ∩ S2 is
also a global sufficient reason of f . This clearly contradicts the subset minimality of S1 and S2.

Proposition 3 For any possible ordering of features in line 2 of Algorithm 2, Algorithm 2 converges to the same global
sufficient reason.

Since Algorithm 2 converges to a subset-minimal global sufficient reason, and there is only one unique subset-minimal
global sufficient reason (Theorem 4), then iterating over any ordering of features in line 2 of Algorithm 2 will converge
to the same subset. We note that the convergence of Algorithm 2 to a subset-minimal sufficient reason stems from the
hereditary property of sufficient reasons, applicable to both local and global contexts. Specifically, if S ⊆ {1, . . . , n} is a
(local/global) sufficient reason, then any subset S′ ⊆ {1, . . . , n} that contains S (i.e., S ⊆ S′) will also be a (local/global)
sufficient reason.

Proposition 4 Let S be the unique subset minimal global sufficient reason of f . For every i, i ∈ S if and only if i is locally
necessary for some ⟨f, x⟩, and i ∈ S if and only if i is globally redundant for f .

We begin by proving the first part of the claim:

Lemma 6 S is a unique subset-minimal global sufficient reason of f if and only if for every feature i ∈ S it holds that i is
locally necessary for some ⟨f, x⟩.

Proof. For the first direction, assume i is necessary for some ⟨f, x⟩. Then, from Theorem 1, it holds that {i} is contrastive
for some ⟨f, x⟩. Furthermore, the first duality theorem (Theorem 2), implies that each local contrastive reason intersects
each global sufficient reason. Hence, we conclude that i ∈ S, for every global minimal sufficient reason S.

For the second direction, suppose that S is a unique subset-minimal global sufficient reason of f . Let there be some i ∈ S.
Since S is unique, then {1, . . . , n} \ {i} is necessarily not a global sufficient reason. If this was so, then there would exist
some subset S′ ⊆ {1, . . . , n} \ {i} that is a subset-minimal global sufficient reason, contradicting the uniqueness of S.

Since {1, . . . n} \ {i} is not a global sufficient reason, there exist some x′, z′ ∈ F such that:

f(x′{1,...n}\{i}; z′{i}) ̸= f(x′) (18)

Thus, {i} serves as a contrastive reason for ⟨f, x′⟩ and from Theorem 1 we can infer that i is necessary with respect to
⟨f, x′⟩.

For the second part of the claim, we prove the following Lemma:

Lemma 7 Let S be the unique subset-minimal global sufficient reason of f . Then i is globally redundant if and only if
i ∈ S.

Proof. For the first direction, let us assume that i is globally redundant and assume, by contradiction, that i ∈ S. Given that i
is globally redundant for f then it holds that for any x ∈ F: suff(f, x, S) = 1→ suff(f, x, S \ {i}) = 1. Hence, S \ {i} is
also a global sufficient reason of S, contradicting the subset-minimality of S.

For the second direction, assume that i ∈ S. From Lemma 6, it holds that i is not locally necessary for any ⟨f, x⟩. In other
words, there does not exist any x ∈ F for which suff(f, x, S) = 1 → suff(f, x, S \ {i}) = 0. This implies that for any
x ∈ F it satisfies that suff(f, x, S) = 1→ suff(f, x, S \ {i}) = 1, i.e., that i is globally redundant with respect to f .

Proposition 5 Any feature i is either locally necessary for some ⟨f, x⟩ or globally redundant for f .

Building upon Proposition 4, we can discern that the unique subset minimal sufficient reason S of f categorizes all features
into two distinct categories: those that are locally necessary for some ⟨f, x⟩ and those that are globally redundant for f .
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E. Proof of proposition 6
Proposition 6 For Perceptrons, solving G-CSR and G-MSR is coNP-Complete, while solving CSR and MSR can be done in
polynomial time.

As mentioned in Table 1, the complexity of CSR and MSR for Perceptrons are drawn from the work of (Barceló et al., 2020)
(similar proofs appear in (Marques-Silva et al., 2020)). We now move to prove all other complexity classes:

Lemma 8 G-CSR is coNP-Complete for Perceptrons.

Proof. Membership is straightforward since we can simply guess some x, z ∈ F and validate whether it satisfies that
f(xS ; zS̄) ̸= f(x). If so, ⟨f, S⟩ ̸∈ G-CSR.

We now will proceed to prove that G-CSR is also coNP-hard, We first briefly describe how the problem of (local) CSR
can be solved in polynomial time for perceptrons, as proven by (Barceló et al., 2020) (a similar proof for a general linear
classifier appears in (Marques-Silva et al., 2020)). This will give better intuition for the hardness reduction in the global
setting. Given some ⟨f, x, S⟩, recall that a Perceptron f is defined as f = ⟨w, b⟩, where w is the weight vector and b is the
bias term. Therefore, it is possible to obtain the exact value of

∑
i∈S xi · wi.

Then, for the remaining features in S, one can linearly determine the y assignments corresponding to the maximal and
minimal values of

∑
i∈S̄ yi · wi. The maximal value is obtained by setting yi := 1 when wi ≥ 0 and yi := 0 when wi ≤ 0.

The minimal value is obtained respectively (setting yi := 1 when wi < 0 and yi := 0 when wi ≥ 0). We are now able to
compute the full range of potential values that may be realized by assigning the values of S to x. It is hence straightforward
that S is a (local) sufficient reason for ⟨f, x⟩ if and only if this entire range is always positive or always negative. This can be
determined by checking whether both the minimal possible value and maximal possible value are both positive or negative
which is equivalent to checking whether the maximal possible value is non-negative or that the minimal possible value is
positive. Formally put:

∑
i∈S

xi · wi +max{
∑
i∈S̄

yi · wi + b | y ∈ F} ≤ 0 ∨

∑
i∈S

xi · wi +min{
∑
i∈S̄

yi · wi + b | y ∈ F} > 0
(19)

This can clearly be determined in linear time using the computation method outlined above. Note that we require a strict
inequation on the second term since we assumed w.l.o.g. that a zero weighted term is classified as 0 (the negative weighted
class) and not 1 (the positive weighted class).

Now, for the global setting, we notice that max{
∑

i∈S̄ yi ·wi + b | y ∈ F} and min{
∑

i∈S̄ yi ·wi + b | y ∈ F} can still be
computed in the same manner as above. However, one must verify that equation 19 is satisfied for every possible value x.
This, in turn, carries implications for the associated complexity. We show, indeed, that G-CSR for perceptrons is coNP-hard.

We reduce G-CSR for Perceptrons from SSP , known to be coNP-Complete. SSP (subset-sum-problem) is a classic
NP-Complete problem which is defined as follows:

SSP (Subset Sum Problem):
Input: ⟨(z1, z2, . . . , zn), T ⟩, where (z1, z2, . . . , zn) is a set of positive integers and T , is the target integer.
Output: Yes, if there exists a subset S′ ⊆ {1, 2, . . . , n} such that

∑
i∈S′ zi = T , and No otherwise.

For the case of SSP , the language decides whether there does not exist a subset of features S′ ⊆ (1, 2, . . . , n) for which∑
i∈S′ zi = T , i.e., for all subsets it holds that

∑
i∈S′ zi ̸= T .

We reduce G-CSR for Perceptrons from SSP . Given some ⟨(z1, z2, . . . , zn), T ⟩ we construct a Perceptron f := ⟨w, b⟩ such
that w := (z1, z2, . . . , zn) · (wn+1) (w is of size n+ 1), where wn+1 := 1

2 , and b := −(T + 1
4 ). The reduction computes

⟨f, S := {1, . . . , n}⟩.

Clearly, it holds that:
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max{
∑
i∈S̄

yi · wi | y ∈ F} = max{
∑

i∈{1,...,n+1}\{1,...,n}

yi · wi | y ∈ F} =

max{
∑

i=n+1

yi · wi | y ∈ F} = max{1
2
, 0} = 1

2

(20)

and that:

min{
∑
i∈S̄

yi ·wi | y ∈ F} = min{
∑

i∈{1,...,n+1}\{1,...,n}

yi · wi | y ∈ F} =

min{
∑

i=n+1

yi · wi | y ∈ F} = min{1
2
, 0} = 0

(21)

If ⟨(z1, z2, . . . , zn), T ⟩ ∈ SSP , there does not exist a subset S′ ⊆ S = {1, 2, . . . , n} for which
∑

i∈S′ zi = T , put
differently — for any subset S′ ⊆ S = {1, 2, . . . , n} it holds that

∑
i∈S′ zi > T or

∑
i∈S′ zi < T . But since the values in

(z1, z2, . . . , zn) are positive integers then it also holds that for any subset S′ the following condition is met:

∀S′ ⊆ S [ [
∑
i∈S′

zi > T +
1

4
] ∨ [

∑
i∈S′

zi < T − 1

4
] ] ⇐⇒

∀S′ ⊆ S [ [
∑
i∈S′

wi > T +
1

4
] ∨ [

∑
i∈S′

wi < T − 1

4
] ] ⇐⇒

∀S′ ⊆ S [ [
∑
i∈S′

wi · 1i +
∑

i∈S\S′

wi · 0i > T +
1

4
] ∨ [

∑
i∈S′

wi · 1i +
∑

i∈S\S′

wi · 0i < T − 1

4
] ] ⇐⇒

∀x ∈ {0, 1}n [ [
∑
i∈S

xi · wi > T +
1

4
] ∨ [

∑
i∈S

xi · wi < T − 1

4
] ] ⇐⇒

∀x ∈ {0, 1}n [ [
∑
i∈S

xi · wi + b > 0] ∨ [
∑
i∈S

xi · wi + b < −1

2
] ]

(22)

Since we know from equations 20 and 21 that:

[min{
∑
i∈S̄

yi ·wi | y ∈ F} = 0] ∧ [max{
∑
i∈S̄

yi · wi | y ∈ F} = 1

2
] (23)

This, combined with the result from equation 22, implies that:

∀x ∈ {0, 1}n [ [
∑
i∈S

xi · wi + b > 0] ∨ [
∑
i∈S

xi · wi + b < −1

2
] ] ⇐⇒

∀x ∈ {0, 1}n+1 [ [
∑
i∈S

xi · wi + xn+1 · wn+1 + b > 0] ∨ [
∑
i∈S

xi · wi + xn+1 · wn+1 + b < 0] ] ⇐⇒

∀x, y ∈ {0, 1}n+1 [ [
∑
i∈S

xi · wi +
∑
i∈S

yi · wi + b > 0] ∨ [
∑
i∈S

xi · wi +
∑
i∈S

yi · wi + b < 0] ] ⇐⇒

∀x, y ∈ {0, 1}n+1 [ [f(xS ; yS̄) = f(xS ;¬yS̄) = 0] ∨ [f(xS ; yS̄) = f(xS ;¬yS̄) = 1] ]

(24)

This implies that for any x ∈ F, fixing the values of S = {1, . . . , n} always maintains either a positive value (classified to 1)
or a negative value (classified to 0) for f over any possible y, thus implying that S is a global sufficient reason of f and that
⟨f, S⟩ ∈ G-CSR.

If ⟨(z1, z2, . . . , zn), T ⟩ ̸∈ SSP , then there exists a subset S′ ⊆ S = {1, 2, . . . , n} for which
∑

si∈S′ zi = T , implying that:
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∃S′ ⊆ S [T − 1

4
] <

∑
i∈S′

zi < [T +
1

4
] ⇐⇒ ∃S′ ⊆ S [T − 1

4
] <

∑
i∈S′

wi < [T +
1

4
] ⇐⇒

∃S′ ⊆ S [T − 1

4
] <

∑
i∈S′

wi · 1i +
∑

i∈S\S′

wi · 0i < [T +
1

4
] ⇐⇒

∃x ∈ {0, 1}n [T − 1

4
] <

∑
i∈S

wi · xi < [T +
1

4
] ⇐⇒ ∃x ∈ {0, 1}n (−1

2
) <

∑
i∈S

wi · xi + b < 0

(25)

From here it holds that:

[ ∃x ∈ {0, 1}n 0 <
∑
i∈S

wi · xi + b+ wn+1 · 1 < (
1

2
) ] ∧

[ ∃x ∈ {0, 1}n (−1

2
) <

∑
i∈S

wi · xi + b+ wn+1 · 0 < 0 ]

(26)

This implies that:

∃x, y, y′ ∈ {0, 1}n+1 [ 0 <
∑
i∈S

wi · xi + wn+1 · yn+1 + b < (
1

2
) ] ∧

[ −(1
2
) <

∑
i∈S

wi · xi + wn+1 · y′
n+1 + b < 0]

(27)

This is equivalent to saying there exist features x, y, y′ ∈ {0, 1}n+1 such that the output of the perceptron f for the input
(xS ; yS̄) always lies in the range from 0 to 1

2 (thereby being positive), and the output for the input (xS ; y′
S̄
) ranges from

−( 12 ) to 0 (thereby being negative). Hence:

∃x, y, y′ ∈ {0, 1}n+1 [ f(xS ; yS̄) = 1] ∧ [ f(xS ; y′S̄) = 0] (28)

Thus, there exists some x for which S is not a sufficient reason with respect to ⟨f, x⟩, indicating that S is not a global
sufficient reason for f and ⟨f, S⟩ ̸∈ G-CSR. This concludes the reduction.

Hardness results for Perceptrons, clearly indicate coNP-hardness for MLPs.

Lemma 9 G-MSR is coNP-Complete for Perceptrons.

Proof. Membership. Membership is derived from the fact that one can guess some x1, . . . xn ∈ F and z1, . . . , zn ∈ F.
We then can validate for every feature i ∈ (1, . . . , n) whether: f(xi{1,...,n}\{i}; zi{i}) ̸= f(xi). This will imply that {i} is
contrastive with respect to ⟨f, xi⟩ and from Theorem 1, i is necessary with respect to ⟨f, xi⟩. Now, from Proposition 4 it
holds that i is contained in the unique global subset minimal sufficient reason of f if and only if i is necessary with respect
to some ⟨f, x⟩. Therefore, it is possible to validate whether ⟨f, k⟩ ̸∈ G-MSR using a certificate that checks whether the
number of features that satisfy: f(xi{1,...,n}\{i}; zi{i}) ̸= f(xi) is larger than k.

Hardness. For hardness, we perform a similar reduction to the one performed for G-CSR for Perceptrons and reduce
G-MSR for Perceptrons from SSP . Given some ⟨(z1, z2, . . . , zn), T ⟩, construct a Perceptron f := ⟨w, b⟩ where we define
w := (z1, z2, . . . , zn) · (wn+1) (i.e., w is of size n+ 1), where wn+1 := 1

2 , and b := −(T + 1
4 ). The reduction computes

⟨f, k := n⟩. We observe that this reduction is precisely the same as the one presented in Lemma 8, with the only difference
being that we define k := n rather than S := {1, . . . , n}. Therefore, we will base some of our assertions on the validity of
the reduction from Lemma 8.

Consider that ⟨(z1, z2, . . . , zn), T ⟩ ∈ SSP . Drawing upon the correctness of the reduction in Lemma 8, we can infer that
S = {1, 2, . . . , n} constitutes a global sufficient reason of f . To put it differently, a subset exists — trivially of size k = n
in this instance — that serves as a global sufficient reason of f . Consequently, ⟨f, k⟩ ∈ G-MSR for Perceptrons.
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Assume ⟨(z1, z2, . . . , zn), T ⟩ ̸∈ SSP . We need to prove that there does not exist any global sufficient reason of f of size
k or less. Since any subset containing a sufficient reason is a sufficient reason, it is enough to show that there does not
exist any global sufficient reason of exactly size k. From the correctness of the reduction presented in Lemma 8 we indeed
already know that {1, . . . , n}, which corresponds to the assignments of (z1, z2, . . . , zn) is not a sufficient reason in this case.
However, we still need to prove that there does not exist any other sufficient reason of size k.

Let j ̸= n+ 1 be some feature and let S := {1, 2, . . . , n+ 1} \ {j} be some subset of features. We will now prove that S is
not a global sufficient reason for f . First, since any zj in (z1, z2, . . . , zn) is a positive integer, and since wn+1 = 1

2 is also
positive, then it holds that:

max{
∑
i∈S̄

yi · wi | y ∈ F} = max{zj , 0} = zj ∧

min{
∑
i∈S̄

yi · wi | y ∈ F} = min{zj , 0} = 0
(29)

This implies that that S is a global sufficient reason of f iff:

∀x ∈ {0, 1}n+1 [
∑
i∈S

xi · wi > T ] ∨ [
∑
i∈S

xi · wi ≤ T − zj ] (30)

Within Lemma 8 we have already determined that if ⟨(z1, z2, . . . , zn), T ⟩ ̸∈ SSP , then the following holds:

∃x ∈ {0, 1}n
∑

i∈{1,...,n}

xi · wi = T ⇐⇒

∃x ∈ {0, 1}n
∑

i∈{1,...,n}\{j}

xi · wi = T − zj ⇐⇒

∃x ∈ {0, 1}n
∑

i∈{1,...,n}\{j}

xi · wi + wn+1 = T − zj +
1

2
⇐⇒

∃x ∈ {0, 1}n+1
∑

i∈{1,...,n,n+1}\{j}

xi · wi = T − zj +
1

2

(31)

Now, since T and zj are positive integers, then from equation 31 it holds that:

∃x ∈ {0, 1}n+1
∑

i∈{1,...,n,n+1}\{j}

xi · wi = T − zj +
1

2
⇒

∃x ∈ {0, 1}n+1 T − zj <
∑

i∈{1,...,n,n+1}\{j}

xi · wi < T
(32)

From equation 30, this implies that {1, . . . , n, n + 1} \ {j} is not a global sufficient reason of f . Since there does not
exist any j for which {1, . . . , n, n+ 1} \ {j} is a global sufficient reason of f and since we have already determined that
{1, . . . , n} is not a global sufficient reason of f , we are left with that there does not exist any global sufficient reason of size
k, concluding the reduction.

F. Proof of Proposition 7
Proposition 7 For FBDDs and Perceptrons, FN and G-FN can be solved in polynomial time. However, for MLPs, FN can
be solved in polynomial time, while solving G-FN is coNP-Complete

As mentioned in Table 1, the complexity of FN for FBDDs is drawn from the work of (Huang et al., 2023). We now move to
prove all other complexity classes:
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Lemma 10 G-FN can be solved in polynomial time for FBDDs.

Proof. Let ⟨f, i⟩ be an instance. We describe the following polynomial algorithm: we enumerate pairs of leaf nodes (v, v′)
that correspond to the paths (α, α′). We denote by αS the subset of nodes from α that correspond to the features of S. Given
the pair (α, α′) we check if α and α′ “match” on all features from {1, . . . , n} \ {i} (more formally, there do not exist two
nodes vα ∈ α{1,...,n}\{i} and vα′ ∈ α′

{1,...,n}\{i} with the same input feature j and with different path output edges). If we
find two paths α and α′ that (i) match on all features in {1, . . . , n} \ {i}, (ii) do not match on feature i (i.e., have different
path output edges for input feature i), and (iii) have the same label (both classified as True, or both classified as False) the
algorithm returns “False” (i.e, i is not globally necessary with respect to f ). If we do not encounter any such pair (v, v′), the
algorithm returns “True”.

Clearly, if the algorithm encounters two paths (α, α′) that satisfy these three conditions, then it can be concluded that {i}
is not contrastive with respect to any assignment x associated with α and α′. From Theorem 1, this implies that i is not
necessary with respect to the corresponding instances of ⟨f, x⟩. However, if no such pair was encountered, then there does
not exist an input x ∈ F for which {i} is not contrastive. It hence holds that {i} is contrastive for any ⟨f, x⟩ and Theorem 1
thereby implies that i is necessary with respect to any ⟨f, x⟩.

Lemma 11 G-FN can be solved in linear time for Perceptrons.

Proof. Given some ⟨f, i⟩ such that f := ⟨w, b⟩ is some Perceptron, we can perform a similar process to the one described
under Lemma 8 and calculate: max{

∑
j∈{1,...,n}\{i} yj ·wj+b | y ∈ F} as well as: min{

∑
j∈{1,...,n}\{i} yj ·wj+b | y ∈ F}

in polynomial time. We now simply need to check whether there exists any instance x ∈ F for which:

xi · wi +max{
∑

j∈{1,...,n}\{i}

yj · wj + b | y ∈ F} ≤ 0 ∨

xi · wi +min{
∑

j∈{1,...,n}\{i}

yj · wj + b | y ∈ F} > 0
(33)

This condition can obviously be validated in polynomial time since there are only two possible relevant scenarios (xi = 1 or
xi = 0). If this condition holds for one of the two possibilities then there exists an instance x ∈ F for which {1, . . . , n} \ {i}
is a local sufficient reason of ⟨f, x⟩. It thereby holds that {i} is not a contrastive reason of ⟨f, x⟩. Hence, we can use
Theorem 1, and conclude that i is not necessary with respect to ⟨f, x⟩, thus implying that i is also not globally necessary.
Should equation 33 not hold, it follows that for any x ∈ F the set {1, . . . , n} \ {i} does not constitute a local sufficient
reason of ⟨f, x⟩. This conveys that {i} is a local contrastive reason for any ⟨f, x⟩. Theorem 1 further establishes that i is
necessary for any ⟨f, x⟩, and hence i is consequently globally necessary.

Lemma 12 FN is in PTIME for Perceptrons and MLPs

Building upon the correctness of Theorem 1, we can deduce that determining the necessity of feature i in relation to ⟨f, x⟩
aligns with verifying if {i} serves as a contrastive reason for ⟨f, x⟩. For both MLPs and Perceptrons, it is possible to
compute both f(x{1,...,n}\{i};1{i}) and f(x{1,...,n}\{i};0{i}) and validate whether:

f(x{1,...,n}\{i};1{i}) ̸= f(x{1,...,n}\{i};0{i}) (34)

The given condition is satisfied if, and only if, {i} is contrastive with respect to ⟨f,x⟩, thereby ascertaining whether i is
necessary in relation to ⟨f,x⟩.

Lemma 13 G-FN is coNP-Complete for MLPs.

Proof. To obtain membership, given a feature i that we aim to verify as globally necessary with respect to f , we can guess
an instance x ∈ F and determine whether:

f(x{1,...,n}\{i};¬x{i}) = f(x) (35)
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In other words, we wish to validate whether fixing all features in {1, . . . , n} \ {i} to their values in x, and negating only the
value of feature i (to be ¬xi) changes the prediction of f(x). Clearly, this holds if and only if {i} is not a contrastive reason
for ⟨f, x⟩ and from Theorem 1 this holds if and only if i is not necessary with respect to ⟨f, x⟩. Put differently, there exists
some x ∈ F for which i is not necessary with respect to ⟨f, x⟩. This implies that ⟨f, i⟩ ̸∈ G-FN.

For Hardness, we will make use of the following Lemma whose proof appears in the work of (Barceló et al., 2020).

Lemma 14 If we have a Boolean circuit B, we can create an MLP fB in polynomial time that represents an equivalent
Boolean function with respect to B.

We now prove hardness by reducing from TAUT, a well-known coNP-Complete problem which is defined as follows:

TAUT (Tautology):
Input: A boolean formula ψ
Output: Yes, if ψ is a tautology and No otherwise.

Given some ⟨ψ⟩ with variables: x1, . . . xn we introduce a new variable xn+1 and construct a new boolean formula:

ψ′ := ψ ∧ xn+1 (36)

We then can use Lemma 14 to transform it to an MLP f and construct ⟨f, i := n+ 1⟩.

If ⟨ψ⟩ ∈ TAUT then it holds that ψ is always True, and hence:

f(x{1,...,n};1{n+1}) = 1 ∧ f(x{1,...,n};0{n+1}) = 0 (37)

where 1{n+1} and 0{n+1} denote that feature n+ 1 is set to either 1 or 0.

Hence, for any value x ∈ F we can find a corresponding instance z ∈ F such that:

f(x{1,...,n}; z{n+1}) ̸= f(x) (38)

This implies that the subset {n+ 1} is contrastive with respect to any ⟨f, x⟩ and from theorem 1, feature n+ 1 is necessary
with respect to any ⟨f, x⟩. Thus, it satisfies that feature n + 1 is globally necessary with respect to f and consequently,
⟨f, i⟩ ∈ G-FN.

Let us now consider the scenario where ⟨ψ⟩ ̸∈ TAUT. Under this assumption, it follows that there exists a False assignment
for ⟨x1, . . . , xn⟩, rendering ψ′ false irrespective of the assignment to xn+1. To put it differently, this scenario satisfies the
following condition:

f(x{1,...,n};1{n+1}) = 0 ∧ f(x{1,...,n};0{n+1}) = 0 (39)

Thus, we can take an arbitrary vector x and set some other arbitrary vector z to be equal to x on the first n features and
negated on feature n+ 1. Both of these vectors will be labeled to class 0, hence:

∃z, x ∈ F f(x{1,...,n}\{i}; z{n+1}) = f(x{1,...,n}\{i};¬z{n+1}) = 0 = f(x) (40)

We can thus conclude that {n+ 1} is not a contrastive reason of ⟨f, x⟩ and from theorem 1, this implies that n+ 1 is not
necessary with respect to ⟨f, x⟩. Particularly, n+ 1 is not globally necessary, consequently implying that ⟨f, i⟩ ̸∈ G-FN.

G. Proof of Proposition 8
Proposition 8 For FBDDs, G-CSR and G-MSR can be solved in polynomial time, while MSR is NP-Complete. Moreover, in
MLPs, solving G-CSR and G-MSR is coNP-Complete, while solving MSR is ΣP

2 -Complete.

25



Local vs. Global Interpretability: A Computational Complexity Perspective

As mentioned in Table 1, the complexity of MSR for FBDDs and MSR for MLPs are drawn from the work of (Barceló et al.,
2020). We now move to prove all other complexity classes:

Lemma 15 G-CSR can be solved in polynomial time for FBDDs.

Proof. Let ⟨f, S⟩ be an instance. We describe the following polynomial algorithm: We enumerate pairs of leaf nodes (v, v′)
that correspond to the paths (α, α′). Let us denote by αS the subset of nodes from α that correspond to the features of S.
Given the pair (α, α′), the algorithm checks if α and α′ “match” on all features from S (more formally, there do not exist
two nodes vα ∈ αS and vα′ ∈ α′

S with the same input feature i and with different path output edges). If we find two paths α
and α′ that match all features in S, and that have different labels (one classified as True and the other: False) the algorithm
returns “False” (i.e., S is not a global sufficient reason of f ). If we do not encounter any such pair (v, v′), the algorithm
returns True.

Lemma 16 G-MSR is in PTIME for FBDDs.

Proof. Since G-CSR is in PTIME for FBDDs, we can use Proposition 3 which states that algorithm 2 always converges to
the unique global cardinally minimal sufficient reason after a linear number of calls checking whether suff(f, S \ {i}) = 1.
Each one of these calls can be performed in polynomial time (since G-CSR is polynomial for FBDDs), so hence using
algorithm 2, we can obtain the unique global cardinally minimal sufficient reason of f in polynomial time, and return True if
its size is smaller or equal to k, and False otherwise.

Lemma 17 G-CSR is coNP-Complete for MLPs.

Proof. Membership is straightforward and is obtained since we can guess some x, z ∈ F and validate whether it satisfies that
f(xS ; zS̄) ̸= f(x). If so, ⟨f, S⟩ ̸∈ G-CSR.

Given our forthcoming proof that the G-CSR query for Perceptrons is coNP-Hard, it follows straightforwardly that the same
is true for MLPs. Nevertheless, we show how hardness can also be proved particularly for MLPs via a reduction from the
(local) CSR explainability query for MLPs.

Given the tuple ⟨f, x, S⟩ we construct an MLP f ′ which satisfies the following conditions:

f ′(y) =

{
f(y) if (xS = yS)
1 if (xS ̸= yS)

(41)

An MLP corresponding to this specification can be built by applying Lemma 14, which asserts that any boolean circuit can
be represented as an equivalent MLP. Specifically, we can encode the condition (xi ⊕ yi) for each i ∈ S and define:

ψ :=
∧
i∈S

(xi ⊕ yi) (42)

Using Lemma 14, we can convert ψ into an MLP g and subsequently integrate g with the input layer of the original MLP, f .
This configuration results in the input layer of f receiving connections from two distinct MLPs, each generating different
outputs. Further applying Lemma 14, we introduce an additional hidden layer that produces a single output representing the
disjunction of the two preceding outputs. This newly constructed MLP corresponds to the structure of f ′. To preserve the
integrity of the MLP’s architecture, we can implement zero-weights and zero-biases for any unconnected neuron connections.

If ⟨f, x, S⟩ ∈ CSR, then it satisfies that:

∀(z ∈ F). [f(xS ; zS̄) = f(x)] (43)

Given that f ′(y) = f(y) holds for any input for which xS = yS , then it also satisfies that:

∀(z ∈ F). [f ′(xS ; zS̄) = f ′(x)] ⇐⇒
∀(x, z ∈ F). (xS = zS)→ [f ′(xS ; zS̄) = f ′(x)]

(44)
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If xS ̸= yS then it consequently holds that f ′(y) = 1. This implies that:

∀(x, z ∈ F). (xS ̸= zS)→ [f ′(xS ; zS̄) = f ′(x) = 1] (45)

Overall, we arrive at that:

∀(x, z ∈ F). [f ′(xS ; zS̄) = f ′(x)] (46)

implying that ⟨f ′, S⟩ ∈ G-CSR.

If ⟨f, x, S⟩ ̸∈ CSR, then it satisfies that:

∃(z ∈ F). [f(xS ; zS̄) ̸= f(x)] (47)

Given that f ′(y) = f(y), it follows that for any input satisfying xS = yS the following condition is also met:

∃(z ∈ F). [f ′(xS ; zS̄) ̸= f ′(x)] (48)

implying that:

∃(x, z ∈ F). [f ′(xS ; zS̄) ̸= f ′(x)] (49)

Thus, it holds that ⟨f ′, S⟩ ̸∈ G-CSR.

Lemma 18 G-MSR is coNP complete for MLPs.

Both hardness and membership results trivially derive from those described for Perceptrons.

H. Proof of Proposition 9
Proposition 9 For FBDDs, G-FR can be solved in polynomial time, while solving FR is coNP-Complete. Moreover, in
MLPs, solving G-FR is coNP-Complete, while solving FR is ΠP

2 -Complete.

As mentioned in Table 1, the complexity of MSR for MLPs is drawn from the work of (Huang et al., 2021) which proved
hardness for DNF classifiers (and this also holds for MLPs, from Lemma 14). Moreover, the complexity of FR for FBDDs
is drawn from the work of (Huang et al., 2023). We now move to prove all other complexity classes:

Lemma 19 G-FR can be solved in polynomial time for FBDDs.

Proof. Let ⟨f, i⟩ be an instance. We describe the following polynomial algorithm: We enumerate pairs of leaf nodes (v, v′)
that correspond to the paths (α, α′). We denote by αS the subset of nodes from α that correspond to the features of S. Given
the pair (α, α′) we check if α and α′ “match” on all features from {1, . . . , n} \ {i} (more formally, there do not exist two
nodes vα ∈ α{1,...,n}\{i} and vα′ ∈ α′

{1,...,n}\{i} with the same input feature j and with different output edges). If we find
two paths α and α′ that (i) match on all features in {1, . . . , n} \ {i}, (ii) do not match on feature i (i.e., have different output
edges), and (iii) have different labels (one is classified as True and the other: False) the algorithm returns “False” (i.e, i is
not redundant with respect to f ). If we do not encounter any such pair (v, v′), the algorithm returns “True”.

Lemma 20 G-FR is coNP-Complete for MLPs.

Both hardness and membership proofs for Perceptrons (proved in the following section) also trivially hold for MLPs.
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I. Proof of Proposition 10
Proposition 10 For Perceptrons, solving FR and G-FR are both coNP-Complete.

Lemma 21 FR is coNP-Complete for Perceptrons

Proof. Membership. We recall that validating whether a subset S is a local sufficient reason with respect to some ⟨f, x⟩ can
be done in polynomial time for Perceptrons, as was elaborated on in Lemma 8. This can be done by polynomially calculating
both: max{

∑
j∈S̄ yj · wj + b | y ∈ F} and min{

∑
j∈S̄ yj · wj + b | y ∈ F} and then validating whether it holds that:

xi · wi +max{
∑
j∈S̄

yj · wj + b | y ∈ F} ≤ 0 ∨

xi · wi +max{
∑
j∈S̄

yj · wj + b | y ∈ F} > 0
(50)

Hence, membership in coNP holds since we can guess some subset S ⊆ {1, . . . , n} and polynomially validate whether it
holds that:

suff(f, x, S) = 1 ∧ suff(f, x, S \ {i}) = 0 (51)

If the following condition holds, then it satisfies that i is not redundant with respect to ⟨f, x⟩ and hence ⟨f, i⟩ ̸∈ FR.

Hardness. We reduce FR for Perceptrons from the subset sum problem (SSP), specifically from SSP which is coNP-
Complete. Given some ⟨(z1, z2, . . . , zn), T ⟩ construct a Perceptron f := ⟨w, b⟩ where we set w := (z1, z2, . . . , zn) · (wn+1)
(w is of size n+ 1), where wn+1 := 1

2 , and b := −(T + 1
4 ). The reduction computes ⟨f, x := 1, i := n+ 1⟩.

Assume that ⟨(z1, z2, . . . , zn), T ⟩ ∈ SSP . This implies that there does not exist any subset S ⊆ {1, . . . , n} for which∑
j∈S zj = T . Given that the values in (z1, . . . , zn) are integers, it consequently follows that there does not exist a subset S

satisfying that:

T − 1

2
<

∑
j∈S

zj < T +
1

2 (52)

Consequently, it holds that there is no subset S ⊆ {1, . . . , n} for which:

T − 1

2
<

∑
j∈S

wj · 1 < T +
1

2
⇐⇒

−3

4
<

∑
j∈S

wj · 1 + b <
1

4

(53)

which is equivalent to saying that for any subset S ⊆ {1, . . . , n} it holds that:

[
∑
j∈S

wj · 1 + b < −3

4
] ∨ [

∑
j∈S

wj · 1 + b >
1

4
] (54)

This implies that:

∀S′ ⊆ {1, . . . , n+ 1} [ [
∑
j∈S

wj · 1 + wn+1 · 0 + b < 0 ] ∧ [
∑
j∈S

wj · 1 + wn+1 · 1 + b < −1

4
] ] ∨

[ [
∑
j∈S

wj · 1 + wn+1 · 0 + b >
1

4
] ] ∧ [

∑
j∈S

wj · 1 + wn+1 · 1 + b >
3

4
] ]

(55)
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Thus, if we set the values of all features {1, . . . , n+ 1} to 1, modifying the value of feature n+ 1 from 1 to 0 will not alter
the classification (as f will continue to be either positive or negative). Equivalently:

∀S′ ⊆ {1, . . . , n} [ [ f(1S′ ;0{n+1}) = 0 ∧ [ f(1S′ ;1{n+1}) = 0 ] ] ∨
[ [ f(1S′ ;0{n+1}) = 1 ∧ [ f(1S′ ;1{n+1}) = 1 ] ]

(56)

In other words, it can be stated that:

∀S′ ⊆ {1, . . . , n, n+ 1} suff(f,1, S′) = 1→ suff(f,1, S′ \ {n+ 1}) = 1 (57)

Therefore, feature n+ 1 is redundant with respect to ⟨f,1⟩, implying that ⟨f,1, i⟩ ∈ FR.

Let us assume that ⟨(z1, z2, . . . , zn), T ⟩ ̸∈ SSP . From this assumption, it follows that there exists a subset of features,
S ⊆ {z1, . . . zn} for which:

∑
j∈S zj = T . We can express this equivalently as:

T =
∑
j∈S

zj ⇐⇒ −1

4
=

∑
j∈S

wj + b ⇐⇒

[−1

4
=

∑
j∈S

wj +wn+1 · 0 + b] ∧ [
1

4
=

∑
j∈S

wj +wn+1 · 1 + b]

(58)

We denote S′ := S ∪ {n+ 1}. Based on equation 58, we have that f(1S′ ;0S̄′) > 0. Moreover, given that all features in S̄′

are positive integers, then if we add additional features to S′ (making it larger) the classification will necessarily remain
positive. More formally, it is also established that for any S′′ ⊆ {1, . . . , n + 1} for which S′ ⊆ S′′ the following holds:
f(1S′′ ;0S̄′′) > 0. Hence, fixing the features of S′ to value 1 maintains a positive value for f (and hence a 1 classification),
and hence S′ is sufficient with respect to ⟨f,1⟩. Referring to equation 58, we observe that: f(1S′\{n+1};0S̄′∪{n+1}) = 0.
This implies that S′ \ {n+ 1} is not sufficient with respect to ⟨f,1⟩. In other words, we can conclude that:

∃S′ ⊆ {1, . . . , n, n+ 1} suff(f,1, S′) = 1 ∧ suff(f,1, S′ \ {n+ 1}) = 0 (59)

Consequently, feature n+ 1 is not redundant with respect to ⟨f,1⟩, thus implying that ⟨f, x, i⟩ ̸∈ FR.

Lemma 22 G-FR is coNP-Complete for Perceptrons.

Proof. Membership is established from the fact that one can guess some x, z ∈ F and validate whether:
f(x{1,...,n}\{i}; z{i}) ̸= f(x). From Theorem 1, this condition holds if and only if i is necessary with respect to ⟨f, x⟩.
Furthermore, Proposition 5 establishes that this situation is equivalent to i being not globally redundant with respect to f ,
thereby implying ⟨f, i⟩ ̸∈ G-FR.

Before proving hardness, we will make use of the following Lemma which is simply a refined version of Proposition 4:

Lemma 23 S is a global sufficient reason of f iff for any i ∈ S, i is globally redundant.

Proof. S is a global sufficient reason of f if and only if there exists some S′ ⊆ S which is a subset minimal global sufficient
reason of f . From Proposition 4, it holds that any feature i ∈ S̄′ is globally redundant, and since S̄ ⊆ S̄′, it satisfies that any
feature i ∈ S̄ is globally redundant.

We are now in a position to employ Lemma 23, from which we can discern that S qualifies as a global sufficient reason
of f if and only if every i ∈ S̄ is globally redundant. Consequently, we can leverage the reduction that was utilized for
establishing the coNP-Hardness of G-CSR for Perceptrons, as detailed in Lemma 8.

In other words, we can reduce G-FR for Perceptrons from SSP . Given some ⟨(z1, z2, . . . , zn), T ⟩ we can again construct a
Perceptron f := ⟨w, b⟩ where w := (z1, z2, . . . , zn) · (wn+1) (w is of size n+ 1), wn+1 := 1

2 , and b := −(T + 1
4 ). The

reduction computes ⟨f, i := n+ 1⟩.
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It has been established in Lemma 8 that S = {1, 2, . . . , n} serves as a global sufficient reason of f if and only if no subset
S′ ⊆ S = {1, 2, . . . , n} exists for which

∑
i∈S′ zi = T . Moreover, due to Lemma 23, the set S = {1, 2, . . . , n} is a global

sufficient reason of f if and only if any feature in S̄ is globally redundant. However, S̄ is in our case simply {n+ 1}. This
leads to the conclusion that feature n+ 1 is globally redundant, thereby concluding the reduction.

J. Proof of Proposition 11
Proposition 11 For FBDDs, both CC and G-CC can be solved in polynomial time. Moreover, for Perceptrons and MLPs,
solving both CC or G-CC is #P -Complete.

Lemma 24 G-CC is #P -Complete for Perceptrons.

For simplification, we follow common conventions (Barceló et al., 2020) and prove that the global counting procedure
for: C(S, f) = |{x ∈ F, z ∈ {0, 1}|S|, f(xS ; zS̄) = f(x)}| is #P -Complete, rather than c(S, f). Clearly, it holds that:
C(S, f) = c(S, f) · 2|S̄|+n and hence c(S, f) and C(S, f) are interchangeable. We observe that computing 2|S̄|+n can be
executed in polynomial time because n, which denotes the number of input features, is given in unary (the full size of the
input encoding is at least n).

Membership. Membership is straightforward since the sum: |{x ∈ F, z ∈ {0, 1}|S|, f(xS ; zS̄) = f(x)}| is equivalent to
the sum of certificates (x, z) satisfying:

∃x ∈ F,∃z ∈ {0, 1}|S|, f(xS ; zS̄) = f(x) (60)

which is of course polynomially verifiable.

Hardness. We reduce from (local) CC of Perceptrons, which is #P -Complete (Barceló et al., 2020). Given some ⟨f, S, x⟩,
where f := ⟨w, b⟩ is a Perceptron, the reduction computes f(x) and if f(x) = 1 constructs f ′ := ⟨w′, b′⟩ such that
b′ := b +

∑
i∈S(xi · wi), and w′ := (wS̄ , δ), with δ := (

∑
i∈S |wi|) − b′. wS̄ denotes a partial assignment where all

features of the subset S̄ are drawn from the vector w (the vector w′ is of size |S̄|+ 1). If f(x) = 0, the reduction constructs
f ′ := ⟨w′, b′⟩ with the same b′ but with w′ := (wS̄ , δ

′), such that δ′ := −(
∑

i∈S |wi|)− b′ − 1.

For both reduction scenarios (f(x) = 1 or f(x) = 0) we will demonstrate that given the global completion count C(∅, f ′)
we can determine the local completion count of c(S, f, x) in polynomial time. We do this by proving the following Lemma:

Lemma 25 Given the polynomial construction of f ′, it satisfies that:

C(S, f, x) =
√

1

2
· C(∅, f ′)− 22|S| (61)

If this lemma is proven, then demonstrating the hardness of the global completion count for perceptrons becomes straight-
forward. This is because n, representing the number of input features, is given in unary. Consequently, computations
such as 2O(n) (and therefore 22|S|) can be performed in polynomial time. Additionally, since the binary representation of
[ 12 ·C(∅, f

′)− 22|S|] is of size O(n) (C(∅, f ′) is bounded by 22n), computing the square root of this expression can also be
achieved in polynomial time.

Proof of Lemma. We denote m and t as the number of assignments x′ ∈ {0, 1}|S|+1, for which f ′ predicts 0 or 1. Formally:

m :=
∣∣∣{x′ ∈ {0, 1}|S|+1

∣∣∣ f ′(x′) = 1
}∣∣∣ , t :=

∣∣∣{x′ ∈ {0, 1}|S|+1
∣∣∣ f ′(x′) = 0

}∣∣∣ (62)

Clearly, it holds that:

m+ t = 2|S|+1 (63)

It also satisfies that:
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C(S := ∅, f ′) = |{x′ ∈ {0, 1}|S|+1, z ∈ {0, 1}|S|+1, f ′(x′
S ; zS̄) = f ′(x′)}| =

|{x′ ∈ {0, 1}|S|+1, z ∈ {0, 1}|S|+1, f ′(z) = f ′(x′)}| = m2 + t2
(64)

This is true because there are precisely m2 pairs (x′, z) where both f ′(z) = 1 and f ′(x′) = 1, and exactly t2 pairs where
f ′(z) = 0 and f ′(x′) = 0. As a result of equations 63 and 64, it satisfies that:

C(∅, f ′) = m2 + (2|S̄|+1 −m)2 (65)

This implies that the aforementioned values of m/t obey the following quadratic relation:

m/t =
−(−2|S|+2)±

√
(−2|S|+2)2 − 4 · 2 · (22|S|+2 − C(∅, f ′))

2 · 2

=
2|S|+2 ±

√
22|S|+4 − 8 · (22|S|+2 − C(∅, f ′))

4

= 2|S| ±
√
22|S| − (22|S|+1 − 1

2
· C(∅, f ′))

Accordingly, m/t must obey the following condition:

m/t = 2|S| ±
√

1

2
· C(∅, f ′)− 22|S| (66)

We observe that one of the terms exceeds 2|S|, while the other is less than 2|S|. Therefore, to ascertain whether m or t
corresponds to the first or second term, it suffices to compare their counts to 2|S|. We will start by proving the first part of
the Lemma. Specifically, to establish that when f(x) = 1 the following condition is satisfied:

C(S, f, x) =
√

1

2
· C(∅, f ′)− 22|S| (67)

We will first prove that when f(x) = 1, then there are at least 2|S̄| vectors x′ ∈ {0, 1}|S̄|+1 for which f ′(x′) = 1.

First, we assume that x′
|S̄|+1

= 1 (the assignment for feature |S̄|+ 1 is 1). For all x′ ∈ {0, 1}|S|+1 such that x′
|S̄|+1

= 1 it
holds that:

w′ · x′ + b′ =

w′
S̄ · x

′
S̄ + w′

|S|+1
· x′|S|+1

+ b′ =

w′
S̄ · x

′
S̄ + δ + b′ =

w′
S̄ · x

′
S̄ +

(
∑
i∈S

|wi|)− b′
+ b′ =

w′
S̄ · x

′
S̄ +

∑
i∈S

|wi| ≥ 0

(68)

Given that there are precisely 2|S| assignments where x′
|S|+1

= 1, it can be inferred that there are at least 2|S| assignments
for which f ′(x′) = 1. Hence, the following condition holds:

m = 2|S| +

√
1

2
· C(∅, f ′)− 22|S| (69)
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The count in equation 69 corresponds to the number of positive assignments for which f(x′) = 1. As mentioned, out of
these, there are 2|S| assignments where x′|S|+1 = 1. Consequently, the exact number of assignments with x′|S|+1 = 0 that
satisfy that f ′(x) = 1 is exactly:

( 2|S| +

√
1

2
· C(∅, f ′)− 22|S| )− 2|S| =

√
1

2
· C(∅, f ′)− 22|S| (70)

Furthermore, it holds that:

f ′(x′S̄ ;0|S̄|+1) = step( w′
S̄ · x

′
S̄ + 0 + b′ ) =

step( wS̄ · x′
S̄ + b+

∑
i∈S

(xi · wi) ) =

step( wS̄ · x′S̄ + wS · xS + b ) = f(xS ; x′S̄)

(71)

Thus, it follows that the count of assignments for which x′|S|+1 = 0 that satisfy f ′(x) = 1 precisely equals the number of
assignments for which f(xS ; x′

S̄
) = 1. This is, in fact, equivalent to the local completion count: C(S, f, x). Put differently,

this implies that:

C(S, f, x) =
√

1

2
· C(∅, f ′)− 22|S| (72)

We now turn our attention to proving the second part of the Lemma. Specifically, we show that in the scenario where
f(x) = 0, the following condition is satisfied:

C(S, f, x) =
√

1

2
· C(∅, f ′)− 22|S| (73)

We will similarly begin by proving that, given f(x) = 0, there exist at least 2|S̄| vectors x′ ∈ {0, 1}|S|+1 for which
f ′(x′) = 0.

First, we assume that x′|S̄|+1
= 1 (the assignment for feature |S̄|+1 is 1). Now, for all x′ ∈ {0, 1}|S|+1 such that x′|S̄|+1

= 1

it holds that:

w′ · x′ + b′ =

w′
S̄ · x

′
S̄ + w′

|S|+1
· x′|S|+1

+ b′ =

w′
S̄ · x

′
S̄ + δ′ + b′ =

w′
S̄ · x

′
S̄ +

−(∑
i∈S

|wi|)− b′ − 1

+ b′ =

w′
S̄ · x

′
S̄ −

∑
i∈S

|wi| − 1 < 0

(74)

Given that there are precisely 2|S| assignments where x′|S|+1
= 1, it follows that there exist at least 2|S| assignments for

which f ′(x′) = 0. Due to the same reasoning as in the previously discussed case where f ′(x′) = 1, it follows that the
subsequent condition is met:

t = 2|S| +

√
1

2
· C(∅, f ′)− 22|S| (75)

Therefore, the number of assignments, where x′|S|+1 = 1, that satisfy the condition f ′(x) = 0 is as follows:
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1

2
· C(∅, f ′)− 22|S| (76)

Given the aforementioned reasons, we can deduce again that: f ′(x′
S̄
;0|S̄|+1) = f(xS ; x′

S̄
). Consequently, the number of

assignments where x′|S|+1 = 0 and f ′(x) = 0 coincides with those where f(xS ; x′
S̄
) = 0. This corresponds to the local

completion count: C(S, f, x) in this context. In other words, it again holds that:

C(S, f, x) =
√

1

2
· C(∅, f ′)− 22|S| (77)

which concludes the reduction.

Lemma 26 G-CC is #P -Complete for MLPs.

Proofs of membership and Hardness for Perceptrons will also clearly hold for MLPs.

Lemma 27 G-CC is in PTIME for FBDDs.

Proof. Similarly to the proof of the complexity of G-CC for Perceptrons (Lemma 24), we will assume the normalized count
C(S, f) which is interchangeable with c(S, f). Each leaf node v of f corresponds to some path α. We denote by αS the
subset of nodes from α that correspond to the features of S. We suggest the following polynomial algorithm: We enumerate
pairs of leaf nodes by iterating over all pairs in its cartesian product. In other words, given that L := {v1, v2} includes all
the leaf nodes of a function f , we iterate over every possible pair of leaf nodes in the set L := {v1, v2}. This includes the
pairs {(v1, v1), (v1, v2), (v2, v1), (v2, v2)}. Given the pair (v, v′), we perform a counting procedure iff there do not exist
two nodes vα ∈ αS and vα′ ∈ α′

S with the same input feature i and with different path output edges. Intuitively, this means
that α and α′ do not match on the subset S.

We define w.l.o.g. that v corresponds to the counting procedure over x ∈ F and that v′ corresponds to the counting procedure
over z ∈ {0, 1}|S|. Therefore, for each counting procedure, we add 2n−|α| · 2|S|−|α′

S̄
|. Upon completing the iteration across

all pairs (v, v′), we derive C(S, f). Similarly to our previous assertions, we again note that the expression 2n−|α| · 2|S|−|α′
S̄
|

can be computed in polynomial time, since n, the number of input features, is given in unary. Furthermore, we observe that
the process of iterating through the cartesian product of leaf nodes arises from the definition of the global completion count,
which remains unaffected by the order of the features.

K. Framework Extensions
Discrete and continuous input and output domains. To simplify the comprehension of our proofs, we followed common
conventions (Barceló et al., 2020; Arenas et al., 2022; Wäldchen et al., 2021; Arenas et al., 2021a) and provided them
over boolean input and output values. First, we observe that the proofs of duality and uniqueness presented in the initial
sections are independent of any assumptions about the input or output domains, making them applicable to both discrete and
continuous domains.

Next, we turn our attention to the outcomes of our complexity analysis. It is important to note that the analysis we have
carried out is not limited to binary features but can also be extended to features that take on k possible values, where k
represents any integer. Moreover, an additional extension can adapt our approach to incorporate continuous inputs. We will
now briefly elaborate on the diverse situations in which this extension remains relevant.

Regarding MLP explainability queries, earlier research indicates that the complexity of a satisfiability query on an MLP
extends to scenarios involving continuous inputs. Specifically, the work of (Katz et al., 2017) and (Sälzer & Lange, 2021)
proves that verifying an arbitrary satisfiability query on an MLP with ReLU activations, over a continuous input domain,
remains NP-complete. The CSR query mentioned in this work, when S := ∅ is akin to negating a satisfiability query, and
this implies that the CSR query (and consequently also G-CSR) in MLPs remains coNP complete for the continuous case as
well. We recall that the complexity of the MSR and FR queries for MLPs are ΣP

2 -Complete and ΠP
2 -Complete, respectively.

This complexity arises from the use of a coNP oracle, which determines whether a subset of features is sufficient, essentially
addressing the CSR query. Given that CSR can also be adapted to handle continuous outputs, the logic applied to CSR can
similarly be applied to demonstrate that both MSR and FR queries can be extended to continuous domains.
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For Perceptrons, the completeness proofs remain valid in a continuous domain for (G)-CSR, (G)-MSR, and (G)-FR
explainability queries. The continuity of inputs does not alter the membership proofs, for the same reasons that hold for
MLPs. For hardness proofs, notice that all reductions that were derived from the SSP problem, can be adjusted to substitute
any call to max{zi, zj} in our original proof with max([zi, zj ]).

The FN algorithms remain correct for the continuous scenario for Perceptrons and FBDDs, as the insight from theorem 1
persists. Thus, the algorithm recommended for decision trees remains applicable. For Perceptrons, one can directly determine
the minimal and maximal viable values by fixing S \ i and allowing i to take any possible value. In the context of MLPs,
solving the problem remains within polynomial time complexity for discrete inputs, yet transitions to be NP-Complete when
dealing with continuous cases. Moreover, it is important to acknowledge that the proofs for the CC query also hold only for
the discrete case, as its inherent counting nature renders it undefined for the continuous version too.

Finally, the proofs that apply to tree classifiers for queries such as (G)-CSR, (G)-MSR, (G)-FN, and (G)-FR are equally valid
for continuous inputs. This extension to continuous inputs for the local forms mentioned was demonstrated by previous
work (Huang et al., 2021). Given that the global algorithms for decision trees resemble their local counterparts, with the
distinction of enumerating pairs of leaf nodes instead of single leaf nodes, the correctness of these algorithms persists in the
continuous domain. Consequently, their complexity remains polynomial.

Relaxations, probabilistic classification, and regression. Other possible extensions of our framework might involve
alternative, more flexible definitions of our explanation forms, as well as adaptations to different contexts like probabilistic
classification or regression.

Possible relaxations of our definitions could incorporate probabilistic notions of sufficiency (Wäldchen et al., 2021; Izza
et al., 2021; Arenas et al., 2022; Wang et al., 2021a), restricting them to bounded ϵ-ball domains (Malfa et al., 2021; Wu
et al., 2024b; Izza et al., 2024; Huang & Marques-Silva, 2023), or to meaningful distributions (Yu et al., 2023; Gorji &
Rubin, 2022). Additionally, our definitions could be adapted from the simplified binary classification to regression or
probabilistic classification contexts. For instance, in the case of a neural network regression model f : F→ R, a sufficient
reason might be defined as a subset S ⊆ {1, . . . , n} of input features such that:

∀z ∈ F ||f(xS ; zS̄)− f(x)||p ≤ δ (78)

for some 0 ≤ δ ≤ 1 and some ℓp-norm. Other concepts explored in our work, such as contrastive reasons, the global
versions of our explanation definitions, and the related definitions of necessity and redundancy, can be similarly adapted to
this framework.

L. Terminology and Relationship to Other Explanation Forms
In this section, we will outline several definitions from the literature that are relevant to those discussed here.

Sufficient reasons and abductive explanations. A sufficient reason is also commonly referred to as an abductive
explanation (Ignatiev et al., 2019a) (abbreviated as AXP) or a prime implicant (Shih et al., 2018) (abbreviated as PI-
explanation). Importantly, our definition of a sufficient reason does not automatically imply subset minimality, which is
sometimes the case in other works. For instance, (Marques-Silva & Ignatiev, 2022) describe an AXP as a subset-minimal
sufficient subset of features, distinguishing it from a weak-AXP, where subset minimality does not necessarily hold. We
follow the conventions used by (Barceló et al., 2020), and define a sufficient reason as any sufficient subset of features, and
we specify that a subset S is a subset-minimal sufficient reason only when it is explicitly so.

Absloute vs. global sufficient reasons. Here, we highlight the distinctions between global sufficient reasons, as discussed
throughout this work, and the notion of absolute sufficient reasons outlined in (Ignatiev et al., 2019b), in which the authors
refer to these as absolute explanations, while (Marques-Silva, 2023) define them as global abductive explanations. For a
given function f and a prediction class c ∈ {0, 1}, an absolute sufficient reason with respect to ⟨f, c⟩ is a partial assignment
xS ∈ {0, 1}|S| to the features in S, such that:

∀z ∈ F [ f(xS ; zS̄) = c ] (79)

To determine whether a specific instance qualifies as an absolute sufficient reason, we would need to evaluate a partial
assignment to an input xS . However, this work centers on comparing local explanations, which apply to a particular instance
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x, to their corresponding global explanations, which apply to any possible instance x. In this context, we concentrate on
either the local scenario, which involves subsets of features that are sufficient for determining a specific prediction for
x, or the global scenario, where subsets of features are sufficient to determine the prediction for any x. As demonstrated
by proposition 5, this definition of global sufficient reasons also connects to the concepts of necessity and redundancy of
features. Specifically, the provably unique subset-minimal global sufficient reason for a function f categorizes features into
those that are necessary for a specific ⟨f, x⟩ and those that are globally redundant.

Necessity, redundancy, and bias detection. We follow the notions of feature necessity and redundancy as discussed
in (Huang et al., 2023), where the focus is primarily on the local versions of these explanations. In contrast, our analysis
extends to both local variants, which apply to a specific instance x, and global variants, which apply to any instance x.

These notions of necessity correspond to those discussed in (Darwiche, 2023; Darwiche & Ji, 2022; Watson et al., 2021),
while the ideas of redundancy are related to fairness and bias, as explored in other studies (Darwiche & Hirth, 2020; Arenas
et al., 2021a; Ignatiev et al., 2020a). There, it is often considered that there exists a set P ⊆ {1, . . . , n} of protected features
that should not influence the prediction. Notably, (Ignatiev et al., 2020a) apply the criterion of fairness through unawareness
(FTU), which involves ensuring that all features in P are redundant, whether locally or concerning a specific prediction
class. Similarly, (Darwiche & Hirth, 2020) differentiate between local biases, termed prediction bias, and global biases,
referred to as classifier bias. More specifically, a prediction ⟨f, x⟩ is biased iff:

∃z ∈ F [ f(xP̄ ; zP ) ̸= f(x) ] (80)

which is equivalent to P being locally contrastive with respect to ⟨f, x⟩. In the global context, a classifier f is deemed
biased iff there is at least one input x where the prediction ⟨f, x⟩ is biased. Equivalently, a classifier f is unbiased if and
only if all protected features in P are globally redundant. A similar notation of bias detection is discussed in (Arenas et al.,
2021a). Moreover, (Audemard et al., 2021) explore a modified version of this concept, focusing on irrelevancy (redundancy)
concerning a particular class.

Counting completions and δ-relevant sets. In this work, we investigate the computational complexity of the Count-
Completion (CC) query, a form of explanation also examined in (Barceló et al., 2020). However, their study concentrated
on the local variant of this query, whereas we address both the local and global variants. The CC query closely (but not
exactly) aligns with a δ-relevant set (Wäldchen et al., 2021; Izza et al., 2021). When obtaining a δ-relevant set, the focus is
not on calculating the completion count itself, but rather on determining whether the completion count surpasses a specified
threshold δ.
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