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ABSTRACT

Current video understanding models rely on fixed frame sampling strategies, pro-
cessing predetermined visual inputs regardless of the specific reasoning require-
ments of each question. This static approach limits their ability to adaptively
gather visual evidence, leading to suboptimal performance on tasks requiring ei-
ther broad temporal coverage or fine-grained spatial detail. In this paper, we in-
troduce FrameMind, a novel end-to-end framework trained with reinforcement
learning that enables models to dynamically request visual information during
reasoning through Frame-Interleaved Chain-of-Thought (FiCOT). Unlike tradi-
tional approaches, FrameMind operates in multiple turns where the model alter-
nates between textual reasoning and active visual perception, using tools to extract
targeted frames or video clips based on identified knowledge gaps. To train ef-
fective dynamic sampling policies, we propose Dynamic Resolution Frame Sam-
pling (DRFS), which exposes models to diverse temporal—spatial trade-offs during
learning, and DRFS-GRPO, a group-relative policy optimization algorithm that
learns from outcome-based rewards without requiring frame-level annotations.
Extensive experiments on challenging benchmarks like MLVU and VideoMME
demonstrate that our method significantly outperforms existing models, advanc-
ing the state of the art in flexible and efficient video understanding.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in
static image understanding, achieving human-level performance on complex visual reasoning
tasks(Alayrac et al., 2022} [Liu et al., [2023; [Li et al.l 2023a; |Yin et al.l 2023). However, extend-
ing these successes to video understanding remains challenging due to the temporal complexity and
computational constraints inherent in processing sequential visual content(Tang et al.l 2023} |Berta-
sius et al.| [2021;|Arnab et al.| 2021} |Tong et al.,|2022). Videos require models to reason across time,
tracking objects, events, and causal relationships while managing the trade-off between temporal
coverage and spatial resolution under limited computational budgets(Lei et al.l 2018} Xiao et al.,
2021b; Y1 et al.| [2020; [Feichtenhofer et al., 2019} [Tang et al., 2025).

Most existing video MLLMs address this challenge by sampling a fixed set of frames before pro-
cessing(Li1 et al.| |2023c} [Zhang et al.| [2024b; |Chen et al.,2024b; Zhang et al.|[2024a; |Ye et al., 2025;
Shu et al. 2025)), committing to a single sampling strategy regardless of the question’s specific re-
quirements (Hugging Facel [2024}; Zhang et al., 2024c; [Qian et al., [2024). This approach creates a
fundamental disconnect: when analyzing a movie to identify “when does Tom catch Jerry,” a model
needs broad temporal coverage to scan the entire sequence, but when determining “what color is the
laptop the woman is holding,” it requires high spatial resolution of specific frames, which is demon-
strated in Figure [T} Current approaches typically cannot adapt their perceptual strategy during rea-
soning, often resulting in either insufficient temporal scope for sequential questions or inadequate
spatial detail for localized analysis.

To overcome these limitations, our key insight is that visual perception should be treated as an active,
dynamic process rather than a static preprocessing step. Drawing inspiration from tool-augmented
reasoning frameworks, we introduce Frame-Interleaved Chain-of-Thought (FiCOT), where models
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(a) Text-Only COT )
é?h Let’s analyze the video. I'll go to the beginning of the video. From the scan of ‘

[$7%) the whole video, the woman often holds a neutral-colored laptop. I can’t get

the information of what color the laptop is. Based on my scan, I think the
00:00 laptop is silver. Q

@ Q: What color is the laptop the woman is
holding at the beginning of the video?

(b) Frame-Interleaved COT
Let’s analyze the video. I'll grab a short snippet from the start.

This laptop looks like a vivid pink/magenta.
Let’s verify on another frame.

| From this Frame, I can clearly see the laptop,
the color is bright pink.

Figure 1: Comparison of a static, text-only CoT with our dynamic Frame-Interleaved CoT (FiCOT).
(a) The conventional approach relies on a single, fixed scan of the video, resulting in insufficient
spatial detail and an incorrect guess silver. (b) FICOT actively identifies its knowledge gap and
uses its toolbox to retrieve a high-resolution snippet and specific frames, leading to a grounded and
correct answer bright pink.

alternate between textual reasoning and targeted visual evidence gathering. Instead of processing
predetermined frames, the model can pause its reasoning, identify knowledge gaps, and actively
request specific visual information from the video.

We realize this approach in FrameMind, an end-to-end agentic framework where the model operates
through multiple reasoning turns, alternating between textual chain-of-thought and active visual
tool calls. At each turn, the model can invoke tools to extract high-resolution frames at specific
timestamps or sample frame sequences from targeted intervals, seamlessly integrating this evidence
into its reasoning trajectory. Our key technical innovation is Dynamic Resolution Frame Sampling
(DRFS), which trains the model across a resolution ladder spanning from low-resolution tempo-
ral scanning to high-resolution spatial focus, enabling adaptive perception policies. To train this
complex decision-making process, we develop DRFS-GRPO, a group-relative policy optimization
algorithm that learns effective sampling strategies from trajectory-level rewards, eliminating the
need for expensive frame-level supervision(OpenAl et al. 2024} DeepSeek-Al et al., [2025)).

We validate our approach on a diverse suite of challenging video understanding benchmarks, in-
cluding MVBench, MLVU, and VideoMME. Our results demonstrate that FrameMind significantly
outperforms existing open-source models and achieves performance competitive with top propri-
etary systems. Our main contributions are:

* We introduce FiCOT, a reasoning paradigm enabling dynamic visual evidence gathering
during inference.

* We propose DRFS, a training methodology for learning adaptive sampling policies.

* We develop DRFS-GRPO, an efficient reinforcement learning algorithm for training com-
plex perception-reasoning policies from sparse rewards.

2 RELATED WORKS

2.1 REASONING IN MULTIMODAL LLMS

RL-based post-training has been shown to enhance the reasoning abilities of large (multi)modal
models through outcome-driven rewards and group-relative optimization (OpenAl et all 2024
DeepSeek-Al et al.| [2025)). A substantial body of work extends this paradigm to multimodal settings
by injecting perceptual evidence into the chain of thought: image-side studies expose intermedi-
ate spatial cues via visualization or editing (Li et al.| [2025), and video-side investigations pursue
reinforced video reasoning with multi-task evaluations and trajectory auditing (Feng et al., 2025).
Beyond final-answer supervision, structured signals—such as format validity, tool-call correctness,
and spatio-temporal alignment—are incorporated to alleviate supervision sparsity and spurious cor-
relations (Zheng et al., 2025; |Feng et al., 2025); stability is typically promoted via KL regularization



Under review as a conference paper at ICLR 2026

and preference/trajectory auditing (OpenAl et al., 2024} DeepSeek-Al et al.| 2025)). Notwithstanding
these advances, perceptual granularity is often fixed, and attempts to scale RL to hour-level videos
reveal unresolved choices concerning the allocation of visual bandwidth under tight computational
budgets (Chen et al., [2025)).

2.2 VIDEO UNDERSTANDING WITH MLLMSs

Video understanding fundamentally requires balancing temporal coverage and spatial fidelity across
mixed-length inputs. Earlier research emphasizes object-centric cues and iterative temporal selec-
tion/answering for long-form VideoQA (Gao et al |2023a} [Yu et al., 2023)); complementary efforts
reduce cost by compressing or sparsifying visual inputs—e.g., mapping each frame to a few tokens
or employing streaming memory for very long sequences (Li et al.,[2023c}; Zhang et al.| 2024a)—and
by long-context finetuning that scales models to thousands of frames (Zhang et al., |2024bj (Chen
et al.,2024b). More recent systems couple adaptive scheduling with compression to unify short and
long videos (Shen et al., 2024 Ye et al., 2025)), while extra-long modeling advances the temporal
horizon to hour-scale inputs (Shu et al. 2025). Benchmarking practice increasingly reports task
accuracy alongside alignment and budget metrics to facilitate equal-budget comparisons, and RL-
oriented studies explicitly target long-video regimes (Fu et al., 2025} |Chen et al.| |2025)). Despite this
progress, many pipelines still operate with static FPS/resolution presets or heuristic schedules, leav-
ing open a systematic scheme for coordinating resolution and frame counts across heterogeneous
lengths.

2.3 ToOOL-AUGMENTED MLLMSs

Equipping models with external tools extends capabilities beyond pure sequence modeling and es-
tablishes plan—act-reflect routines with auditable traces (Shenl [2024} Gao et al.,2023bj;|Schick et al.}
2023). Within the image domain, callable visual operators—zoom/crop, detection/segmentation,
sketch/edit—have been intertwined with reasoning: DeepEyes(Zheng et al.,2025)) incentivizes vi-
sual tool use via reinforcement learning, OpenThinkIMG(Su et al, |2025) provides an end-to-end
visual-tool RL framework, and MVoT (L1 et al., 2025) treats visualization as an intermediate rea-
soning form (Zheng et al. 2025} [Su et al) 2025} Li et al.l |2025; |Su, 2025). For videos, tem-
poral grounding and indexing (e.g., manga-style frame/segment numbering) offer scaffolding for
fine-grained evidence retrieval (Wu et al., [2025). Nevertheless, an effective mechanism by which
models autonomously determine when, what, and how to invoke perception tools while reasoning
over frames—under compute constraints and across mixed video lengths—remains insufficiently
addressed.

3 METHOD

3.1 FRAMEWORK OVERVIEW

We propose FrameMind, a multimodal language model that performs video reasoning through an
iterative perception-reasoning loop. Unlike conventional approaches that process a fixed set of pre-
sampled frames, FrameMind acts as a dynamic agent, actively requesting visual information during
the reasoning process based on its current understanding and identified knowledge gaps.

Problem Formulation. Given a video V' and question (), conventional video MLLMs sample a
fixed set of frames F' = {f1, f2, ..., fn} and generate an answer A through a single forward pass:
A=M(F,Q).

This static approach can be inefficient and prone to missing crucial details. In contrast, FrameMind
operates through multiple turns, where each turn k involves generating reasoning text 7 and tool
calls C, executing those calls to obtain new visual evidence Ej, and progressively refining its
understanding.

Core Components. FrameMind consists of three key technical contributions: (1) Frame-Interleaved
Chain-of-Thought (FiCOT), an iterative reasoning paradigm that interleaves textual reasoning with
visual perception; (2) Dynamic Resolution Frame Sampling (DRFS), a training methodology that
enables the model to reason effectively across different temporal-spatial trade-offs; and (3) DRFS-
GRPO, a group-relative policy optimization algorithm for end-to-end training.
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Figure 2: Overall framework of FrameMind, illustrating the iterative perception-reasoning loop.
The agent first thinks, then acts (calls tools) to gather visual evidence, and updates its understanding
to inform the next cycle.

3.2 FRAME-INTERLEAVED CHAIN-OF-THOUGHT (FICOT)

At the heart of our agent is the Frame-Interleaved Chain-of-Thought (FiCOT) process, which refor-
mulates video reasoning from a single-step generation into a multi-turn dialogue between reasoning
and perception. This grounds the model’s internal monologue in concrete visual evidence. The
complete reasoning trajectory is defined as 7 = {1y, C1, E1,Ts, Cs, Eo, ..., T,,, A}, capturing each
step of thought T}, action CY, observation Fy, and final answer A.

Turn-based Execution. Each turn k follows a three-stage process:

Stage 1: Generation. At the start of each turn k, the policy, denoted as my, receives two inputs:
the complete textual history Hy—1 = {Q,T1,...,Tk—1}, containing the initial question () and all
prior reasoning steps, and the visual evidence E_; gathered from the previous turn. Based on this
information, the policy generates the next textual thought T} and a corresponding set of tool calls
Cy. This is formally expressed as:

(Tk, Cr) ~mo(- | Hy—1, Ex—1) (D

For the initial turn (k = 1), the model starts with a set of uniformly sampled frames from the video,
denoted as Ejy.

Stage 2: Tool Execution. When the model’s reasoning output contains a special <tool_call> tag,
a parser extracts the enclosed action instruction, C. This instruction is then mapped to one of the
two available tools for execution:

e FrameAt (t): To zoom in on a specific moment t with a resolution (448 x448) frame.

e VideoClip (t_start,
a sequence of 8-20 frames.

t_end) : To scan a time interval from t _start to t _end with

The visual information returned by the executed tool is then used to populate the evidence set E,
which serves as the visual input for the next reasoning turn k + 1.

Stage 3: State Update. The newly acquired visual content is organized into a timestamped evidence
set By, = {(fi,t;)} and fed back to the model for the next turn.

Termination. The process terminates when: (1) the model generates a response containing the spe-
cial token <answer></answer>, or (2) the maximum number of turns (3 in our implementation)
is reached.



Under review as a conference paper at ICLR 2026

Algorithm 1 DRFS-GRPO Training Step

Require: Batch {(V;,q;)}2 ,, group size G
1: for:=1to B do

2: for g =1to G do > Build DRFS ladder
3: T4 %; generate :rgg) using resolution ladder
4 end for
5 for g =1to G do > Execute & evaluate
6: 79 <o | 219, ;); compute R\
7: end for ~
8 R; + é > g R,Eg ); A,Eg ) Rgg ) R; > Group-relative advantage
9: Update policy using PPO objective with Agg )
10: end for

Training Efficiency. Unlike approaches requiring expensive frame-level annotations, FiCOT only
requires video-question-answer triplets for outcome-based reward signals, making it scalable to large
datasets.

3.3 DYNAMIC RESOLUTION FRAME SAMPLING (DREFS)

While FiCOT provides the agentic loop, its effectiveness depends entirely on the quality of the visual
evidence it receives. A fundamental challenge here is the trade-off between temporal coverage and
spatial detail. Locating a brief event in a long video requires scanning many low-resolution frames,
while understanding a complex, rapid action requires focusing on a few high-resolution frames.

To equip our model with the versatility to handle both scenarios, we introduce Dynamic Resolution
Frame Sampling (DRFS). Instead of training on a single, fixed sampling strategy, DRFS exposes the
model to a whole spectrum of possibilities during each training step.

Resolution Ladder Construction. For any video during training, DRFS generates GG parallel vi-
sual inputs spanning a spectrum of sampling strategies. Let (N, Hy, W) and (Ny, Hg, Wg)
represent the low-resolution (many frames, small size) and high-resolution (few frames, large size)
endpoints respectively. For each group member g € {1,2,..., G}, we set an interpolation weight
r € [0, 1] that increases linearly with g, i.e., r = (g;;_ll (Algorithm line . We then compute:

NQZ(I—T)NL+TNH 2)
(HgyWy) = (1 —r)(Hp, W) +r(Hpu, Wp) (3)

This creates a “resolution ladder” where g = 1 corresponds to temporal scanning and g = G
corresponds to spatial focus.

Frame Sampling and Resizing. For each configuration (N4, Hy, Wy ), we sample N, frames uni-
formly, resize each to Hy; x Wy, and stack them into the input tensor z(@),

Training Rationale. By forcing the model to reason across this entire spectrum, DRFS enables the
policy to learn which sampling strategy is most effective for different video types and questions,
making it robust to diverse evaluation scenarios.

3.4 REINFORCEMENT LEARNING WITH DRFS-GRPO

To learn a policy my that can effectively utilize the diverse visual inputs from DRFS, we employ
reinforcement learning. However, standard RL algorithms are not designed to handle the group of
parallel rollouts generated by our DRFS methodology. We therefore propose DRFS-GRPO (Group
Relative Policy Optimization), an algorithm specifically designed to leverage this group structure
for more effective and efficient policy learning.

Group-Relative Advantage Computation. To teach the model which initial sampling strategy
is most effective, our process begins with the group of G parallel visual inputs, {x(l), e ,x(G)},
generated by the DRFS resolution ladder. For each of these distinct inputs, the policy executes a

full reasoning trajectory Ti(g)

, resulting in G parallel rollouts for the same video-question pair. After
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obtaining the final reward Rl(-g ) for each rollout, we compare their performance. The core idea of

DRFS-GRPO shown in Algorithm (1] is to judge each strategy’s outcome relative to its peers by
calculating a group-average reward R;. The advantage Af;q for each rollout is then its performance
relative to this group average.

Policy Optimization. The policy uses this group-relative advantage in a PPO-style update. Actions

from trajectories with a positive advantage (AZ(-Q ) > 0), which performed better than the group av-
erage, are reinforced, while those with a negative advantage are suppressed. This direct comparison
of parallel outcomes efficiently teaches the policy to select the best sampling strategies for different
videos and questions.

j(e) = IE(V,q)w’D

G |79
1 “4)
S>> min (r§9>(9)A§9)7 clip(rl® (0),1 — £, 1 + E)Agw) - ﬂDKL(mHmef)]

g=1 t=1

(9)

where 1,7’ (0) = _mo(aslse)_

is the probability ratio for the action at timestep ¢ in rollout g, A s the
menen) 4

group-relative advantage for the entire trajectory, and the final term is a KL divergence regularizer
for training stability.

3.5 REWARD DESIGN

The DRFS-GRPO algorithm trains the policy to maximize a cumulative reward. The design of
this reward function is crucial, as it defines what a “good” trajectory looks like. We designed a
function that guides the agent toward not just correct answers but also efficient and structurally
sound reasoning.

Core Objective. The primary signal is task success, given by the Accuracy Reward (+1 for a correct
answer) and a Format Penalty (—1 for improper structure) to ensure valid output.

1 if final answer is correct
R = 5
ace(T) {O otherwise )
0 if format is valid
R orma; — . 6
format (7) { —1 otherwise ©

Behavioral Shaping. To encourage intelligent behavior, we add two shaping rewards. The Tool
Usage Incentive (R;,,;) encourages using the available tools effectively. It is based on a raw tool
score, Syo1(T), which grants a score of 1.0 for using one unique tool type and a synergy bonus for
a total score of 1.2 if both are used. This score is then gated by the final answer’s correctness, with
a small base reward granted for exploration and a larger reward for tool use that leads to a correct
answer. The Efficiency Bonus rewards the agent for finding the answer in a reasonable number of
steps (2 or 3 turns).

Riool(T) = Si001(T) X (0.2 4 0.8 - Race(7)) (7)
Riurn(7) = 0.5 - I[1 < |turns(7)| < 3] )]

Total Reward. The final reward is a sum of these components, creating a balanced objective for the
agent to pursue :
R(T) = Racc (T) + Rformat (T) + Rtool(T) + Rturn(T) (9)

4 EXPERIMENTS
4.1 EXPERIMENTAL DETAILS

We build on Qwen2.5-VL-7B(Bai et al.| [2025) as the base policy and train with the EasyR1 rein-
forcement learning framework. We implement a multi-turn dialogue protocol capped at three turns,
keeping recent turns as in-context memory. For perception, we adopt Dynamic-Resolution Frame
Sampling (DRFS): each trajectory samples 32—64 frames with linear interpolation of spatial resolu-
tion from 224 x224 (low-res) to 448 x448 (high-res). For targeted inspection, the VideoClip tool
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uniformly extracts 8—20 frames over a specified time span and resizes all frames to 448 x448. Un-
less noted, DRFS inputs and tool clips are fused within the same turn under the three-turn protocol.
All experiments run on a single server with 8 xNVIDIA A100-80GB GPUs.

4.2 TRAINING DATA FOR FRAMEMIND

Data for Agentic Reasoning. We curate ~7.6K video—QA instances to elicit active visual prob-
ing rather than single-pass decoding. The mix includes fine-grained perception (Perception-
Test (Patraucean et all 2023)), everyday narratives (LLaVA-Video-178K subset (Zhang et al.,
2024c)), spatio-temporal relations (STAR (Wu et al., 2024))), physical causality and counterfactu-
als (CLEVRER (Y1 et al.l [2019)), and event-centric explanations (NeXT-QA (Xiao et al., |2021a)).
These tasks require locating decisive moments/objects, prompting the agent to call VideoClip for
coarse temporal localization and FrameAt for high-resolution inspection.

Data for DRFS Training. To teach resolution—coverage trade-offs, we pair long-form LongVideo-
Reason and rationale-rich VideoEspresso (favoring low-res “global scans”) with short/mid clips
from NeXT-QA and STAR (rewarding high-res “precise focus™) (Chen et al., 2025; Han et al., 2025;
Xiao et al.l [2021a; Wu et al.l [2024)). This mix is essential for training the DRFS ladder to balance
temporal coverage and spatial detail.

Dataset Curation and Preprocessing. Our final ~7.6K instances support generating full reason-
ing trajectories 7 = {71,C1,V1,...,A,}. While the data mainly provides (video, question, fi-
nal_answer) for the outcome-driven accuracy reward R,.., reinforcement learning operates on the
complete agent-generated trajectories. Preprocessing includes normalizing video resolutions for a
consistent DRFS baseline, instantiating candidate sampling configurations, and applying decontam-
ination and batch reweighting to ensure quality and domain balance (Zhang et al.| [2024c; Wu et al.,
2024; Y1 et al., [2019; |Patraucean et al., [2023}; | X1ao et al.,[2021a;|/Chen et al.,[2025; |Han et al., 2025)).

4.3 BENCHMARKS

To comprehensively evaluate our proposed DRFS strategy, we selected three benchmarks that col-
lectively span a wide spectrum of video durations and reasoning tasks. A more detailed description
of each benchmark is provided in Appendix [C]

Video-MME. (Fu et al., 2025) is a comprehensive benchmark for multi-modal understanding. It
assesses both foundational perception and higher-order cognitive reasoning across a wide spectrum
of video durations, from short clips to hour-long videos.

MLVU. (Zhou et al., 2025) is a multi-task benchmark specifically targeting the challenges of long-
video understanding. Its tasks require both global comprehension of long narratives and fine-grained
temporal localization, featuring “needle-in-a-haystack™ questions that test a model’s ability to recall
specific details.

MVBench. (Li et al,2024b) is designed to evaluate fine-grained temporal perception in short video
clips. It consists of 20 challenging, multiple-choice tasks, such as identifying action sequences and
state changes, to pinpoint a model’s ability to process moment-to-moment details.

4.4 BASELINES

We compare FrameMind against a comprehensive set of baselines, which we group into three cate-
gories based on their training methodology. For a detailed description of each model, please refer to

Appendix

Standard Video MLLMs. We compare against a range of models trained with supervised fine-
tuning. These include general-purpose models like Video-LLaVA (Lin et al.,|2023)) and VideoChat2
(Lietal.,|2023b), as well as models specialized for long-context or efficient processing like LongVA
(Zhang et al., [2024b)) and LLaMA-VID (Li et al., [2023d). The full list includes Chat-UniVi (Jin
et al., [2024), ShareGPT4Video (Chen et al.| [20244), LLaVA-NeXT-Video (L1 et al.l 20244), Vide-
oLLaMA2 (Cheng et al.,[2024), Video-CCAM (Fei et al.,|2024)), and Video-XL (Shu et al., 2025)).

Reinforcement Learning-Based Models. To situate our work, we compare against Video-R1 (Feng
et al., 2025)), another recent model that uses reinforcement learning to enhance reasoning. We use
Qwen2.5-VL-7B (Bai et al., |2025)) as the base model for our RL training.
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Models Size Frames MVBench MLVU  VideoMME (w/o.sub)
Test Overall Long
Duration - - 5~35s 3~120m  1~60 m 30~60 m
Proprietary Models
GPT4-V (OpenAl,2023) - 1fps 43.5 - 60.7 56.9
GPT4-0 (OpenAll 2024) - 0.5fps - 54.9 77.2 72.1
Gemini 1.5 Pro(Gemini Team), |2024) - 0.5fps - - 75.0 67.4
Open-Source Video MLLMs
Video-LLaVA (Lin et al.||[2023) 7B 8 41.0 30.7 40.4 38.1
LLaMA-VID (Li et al.,[2023d) 7B 1fps 41.9 33.2 - -
VideoChat2 (Li et al.,|2023b)) 7B 16 51.1 35.1 39.5 33.2
Chat-UniVi (Jin et al., [2024) 7B 64 - - 40.6 35.8
ShareGPT4Video (Chen et al.,[2024a) 8B 16 51.2 46.4 43.6 37.9
LLaVA-NeXT-Video (Li et al.| [2024a) 7B 32 33.7 — 46.5 —
VideoLLaMA?2 (Cheng et al.,2024) 8x7B 32 54.6 45.6 46.6 43.8
LongVA (Zhang et al.,|2024b) 7B 128 52.3 41.1 52.6 46.2
Video-CCAM (Fei et al.,[2024) 9B 16/96 64.6 429 50.3 39.6
Video-XL(Shu et al.,|2025) 7B 128 55.3 45.6 52.3 48.9
Qwen2.5-VL-7B(Bai et al., 2025) 7B 32 62.6 41.6 53.6 44.7
Video-R1(Feng et al.||2025) 7B 32 63.9 454 59.3 50.2
FrameMind (Ours) 7B 32 64.2 48.6 60.9 57.5

Table 1: Performance comparison on key video understanding benchmarks. All scores are reported
as accuracy (%). The best and second-best performance among open-source models in each column
is marked in bold and underlined respectively.

Proprietary Models. We also benchmark against powerful, closed-source models, including Ope-
nAI’'s GPT-4V and GPT-40 (OpenAl, 2024), and Google’s Gemini 1.5 Pro (Gemini Team)| [2024]), to
contextualize our performance against the state-of-the-art.

4.5 MAIN RESULTS

To ensure a standardized assessment, we evaluate FrameMind on benchmarks featuring objective,
multiple-choice questions, reporting high accuracy in Table We compare against two groups:
leading proprietary systems and open-source models. The results show that FrameMind consistently
delivers competitive or superior performance, establishing a new state-of-the-art among open-source
peers under comparable configurations.

FrameMind’s strong performance across videos of diverse lengths is a direct result of its learned
ability to thinking with frames Through our proposed FiCOT process and DRFS mechanism, the
model learns an adaptive perception policy. On short-video benchmarks like MVBench, which
require high spatial fidelity, the model learns to use its toolbox to perform a high-resolution “precise
focus” on specific frames to capture fine-grained details. Conversely, on long-form benchmarks
like MLVU, it learns to deploy a low-resolution “global scan” to efficiently explore broad temporal
regions for contextual understanding. This learned ability to intelligently trade spatial detail for
temporal coverage is what drives its robust performance.

Notably, on the short-form MVBench, FrameMind achieves a secondary accuracy of 64.2%, sur-
passing all other open-source models and highlighting its superior temporal perception. In the long-
video domain, our model achieves 48.6% accuracy on the test of MLVU, outperforming special-
ized long-video models like LongVA while using up to 4x fewer frames. On the comprehensive
VideoMME benchmark, FrameMind not only leads the open-source field with an overall accuracy
of 60.9% but also surpasses the performance of GPT-4V. These results underscore the effective-
ness of training a model to actively make perceptual decisions, leading to superior performance and
efficiency compared to methods that rely on static visual inputs.
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Figure 3: Effect of the exploration bonus. (Left) reward/tool and (Right) reward/accuracy over
training steps. With the exploration bonus (blue), the curves take off earlier and converge to a higher
plateau on both metrics; without it (red), learning is slower and plateaus lower.

4.6 ABLATION STUDY

In this section, We conduct a comprehensive ablation studies to evaluate the impact of key compo-
nents of FrameMind on VideoMME.

Analysis of the DRFS-GRPO Training. To val- . -
idate the effectiveness of our DRFS-GRPO train- Train Set VideoMME (w/o sub.)

ing methodology, particularly the “resolution lad- Short Medium Long  Overall
der”, we conduct an ablation against a Stan- GRPO-32 58.0 34.5 495 54.0
dard GRPO baseline. This baseline uses the =~ GRPO-48  58.5 55.0 50.0 54.5
same group-relative optimizer but is trained on  GRPO-64  60.0 57.5 515 56.3

a fixed 32-frame sampling configuration, without ~pRrps.32  63.8 61.4 575 60.9
the diverse inputs provided by the DRFS ladder. pRFS-48  65.5 64.1 60.0 63.2
The results in Table [2| reveal a significant per- DRFS-64 66.0 64.8 61.2 64.0
formance gap. Under identical evaluation bud- =01 ™5 0o NIVIE b duration. 32/48/64 de-
gets, DRFS consistently and significantly outper- te i t evaluati

forms the GRPO baseline, delivering gains of +6.9 note frames at evaiuation.

(Overall) and +8.0 (Long) points at just 32 frames. This result demonstrates that the DRFS ladder
is crucial for teaching the model a robust and flexible policy; without being forced to reason across
a spectrum of visual fidelities and having the most successful strategies amplified by the optimizer,
the model fails to develop the adaptability needed for diverse video tasks. This enhanced robustness
is especially evident on long videos, where DRFS maintains a much higher Long-to-Overall accu-
racy ratio (e.g., 0.944 vs. 0.917 at 32 frames), indicating a markedly smaller performance drop on
challenging long-duration inputs.

Necessity of the Exploration Bonus. Our goal-gated reward grants a small, unconditional 20%
bonus for tool use to encourage exploration. To validate this design choice, we test a variant with
Strict Gating, where this exploration bonus is removed (R0 = Siool - Facc)- In this setting, the
tool reward is zero unless the final answer is correct. We observe that this model struggles to learn a
robust tool-use policy because the reward signal becomes overly sparse. As illustrated in Figure [3]
the model trained with the exploration bonus (blue line) shows a steady increase in both its tool-use
reward and final task accuracy. In contrast, the model with Strict Gating (red line) fails to learn an
effective tool-use policy, and its accuracy stagnates at a low level. This experiment confirms that the
20% exploration bonus is a critical component for mitigating reward sparsity and bootstrapping the
learning process in a complex, tool-augmented environment.

5 CONCLUSION

In this work, we presented FrameMind, a framework designed to overcome the static perception
limitations of current video models. Our approach, Frame-Interleaved Chain-of-Thought (FiCOT),
enables a model to actively gather visual evidence during its reasoning process. Trained end-to-end
with our DRFS-GRPO reinforcement learning algorithm, FrameMind learns to adapt its perceptual
strategy, deciding whether to perform a broad temporal scan or a high-resolution focus. Experiments
show our method achieves state-of-the-art results, representing a key step toward more flexible and
efficient video understanding model that can decide not just what to think, but how to look.
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FRAMEMIND: FRAME-INTERLEAVED CHAIN-OF-
THOUGHT FOR VIDEO REASONING VIA REINFORCE-
MENT LEARNING

APPENDIX

In this supplementary document, we provide additional details and experimental results to enhance
understanding and insights into our method. This supplementary document is organized as follows:

A LLM USAGE

I have used large language models just to polish my paper writing.

B METHOD IMPLEMENTATION DETAILS

This section describes the methodology details of the proposed FrameMind framework in Section 3.
We first illustrate the implementation details of the video toolbox and then demonstrate the training
details.

B.1 DETAILED REWARD FUNCTION SETUP

Our reward balances final task accuracy with well-structured, executable tool usage and concise
multi-turn reasoning. The total episode reward is

R(T) = Race + Riormat + Riool + Riumn- (10)

Accuracy Reward (R,.). Primary signal for task success:

(an

1, if the final answer is correct,
Racc = .
0, otherwise.

Format Enforcement (Rpymat). We require the whole response to be one or more closed
<think></think> blocks followed by exactly one closed <answer></answer> block (and
nothing after it). Let the format-validity indicator be

Lo — 0, all <think> are closed and there is exactly one closed <answer> at the end,
fmt = 1, otherwise.

(12)
Then the format term is <think>...</think>...<answer>...</answer>.

Tool Usage Incentive (Rio1). A response from trajectory may contain one or more closed
<tool_call></tool_call> blocks. Each must be (i) well-formed, (ii) regex-parsable into
a normalized schema, and (iii) executable for correct frame/segment extraction.

Turn Efficiency Bonus (Rym). Let T be the number of closed <turn_sum></turn_sum>
blocks in the final response. Reward concise multi-turn reasoning:

Rturn = )\turn %[2 < T < 3]7 )\tum =0.5. (13)
Rollout Turn Control (Loop Policy). Each turn produces <think>--- </think> (and op-

tional <tool_call>--- </tool_call>); it either emits <turn_sum>--- </turn_sum> to
continue, or a terminal <answer> --- </answer> to stop. The controller is:

1. Start at turn k = 1.
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2. If the previous turn emitted a closed <turn_sum> and k < 3, proceed to turn k+1; else
stop.

3. If any turn emits a closed <answer>, stop immediately.

4. Hard cap at 3 turns (i.e., if £ = 3 finishes without <answer>, stop).

B.2 TooL IMPLEMENTATION AND PARSING

The FrameMind agent is equipped with a concise yet powerful toolbox designed for targeted visual
evidence gathering. The implementation of these tools and the parsing mechanism are as follows:

B.3 TooOL IMPLEMENTATION AND PARSING

The FrameMind agent is equipped with a concise yet powerful toolbox designed for targeted visual
evidence gathering. The implementation of these tools and the parsing mechanism are as follows:

* Tool Definitions: The agent has access to two primary tools for visual perception:

— FrameAt (t): This tool is designed for high-detail spatial inspection. Given a spe-
cific timestamp t (in seconds), it extracts the single closest frame from the video and
resizes it to a high resolution of 448 x 448 pixels. This is used when the model needs
to “zoom in” on a precise moment.

— VideoClip (t_start, t_end): This toolis used for temporal scanning of a spe-
cific interval. Given a start time t_start and an end time t_end, it uniformly sam-
ples a sequence of 8 to 20 frames from within that duration. These frames are also
resized to 448 x 448 to provide high-resolution context for the selected segment.

e Parsing and Execution: The model invokes these tools by generating a special
<tool_call> tag within its reasoning output. A parser, implemented using regular ex-
pressions, then extracts the function call (e.g., VideoClip (15.5, 20.0))from within
this tag.

* Error Handling: If a tool call is malformed (e.g., incorrect syntax, invalid parameters like
t_end < t_start, or a timestamp outside the video’s duration), the tool execution en-
gine returns a concise error message (e.g2., ERROR: Invalid timestamp. Video
duration is 60s.). This feedback is appended to the dialogue history, allowing the
agent to recognize its mistake and attempt a corrected action in the subsequent turn.

C BENCHMARK DETAILS
We evaluate our model on three key video understanding benchmarks, each with a distinct focus.

Video-MME. (Fu et al.,2025) is a comprehensive benchmark for multi-modal video understand-
ing that assesses both perceptual and cognitive abilities. It contains 900 videos totaling 254 hours,
with lengths from 11 seconds to over an hour. The dataset spans six diverse visual domains (e.g.,
movies, vlogs, sports) and 30 subfields, accompanied by 2,700 multiple-choice questions. It is de-
signed to test foundational perception tasks like action and attribute recognition, as well as higher-
order cognition, including character relationship analysis, commonsense reasoning, and scene un-
derstanding. The benchmark holistically evaluates models by accepting inputs from various modal-
ities, including video frames, subtitles, and audio.

MLVU. (Zhou et al.,[2025) is a multi-task benchmark specifically targeting the challenges of long-
video understanding. It comprises 1,730 videos, with an average duration of 15 minutes and some
exceeding 2 hours, paired with 3,102 questions across nine distinct task categories. These tasks,
such as Anomaly Recognition, Plot QA, and First-person QA, require a mix of global, long-range
reasoning and fine-grained temporal localization. A notable feature is its “needle-in-a-haystack”
questions, which test a model’s ability to recall specific, localized details from an extensive video
context. The benchmark includes both multiple-choice and open-ended generative questions, split
into development and test sets.
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MVBench. (Li et al} 2024b) is a benchmark designed to evaluate fine-grained temporal under-
standing in short video clips. It consists of 20 challenging tasks that require detailed temporal
perception and reasoning, such as identifying action sequences, recognizing state changes, and un-
derstanding object interactions. The tasks are presented in a multiple-choice format and are designed
to pinpoint specific model capabilities in processing continuous video streams. By focusing on short-
form content, MVBench serves as a crucial test for a model’s ability to capture precise, moment-to-
moment details, complementing the long-range reasoning required by other benchmarks.

D BASELINES DETAILS

Standard Video MLLMs. This group comprises models primarily trained with supervised fine-
tuning. Video-LLaVA (Lin et al.|[2023)) employs a two-stage curriculum, first pre-training on images
and then fine-tuning on video instruction data. VideoChat2 (Li et al.,[2023b)) is a video-centric model
that utilizes a spatiotemporal-aware visual encoder and is trained on diverse, high-quality video in-
struction data. Chat-UniVi (Jin et al., [2024) learns a unified representation for images, video, and
audio through a shared vector quantizer. ShareGPT4Video (Chen et al., [2024a)) is a model trained
on a large-scale, high-quality dataset of human-annotated video dialogues. LLaVA-NeXT-Video
(L1 et al., 2024a) improves upon the LLaVA architecture with higher-resolution visual encoders and
enhanced visual instruction tuning. VideoLLaMA?2 (Cheng et al., 2024)) integrates spatiotempo-
ral, audio, and speech modalities for a holistic understanding. For models targeting diverse video
lengths, Video-CCAM (Fei et al., [2024)) introduces a causal cross-attention mask to improve per-
formance on both short and long videos. For efficiency and long-context processing, LLaMA-VID
(L1 et al.| [2023d)) generates a single context token to represent an entire video’s content, while
LongVA (Zhang et al.} 2024b) and Video-XL (Shu et al., 2025) employ coarse-to-fine aggregation
and attention-sparsification techniques to handle thousands of frames.

Reinforcement Learning-Based Models. This category includes models that use reinforcement
learning (RL) to enhance reasoning. Video-R1 (Feng et al.,[2025)) is an end-to-end agentic reasoning
framework trained with a novel group-relative policy optimization algorithm on a multi-task dataset.
Our work extends this paradigm by training FrameMind to learn a dynamic perception policy, using
Qwen2.5-VL-7B (Bai et al., 2025)) as our base model.

Proprietary Models. To contextualize our performance, we also report scores from leading pro-
prietary models. These include OpenAl’s GPT-4V and GPT-40 (OpenAl |2024), and Google’s Gem-
ini 1.5 Pro (Gemini Team, [2024), which is distinguished by its extremely large context window.

E EXPERIMENT DETAILS

E.1 PROMPTING FORMAT

To facilitate the Frame-Interleaved Chain-of-Thought (FiCOT) process, we structure the input to
the model as a multi-turn dialogue. At the beginning of each reasoning turn k, the model receives a
formatted prompt that includes the entire history of the interaction. This includes the initial question,
all previous textual thoughts, tool calls, and the visual evidence gathered.

The visual evidence Ej_; from the previous turn, which is a set of timestamped frames {(f;, ¢;)},
is integrated directly into the context. The general template is as follows:
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SYSTEM_PROMPT

{{ content | trim }} You are an expert video analysis assistant.

# Tools
You are provided with function signatures within <tool_call></
tool_call> XML tags:
<tool_call>
{
"type": "function",
"function": {
"name": "FrameAt",
"parameters": {
lltypell . "object n ,
"properties": {
"time": {
"type": "number",
}
b
"required": ["time"]
}
}
}
</tool_call>
<tool_call>
{

"type": "function",
"function": {
"name": "VideoClip",
"parameters": {
"type" : "object n ,
"properties": {
"t_start": { "type": "number", "Start time (s)" },
"t_end": { "type": "number", "End time (s)" }
by
"required": ["t_start", "t_end"]

}
}

}
</tool_call>

# How to call a tool

Return a json object with function name and arguments within <
tool_call></tool_call> XML tags:

<tool_call>

{ "name": <function-name>, "arguments": <args-json-object> }

</tool_call>

You may call one or more functions to assist with the user query.

# How to call a turn summary:

Return a JSON object with name and arguments within <turn_sum></
turn_sum> XML tags:

<turn_sum>

{ "name": "TurnSum", "arguments": { "attempt": "...", "observation":
"...", "status": "need_more_infol|partial_progress|blocked", "
next_step": "..." } }

</turn_sum>

# Output Protocol (STRICT)
— Per-turn pattern: Tool turn -> <think>...</think> ( <tool_call

>{...}</tool_call> ){1l,3}<turn_sum>...</turn_sum>;
- Every turn MUST summary the content of the turn and end with a
closed <turn_sum>... </turn_sum>.
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USER_PROMPT (Turn 1)

Start with <think>.
Format strictly as: <think>...</think> <tool_call>...</tool_call> <
turn_sum>...</turn_sum>.

Please think about this question as if you were a human pondering
deeply. Its encouraged to include self-reflection or verification in
the reasoning process. Provide your detailed reasoning between the
<think> and </think> tags. All your formal output should be a brief

sentence, less than 100 tokens.
You MUST end in <turn_sum>...</turn_sum>. Use <tool_call> to get the
specific segments of videos or frames.

TURN_PROMPT (Turn 2,3...)

<tool_response>{visual_content}</tool_response>

Based on the tool response above, analyze the video content and
answer the original question.

Start with <think> and analyze the time information and the content
shown in these frames.

You can use <tool_call> if you need to get the specific segments of
videos or frames.

If the information is enough, output your answer after <answer> and
end in </answer>. If not, summary the content of the turn after <
turn_sum> and end in </turn_sum>.

E.2 TRAINING DETAILS

We train a tool-augmented video understanding model based on Qwen/Qwen2.5-VL-7B-Instruct.
Optimization uses AdamW (Ir 1 x 10—, weight decay 1 x 10~2), no warmup, and gradient clipping
at 1.0, with gradient checkpointing enabled. We employ FSDP full sharding (no CPU offload)
and tensor parallel size 4. Batching uses a global batch of 64 with per-device micro-batches of
2 for updates and 1 for experience; padding-free and dynamic batching are enabled. RL follows
GRPO with a KL regularizer (low_var kI, coefficient 10~2). The visual budget is constrained by
min_pixels = 50176 and max_pixels = 200704, and overlong prompts are kept. For rollouts we use
DRFS multi-view with n = 8 (from lower-res/more-frames to higher-res/fewer-frames), temperature
0.7, top-p = 0.9, up to 50 images per prompt, and target GPU memory utilization 0.7. Context
limits are max_model_len = 32768 and max_num_batched_tokens = 65536. For validation we adopt
conservative settings: temperature 0.01, top-p = 0.95, single view n = 1, and max_frames = 64.
Key settings are summarized in Table[ET]

E.3 REWARD MANAGER

The Reward Manager is a crucial component responsible for calculating the accuracy component of
the final reward signal, R,..(7). To handle the diverse nature of video question-answering tasks,
our training framework employs two distinct scoring methodologies based on the type of question
being evaluated.

» Exact Match (EM) Scoring: For questions that have a definitive, single correct answer,
such as numerical questions or multiple-choice questions, we use an Exact Match (EM)
scoring method. The model’s generated answer is compared directly against the ground
truth. A reward is granted only if the answer is a perfect match. This provides a clear and
objective signal for convergent tasks.

* LLM as Judge Scoring: For open-ended and descriptive questions, where answers can be
semantically correct but vary in phrasing, a simple string comparison is inadequate. For
these cases, we utilize an LLM as Judge to provide a more nuanced reward.
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We specifically use GPT-40 mini as the judge for its strong reasoning capabilities and
efficiency. The judge model is provided with the question, the ground truth answer, and
the model-generated answer, and it assesses the quality based on the following structured
prompt:

LLMasJudge_PROMPT

You are an expert evaluating video understanding accuracy for free-
form questions. Below are two answers to a video question: [Question
] is the task, [Standard Answer] is correct, and [Model_answer] is
the model’s response.

x*xGeneral Evaluation Principles:*x*

- Both answers should demonstrate understanding of the same video
content

— Accept different wording, style, and organization if meaning is
equivalent

— Be lenient with minor details but strict with major factual errors
— Consider the overall coherence and completeness of understanding

- Focus on whether both answers would be considered correct by a
human evaluator

**Scoring Guidelines:xx

- Score 1 if answers show equivalent video understanding despite
different expression

— Score 0 if answers show fundamentally different understanding of
the video content

— Be generous with semantic equivalence but strict with factual
accuracy

If the video understanding is consistent, output Judgement: 1; if
different, output Judgement: O.

E.4 ANALYSIS OF TRAINING PARADIGMS AND DATA EFFICIENCY

In this section, we provide a detailed comparison of the training methodologies, data modalities, and
data volumes used by FrameMind versus other state-of-the-art models, as summarized in Table [E2]

A key distinction of our work lies in the training paradigm. The majority of contemporary video
MLLMs, such as Video-CCAM, VideoChat2, and LongVA, rely on a standard Supervised Fine-
Tuning (SFT) paradigm. Video-R1 employs a hybrid approach, using a large SFT stage followed by
an RL phase. In contrast, FrameMind is fine-tuned using a pure Reinforcement Learning (RL) ap-
proach, where the model learns a reasoning policy from outcome-based rewards rather than explicit
instruction-response pairs.

This difference in paradigm is also reflected in the data modalities. Most baselines are trained on
a combination of image and video data (‘img/vid-text’), whereas FrameMind’s training is focused
exclusively on ‘vid-text’ data.

The most significant finding from this comparison is the remarkable data efficiency of our frame-
work. FrameMind is trained on a curated dataset of only 7.6K instances. This is one to three orders
of magnitude smaller than the fine-tuning datasets used by other models, which range from 257K
for Video-XL to 4.4M for Video-CCAM. For a direct comparison, FrameMind uses approximately
34 times less data than the SFT+RL model, Video-R1. This result strongly suggests that our agentic
FiCOT process, trained with DRFS-GRPO, learns a more generalizable and sample-efficient reason-
ing policy from sparse rewards, avoiding the need for massive, and often costly, supervised datasets.

F CASE STUDY
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Table E1: Training Config.

Configuration Value

Data constraints

min_pixels / max_pixels 50176 / 200704
Algorithm

adv_estimator grpo

use_kl_loss / kl_penalty / kl_coef true / low.varkl / 0.001
disable_kl / online_filtering false / false

Model

model_path Qwen/Qwen2.5-VL-7B-Instruct
freeze_vision_tower false
enable_gradient_checkpointing true

tensor_parallel_size 4

Batching

global_batch_size 64
micro_batch_size_per_device_for_update 2
micro_batch_size_per_device_for_experience 1

padding_free / dynamic_batching true / true
max_grad_norm 1.0

ulysses_size 1

Optimization

strategy adamw

Ir / weight_decay / Ir_-warmup_ratio 1.0e-6 / 1.0e-2 / 0
FSDP & Offload

fsdp: full_shard / cpu_offload / rankO_init true / false / true
offload_params / offload_optimizer false / false

Rollout / Inference

n (DRFS views) 8

max;urns 3

temperature / top_p 0.7 / 0.9

limit_images / gpu_-memory_utilization 100 / 0.7

enforce_eager / chunked_prefill / disable_tqdm false / false / false
max_model_len / max_num_batched_tokens 32768 / 65536

val_override: temperature / top_p /n/ max_frames 0.01 / 0.95 / 1 / 64

Method Size Paradigm Modalities Volume
Video-CCAM 9B SFT img/vid-text 4.4M
VideoChat2 7B SFT img/vid-text 2M
LongVA 7B SFT img-text 1.3M
Video-XL 7B SFT img/vid-text 257K
Video-R1 7B SFT+RL (S)  img/vid-text 260K
FrameMind(Ours) 7B RL(M) vid-text 7.6K

Table E2: Comparison of training paradigms, data modalities and volumes. (M)/(S) denote multi-
turn and single-turn respectively. All SFT implementations are instruction tuning. For a strictly fair
comparison, we only compare the data used during the fine-tuning stage.
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Q: What is the person holding while standing near the small wooden table?
A. A remote control, B. A book, C. A piece of clothing, D. An object

<think>Let’s analyze the video step by step. This video shows a person sits
in a cozy, softly lit room, watching TV, with a large forest-themed tapestry
hanging on the wall. The space feels calm and personal, blending simplicity

with subtle artistic touches. In the end of the video, I can see the person is

holding a black object near their face, which appears to be a microphone or
a similar device.</think>
<answer> A <answer> °

<think>Let’s analyze the video step by step. This video shows a person is
seated on the left side, relaxed but alert, facing the television. his posture
suggests they’re engaged, perhaps absorbed in what’s on screen. I need to
get more information from the video.</think>

<tool_call>{"VideoClip",{"t start":6s,"t end":12s}}</tool call>

<think>Let’s analyze the video content. Based on the frames above, I can
see the man standed up from the sofa, and grabed a black object from the
right side. I need to confirm it.</think>

<tool call> {“FrameAt”, {time: 9s} </tool call>

<think>Based on the selected frame, now I can confirm that it is a black
object.</think>

<answer>D</answer> Ql

_/

Figure F1: FrameMind Sample 1.
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Q: How many people are there in the video?
A. four.,B. one.,C. ten.,D. eight.,E. two.

<think>I"m looking at this frame, and my first thought is: This person is on
stage—alone, under the lights. I notice the contrast between the bright
spotlight on him and the darkened audience area below. It feels like a
moment of vulnerability and power at once. He’s holding a microphone,
standing confidently. That makes me wonder if he’s in the middle of a joke
or a story, maybe even sharing something personal.</think>

<answer> B <answer> °

<think>Let’s analyze the video to determine how many people are there in

© this video. It seems like there is one person visible in the video frame. He
is standing on a stage, holding a microphone, and appears to be performing
or speaking. Wait, I need to get a video clip to analyze.</think>

<tool call>{"VideoClip",{"t start":0s,"t end":4s}}</tool call>

<think>Let’s analyze the video content. Based on the frames above, I see
there are two people appeared in the beginning of the video. But then there
is only one person. [ need to check.</think>

<tool_call> {“FrameAt”, {time: 1s} </tool call>

<think>Based on the selected frame, now I can confirm that there are two
people in this video, a man and a woman.</think>

<answer>E</answer>

Figure F2: FrameMind Sample 2.
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