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Simulations of Common Unsupervised Domain
Adaptation Algorithms for Image Classification

Ahmad Chaddad, Yihang Wu, Yuchen Jiang, Ahmed Bouridane, Christian Desrosiers

Abstract—Traditional machine learning assumes that training
and test sets are derived from the same distribution; however, this
assumption does not always hold in practical applications. This
distribution disparity can lead to severe performance drops when
the trained model is used in new data sets. Domain adaptation
(DA) is a machine learning technique that aims to address this
problem by reducing the differences between domains. This paper
presents simulation-based algorithms of recent DA techniques,
mainly related to unsupervised domain adaptation (UDA), where
labels are available only in the source domain. Our study
compares these techniques with public data sets and diverse char-
acteristics, highlighting their respective strengths and drawbacks.
For example, Safe Self-Refinement for Transformer-based DA
(SSRT) achieved the highest accuracy (91.6%) in the office-31
data set during our simulations, however, the accuracy dropped
to 72.4% in the Office-Home data set when using limited batch
sizes. In addition to improving the reader’s comprehension of
recent techniques in DA, our study also highlights challenges and
upcoming directions for research in this domain. The codes are
available at https://github.com/AIPMLab/Domain Adaptation.

Keywords: Domain Adaptation, Machine Learning, Image
Classification, Medical Imaging

I. INTRODUCTION

Rapid advancement in the field of deep learning has led to
the emergence of novel approaches that exhibit remarkable
performance in various domains, however, achieving high
levels of performance with deep learning typically requires
a large number of well-annotated training data, which can be
challenging to acquire [1], particularly in healthcare. Another
problem often encountered in deep learning techniques arises
from the fact that the data used to train the model may have
different characteristics from the data on which the model is
evaluated [2]. This shift in distribution inevitably leads to a
severe drop in performance, as the model cannot generalize
well to these new data. In the literature, this problem is
commonly referred to as domain adaptation (DA) [3]. Con-
ceptually, DA refers to scenarios where the source and target
tasks are identical but the data distributions of the source and
target domains differ. In most cases, many labeled samples
from the source domain are available, while the target domain
has either no labeled samples or only a few. Depending on
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Fig. 1: Illustration of domain adaptation (DA). Left: feature
distributions in source and target domains lead to misclassifi-
cation of target domain samples by a model trained on source
data. Right: DA reduces the discrepancy between source and
target data distributions, enhancing the model’s generalization
performance.

whether the target domain has labeled data or not, DA can be
subdivided into the following three categories: 1) Supervised
DA where the target domain data are all labeled, 2) Semi-
supervised DA in which part of the target domain data is
labeled, and 3) Unsupervised DA where target domain data
are without labels. As illustrated in Figure 1, applying a model
trained on data from the source domain directly to samples
from the target domain leads to poor performance. By reducing
the discrepancy between domains, DA methods can effectively
improve model performance.

DA methods have been proposed for a wide range of
applications in computer vision [4]. One of the most prevalent
applications of DA in this field is image classification [5].
For example, the authors of [6] proposed a DA technique
that gradually expands the source data with the target data,
thus improving the performance model. DA research has also
focused on the task of semantic segmentation [7], where the
goal is to assign a class label to each pixel in a given image.
For example, the work presented in [7] introduces a novel
source-free open compound DA method for segmentation. This
method considers data privacy, multiple target domains, and
open, unseen domains. The authors also proposed a cross-
patch style swap strategy to enhance the feature-level style of
the training samples.

Furthermore, DA has also played an important role in
the healthcare field. For example, in [8], they developed
unsupervised DA for brain MRI segmentation tasks, achieving
higher performance compared to other supervised models. This
method greatly reduces the time for manual annotations. In
[9], they proposed a source-free DA, which uses adversarial
sample augmentation and performs self-adaptation to improve
the model performance. It shows great value for data privacy
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Fig. 2: Bar graph illustrating the number of studies released on
the topic of domain adaptation. The data was gathered from
searches conducted on Google Scholar and PubMed databases.

protection.

In this paper, we seek to understand the main factors that
contribute to the rapid development and success of this field.
Figure 2 present the search results for articles related to DA
that have been published in leading journals or conferences
and the results obtained from the Google Scholar and PubMed
databases for the period 2016-2023. The paper titled ”Domain
Adaptation” or ”Domain adaptive”, or ”Feature adaptation”
was included in the count for both Google Scholar and
PubMed. This study focuses mainly on unsupervised DA,
which is more common and realistic in real-world applications.
The novelty of our paper lies in an in-depth analysis of com-
monly used UDA techniques, covering the use of many neural
network architectures, datasets, and parameter configurations.
The contributions of our paper can be summarized as follows.

• We provide a systematic classification of UDA methods,
dividing them into two main categories: traditional meth-
ods and deep learning approaches.

• We simulate the most common UDA algorithms for clas-
sification tasks using multiple public datasets, including
natural and medical datasets.

• We highlight the most commonly used UDA techniques
and share our perspectives on selecting optimal neural
networks, training approaches, and domain adaptation
methods for different types of data.

• We discuss the key challenges and future directions of
UDA research for classification tasks.

The remainder of this paper is organized as follows. Section
II provides a general definition of DA and discusses previous
studies on the topic. Section III presents the various categories
of DA. Section IV describes various commonly used DA
methods. Section V is related to a discussion of various
performance metrics for the implementation of DA, including
commonly used data sets and the corresponding performance
achieved for some applications. Section VI shows several
studies for various DA techniques, along with a detailed
analysis. Section VII discusses the current challenges and
some potential and future developments and trends of DA.
Finally, Section VIII gives a set of concluding remarks on the
paper.

II. BACKGROUND

A. The definition of unsupervised domain adaptation

Given two data domains Ds = {xi, yi}Ns
i=1 and Dt =

{xj , yj}Nt
j=1, where x and y represent samples and labels,

respectively. In cases where the feature space and the class
space exhibit similarity, but their joint distributions differ
(Ps(x, y) ̸= Pt(x, y)), a common approach is to use the data of
the source domain to train a prediction function f : xt 7→ yt
that minimizes prediction loss (denoted by ℓ) in the target
domain [2].

f∗ = argmin
f

E(x,y)∈Dt

[
ℓ(f(x), y)

]
. (1)

However, in UDA, the labels for the target data y are not
available during training. The objective is to minimize the
prediction loss using labeled source data and unlabeled target
data, thereby training a robust classifier that generalizes to the
target domain.

B. Why is domain adaptation developing rapidly

There exist certain factors that serve as motivators for the
implementation of DA. The initial aspect pertains to the in-
herent characteristics of big data technology, which facilitates
the acquisition of vast amounts of data to use in training and
updating machine learning processes. However, a significant
portion of the data is unique, which requires users to assign
appropriate labels to them. To utilize DA effectively, it is
advantageous to incorporate labels by identifying data that
share a similar labeling with the target data. However, the
available training data are constrained, even though numerous
applications are filled with complexities and uncertainties.
Especially for medical-related applications, accessing large
medical data is often considered not practical due to the limited
number of cases and privacy leakage problems. DA, in other
words, allows one to apply uncontrollable overheads to a
broader range of new situations and cases.

III. THE TYPES OF UNSUPERVISED DOMAIN ADAPTATION

This section classifies UDA into two distinct types: tradi-
tional UDA, and UDA that uses deep learning methodolo-
gies. In this type of classification, traditional UDA refers to
techniques such as TCA, which are more primitive and rely
on classical ML methods and hand-crafted/extracted features.
Unlike traditional UDA, deep learning-based UDA approaches
mainly rely on the dominant feature extraction ability of
deep neural networks, further aligning the features of the
source and target data directly on fully connected layers,
offering better adaptation capabilities and convenience. We
selected papers based on their relevance in the paper title,
abstract, and the quality of the paper, such as the number of
citations in Google Scholar. Figure 3 illustrates the timeline of
common traditional and deep learning based DA techniques.
The following Sections, including Section IV, will provide a
more detailed explanation of these DA methods.
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Fig. 3: Timeline of domain adaptation techniques. To simplify, this illustration includes common DA methods based on
traditional approaches (Green flag) and deep learning techniques (non-adversarial (Orange flag) and adversarial methods (Blue
flag)). TCA: Transfer component analysis; MMD: Maximum mean discrepancy; JDA: Joint distribution adaptation; DDC: Deep
domain confusion; DANN: Domain adversarial neural network; CycleGAN: Cycle-Consistent Adversarial Networks;DAAN:
Dynamic adversarial adaptation networks; DAN: Deep adaptation network; ADDA: Adversarial discriminative domain
adaptation; JAN: Joint adaptation network; CDAN: Conditional adversarial domain adaptation; DSAN: Deep subdomain
adaptation network; DANN-IB: Generative feature replay for incremental domain adaptation; BNM: Batch nuclear-norm
maximization; DALN: Discriminator-free adversarial learning network; SSRT: Safe self refinement for transformer based domain
adaptation.

A. Traditional unsupervised domain adaptation

The use of traditional DA establishes a robust basis for
advancing DA in the future. When considering small datasets,
traditional DA is superior to deep neural networks. The present
study highlights the prevalent divergence measures used in
DA, including MMD [10], Correlation Alignment (Coral) [11],
Contrastive Domain Discrepancy (CDD) [12].

MMD based techniques. For example, the Transfer Compo-
nent Analysis (TCA) method, as described in [13], uses the
MMD distance metric to evaluate the degree of marginal dis-
tribution discrepancy between the source and target domains.
MMD, a conventional technique for computing distribution
dissimilarity, has undergone several decades of development
and has derived some enhanced methodologies. In [14], they
introduced a technique called Joint Distribution Adaptation
(JDA) that simultaneously adjusts the marginal MMD distance
and the conditional MMD distance to improve the adaptation
performance. According to [15], existing UDA methods based
on MMD do not account for the variations in the prior class
distributions, thus contributing to the deterioration of DA
performance. The proposal is for a weighted MMD approach
that incorporates class-specific weights that account for the
prior probability of each class. After related experiments,
the results show that the weighted MMD is better than the
traditional MMD method. The authors of [16] presented a
novel discriminative joint probability MMD (JP-MMD) ap-
proach to enhance inter-domain transferability by account-
ing for the discriminability of distinct classes in UDA. In
contrast to the conventional MMD approach for computing
distribution dissimilarity, JP-MMD enhances transferability
and discriminability across diverse domains while being more
straightforward and precise.

Correlation alignment based techniques. Coral is a conven-
tional technique for domain alignment that primarily attains
the linear transformation of the source and target domains to
align the second-order features of both domains. On the basis

of this method, some new methods are also produced. Deep
Coral is one of the very well-known methods. To alleviate the
problem of domain mismatch between training and test data
sets due to statistical differences, in [17], a new unsupervised
DA based on Coral was proposed. In their approach, they
improved the Coral algorithm into the Coral++ algorithm for
speech recognition. Furthermore, the algorithm has shown
excellent results in many tests.

Contrastive alignment based techniques. The use of CDD
is prevalent in UDA techniques [18]. The authors of [18]
introduced a novel framework for Source-Free Domain Adap-
tation (SFDA). The CDD method was incorporated into the
framework to enhance intra-class compactness and inter-class
separability. Furthermore, the experimental findings indicate
that the SFDA approach outperforms conventional UDA tech-
niques using source data.

B. Unsupervised domain adaptation based on deep learning

1) Unsupervised domain adaptation based on adversar-
ial: Generative Adversarial Network (GAN) was initially
introduced as a zero-sum game. Artificial intelligence has
recently witnessed a surge in interest towards a particular area,
as noted by Goodfellow in his work on generative models
[19]. The model can be partitioned into two distinct com-
ponents: the generator and the discriminator. The generator
and the discriminator engage in adversarial training to enhance
their respective capabilities. The Domain-Adversarial Neural
Network (DANN) [20] was the first adversarial UDA. The
DANN method takes advantage of the inherent features of
the adversarial generative network. The feature extractor and
domain discriminator engage in a reciprocal training process
to acquire domain-invariant features throughout the training
procedure.

Based on the previous DANN method, more methods are
derived from it. For example, inspired by Wasserstein GAN,
in [21], they introduce the Wasserstein distance to guide the
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feature extractor to learn domain-invariant feature representa-
tions in an adversarial manner. Empirical studies on natural
datasets demonstrate its remarkable performance compared
to the state-of-the-art (SOTA) domain-invariant representation
learning approaches. In [22], they demonstrate that using a
single domain discriminator is insufficient for fine-grained
alignment of different data distributions, further proposing
a multi-discriminator adaptation network. Empirical studies
indicate that the proposed model outperform SOTA methods
with linear-time complexity. Furthermore, in [23], they intro-
duced adversarial DA into partial DA, where the source label
space differs from the target label space. Experiments show
that it can outperform SOTA results for partial DA. In [24],
they extended the DANN to dynamic adversarial adaptation
(DAAN). They introduced a balancing parameter to control
the impact of the global feature domain classifier and the local
feature domain classifier. Experiments demonstrate that their
method can improve the performance of DANN in natural
image classification tasks. In [25], the authors suggested that
domain mix-up [26] can further guide the domain discrimina-
tor in judging the differences of samples relative to the source
and target domains. Experimental results using the Office-31
dataset demonstrate that their method can achieve an average
accuracy of 81.6%. Furthermore, in [27], the authors improved
the traditional DANN method and proposed a new DA tech-
nique called DANN-IB, which can improve the ability to learn
features relevant to the task. Experiments on three benchmark
datasets using the DANN-IB framework show that the DANN-
IB has better stability than the general method. In [28], they
rethought adversarial UDA methods, hoping to adequately
learn domain-specific representations to alleviate performance
degradation caused by subtle domain shifts. So, they propose
the orthogonal decomposition adversarial UDA architecture,
which can efficiently extract domain-invariant representations.
Extensive experiments demonstrate the effectiveness of this
method. Furthermore, in a recent work [29], they proposed
a novel sparse adversarial domain adaptation model for the
classification of traffic scenes. Experimental results in a real-
world dataset indicate the impressive results of their method.

Furthermore, in [30], they explored unpaired image-to-
image translation tasks with GAN. Unlike paired image-to-
image translation, they considered a training set and a test
set with different style (e.g., texture shifts), then performed
a cycle consistency loss to ensure the training process of
GAN. The goal of their approach is to learn a model that
can translate an image from a source domain X to a target
domain Y in the absence of paired examples. Similarly, in [31],
they maintained that models trained purely on synthetic images
often fail to generalize to real images, thereby introducing a
GAN to perform pixel level adaptation. Experimental results
in the USPS dataset indicate that their method can achieve
SOTA accuracy. In [32], feature space adaptation methods
periodically fail to capture pixel-level and low-level domain
shifts. Image-space approaches often miss high-level semantic
knowledge. They proposed using GAN to perform both pixel-
level and feature-level adaptations. The experimental results
show competitive accuracy in the classification tasks of digits.
In [33], they propose a novel UDA method that performs en-

tropy minimization with adversarial training for semantic seg-
mentation. Experiments using GTA5 and Cityscapes datasets
demonstrate the effectiveness of their method in synthetic-2-
real setup. In [34], they explore the source free UDA with
adaptive adversarial network adaptation. The contrastive and
self-supervised learning techniques are employed to enhance
the target classifier performance. Experiments on Office-31
indicate that their method can achieve an average accuracy of
90.1% without accessing source data. In [35], they introduced
adversarial self-training (AST). AST notably improves both
adversarial and clean accuracy in the target domain for gradual
DA tasks. They included a case study explaining why AST
enhances accuracy.

However, does GAN necessarily require a special discrim-
inator? In [36], the authors introduced the first discriminator-
free adaptive learning network (DALN), which has a good
classification effect on some universal datasets in 2022. The
method mainly reuses the category classifier as a discrimi-
nator again. Recently, the authors of [37] proposed Spectral
Unsupervised UDA for Visual Recognition (SUDA) that uses
a spectrum transformer to address inter-domain discrepancies.
Furthermore, they also proposed a multiview spectral learning
procedure that can learn useful feature representations.

2) Unsupervised domain adaptation based on non-
adversarial: Similarly to traditional UDA, non-adversarial
deep learning based DA can be further grouped into methods
based on MMD, correlation alignment, and other approaches.

MMD based adaptation. For example, in [38], the authors
proposed a deep domain confusion (DDC) technique to solve
adaptive problems of deep networks for both supervised DA
and UDA. Their method mainly used the Alex-net network
[39] pre-trained on the ImageNet data set for DA learn-
ing. Then, they fixed the first seven layers of Alex-net and
added adaptive metrics to the 8th layer, resulting in higher
improved performance. In [40], they extended the work of
DDC, further introduced Deep Adaptation Networks (DAN),
a method that simultaneously adds three adaptive layers to
constrain the features by adopting the multi-kernel MMD
(MK-MMD) metric. Furthermore, condition-based, joint, and
dynamic distribution adaptive methods based on MMD have
been proposed. For example, the deep subdomain adaptation
network (DSAN) [41] is an extensive and flexible distribution
adaptation method through a weighted MMD measurement
for feature alignment. DSAN achieves feasible performance
on many natural datasets such as Office31 and OfficeHome.
Given the significant performance improvements achieved by
the DSAN method over traditional neural network-based DA
networks such as DDC and DAN, numerous researchers have
shown interest in further enhancing the DSAN model. For
example, in [42], they attempted to improve the DSAN method
by proposing a new DA method called the Deep Subdomain
Associate Adaptation Network (DSAAN) and its application
to EEG emotion recognition. The adaptive process of the
method is achieved by minimizing the domain classification
loss and the Subdomain Associate Loop. Furthermore, several
modified methods have shown that DSAAN has remarkable
classification ability. In [43], they proposed a modified DSAM
method, referred to as the sub-DA feature alignment architec-
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ture, to achieve the generalizability of large-scale classification
of local climate zones in domains. The sub-DA modules in
the framework can effectively reduce the feature distribution
differences between domains. Similar to DSAN, in [44], they
proposed a conditional MMD based adaptation technique
(DCAN) for UDA. They also introduced mutual information
loss on target data to train the classifier model. Furthermore,
in [45], the authors have proposed an adaptation method based
on MMD called the Joint Semantic Adaptive Network for
multi-source DA. Their proposed Joint Semantic Maximum
Mean Discrepancy loss can optimize the cross-domain joint
distribution of each class on multiple task-specific layers.
Experimental results on the OfficeHome dataset show that
their technique can increase accuracy by 2.7% compared to
the SOTA methods.

Deep correlation alignment based methods. Correlation
alignment-based methods have seen remarkable advancements.
For example, in [46], they proposed that the conventional
Coral approach should include feature extraction and linear
transformation of the image and training of a support vector
machine classifier. This process is known to be laborious.
To address this, they integrated Coral with deep learning
by developing a loss function that minimizes inter-domain
correlation between the source and target domains. In [47],
the authors also extend the Coral method by proposing a
dynamic joint correlation alignment (DJ-Coral) network for
semi-supervised heterogeneous DA. The DJ-Coral network
aims to eliminate the heterogeneity of data features between
the source and target domains. Experimental results have
shown that DJ-Coral offers significant advantages.

Other adaptation techniques. A study performed feature
alignment using the target features batch nuclear norm in
improving learning outcomes in situations lacking labeled
data, such as in unsupervised/semi-supervised DA [48]. Fur-
thermore, several methods have emerged in recent years based
on the same DA approach using BNM. For example, in
[49], they proposed an enhancement to existing BNM-based
DA methods. Specifically, they have introduced Fast Batch
Nuclear-Norm Maximization and Minimization for Robust
DA, which aims to improve the prediction accuracy in the
target domain. The approach was implemented in three rep-
resentative scenarios to show the result of the enhancement.
Previous studies assume source data can be accessed, however,
this may not practical in real world. In [50], they developed
a novel approach called Source Hypothesis Transfer for Un-
supervised Domain Adaptation (SHOT), which is one of the
pioneering techniques for investigating DA without the need
for source data. Furthermore, empirical investigations have
shown that SHOT produces cutting-edge results on various
DA benchmarks. Furthermore, in [51], they proposed a self-
training approach for SFDA that uses curriculum learning and
selective pseudo-labeling to effectively and dependably adapt
to domain shifts. This straightforward yet efficient measure
prevents the spread of label noise and eliminates the need for
costly memory-bank-dependent label refinement.

The next section will provide a comprehensive analysis of
various algorithms, both conventional and innovative, that are
frequently employed in the domain of DA. The algorithms

that will be discussed include DANN [20], Deep Coral [46],
DSAN [41], BNM [52] and SSRT [53].

IV. A BRIEF OVERVIEW OF COMMONLY USED DOMAIN
ADAPTATION TECHNIQUES

A. Domain adversarial neural networks

Generative Adversarial Networks (GANs) were first intro-
duced into DA in [20]. The technique relies on training a do-
main classifier to distinguish between data from the source and
target domains. In particular, the domain classifier computes
the loss and determines whether the data originate from the
source or target domain. A gradient inversion layer is added
between the domain classifier and the feature extractor during
the parameter update phase of backpropagation. The input
data are correctly classified into the right domain category
(source or target domain) by the domain classifier according
to this layer. In addition, they designed a feature extractor
to be trained to do the opposite things (due to the gradient
inversion layer), to build an adversarial relationship by making
the extracted features not accurately classified by the domain
discriminator. Figure 4 illustrates the DANN pipeline. For each
iteration, batches of 2B samples are randomly generated by
selecting the same number of source and target samples. The
adversarial DA loss is defined using cross-entropy, as follows:

LDA = − 1

2B

2B∑
j=1

zj logDi(Ij) + (1− zj) log
(
1−Di(Ij)

)
(2)

where zj = 1(xj ∈ Di) the domain label of example xj .
Ij are the features extracted by ef . The domain classifier D
predicts if a given image representation Ij is from a source
(Di(Ij) = 1) or a target domain (Di(Ij) = 0).

𝑒𝑓

𝐷

Fig. 4: The architecture proposed in [20] comprises a con-
ventional feed-forward design with a label predictor (green)
and a feature extractor ef (blue). The method of unsupervised
domain adaptation integrates a domain classifier D (Light
salmon), which is connected to the feature extractor ef via
a gradient reversal layer.

B. Deep Coral

In [46], they propose that the DA process can be achieved
by reducing the discrepancies in higher-order statistical fea-
tures (e.g., second-order moment features) between the source
and target domains. Inspired by the traditional second-order



6

moment feature alignment method (Coral), they propose an
end-to-end covariance-based feature alignment method (Deep
Coral). It can be incorporated into various strata of Deep
Neural Networks and various neural network configurations.

To simplify, suppose that nS and nT represent the quantities
of source and target data, respectively, with Dij

S (Dij
T ) denoting

the value in the j-th dimension of the i-th data sample from
the source (target) domain. Assume CS and CT denote the
covariance matrices for the source and target domain, their
Deep Coral metric can be expressed as follows.

ℓCoral =
1

4d2
∥CS − CT ∥2F (3)

where | · |2F is the square of the Frobenius norm of a matrix.
The dimensionality of the matrix is indicated by the variable d.
Specifically, the covariance matrices of both source and target
data can be measured as follows:

CS =
1

nS − 1

(
DT

SDS −
1

nS

(
1TDS

)T (
1TDS

))
(4)

CT =
1

nT − 1

(
DT

TDT −
1

nT

(
1TDT

)T (
1TDT

))
(5)

The final loss of deep Coral is expressed as follows.

ℓloss = ℓcla + ℓCoral (6)

where ℓcla is the classification loss.

C. Deep subdomain adaptation network

Categorizing similar samples into distinct subdomains
within a larger domain, guided by various criteria, such as class
labels, has been proposed in [41]. This strategy results in sub-
domains that cover identical classes, and this particular study
uses class categories as the basis for segmentation. Instead
of focusing on a comprehensive alignment throughout the
domain, this approach emphasizes the independent matching
of these localized subdomains.

The core of DSAN is to use the local maximum mean
discrepancy (LMMD) for DA instead of MMD. Typically,
MMD focuses only on feature alignment in the whole dataset,
but for many datasets with imbalanced classes, the classes with
fewer samples may be incorrectly aligned within the categories
with more samples, leading to incorrect DA effects. LMMD,
which considers the impacts of each class by introducing
weights to different classes, can effectively eliminate this
problem. Suppose H is the reproducing kernel Hilbert space
(RKHS) endowed with a characteristic kernel [2]. ϕ(·) is a
mapping function that maps the original samples to the RKHS
space. The MMD metric can be measured as follows.

d̂H(p, q) =

∥∥∥∥ 1

ns

∑
xi∈Ds

ϕ (xi)−
1

nt

∑
xj∈Dt

ϕ (xj)

∥∥∥∥2
H

(7)

Based on MMD, LMMD has achieved the best results
among metric-based methods in recent years, and unlike
MMD, it focuses on the discrepancy of local distributions.
And their LMMD is defined as:

dH(p, q) = Ec

[ ∥∥Ep(c) [ϕ (xs)]− Eq(c)
[
ϕ
(
xt
)]∥∥2

H

]
(8)

where the variables xs and xt refer to the occurrences in
datasets Ds and Dt, correspondingly. Variables Ds and Dt

refer to the source and target domains, respectively. The
distributions of D(c)

s and D(c)
t are indicated by p(c) and q(c),

respectively. An unbiased estimator of Equation 8 can be
expressed as follows:

d̂H(p, q) =
1

C

C∑
c=1

∥∥∥∥ ∑
xs
i∈Ds

ωsc
i ϕ (xs

i )−
∑

xt
j∈Dt

ωtc
j ϕ

(
xt
j

)∥∥∥∥2
H

(9)

where ωc is defined according to the number of samples in
each category. However, the definition of ω is very flexible,
and this part is easy to extend, such as using multiple similar
classes to define sub-fields.

D. Batch nuclear-norm maximization

The authors in [52] suggest that the ability of a model
to distinguish tends to reduce when used with unlabeled
data. Thus, they propose the use of entropy constraints as
a technique to improve the model’s ability to discriminate
between classes. However, this approach may result in samples
from a few classes being incorrectly classified as the majority
class, which may affect the diversity of model predictions.
To address this issue, they used F-norm and matrix rank
to constrain distinguishability and diversity, respectively. To
be more efficient, they propose to use the nuclear norm to
approximate the rank of the matrix. They show a lower bound
and an upper bound based on the nuclear norm as follows:

1√
D
∥A∥∗ ≤ ∥A∥F ≤ ∥A∥∗ ≤

√
D∥A∥F (10)

where D = min(B,C). B and C here are the batch size and
the number of classes, respectively. ∥A∥∗ is the Nuclear-norm
of matrix A.

Fig. 5: Overview of SSRT [53]. (Left) shows the Self-
Refinement for their transformer-based model. Ptch Emb
means Patch Embedding, and the two branches share the
same parameters. Random offsets are added to the input token
sequences of transformer (TF) blocks. The model is trained
using its predictions of the original and perturbed versions.
It is supervised by Kullback-Leibler divergence (a distance
between two probabilities). (Right) shows the Safe Training
mechanism.

E. Safe self-refinement for transformer-based domain adapta-
tion

The SSRT algorithm [53] uses a ViT – a technique well
recognized in the domain of natural language processing [54]
– to enhance the adaptability of models through judicious
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predictions on perturbed target domain data [55]. In particular,
perturbations are applied to the hidden label sequence of
the target domain data by introducing random offsets. The
Kullback-Leibler (KL) divergence is minimized as a measure
of the discrepancy between the model’s predicted probabilities
under the original and perturbed conditions.

The framework of SSRT is illustrated in Fig. 5. It should
be noted that only data from the target domain are displayed
here. Examining Fig. 5 (Left), it can be seen that there are
four main components, namely, the TF block, the classifier,
the KL divergence, and the Ptch Emb. The TF block is a
ViT that is utilized as the entire network. The classifier is
utilized for image categorization. Regarding Ptch Emb, the
patch Embedding layer transforms the target domain data into
a sequence of tokens, which comprise a specific category token
and image tokens. Subsequently, they employed TF Blocks to
refine this progression. The classifier processes the category
token and produces a label prediction. About its random offset,
assume that x represents a target domain image and blx is a
latent representation of x in a hidden space. Instead of using
only blx to perturb the token sequence, they tend to use another
target domain image xr to better perturb the token sequence,
which can be represented as:

b̄lx = blx + λ[blxr − blx]× (11)

where λ is a scalar and [·]× means no back-propagation.
The Kullback-Leibler divergence [56] measures the dissim-

ilarity between the distributions of samples from the source
and target domains. The KL divergence is defined as:

DKL

(
pt||ps

)
=

∑
i

pt(i) log
pt(i)

ps(i)
(12)

where pt, ps are target sample probability and source sample
probability. Notice that the KL distance is asymmetric, which
means DKL (px||p̃x) ̸= DKL (p̃x||px). Based on this, the
authors claimed in their paper that using both KL distances
concurrently results in a more resilient model:

ℓSR =EBt∼Dt

[
ω Ex∼F [Bt;p] DKL (px||p̃x)

+ (1−ω)Ex∼ F [Bt;p̃] DKL (p̃x||px)
] (13)

To obtain reliable results, they adopt a Confidence Filter F .
To decrease the risk of model collapse, they then proposed a
Safe Training mechanism to learn the model. Their confidence
filter F can be defined as:

F [D; p] = {x ∈ D|max(px) > ϵ} (14)

where ϵ is a predefined threshold.
Regarding the Safe Training mechanism, it is expected

that when the model begins to crash, the diversity of model
predictions will reduce simultaneously. Therefore, the core
idea is to find such collapses during the training process.
Once it occurs, the learning setting is reset, and the model
is restored to a previous success state. To achieve this, the
authors proposed that an adaptive scalar r ∈ [0, 1] is used to
adjust α and β, i.e., αr = rα and βr = rβ [53]. Furthermore,
they propose a fixed period T and divide the training procedure

into successive intervals. At the end of each interval, the model
snapshot will be saved simultaneously. Then r is defined as:

r(t) =

{
sin

(
π

2Tr
(t− tr)

)
, t− tr < Tr

1.0, otherwise
(15)

where t represents the current training step. To begin with,
they set Tr = T and tr = 0. Then r will increase to 1 by
taking T steps. At the end of each interval, according to their
Safe Training mechanism, if there is no abrupt drop, r remains
the same. Otherwise, tr is reset to the current training step t,
and the model is restored to the last snapshot. Figure 5 (Right)
shows the Safe Training mechanism. Note that the diversity
of droppings is marked with pink areas.

To determine the diversity of dropping, they proposed a
diversity of measurement:

div(t;Bt) = unique labels(h(Bt)) (16)

where Bt is a batch of each target training samples,
unique labels is the unique model predicted labels on target
domain.

In the end, the losses of their model can be formulated as:

ℓ = ℓCE − ℓd + βℓSR (17)

where the aforementioned equation involves three distinct
loss functions, namely the cross-entropy loss on source data
denoted by ℓCE , the adversarial loss denoted by ℓd, and
the self-refinement loss denoted by ℓSR. The parameter β
represents a trade-off between two or more variables.

V. DOMAIN ADAPTATION MODELS’ PERFORMANCE

This section provides a summary of the metrics typically
employed when assessing the performance of DA models. Fur-
thermore, this section reports the performance of image classi-
fication models on benchmark datasets. We have provided an
in-depth description of the datasets used in Subsection V-B,
while the others have been enumerated in Table I.

A. Metrics for domain adaptation models

In image segmentation tasks, Intersection over Union (IoU)
and Dice coefficient (Dice) are commonly used metrics [86].
On the other hand, for classification or recognition tasks,
Accuracy, Precision, Recall, Specificity, Area under the ROC
curve (AUC) and F1 score are commonly used [87].

B. The benchmark datasets commonly used in domain adap-
tation

Table I provides an overview of the data sets frequently
used in the domain of DA, which have been classified
primarily by their application, including handwritten digit
recognition, image classification, activity recognition, seman-
tic segmentation, sentiment classification, speech recognition,
medical imaging, and face recognition. However, some of
these datasets are outdated (e.g., MNIST, Image CLEF), with
many approaches such as DSAN and SSRT, achieving more
than 98% accuracy. With the development of neural networks,
the outdated datasets are not suitable for evaluating current
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TABLE I: Commonly used domain adaptation datasets (grouped mainly based on applications).

samples domains labels name of each domain

HANDWRITTEN DIGIT RECOGNITION

MNIST [57] 70,000 2 10 classes train,test
USPS [58] 9,298 2 10 classes train,test
SVHN [59] 600,000 2 10 classes train,test

IMAGE CLASSIFICATION

COIL-20 [60] 1,440 2 20 classes COIL1, COIL2
Office-31 [61] 4,652 3 31 classes Amazon,webcam,dslr

Office-Home [62] 15,588 4 65 classes Art,clipart,product,real
DomainNet [63] 586,575 6 345 classes Clipart,infograph,painting,quickdraw,real,sketch
VisDA-17 [64] 280,157 2 12 classes Real images and synthetic

CIFAR-series [65] 60,000 - 10/100 classes Artificial corruptions
Image CLEF [66] 1,800 3 12 classes Caltech-256, ImageNet ILSVRC2012, Pascal VOC 2012

Adaptiope [67] 36,900 3 123 classes Synthetic, product, real life

ACTIVITY RECOGNITION

OPPORTUNITY [68] 701,366 5 4 classes Back, Right Upper Arm, Right Left Arm, Left Upper Arm, Left Lower Arm
DSADS [69] 2,844,868 5 19 classes Torso, right arm, left arm, right leg, left leg

PAMAP2 [70] 1,140,000 3 18 classes Right arm, Torso, ankle

SEMANTIC SEGMENTATION

SYNTHIA [71] 2,700 15 13 classes 4 locations, 5 weather conditions
GTA5-Cityscapes [72], [73] 29,966 2 19 classes Synthetic and real images

ACDC [74] 4,006 4 19 classes Fog, night, rain , snow

SENTIMENT CLASSIFICATION

Amazion Reviews [75] >340k 5 2 classes DVD,Books,electronics,kitchen appliances

MEDICAL IMAGE CLASSIFICATION

NIH-CXR14 [76] 108,948 2 14 classes train, test
CheXpert [77] 224,316 2 14 classes train, test

MIMIC-CXR [78] 377,110 2 14 classes train, test
Chest X-rays [79] 5,863 3 2 classes Artificial corruptions

MEDICAL IMAGE SEGMENTATION

Multi-site Prostate MRI Segmentation [80] 116 6 3 classes Clinical centers
Brain Tumor Segmentation [81] 75 4 2 classes T1, T1CE, T2, FLAIR
Whole Heart Segmentation [82] 20 2 4 classes MRI, CT

ADNI [83] 819 4 3 classes ADNI-1, ADNI-2, ADNI-GO and ADNI-3

FACE RECOGNITION

FERET [84] 14,051 5 1,199 classes fa, fb, fc, dupI, dupII
PIE [85] 11,554 13 68 classes PIE1,PIE2,. . .,PIE13

TABLE II: Summary of the implementation details of each algorithm.

Alg. Backbone LR Epoch BS M OS WD Iter

Deep Coral ResNet50 3 × 10−3 30 16 0.9 SGD 5 × 10−4 200
DANN ResNet50 1 × 10−2 30 16 0.9 SGD 1 × 10−3 200
DAN ResNet50 1 × 10−2 30 16 0.9 SGD 5 × 10−4 200

DSAN ResNet50 1 × 10−2 30 16 0.9 SGD 5 × 10−4 200
BNM ResNet50 1 × 10−3 30 16 0.9 SGD 5 × 10−4 200

DCAN ResNet50 1 × 10−2 30 16 0.9 SGD 5 × 10−4 200
SSRT ViT 1 × 10−3†,4 × 10−3∗ 10†,15∗ 4 0.9 SGD 5 × 10−4 1000

w/o DA ResNet50 1 × 10−2 30 16 0.9 SGD 5 × 10−4 200
LR: Learning rate; BS: Batch size; mom: Momentum; ViT: Vision transformer; OS: Optimization strategy; SGD: Stochastic gradient descent; WD: Weight decay; Iter: iteration per
epoch. This table is based on the parameters used in our experiments. The SSRT algorithm’s learning rate, according to the public code, is denoted by distinct symbols owing to
its dependence on the tested dataset († means on Office-31, ∗ means on Office-Home).

SOTA DA techniques, while the basic accuracy using deep
networks is highly competitive. Thus, we selected widely used
DA benchmark datasets and large-scale natural datasets to
assess the performance of DA approaches. The following part
elaborates on the datasets used for image classification in our
basic examination in more detail.

Office31 contains 31 image categories and has 4652 images.
It consists of three different domains: Amazon (A), Webcam
(W) and Dslr (D). For example, the Amazon domain contains
on average 90 images per class and 2,817 images in total.
And their pictures come from the Amazon website. The

DSLR domain contains 498 low-noise high-resolution images
(4288×2848). For the Webcam, it has 795 images of low
resolution (640×480) [61]. We evaluated those methods in the
three domains, which resulted in six DA tasks.

Office-Home is a benchmark dataset consisting of 15588
images with 65 classes [62]. This dataset has four different
domains: Artistic (Ar, n=2427), Clip art (C, n=4365), Product
(P, n=4439), and Real-world (R, n=4357) samples. In the same
way, all domains were used and 12 DA tasks were constructed
with these methods.
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TABLE III: Classification accuracy (Difference) on Office-31 and Office-Home for unsupervised domain adaptation. The
Difference is measured based on the deviation of our experimental results from the original data.

Office-31
Methods A to W D to W W to D A to D D to A W to A Average

ResNet50∗ [88] 68.4 96.7 99.3 68.9 62.5 60.7 76.1
DDC∗ [38] 75.8 95.0 98.2 77.5 67.4 64.0 79.7

Deep Coral∗ [46] 77.7 97.6 99.7 81.1 64.6 64.0 80.8
DAN∗ [40] 68.5 96.0 99.0 67.0 54.0 53.1 72.9

DANN∗ [20] 82.0 96.9 99.1 79.7 68.2 67.4 82.2
DSAN∗ [41] 93.6 98.3 100 90.2 73.5 74.8 88.4
BNM∗ [52] 91.5 98.5 100 90.3 70.9 71.6 87.1

SSRT-S∗ [53] 95.7 99.2 100 95.8 79.2 79.9 91.6
SSRT-B∗ [53] 97.7 99.2 100 98.6 83.5 82.2 93.5

Deep Coral† 78.0 (+0.3) 97.3 (-0.3) 99.7 (0.0) 76.7 (-4.4) 63.6 (-1.0) 64.5 (+0.5) 79.9 (-0.9)
DAN† 83.0 (+14.5) 97.8 (+1.8) 99.8 (+0.8) 84.3 (+17.3) 69.2 (+15.2) 69.7 (+16.6) 83.9 (+11)

DANN† 88.5 (+6.5) 96.7 (-0.2) 100 (+0.9) 82.7 (+3.0) 69.1 (+0.9) 72.9 (+5.5) 85.0 (+2.8)
DSAN† 92.5 (-1.1) 98.1 (-0.2) 100 (0.0) 88.1 (-2.1) 69.9 (-3.6) 68.9 (-5.9) 86.3 (-2.1)
BNM† 89.8 (-1.7) 97.8 (-0.7) 99.7 (-0.3) 88.5 (-1.8) 73.1 (+2.2) 73.7 (+2.1) 87.1 (0.0)

SSRT-S† 92.9 (-2.8) 99.2 (0.0) 99.9 (-0.1) 94.5 (-1.3) 82.2 (+3.0) 81.4 (+1.5) 91.6 (0.0)
Office-Home

A to C A to P A to R C to A C to P C to R P to A P to C P to R R to A R to C R to P Average
ResNet50∗ [88] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DANN∗ [20] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
DSAN∗ [41] 54.4 70.8 75.4 60.4 67.8 68.0 62.6 55.9 78.5 73.8 60.6 83.1 67.6
SSRT-S∗ [53] 75.2 89.0 91.1 85.1 88.3 89.9 85.0 74.2 91.3 85.7 78.6 91.8 85.4
BNM∗ [52] 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9

DANN† 51.5 (+5.9) 67.3 (+8.0) 74.2 (+4.1) 53.2 (+6.2) 65.1 (+6.6) 65.4 (+4.5) 53.2 (+7.1) 50.2 (+6.5) 75.1 (+6.6) 65.4 (+2.2) 57.5 (+5.7) 79.5 (+2.7) 63.1 (+5.5)
DSAN† 53.2 (-1.2) 68.5 (-2.3) 74.8 (-0.6) 58.6 (-2.4) 66.5 (-2.3) 66.1 (-1.9) 59.8 (-2.8) 52.4 (-3.5) 75.8 (-2.7) 71.8 (-2.0) 58.6 (-2.0) 81.1 (-2.0) 65.6 (-2.0)
BNM† 50.4 (-1.9) 65.8 (-8.1) 76.1 (-3.9) 58.6 (-4.7) 68.8 (-4.1) 71.7 (-3.2) 59.8 (-1.9) 53.5 (+4.0) 80.6 (+0.9) 72.6 (+2.1) 58.9 (+5.3) 81.9 (-0.3) 66.6 (-1.3)

SSRT-S† 54.7 (-20.5) 75.4 (-13.6) 80.6 (-10.5) 70.5 (-14.6) 78.1 (-10.2) 81.5 (-8.4) 69.6 (-15.4) 54.9 (-19.3) 83.5 (-7.8) 75.6 (-10.1) 58.5 (-20.1) 85.6 (-6.2) 72.4 (-13.0)
The highest accuracy is denoted by bold, whereas underlined indicates the second-best accuracy. The approaches denoted by ∗ represent the results of their original papers, while
the methods marked by † represent our experiment reproduced simulations with publicly available code.

C. Quantitative performance of image classification domain
adaptation models

We assess the performance of the algorithms discussed
above in the image classification benchmarks. Moreover, we
use an MK-MMD based DA method referred to as DAN [40],
as well as a conditional MMD based DA technique called
DCAN [44] for comparative analysis. This study considers
the accuracy of classification, the effect of alignment of the
representation of features (visualized using the t-SNE [89]
technique) as the main metric. Furthermore, this study uses the
most commonly used libraries and software, including Python
3.8, PyTorch 1.13.1, and scikit-learn, to implement these DA
techniques. The experiments were performed on a Windows
11 operating system, which features an Intel 11900KF CPU
with 128 GB of RAM and an RTX 2060 graphics card.

Table III summarizes the accuracy of image classification
models in different datasets. For example, ResNet-50 [88],
DAN [40], Deep Coral [46], DANN [20], DSAN [41], BNM
[52], and SSRT [53] were used to perform a comparison.
The best model achieved an accuracy of 93.5% and 85.4%
using the Office-31 and Office-Home dataset, respectively.
The outcomes indicated by ∗ are the results presented in the
original articles. The values indicated by † represent the results
of our simulations. The techniques indicated in the table by
† show the accuracy and the difference between the original
articles and our simulations.

For SSRT, due to technical constraints imposed by our
computing hardware, we had to reduce the batch size from
32 (in the original code) to 4 in its public version. The SSRT-
S approach uses a slight variant of the ViT model, whereas
the SSRT-B approach incorporates the basic structure of ViT.
The original results of ResNet, Deep Coral, DANN, DSAN,

BNM are all derived from [41]. The rest of the results were
taken from the original papers. Furthermore, Table II presents
a concise overview of the parameters used in our experimental
procedures. Based on our empirical analysis, it has been de-
termined that the SSRT experiences a significant deterioration
in its performance when processing large data sets with a
limited batch size. This finding suggests that a small batch
size may lead to misalignment for target data by reducing
the impact of safe training loss ℓSR. Furthermore, using the
effective learning rate adjustment mechanism (this study uses
exponential decay lr = lr × (1 + γ × float(epoch))

−decay ,
γ is the epoch), the DANN technique has achieved higher
performance compared to the original result. The findings of
the analysis of the other algorithms, except SSRT and DANN,
were within the acceptable range and showed an average
accuracy deviation of less than 3%.

VI. EXPLORING DOMAIN ADAPTATION TECHNIQUES

Currently, the most prevalent applications of DA are in
image classification, where it has demonstrated feasible per-
formance in many natural and medical datasets [90], [91]. The
results in Table IV show that DA significantly increases accu-
racy and effectively minimizes data distribution discrepancies
caused by different capturing devices. This study further ex-
amined the potential of DA, specifically in image classification
tasks, under various conditions.

A. Experiments using common neural networks

This study tested these algorithms using common neural
networks. First, the neural networks commonly used in DA
were ResNet50, ResNet34, and AlexNet. The data set for
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the experiments is the Office-Home dataset. Table IV reports
the classification results using the Office-Home dataset. All
DA algorithms show a substantial performance improvement
when using ResNet50 compared to CNN alone. For example,
our simulations show that DCAN can improve the ACC with
large margins (e.g., > 20% on task R to P) compared with
ResNet50 alone, as reported in Table IV. Similarly, there is a
large increase in performance when the network is upgraded
from AlexNet to the ResNet series; however, there is less
enhancement when changing from ResNet34 to ResNet50.

B. Experiments with modern unsupervised DA dataset

Although these algorithms have remarkable performance
using the Office31 data set, the model might use a series of
tricks to achieve biased performance. Thus, this study further
uses one more unsupervised DA dataset named Modern Office-
31 [92] to verify these methods. This dataset has four domains,
namely amazon (A), webcam (W), dslr (D) and synthetic (S).
Similarly to Section V-B, four domains were used to build 12
DA tasks. More details of the implementation can be found in
Table II. The DA benchmark test used the following training
parameters: mini-batch SGD optimizer with a learning rate of
0.01, batch size of 16, weight decay of 0.0005, momentum
of 0.9, 30 rounds of training, and 200 iterations per round.
Table V reports the highest test accuracy in the target domain.
DANN shows the best performance gain (+9.4%) compared
to ResNet50 alone in ModernOffice31 dataset. Deep Coral
indicates the lowest performance boost (+0.4%) compared to
ResNet50 alone. Surprisingly, DANN outperforms recent DA
methods such as DSAN, BNM, which shows the potential
to use adversarial methods for DA. Especially for synthesis
images, DANN achieves the highest accuracy with a large
performance improvement (e.g. > 10%). Furthermore, Figure
6 shows the representations learned using t-SNE for these
techniques on task A→D and S→A, respectively. The use
of DA leads to better features alignment results compared to
ResNet50 alone, particularly using DCAN and DSAN. This
highlights the potential of DA for feature adaptation.

C. Experiments with cross-dataset settings

Even though these DA techniques demonstrate remarkable
performance in standard benchmark datasets, the ability to
generalize across various datasets remains a significant chal-
lenge. Therefore, this study selected the commonly occurring
categories (backpack, bike, bottle, calculator, desk lamp, file
cabinet, keyboard, laptop, monitor, and mouse) from office31
and the office-home data set, to test the generalizability
of these DA methods. Specifically, the study involved the
selection of the Amazon (A) and Webcam (W) domains from
Office-31, as well as the Art (Ar) and Real World (R) domains
from Office-Home for testing. The benchmark test conducted
using AlexNet, ResNet34 and ResNet50 without DA used
the same training parameters as indicated in Seciton VI-B.
Table VI shows the classification accuracy using these ap-
proaches. The Deep Coral algorithm exhibited minimal gains
in performance using a shallow network such as AlexNet.
Furthermore, when deeper neural networks such as ResNet34
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Fig. 6: Visualizations of the learned representations using t-
SNE for Deep Coral, DANN, DSAN, BNM, DCAN, DAN and
ResNet50 alone on task A→D and S→A (Modern Office31
dataset), respectively.

and ResNet50 were used, the algorithm demonstrated limited
performance improvement or even negative growth. This leads
to the algorithm’s limited ability to generalize well when tested
on different datasets. Furthermore, the DSAN algorithm shows
a performance improvement of 3%-4% compared to those
without DA. On the other hand, the DANN algorithm shows
a relatively slight improvement using ResNet34, which can be
attributed to its limited feature extraction ability to generalize
during cross-dataset testing. This suggests that adversarial
based techniques may fail to align the feature distributions
with inappropriate deep networks. In terms of the BNM
algorithm, when applied to AlexNet, it shows a significant
performance improvement of 6.6%. However, when applied
to ResNet, the improvement is comparatively smaller, ranging
between 1% and 4%. Furthermore, the use of CNN alone in
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TABLE IV: Classification accuracy using neural networks for unsupervised domain adaptation using Office-Home dataset.

Alg. Backbone A to C A to P A to R C to A C to P C to R P to A P to C P to R R to A R to C R to P

w/o DA ResNet50 [88] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9

ResNet50 51.6 68.3 75.2 55.9 65.2 67.5 55.0 47.2 74.7 65.8 54.4 79.6
Deep Coral ResNet34 50.5 63.9 72.0 53.2 62.0 64.8 51.9 46.2 71.5 62.8 52.6 76.8

AlexNet 31.8 38.1 50.3 28.5 41.5 42.9 27.6 30.4 51.0 40.7 37.5 60.2

ResNet50 52.5 67.1 75.3 56.1 64.5 67.9 54.9 47.4 74.9 67.9 55.1 79.8
DAN ResNet34 50.3 64.5 72.4 52.9 62.5 64.9 52.2 47.8 72.9 64.7 54.1 78.1

AlexNet 30.4 39.3 50.3 29.2 42.1 44.1 26.9 30.4 51.7 41.3 37.6 60.7

ResNet50 53.2 68.5 74.8 58.6 66.5 66.1 59.8 52.4 75.8 71.8 58.6 81.1
DSAN ResNet34 49.6 65.9 71.6 54.7 61.4 64.1 56.7 53.2 71.4 67.2 58.3 79.3

AlexNet 30.3 39.7 50.8 29.7 39.3 43.4 26.9 30.3 49.2 43.6 38.5 62.4

ResNet50 51.5 67.3 74.2 53.2 65.1 65.4 53.2 50.2 75.1 65.4 57.5 79.5
DANN ResNet34 50.8 63.9 72.2 51.9 62.5 63.9 51.0 51.2 72.5 63.7 58.9 77.6

AlexNet 31.2 38.7 50.7 26.9 42.2 43.5 26.2 30.8 51.9 40.8 40.5 60.6

ResNet50 50.4 65.8 76.1 58.6 68.8 71.7 59.8 53.5 80.6 72.6 58.9 81.9
BNM ResNet34 47.8 60.8 71.9 59.3 64.0 62.4 60.0 52.4 76.6 61.6 57.8 79.1

AlexNet 29.7 31.2 48.3 32.6 41.0 44.8 28.8 29.3 50.5 45.2 34.8 64.3

ResNet50 54.4 68.2 74.7 59.8 68.0 67.8 59.8 54.5 76.3 70.9 60.2 82.5
DCAN ResNet34 52.1 66.0 72.3 56.7 65.9 66.4 56.8 55.5 74.9 67.9 59.5 80.8

AlexNet 30.7 39.0 50.3 30.4 43.5 45.9 28.6 32.3 54.2 43.6 38.5 63.2

Without DA ResNet34 uses pretrained ResNet34 model and mini-batch SGD with a momentum of 0.9, weight decay 5× 10−4 and learning rate 10−3 to generate the results.

TABLE V: Classification accuracy (highest) using ResNet50 for unsupervised domain adaptation using modern office31 dataset.

Alg. A to D A to S A to W D to A D to S D to W S to A S to D S to W W to A W to D W to S Avg

DCAN 92.4 68.4 90.4 84.9 59.6 98.1 82.4 81.7 84.9 84.9 100.0 55.3 81.9
DSAN 92.8 68.1 90.4 84.0 58.8 98.9 81.1 82.9 80.9 84.5 100 57.1 81.6
BNM 88.4 64.0 85.2 84.1 55.5 98.4 84.7 78.7 79.1 87.1 99.4 55.7 80.1

DANN 87.1 74.8 90.9 87.8 70.5 98.5 88.6 82.1 83.3 88.8 100 68.9 85.1
Deep Coral 85.9 64.7 83.4 78.0 56.9 98.7 72.7 70.5 65.4 79.9 99.8 57.7 76.1

DAN 85.1 65.2 86.0 81.8 61.7 97.8 78.6 82.1 76.2 80.7 99.8 60.2 77.9
ResNet50 85.5 60.1 82.6 79.6 55.7 98.9 70.7 71.1 67.7 80.9 100 56.1 75.7

cross-dataset context shows better performance compared with
the results under the same dataset as previously mentioned
in Table IV. The primary reason for this discrepancy is the
class scale. OfficeHome and Office31 have 65 and 31 classes,
respectively, whereas the cross-dataset has 10. Clustering of
data samples on a small class scale is less challenging than
under a large scale.

D. Experiments under different data quality

The previously mentioned datasets such as OfficeHome
and Office31 assume that the data from the source and
target domains are of high quality (e.g., without noise or
corruption). However, this assumption is impractical in real-
world situations. Therefore, we validate the usefulness of DA
techniques under different data quality. In particular, ImageNet
with different levels of Gaussian noise selected from Imagenet-
C [65] (denoted as C1, C2, C3, C4, C5) and a tiny ImageNet1

(denoted as C) were used to build 10 DA tasks for evaluation.
The total classes used are 100 randomly selected from 1000
classes. The same optimizer and hyperparameter settings are
adopted as reported in Table II except the epoch is set to
50. Table VII reports the highest test accuracy for all DA
techniques and CNN alone. When the source data are of high
quality, while the target data quality varies, it can be observed
that CNN alone indicates a performance drop. However, using
DA can increase test accuracy, especially in highly noisy

1https://www.kaggle.com/datasets/tianbaiyutoby/
islvrc-2012-10-pecent-subset

domains such as C5, with an increase in 10% accuracy using
DSAN compared to ResNet50 only. This finding suggests that
DA can minimize the shifts in the data distribution when the
target data are noisy. Furthermore, when the source data are
noisy while the target data are high quality, the potential of
DA techniques shows a performance drop when the noise level
increase (e.g., > 10% accuracy decrease from C4 to C to C5

to C using Deep Coral). The test accuracy of Deep Coral
and BNM in C5 to C is lower compared to ResNet50, which
demonstrates negative adaptation.

E. Comparison with supervised manner

The studies above are all about UDA. However, the critical
role of DA may not be fully explored in a single case.
Therefore, following [38], 12 DA tasks were constructed using
OfficeHome with 10% samples in the target domain with labels
available during training. ResNet50 backbone was adopted
for testing. Table VIII reports the test accuracy of these DA
techniques. Compared with the UDA results reported in Table
III, UDA achieves an feasible test accuracy, approximately
∼ 5% lower than the supervised DA. This highlights the ability
of UDA.

F. Experiments with medical datasets

Medical data can differ between various technologies used
in the field, including but not limited to MRI, CT scans,
dermoscopic imaging, and Optical Coherence Tomography
(OCT). To test the effectiveness of these DA methods for

https://www.kaggle.com/datasets/tianbaiyutoby/islvrc-2012-10-pecent-subset
https://www.kaggle.com/datasets/tianbaiyutoby/islvrc-2012-10-pecent-subset
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TABLE VI: Cross-dataset classification accuracy using Office-31 and Office-Home datasets.

Alg. Backbone A to Ar A to R W to Ar W to R Ar to A Ar to W R to A R to W Avg

AlexNet 52.4 84.8 56.4 78.3 79.7 71.6 85.4 84.1 74.1
Without DA ResNet34 67.8 90.8 71.1 89.8 85.2 83.7 91.4 92.8 84.1

ResNet50 71.3 94.1 70.6 91.9 86.0 89.8 90.4 94.3 86.1

AlexNet 53.6 84.4 57.6 78.7 79.7 68.9 85.0 85.6 74.2
Deep Coral ResNet34 69.4 91.6 73.0 91.9 84.4 84.8 91.5 93.9 85.1

ResNet50 69.0 93.1 72.5 91.8 84.8 88.3 90.7 94.7 85.6

AlexNet 51.8 83.2 54.5 77.7 76.0 68.1 86.7 86.3 72.6
DAN ResNet34 70.1 89.4 67.3 93.4 83.3 79.9 90.8 90.5 81.8

ResNet50 69.6 92.7 71.3 92.4 88.1 86.7 91.2 93.9 85.1

AlexNet 59.2 85.6 60.4 86.5 85.8 73.8 87.6 91.7 78.8
DSAN ResNet34 73.5 96.4 79.1 96.2 85.8 89.0 92.6 94.3 88.4

ResNet50 75.1 95.0 78.2 96.0 89.3 89.0 93.1 95.1 88.9

AlexNet 52.1 83.8 56.6 84.0 82.2 71.2 86.4 89.0 75.7
DANN ResNet34 67.8 91.8 73.5 93.0 83.9 82.9 91.1 92.8 84.6

ResNet50 76.5 93.4 72.3 92.6 87.5 88.6 90.8 93.6 86.9

AlexNet 61.1 89.5 63.3 88.1 87.8 80.7 88.6 86.7 80.7
BNM ResNet34 66.1 91.6 68.9 92.9 90.2 88.6 90.0 92.4 85.1

ResNet50 72.3 96.2 80.3 96.2 91.9 93.6 92.3 95.1 89.7

AlexNet 57.1 86.9 61.6 87.5 86.2 85.2 88.0 88.6 80.1
DCAN ResNet34 76.1 95.1 77.7 95.8 88.4 92.0 92.1 95.5 89.1

ResNet50 76.8 95.3 75.4 95.3 90.2 92.4 92.7 95.5 89.2

TABLE VII: Highest classification accuracy using ResNet50 for unsupervised domain adaptation across various data qualities.

Alg. C to C1 C to C2 C to C3 C to C4 C to C5 C1 to C C2 to C C3 to C C4 to C C5 to C Avg

Deep Coral 88.2 84.7 77.8 64.5 41.7 90.0 87.5 79.8 73.7 58.3 73.9
DAN 88.3 84.5 77.4 64.6 41.4 91.4 88.4 84.5 73.9 68.7 76.3

DSAN 88.7 86.1 79.6 68.5 48.9 92.3 91.0 87.8 75.8 79.2 81.5
DANN 89.9 87.3 81.3 70.2 48.2 92.7 90.1 84.8 76.3 76.0 80.2
BNM 89.5 86.6 80.9 70.3 47.7 90.9 87.0 83.7 75.0 58.8 78.3

DCAN 87.2 84.0 77.3 66.9 44.2 91.7 90.8 80.9 76.5 79.7 77.9
ResNet50 88.1 84.3 76.3 61.3 38.9 90.5 88.3 79.7 74.9 72.0 75.4

TABLE VIII: Classification accuracy of ResNet50 for supervised domain adaptation using the Office-Home dataset.

Alg. A to C A to P A to R C to A C to P C to R P to A P to C P to R R to A R to C R to P Avg

DeepCoral 57.0 72.4 77.6 62.2 69.3 72.0 62.2 54.0 77.6 69.8 58.3 81.4 67.8
DAN 60.0 74.3 77.5 63.4 71.5 71.2 64.2 57.9 78.1 72.4 63.2 82.7 69.7

DSAN 59.9 72.8 75.9 63.9 74.0 71.5 66.6 62.0 78.3 74.4 65.5 83.6 70.7
DANN 58.7 71.8 76.4 61.6 71.0 70.1 62.1 60.3 77.6 71.1 62.7 83.4 68.9
BNM 56.8 75.4 79.1 66.2 72.8 74.4 65.0 57.0 80.5 72.3 60.9 82.5 70.2

DCAN 58.7 72.6 76.3 64.6 73.8 70.1 66.1 61.1 78.8 74.8 64.8 83.9 70.5
ResNet50 54.9 69.6 76.1 56.2 67.0 67.2 56.4 48.7 75.1 67.4 56.0 80.7 64.6

medical data, the ChestXray17 data set was used, which is
related to the classification of pneumonia [93]. It consists of
5856 chest radiographs, classified into two groups: pneumonia
and normal. Two DA tasks were built for the given dataset,
one from the training set to the testing set, and the other
from the testing set to the training set. For both DA and
w/o DA, the training epoch is set to 10 rounds and network
backbones include AlexNet, ResNet34, and ResNet50, while
the rest parameters are the same as reported in Table II. Table
IX reports the performance of each algorithm. Using AlexNet,
all DA algorithms, except BNM, show a lower performance
compared to CNN alone. However, when using ResNet-34 or
ResNet-50, Deep Coral and DSAN exceed CNN performance
alone.

Furthermore, this study also performed experiments us-
ing multimodal data to evaluate the effectiveness of these
DA approaches. We combine two distinct datasets (Brain
tumor, SkinCancer) to evaluate the abilities of these DA
strategies. The SkinCancer dataset [94], comprising 10015

dermatoscopic images classified into seven groups: actinic
keratoses and intraepithelial carcinoma / Bowen’s disease,
basal cell carcinoma, benign keratosis-like lesions, dermatofi-
broma, melanoma, melanocytic nevi, and vascular lesions. The
training dataset consists of 8512 samples, while the test dataset
comprises 1503 samples. The brain tumor dataset has four
different classes, namely glioma tumor, meningioma tumor,
non-tumor and pituitary tumor [95]. The training set has 2870
samples, while the testing set has 394 samples. The model
was trained using the training set while test the model on
the testing set. Table II presents a concise overview of the
parameters used in our experimental procedures, with 100
epochs for these experiments. Figure 7 shows the classification
accuracy using these methods. The use of DA presents a
higher average performance and faster convergence compared
to using ResNet34 alone. However, BNM results in severe
overfitting issues.
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TABLE IX: Experiments using common Domain Adaptation
(DA) algorithms using the Chest Xray-17 dataset. Two DA
tasks are performed: A and W represent the training and testing
domains, respectively

Alg. Backbone A to B B to A Avg

AlexNet 93.1 93.2 93.2
Without DA ResNet34 93.4 92.6 93.0

ResNet50 93.3 94.0 93.7

AlexNet 90.0 91.1 90.6
DAN ResNet34 87.6 91.4 89.5

ResNet50 91.3 92.3 91.8

AlexNet 91.8 92.2 92.0
Deep Coral ResNet34 93.6 93.7 93.7

ResNet50 94.9 94.9 94.9

AlexNet 92.1 93.7 92.9
DSAN ResNet34 94.4 93.5 94.0

ResNet50 95.4 92.5 94.0

AlexNet 92.1 91.8 92.0
DANN ResNet34 90.1 92.2 91.2

ResNet50 91.8 90.9 91.4

AlexNet 93.3 93.9 93.6
BNM ResNet34 92.9 91.4 92.2

ResNet50 94.6 91.7 93.2

AlexNet 90.1 93.7 91.9
DCAN ResNet34 91.8 93.6 92.7

ResNet50 91.8 92.8 92.3
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Fig. 7: Accuracy of Deep Coral, DANN, DSAN, BNM,
DCAN, DAN and ResNet34 alone using the medical dataset.

G. Discussions

Benefiting from efficient model training methodologies
(e.g., early stopping), and advanced hyper-parameter selection
techniques, the early DA algorithm DANN was also able to
achieve better performance than the original paper’s results
(e.g., 2.8% higher average classification accuracy on the
Office31 dataset) while using the same neural network. This
suggests that the DA algorithm is more effective if an advanced
model training approach is adopted. In other words, we claim
that if a DA technique shows poor performance, it is preferred
to analyze the model training procedure before moving to a
different DA method. Additionally, be cautious in choosing the
best DA approach while evaluating your experimental setups.
The results of our experiments show that the performance of
SSRT decreased when a small batch size was used. This ob-

servation demonstrates that this approach requires considerable
computing power. Moreover, DANN exhibits a high level of
promise when employed with a limited batch size.

The most significant improvement in performance can be
observed when switching from AlexNet to ResNet series, as
shown in Table IV. However, there is a big difference in
the computational resources required by the neural network,
ranging from ResNet34 to ResNet50. In low-resource settings,
it is critical to select the most suitable neural networks. It is
not always helpful to choose deeper networks. For example,
if we only run ResNet50 with a batch size of 4, but run
ResNet34 with a batch size of 16, the performance will not
be the same. This is because certain DA techniques, such as
SSRT [98], require a larger batch size to perform well, as
previously mentioned in this study.

Simulations using a modern office31 dataset have also
demonstrated that with the advanced hyperparameter tuning
strategy, DA methods can still achieve comparable perfor-
mance even if they are not recently proposed. This indicates
that it is also necessary to consider a suitable training strategy,
not only to focus on developing new DA techniques.

In the case of cross-datasets, the performance of deep neural
networks like ResNet50 is found to be unsatisfactory compared
to using a single dataset like Office31. This suggests that
the effectiveness of DA has been reduced due to significant
differences in the data sets or due to the influence of data set
changes on the performance of DA to some degree. However,
this strategy is not practical, as in real-life situations, data can
originate from various sources rather than a preset dataset. If
a model only shows good performance on a specific dataset,
it lacks generality.

Furthermore, data quality is important when applying DA
techniques. For example, the findings presented in Section
VI-D demonstrate that data quality can affect the adaptation
procedure, resulting in a performance drop compared to using
CNN alone. In the case of supervised DA, Table VIII indicates
that unsupervised DA can achieve closed accuracy with only
3.6% drop for BNM under UDA compared to the supervised
approach. It highlights the potential of unsupervised DA
techniques.

Tests performed on medical data sets indicate that some DA
approaches that are successful in using natural images may not
be applicable to medical data. While BNM displays superior
performance on the Office-series dataset, its performance falls
short on medical datasets. MMD-based techniques, such as
DSAN, demonstrate remarkable efficacy in handling medical
data, especially for MRI and dermoscopic images. We suggest
that the use of MMD-based techniques could be more effective
in addressing distribution discrepancies in medical data. So far,
the strengths and weaknesses of the popular and novel methods
discussed herein are summarized in Table X.

VII. CHALLENGES AND FUTURE TRENDS THAT DOMAIN
ADAPTATION MEET

A. Domain adaptation in real world scenarios

Despite the impressive results obtained from existing clean
datasets, such as office series datasets, in the field of DA, it is
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TABLE X: The strengths and weaknesses of common and new domain adaptation techniques.

Method Strengths Weaknesses Datasets Code

Deep Coral [46] First integrate Coral alignment with CNN and easy to
implement Poor generalization ability on large-scale datasets [61] [96]

DAN [40] Use multi-kernel MMD to achieve DA, showing better
feature adaptation results and higher accuracy It is less suitable for class imbalanced datasets [61], [62] [96]

DSAN [41]
They choose to align local distribution which can
minimize local distribution discrepancies and achieve
excellent results

Their defined weight function may not be the best [66], [61], [62], [64] [96]

BNM [52] It achieves better discriminability and diversity under
label insufficient learning situations

The computational complexity of BNM is approxi-
mately O(n3), which is time-consuming [61], [62], [65] [52]

SSRT [53] SSRT is among the first to explore ViT for DA The persistence will decrease in large-scale datasets due
to the small batch size scenario [63], [61], [62], [64] [97]

DANN [20] First introduced GAN to DA problems and achieved
state-of-the-art results at that time

No theoretical guarantee for the generalization of
DANN to multi-classification problems and regression
problems

[57], [61], [59] [96]

DCAN [44] Remarkable feature adaptation ability, generalizable to
multi-modal medical data Time-consuming compared with DANN and DDC [61], [62] [96]

DC: Deep Coral; DA: Domain adaptation; MMD: Maximum mean discrepancy; CNN: Convolutional neural network; ViT: Vision transformer; GAN: Generative adversarial
network.

rare to see such datasets in the real world; with most of the data
messy, the application of existing methods to these datasets
is likely to produce unsatisfactory results [99]. Furthermore,
the experimental results with different data quality as reported
in Table VII indicate that the use of DA can improve the
performance when the source and target data are noisy. Sim-
ilarly, in [100], a scenario was proposed in which the labels
were corrupted by noise and then DA was used to address this
problem.

B. Domain adaptation under data privacy protection

Although DA has produced favorable results, most tech-
niques require a substantial amount of data from the source
domain. The increasing refinement of legislation and policies
related to data privacy regulation, such as the General Data
Protection Regulation (GDPR), has resulted in a significant
challenge in the use of a large number of data for training
purposes [101]. Therefore, it is worthwhile to study how
to deal with this challenge. For example, the work of [50]
attempts to identify domain-invariant representations that can
align the source distribution by maximizing information us-
ing self-supervision loss. The work [102] attempts to refine
the source model by applying entropy functions to generate
reliable pseudo-labels for target samples.

C. Domain adaptive based foundation models

Recently, vision–language based foundation models (FMs)
have demonstrated remarkable performance in many applica-
tions, including image classification and segmentation [103].
However, the superior feature extraction abilities of FMs
in the context of DA have not been fully investigated. In
[104], the authors investigated the potential of the Contrastive
Language Image Pre-Training (CLIP) model in source-free
domain adaptation (DA). Their experimental results on 23
image classification benchmarks demonstrated the feasibility
and efficacy of the proposed approach, which outperformed
the SOTA method. Similarly, in [105], they proposed a novel
UDA technique using CLIP for image classification. The
experimental results in the OfficeHome dataset indicate that
the proposed method outperforms traditional UDA techniques,

such as CDTrans [106] and TVT-B [107], with an improve-
ment in accuracy > 7%.

D. Self-supervised domain adaptation

The efficacy of DL can be attributed to the availability of
a substantial amount of training data. Occasionally, it may
be impractical to collect the requisite amount of accurately
annotated data for each undertaking. The available source
training data may not be sufficient. Self-supervised DA can
use auxiliary tasks to obtain labels and employ supervised
learning techniques to extract informative representations of
tasks in the target domain, providing a possible solution [108].

E. Test time adaptation

Similarly to source-free DA as illustrated in [50], test time
adaptation (TTA) adapts the model trained in the source
domain directly to the target data. This process does not
require access to the source data, which is common in the
healthcare field. For example, in [109], they argued that
self-supervised contrastive learning facilitates target feature
learning. They also proposed an online pseudo labeling scheme
for unsupervised adaptation. Furthermore, in [110], the authors
conducted a comprehensive simulation study using four TTA
techniques. This study highlighted the potential of TTA with
many settings, such as computational resources and model
complexity.

F. Out of distribution adaptation

Many existing UDA algorithms rely on a static data dis-
tribution, which means that once the dataset is established,
the distribution of the data within it remains fixed. However,
this assertion frequently fails to hold in practical situations.
In practical situations, data tend to be dynamic in nature. For
example, satellite maps and face data are subject to constant
change over time [111]. So, developing some UDA techniques
to solve this problem is critical.
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VIII. CONCLUSION

This study provided a detailed exploration of common
UDA techniques. It offered illustrative examples of UDA
algorithms and a comprehensive overview of these models.
This study simulates nine experiments to test UDA methods
such as Deep Coral, DANN, DSAN, BNM, DCAN, SSRT and
DAN. For example, the SSRT technique delivered remarkable
performance when tested on the office31 data set. However,
its performance suffered a significant drop when applied to the
office-home data set because of the use of a limited batch size.
We evaluated both the merits and demerits of the common DA
techniques. We also looked at the future trajectories of UDA
and addressed the challenges it currently faces.
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