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Abstract
Cross-lingual AMR parsing is the task of pre-001
dicting AMR graphs in a target language when002
training data is available only in a source lan-003
guage. Due to the small size of AMR training004
data and evaluation data, cross-lingual AMR005
parsing has only been explored in a small set006
of languages such as English, Spanish, Ger-007
man, Chinese, and Italian. Taking inspiration008
from Langedijk et al. (2022), who apply meta-009
learning to tackle cross-lingual syntactic pars-010
ing, we investigate the use of meta-learning011
for cross-lingual AMR parsing. We evaluate012
our models in k-shot scenarios (including 0-013
shot) and assess their effectiveness in Croat-014
ian, Farsi, Korean, Chinese, and French. No-015
tably, Korean and Croatian test sets are devel-016
oped as part of our work, based on the existing017
The Little Prince English AMR corpus, and018
made publicly available. We empirically study019
our method by comparing it to classical joint020
learning. Our findings suggest that while the021
meta-learning model performs slightly better022
in 0-shot evaluation for certain languages, the023
performance gain is minimal or absent when k024
is higher than 0.025

1 Introduction026

Abstract Meaning Representation (Banarescu et al.,027

2013, AMR) represents the meaning of texts as028

rooted and directed acyclic graphs. AMR graphs029

capture the underlying semantics of input texts030

while abstracting away from their syntactic real-031

izations. Nodes in AMR graphs are not explic-032

itly mapped to their input token. Hence, it is an033

unanchored formalism. AMRs are widely used to034

enhance the capabilities of NLP systems such as035

question answering (Deng et al., 2022; Kapanipathi036

et al., 2021), text summarization (Liao et al., 2018;037

Liu et al., 2015), or human-robot interaction (Bo-038

nial et al., 2019, 2023).039

AMR was originally designed for English texts040

only. However, Damonte and Cohen (2018) demon-041

strated that AMR could be used for other languages042

(a) AMR graph (b) linearized AMR

Figure 1: “The dog eats a bone.”

such as Spanish, Italian, Chinese, and German. 043

Since then, many approaches have adopted AMR 044

parsing for multilingual AMR parsing (Procopio 045

et al., 2021; Blloshmi et al., 2020; Xu et al., 2021; 046

Cai et al., 2021; Sheth et al., 2021). However, one 047

of the main challenges for this task is the lack of 048

data. Currently, training data are only available in 049

English (Knight et al., 2017, 2020) and evaluation 050

data in 6 languages: English, German, Spanish, 051

Italian, Chinese (Damonte and Cohen, 2018; Li 052

et al., 2021),1 and French (Kang et al., 2023). To 053

overcome the lack of training data in target lan- 054

guages, previous approaches create silver training 055

data in the target languages. This is done through 056

machine translation (Damonte and Cohen, 2018; 057

Blloshmi et al., 2020) under the assumption that 058

a text conveying the same meaning should have 059

a shared AMR graph across languages. Similarly, 060

parallel corpora with English AMR parsers are also 061

employed to create silver data (Xu et al., 2021; 062

Blloshmi et al., 2020). Another approach uses En- 063

glish data for training and then evaluates the model 064

in the target language in a zero-shot manner (Proco- 065

pio et al., 2021). Since evaluation data is available 066

in five languages, most of these proposals focus on 067

this small set of languages. 068

In this study, our goal is to apply AMR pars- 069

ing for more diverse languages that have been less 070

explored in previous work and tackle the lack of 071

training data with k-shot learning. Taking inspi- 072

ration from Langedijk et al. (2022), who applied 073

1In Chinese AMR 2.0 (Li et al., 2021), AMR concepts are
annotated in Chinese.
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meta-learning for k-shot cross-lingual syntactic074

parsing, we apply meta-learning for cross-lingual075

AMR parsing. To examine the efficiency of the076

method, we compare the meta-learning approach077

to a classical joint learning method.078

Our contributions to cross-lingual AMR parsing079

are as follows:080

• This work presents the first empirical study081

on meta-learning applications on cross-082

lingual AMR parsing.083

• We train and evaluate our model in languages084

less explored for AMR parsing: Korean, Croa-085

tian, French, and Farsi.086

• We publish new evaluation data in Korean087

and Croatian, based on The Little Prince.088

• We release a multilingual AMR parser that089

can be evaluated in many languages in k-shot.090

We also release the code to train and evaluate091

the model.092

2 Meta Crosslingual AMR093

Seq2seq AMR Parsing In sequence-to-sequence094

AMR parsing (Bevilacqua et al., 2021), AMR095

parsing is viewed as generating a sequence of to-096

kens representing AMR nodes and edges. AMR097

graphs should be first linearized in a single-line098

format (see Figure 1) to feed it to a sequence-to-099

sequence model. We linearize AMR graphs fol-100

lowing van Noord and Bos (2017), which includes101

light pre-processing such as removing variables102

and wiki link.2 We refer the readers to van Noord103

and Bos (2017) for a comprehensive understand-104

ing of the linearization process. To generate AMR105

graphs from multi-lingual inputs, we employ mBart106

(Tang et al., 2020) model, a pre-trained multilingual107

sequence-to-sequence model, as done by Procopio108

et al. (2021).109

MAML for Cross-lingual AMR Parsing We110

use MAML (Finn et al., 2017) for cross-lingual111

AMR parsing. MAML learns good initial parameters112

θ that can be tuned to unseen tasks with only a few113

optimization steps and a few training data exam-114

ples. MAML trains a model to be good at adapting115

to new tasks only with a few examples by simulat-116

ing the k-shot training and evaluation during the117

training. We apply MAML to train our multilingual118

AMR parser so that it adapts quickly to new tasks,119

2We employ the implementation code available at https:
//github.com/RikVN/AMR for graph preprocessing and post-
processing.

which are in our case, new languages. The training 120

procedure is described below. 121

Step 1: At each iteration step, the initial model (Θ) 122

is copied once per language i. For each i, 2 ×K 123

examples are randomly sampled from Dtrain
i and 124

divided into the support and the query set (K each). 125

Using the support set, the model is temporarily up- 126

dated with stochastic gradient descent with learning 127

rate α (Eq. 1). Iterate through the support set for P 128

adaptation steps to obtain Φi: 129

Φi ← Θ− α▽Θ L(Θi). (1) 130

Next, the loss is computed to evaluate the 131

temporary model Φi on the query set. The loss 132

Li(Φi) is saved for the next step. The entire step 133

is called an ‘inner loop’ and the inner loop is 134

repeated over the entire task batch, that is, for the 135

number of all training languages I . 136

137

Step 2: Li(Φi) is summed up over training lan- 138

guages to update the initial model Θ by stochastic 139

gradient descent with a learning rate β. This entire 140

step is called an ‘outer loop’:3 141

Θ← Θ− β
∑
i

▽ΦiLi(Φi). (2) 142

Step 3: Repeat Step 1 and Step 2 until the total 143

number of training steps. 144

3 Experimental Setup 145

Silver Training/Validation Data We aim to train 146

a multilingual AMR parser that adapts quickly to 147

new languages, specifically French, Chinese, Ko- 148

rean, Farsi, and Croatian, with k examples. Our 149

method is similar to that of Langedijk et al. (2022) 150

in applying meta-learning for a k-shot cross-lingual 151

parsing task, but our training data is only avail- 152

able in English, whereas they have multilingual 153

training data. To create multilingual training data, 154

we apply machine translation as in previous ap- 155

proaches (Damonte and Cohen, 2018; Xu et al., 156

2021; Blloshmi et al., 2020). We adopt DeepL4 157

and translate English AMR training data (Knight 158

et al., 2020, LDC2020T02) into 13 languages: Ger- 159

man, Italian, Romanian, Finnish, Russian, Turkish, 160

Japanese, Czech, Dutch, Polish, Swedish, Estonian, 161

and Indonesian. The 13 languages were chosen 162

for compatibility with our training model, mBart 163

3We apply First-Order MAML to avoid computation over-
head (second-order derivative requires heavy computation)

4https://www.deepl.com
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Figure 2: One training step for MAML cross-lingual AMR parsing.

(Tang et al., 2020), and for language diversity. They164

cover 5 language families: Indo-European (Ger-165

manic, Romance, Slavic), Uralic, Turkic, Japonic,166

and Austronesian. For each training language, there167

are 55,635 pairs of sentences and their correspond-168

ing AMR graph. To assess the translation quality,169

we evaluated the training data with the reference-170

free evaluation metric COMET (Rei et al., 2020).171

The COMET score of 13 languages is 83.8±0.8. We172

use a total of 14 languages including English for173

our training data. We use Spanish as the valida-174

tion language and use the Spanish evaluation set175

from AMR 2.0 (Damonte and Cohen, 2020). For k-176

shot evaluation during the validation and test step,177

k random examples from the English dev set are178

translated to each evaluation language.179

Gold Test Data We evaluate our model in French,180

Chinese, Korean, Farsi, and Croatian. For French,181

Chinese, and Farsi, we employ The Little Prince182

AMR corpus annotated in each language, respec-183

tively from Kang et al. (2023), https://amr.isi.184

edu/ and Takhshid et al. (2022).5 For Croatian and185

Korean, we create our test sets by manually align-186

ing The Little Prince corpus in each language to187

corresponding English AMR graphs. After manual188

alignment, we excluded pairs exhibiting semantic189

discrepancies between the aligned sentence and its190

English counterpart, such as pairs where additional191

or omitted information was observed in the aligned192

sentences.6 This leaves us with, respectively, 1,527193

and 1,543 pairs for Korean and Croatian. A few ex-194

amples of the final dataset are given in Appendix A.195

5The original Farsi dataset consists of AMR concepts in
Farsi. Since we employ AMR graphs with English concepts,
we use only the input texts of the corpus and graphs from the
English AMR corpus.

6A native Korean speaker manually aligned and filtered
the data. For Croatian, we automatically translated Croatian
text into English with Google Translate (https://translate.
google.com/) and checked the semantic discrepancy with its
English counterpart.

We make the test set publicly available.7 196

Meta-Training and Evaluation We adopt 197

mBart-large-50 model (Tang et al., 2020) from 198

the transformers library (Wolf et al., 2020) to 199

train our multilingual AMR parser. To imple- 200

ment model-agnostic meta-learning, we employ 201

the learn2learn library (Arnold et al., 2020). Pa- 202

rameters used for the training are provided in Ap- 203

pendix B. Our goal is to evaluate the model’s perfor- 204

mance in new languages that were not seen during 205

the training, specifically, French, Chinese, Korean, 206

Farsi, and Croatian. To this end, for both valida- 207

tion and testing, we employ k-shot learning, where 208

the model is fine-tuned with k examples for the 209

test language before evaluation. We report evalua- 210

tion scores with varying k size using SMATCH (Cai 211

and Knight, 2013), an evaluation metric for AMR 212

graphs. 213

Baseline with Joint Learning We train a base- 214

line model with a joint learning method for com- 215

parison with our approach. We use the same mBart 216

model and the training data as described in Section 217

3. To assess the effectiveness of our method com- 218

pared to joint learning, we carry out the two experi- 219

ments in settings as similar as possible (e.g. training 220

data, hyper-parameters, learning scheduler, k-shot 221

evaluation). Hyperparameter details are given in 222

Appendix B. 223

4 Results and Discussion 224

We assessed our model across five languages in 225

k-shot learning. Table 1 displays the evaluation 226

results for different shot settings (k) where k = 227

0, 32, 128. In the 0-shot evaluation, MAML demon- 228

strates higher performance for most evaluation lan- 229

guages, except for Croatian. Nevertheless, the per- 230

formance gap is minimal, making it difficult to 231

7The URL will be provided upon publication.
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draw firm conclusions regarding the method’s ad-232

vantage. In the k-shot evaluation, the performance233

gap between the two models diminishes, with either234

the average score showing no significant difference235

(128-shot) or the baseline model outperforming the236

MAML model (32-shot). These observations sug-237

gest that while MAML may offer benefits in 0-shot238

evaluation for certain languages, its advantage is239

not consistent across all languages. In k-shot learn-240

ing scenarios, the benefit is minimal or null. On241

the other hand, the joint-learning method shows242

competitive results regardless of its methodologi-243

cal simplicity. We hypothesize that substantial over-244

lap between inputs and outputs in the training data245

across languages has contributed to these results.246

Our training data comprises translations of AMR247

3.0 into multiple languages, resulting in overlapped248

AMR graphs and shared patterns in input texts. In249

this context, the joint-learning model may learn the250

similarities between training data directly, allowing251

the model to learn the task more efficiently.252

Surprisingly, both MAML and baseline models253

exhibit a performance decrease when fine-tuned in254

32-shot, compared to not being fine-tuned at all. We255

hypothesize that the mBart pre-trained model has256

already enough knowledge of our target languages257

and fine-tuning the model with only a few examples258

in each language may impair the model’s capacity.259

This could also be attributed to the domain differ-260

ence between the fine-tuning dataset and the test261

dataset. The fine-tuning dataset includes content262

from general fields such as online forums, journals,263

and web blogs, whereas the test dataset consists264

of The Little Prince, a novel written in the 1940s.265

Consequently, the domain shift between the two266

datasets may have contributed to the model’s in-267

ability to generalize effectively to the test domain.268

We provide additional analysis of our models in269

Appendix C (effect of the number of considered270

languages and of the translation quality).271

5 Related Work272

Meta-learning, also known as learning to learn, is273

a learning paradigm that allows a model to quickly274

learn a new task with only a few examples. This275

is made possible by the prior knowledge that the276

model has acquired through a series of different277

tasks. In cross-lingual applications, each task cor-278

responds to a different language. The closest ap-279

proach to ours is Langedijk et al. (2022), who adopt280

MAML for cross-lingual dependency parsing. They281

fr zh ko fa hr avg

base_0-shot 56.4 45.6 42.1 46.3 51.4 48.4
MAML_0-shot 56.5 46.1 42.2 46.7 50.8 48.5

base_32-shot 56.3 45.4 42.0 46.1 51.3 48.3
MAML_32-shot 55.5 45.1 41.1 45.9 48.9 47.3

base_128-shot 56.5 45.9 42.0 46.6 51.5 48.5
MAML_128-shot 56.0 46.2 42.2 46.8 51.3 48.5

Table 1: SMATCH scores of the baseline and the MAML
model (k-shot evaluation).

train a dependency parser on a set of languages 282

using MAML and then evaluate the model on un- 283

seen languages to investigate the model’s ability 284

to adapt quickly. In contrast, we focus on a se- 285

mantic parsing task with an unanchored formalism. 286

In addition, they have multilingual training data 287

at hand, whereas we generate our silver multilin- 288

gual data by machine translation from English data. 289

Another difference is that they use a graph-based bi- 290

affine model for parsing, whereas we use a seq2seq 291

model with a linearized graph. Sherborne and Lap- 292

ata (2023) applied meta-learning to cross-lingual 293

SQL parsing. While useful at representing (and 294

executing) database queries expressed in natural 295

language, SQL is not a general-purpose semantic 296

formalism like AMR. To the best of our knowl- 297

edge, our work is the first to apply MAML for cross- 298

lingual AMR parsing. 299

6 Conclusion 300

This study investigates the effectiveness of meta- 301

learning compared to joint learning in cross-lingual 302

AMR parsing. We assess our models across less- 303

explored languages for AMR parsing, including 304

French, Chinese, Korean, Farsi, and Croatian. To 305

facilitate evaluation, we develop new test sets for 306

Korean and Croatian and release the data to pro- 307

mote AMR parsing in diverse languages. Our find- 308

ings reveal that meta-learning exhibits minor per- 309

formance gain compared to joint learning in 0-shot 310

evaluation. The small gain diminishes for k-shot 311

learning (when k > 0). Consequently, our results 312

suggest that the joint learning method serves as 313

a robust baseline, while meta-learning appears to 314

be a sub-optimal approach for cross-lingual AMR 315

parsing. We believe that this research provides valu- 316

able insights into the comparative efficacy of meta- 317

learning and joint learning in cross-lingual AMR 318

parsing, offering important guidance for future de- 319

velopments in cross-lingual AMR parsers. 320
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Limitations321

Our model does not outperform a simple mono-322

lingual model which is trained with AMR data323

in the target language translated by a MT system.324

However, our approach can be explored for low-325

resource languages for which machine translation326

is not available. In addition, we did not apply grid327

search to find the best learning rates for the baseline328

models and used the same learning rate as done by329

Procopio et al. (2021), who also employed mBart330

for sequence-to-sequence cross-lingual AMR pars-331

ing. This could have affected the results in favor332

of meta-learning. Nonetheless, this does not affect333

our conclusion of the empirical study to reveal the334

weakness of the meta-learning approach for cross-335

lingual AMR parsing. This study does not include336

evaluation scores on the AMR 2.0 multilingual test337

set, which could help position our models relative338

to the state-of-the-art models. There are two moti-339

vations for the omission. Firstly, the Spanish test340

set in AMR 2.0 is already used as our validation set.341

Therefore, the AMR graphs (they are shared across342

the 4 languages) are already exposed during the343

validation step. Secondly, German and Italian, eval-344

uation languages in AMR 2.0, are already included345

in our training data. Since our goal is to evalu-346

ate our model for unseen target tasks, evaluating347

our model on these languages is not coherent with348

the objective. Despite the limitations, we believe349

that our study empirically shows the constraints of350

meta-learning for cross-lingual AMR parsing and351

provides valuable insights into the meta-learning352

application in the task.353
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A Aligned Data Samples536

en In the book it said : " Boa constrictors swallow
their prey whole , without chewing it .
ko 그 책에는 이렇게 씌어 있었다. "보아 구렁이
는먹이를씹지도않고통째로집어삼킨다

hr U knjizi je pisalo: »Udavi gutaju svoj plijen
cijel cjelcat, bez žvakanja.

en I pondered deeply , then , over the adventures
of the jungle .
ko나는그래서밀림속에서의모험에대해한참
생각해봤다.
hr Zatim sam mnogo razmišljao o prašumskim
pustolovinama,

en The little prince , who asked me so many
questions , never seemed to hear the ones I asked
him .
ko어린왕자는내게많은것을물어보면서도내
질문에는귀를기울이는것같지않았다.
hr Činilo se da mali princ, koji mi je postavljao
brojna pitanja, nikada ne čuje moja.

en I was more isolated than a shipwrecked sailor
on a raft in the middle of the ocean .
ko대양한가운데에떠있는뗏목위의표류자보
다나는더고립되어있었다.
hr Bio sam usamljeniji od brodolomca na splavi
usred oceana.

537

B Training Hyperparameters538

Meta Crosslingual AMR We train our model539

for 30,000 steps and evaluate the model every540

500 steps with the Spanish validation set. Early541

stopping is applied, terminating training if the dev542

SMATCH score fails to improve for more than 7,500543

steps. The number of fine-tuning cycles, called an544

adaptation step, is denoted as P . Unless specified545

otherwise, we set P = 0 and k = 0 (0-shot learn-546

ing). MAML requires two learning rates, one for the547

inner loop (α) and one for the outer loop (β). We548

conducted a grid search to identify an optimal learn-549

ing rate set and used α = 1× 10−5, β = 3× 10−5550

throughout the experiments. For β, we use a linear551

learning rate scheduler with 1,500 warm-up steps.552

Unless specified otherwise, we apply 1× 10−5 to553

fine-tune a model before validation/testing. At each554

iteration step during the training, 2 ×K are sam-555

pled to form a query and a support set for each556

training language. As a result, the batch size N557

equals 2×K × I , where I denotes the number of558

training languages. By default, we assign K = 8 559

and I = 14, unless stated otherwise. 560

Baseline Model For the training set, we use a 561

concatenation of the multilingual AMR training 562

sets described in 3. At each iteration step, we ran- 563

domly select N training examples from the con- 564

catenated training sets to calculate the loss and 565

optimize the model accordingly. For the rest of the 566

hyperparameters and test/evaluation method, we 567

apply the same settings as described as above (e.g. 568

learning rate scheduler, k-shot size) except for the 569

learning rate since maml requires two learning rates 570

α and β whereas joint-learning requires only one. 571

We use a uniform learning rate for training 3×10−5 572

with a linear scheduler with 1500 warm-up steps. 573

C Additional Analysis 574

We provide additional analysis of our approach fo- 575

cusing on how the training is affected by the num- 576

ber of training languages and translation sources. 577

The results include 0-shot evaluation for both meta- 578

learning and joint learning. 579

Q1: How does the number of languages affect 580

the performance of the models? 581

To examine how the number of training languages 582

impacts the model performance, we incrementally 583

add more languages to the training data and we 584

train three models respectively with 8, 12, and 14 585

languages. The first model is trained in German, En- 586

glish, Italian, Romanian, Russian, Turkish, Finnish, 587

and Japanese. Then we add Czech, Dutch, Polish, 588

and Swedish, and then finally we add Estonian and 589

Indonesian. Note that for meta-learning, the batch 590

size depends on the number of training tasks since 591

we randomly sample K examples per language 592

(batch size = 2×K × I where I denotes the num- 593

ber of training languages). To keep the batch size 594

consistent across experiments while altering only 595

the number of languages, when more than 8 lan- 596

guages are used for training, we randomly sample 597

8 languages per iteration step and select K training 598

examples per language. Unless specified otherwise, 599

each model is evaluated in a zero-shot manner for 600

five languages: French, Chinese, Korean, Farsi, and 601

Croatian. 602

Results Table 2 shows that both the MAML and 603

baseline models have a positive correlation with the 604

number of training languages. The baseline model 605

has the largest gain when increasing the number of 606
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fr zh ko fa hr avg

base_14langs 56.3 45.6 42.1 46.3 51.4 48.4
base_12langs 53.6 41.6 40.1 43.4 45.9 44.9
base_8langs 47.5 39.8 39.1 40.5 22.4 37.8

MAML_14langs 56.5 46.1 42.2 46.7 50.8 48.5
MAML_12langs 48.5 39.4 35.1 39.7 45.0 41.5
MAML_8langs 47.7 39.6 34.3 40.1 42.4 40.8

Table 2: SMATCH scores according to the number of
training languages.

languages from 8 to 12 language by 15.7%. MAML607

models, on the other hand, have the biggest gain608

when increasing the number of languages from 12609

to 14 languages by 14.2%. Looking in detail per610

target language, however, in the MAML model, not611

all target languages benefit from adding more train-612

ing languages. Comparing the two MAML models,613

trained respectively with 8 languages and 12 lan-614

guages, the SMATCH score drops in Chinese and615

Farsi when adding four languages to the training616

data, whereas the baseline model shows a steady617

increase across target languages when adding more618

languages. In other words, the baseline model ben-619

efits uniformly from the inclusion of more training620

languages across all target languages, while the621

performance of the MAML model varies depend-622

ing on the specific target language. In the MAML623

models, certain languages experience a decrease in624

performance despite the addition of more training625

languages. A caveat of this experiment is that the626

results may depend on the order in which the lan-627

guages are added and their typological relationship628

to evaluation languages (we leave this investigation629

to future work).630

Q2: How robust is the model with respect to631

translation quality?632

To assess the impact of the translation source on633

our method, we employ an alternative translation634

model to translate our training data. Specifically,635

we use the mBart translation models, sourced from636

the Huggingface hub8, to translate our training data637

into 13 languages. COMET score of the 13 trans-638

lated texts is 80.7±1.4. Subsequently, we use this639

translation to train both the MAML and baseline640

models. Following this, we contrast the evaluation641

outcomes of these models with those trained using642

the DeepL translation.643

8https://huggingface.co/facebook/
mbart-large-50-many-to-many-mmt

fr zh ko fa hr avg

base_DeepL 56.3 45.6 42.1 46.3 51.4 48.4
base_mBart 56.2 44.5 41.2 46.1 51.3 47.8

MAML_DeepL 56.5 46.1 42.2 46.7 50.8 48.5
MAML_mBart 55.6 45.1 40.8 46.1 48.9 47.3

Table 3: SMATCH scores according to the translation
source.

Results For both the MAML and the baseline 644

models, when using an open-source translation 645

model mBart, the performance drops (see Table 3). 646

In both cases, the Korean SMATCH score drops 647

the most when using the mBart translation model. 648

MAML model is more affected by this change. On 649

the average score, the baseline model drops by 650

0.9%, whereas the MAML-model drops by 2.3%. 651

This result shows that the meta-learning model is 652

more sensitive to the input texts than the baseline 653

model. 654
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