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ABSTRACT

Diffusion Probabilistic Models (DPMs) have achieved strong generative perfor-
mance, yet their inductive biases remain largely implicit. In this work, we aim
to build inductive biases into the training and sampling of diffusion models to
better accommodate the target distribution of the data to model. We introduce
an anisotropic noise operator that shapes these biases by replacing the isotropic
forward covariance with a structured, frequency-diagonal covariance. This operator
unifies band-pass masks and power-law weightings, allowing us to emphasize or
suppress designated frequency bands, while keeping the forward process Gaussian.
We refer to this as Spectrally Anisotropic Gaussian Diffusion (SAGD). In this
work, we derive the score relation for anisotropic forward covariances and show
that, under full support, the learned score converges to the true data score as t — 0,
while anisotropy reshapes the probability-flow path from noise to data. Empirically,
we show the induced anisotropy outperforms standard diffusion across several
vision datasets, and enables selective omission: learning while ignoring known
corruptions confined to specific bands. Together, these results demonstrate that
carefully designed anisotropic forward noise provides a simple, yet principled,
handle to tailor inductive bias in DPMs.

1 INTRODUCTION

Diffusion Probabilistic Models (DPMs) have emerged as powerful tools for approximating complex
data distributions, finding applications across a variety of domains, from image synthesis to proba-
bilistic modeling (Yang et al.}[2024; |Ho et al.,[2020; |Sohl-Dickstein et al., 2015} Venkatraman et al.,
2024; Sendera et al.,[2024). These models operate by gradually transforming data into noise through
a defined diffusion process and training a denoising model (Vincent et al.l 2008; |/Alain & Bengio,
2014) to learn to reverse this process, enabling the generation of samples from the desired distribution
via appropriate scheduling. Despite their success, the inductive biases inherent in diffusion models
remain largely unexplored, particularly in how these biases influence model performance and the
types of distributions that can be effectively modeled.

Inductive biases are known to play a crucial role in deep learning models, guiding the learning process
by favoring certain types of data representations over others (Geirhos et al., 2019; Biett1 & Mairal,
2019; Tishby & Zaslavskyl, 2015). A well-studied example is the Frequency Principle (F-principle)
or spectral bias, which suggests that neural networks tend to learn low-frequency components of data
before high-frequency ones (Xu et al.,|2019; |Rahaman et al., 2019). Another related phenomenon is
what is also known as the simplicity bias, or shortcut learning (Geirhos et al.| 2020} [Scimeca et al.,
2021} [2023b)), in which models are observed to preferentially pick up on simple, easy-to-learn, and
often spuriously correlated features in the data for prediction. If left implicit, it is often unclear
whether these biases will improve or hurt the models’ performance on downstream tasks, potentially
leading to undesired outcomes (Scimeca et al.,[2023a). In this work, we aim to explicitly tailor the
inductive biases of DPMs to better learn the target distribution of interest.

Recent studies have begun to explore the inductive biases inherent in diffusion models. For instance,
Kadkhodaie et al.[(2023) analyzes how the inductive biases of deep neural networks trained for image
denoising contribute to the generalization capabilities of diffusion models. They demonstrate that
these biases lead to geometry-adaptive harmonic representations, which play a crucial role in the
models’ ability to generalize beyond the training data. Similarly, [Zhang et al.|(2024) investigates
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the role of inductive and primacy biases in diffusion models, particularly in the context of reward
optimization. They propose methods to mitigate overoptimization by aligning the models’ inductive
biases with desired outcomes. Other methods, such as noise schedule adaptations (Sahoo et al., 2024)
and the introduction of non-Gaussian noise (Bansal et al.| 2022} have shown promise in improving
the performance of diffusion models on various tasks. However, the exploration of frequency domain
techniques within diffusion models is a relatively new area of interest. One of the pioneering studies
in this domain investigates the application of diffusion models to time series data, where frequency
domain methods have shown potential for capturing temporal dependencies more effectively (Crabbé
et al.,[2024). Similarly, the integration of spatial frequency components into the denoising process has
been explored for enhancing image generation tasks (Qian et al.| 2024} [Yuan et al| 2023), showcasing
the importance of considering frequency-based techniques as a means of refining the inductive biases
of diffusion models.

In this work, we explore a new avenue, to build inductive biases in DPMs by frequency-based noise
control. Specifically, we replace the isotropic forward noise with an anisotropic forward Gaussian
operator whose covariance is structured in the Fourier basis. The main hypothesis in this paper is
that the noising operator in a diffusion model has a direct influence on the model’s representation
of the data. Intuitively, the information erased by the noising process is the very information that
the denoising model has pressure to learn, so that reconstruction is possible. Accordingly, by
shaping the forward covariance we can steer which modes carry supervision signal during training
and thus which aspects of the data distribution the model learns most effectively. We focus our
attention on the generative learning of topologically structured data, and implement anisotropy via a
frequency-parameterized schedule that emphasizes or de-emphasizes selected bands while keeping
the forward process Gaussian. In what follows we refer to this setting as Spectrally Anisotropic
Gaussian Diffusion (SAGD).

We report several key findings showing that SAGD provides a simple, principled handle to tailor
inductive biases, including: improved learning of information lying in particular frequency bands;
increased performance across several natural image datasets; and learning while ignoring (corrupted)
information at predetermined frequency bands. Because SAGD modifies only the forward covariance,
it integrates with existing diffusion implementations with a few lines of code and preserves the rest of
the pipeline intact. We summarize our contributions as follows:

1. We introduce SAGD, an anisotropic forward-noise operator with frequency-diagonal covari-
ance (in the Fourier basis) that provides a simple handle on spectral inductive bias.

2. We provide a theoretical analysis showing that, under full spectral support, the learned
score at t — 0 recovers the true data score, while anisotropy deterministically reshapes the
probability-flow path.

3. We show that SAGD can steer models to better approximate information concentrated in
selected bands of the underlying data distribution.

4. We test and empirically show that models trained with SAGD anisotropic forward covari-
ance can match or outperform traditional (isotropic) diffusion across multiple datasets.

5. We demonstrate selective omission: by zeroing chosen bands in the forward covariance,
models learn to ignore known corruptions and recover the clean distribution.

2 METHODS

2.1 DENOISING PROBABILISTIC MODELS (DPMS)

Denoising Probabilistic Models are a class of generative models that learn to reconstruct complex
data distributions by reversing a gradual noising process. DPMs are characterized by a forward and
backward process. The forward process defines how data is corrupted, typically by Gaussian noise,
over time. Given a data point xo sampled from the data distribution ¢g(xXp), the noisy versions of the
data x1, Xp, . . ., X7 are generated according to:

q(x; | X¢—1) = N(Xt; \/axt—l, (1_0’1)1), (nH
with variance schedule «@,. The reverse process models the denoising operation, attempting to recover
X;_1 from x;:

po(xi-1 | X0) = N(xi-13 po(x1.1), 07 1), 2
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where pg(x;,1) is predicted by a neural network fy, and the variance 0',2 can be fixed, learned, or
precomputed based on a schedule. We train the denoising model with the standard e—parameterization
by minimizing

L = E;x, e~N(o,1)[||6—69(Xz,l)||2], X, = Vaxo + ove, (3)

where @, = Hi‘:l ag and 0}2 = 1 — @, € is the Gaussian noise added to xg, and €y is the model’s
prediction of this noise. To generate new samples, we start from noise and apply the learned reverse
process iteratively.

2.2 SPECTRALLY ANISOTROPIC GAUSSIAN DIFFUSION (SAGD)

The objective of this section is to convolve the data with a spectrally anisotropic gaussian noise
during training to steer a model’s tendency to learn particular aspects of the data distribution. To
do so, we wish to generate spatial Gaussian noise whose frequency content can be systematically
manipulated according to an arbitrary weighting function in the Fourier basis, where stationary
Gaussian covariances diagonalize and our power-law and band-pass families become low-dimensional
parameterizations of the covariance eigenvalues.The right-hand side of denotes how Xt is
generated by adding Gaussian noise € ~ N (0, I) to x0.

Let us denote by x € RF*W an image (or noise field) in the spatial domain, and by ¥ the two-

dimensional Fourier transform operator. Given white spatial Gaussian noise € ~ N (0, I), we form its
Fourier transform Ngeq = ¥ (€), where Nireq € CHXW is a complex-valued random field whose real
and imaginary parts are i.i.d. Gaussian, i.e.:

Nfreq = Nreal + iNimag’ Nreal, Nimag ~ N(O, I), 4

We introduce a weighting function w( fx, fy) that scales the amplitude of each frequency component.
Let f = ( f{m ) dengte coordinatqs in frequepcy space, where f, = ka, fy = %, .and kgc, ky are
integer indices (ranging over the width and height), while H and W are the image dimensions. We

define the frequency-controlled noise N ;rvev(; (f) as:

Niwl () = Nireg(f) © w(f), )

After applying w(f) in the frequency domain, we invert back to the spatial domain to obtain the noise
(w).
e

€ = R(FI(NG)), ©)
where R (-) ensures that our final noise field is purely real[]
In practice, any standard spatial noise can be converted to € via this unified framework:

F w(f) 7!
€ — Nireq Nt("r‘gq) e,

Note that standard white Gaussian noise is a special case of this formulation, where w(f) = 1 for all
f. In contrast, more sophisticated weightings allow one to emphasize, de-emphasize, or even remove
specific bands of the frequency domain.

Theoretical consistency We keep the forward process Gaussian while reshaping its spectrum. Let
¥ be the unitary DFT and w(f) >0 a fixed sPectral weight. The linear map T,, = ¥~ 'Diag(w)F
sends white noise to frequency-based noise €*) = T,, € with covariance

Y, = T, T, = F 'Diag(|w(f)?) . (7
Replacing € by €™ in the forward step yields the marginal
qw (X, | %0) = N xo, 07 Zy). ®)

ISince the DFT of a real signal has Hermitian symmetry, multiplying by a real, pointwise weight w preserves
Hermitian symmetry and yields a real-valued inverse transform.
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Figure 1: Spectrally Anisotropic Gaussian Diffusion under a generalized framework.

Training with the standard £, objective on the added noise remains optimal: € (x;,?) = E[e™) | x,],
and the corresponding score satisfies

1

- =t en(xe,1), )

Vx, loggw. (%)) = -
so converting e-predictions to scores simply multiplies by =1, As t —0, if £,, = 0 and ¢ has a locally
positive density with Vlogg € Llloc, the anisotropic Gaussian smoothing collapses to a Dirac and
Vlog g, — V log g almost everywhere. Thus, shaping the forward spectrum preserves the endpoint
score while altering the path to the score at the data distribution (see Appendix [subsection D.1]for
proofs and extensions).

2.3 FREQUENCY NOISE OPERATORS

In this work, the design of w(f) is especially important. We propose two particular choices which
provide a flexible design bench: power-law weighting and a two-band mixture.

POWER-LAW WEIGHTING (plw-SAGD)

We implement a radial power-law anisotropic noise operator that imposes a linear slope in the log—log
power spectrum. Let f = (fx, fy) denote normalized frequency coordinates on [—%, %]2, and define

the radial frequency
r(f) = 2+ 15

Given white spatial Gaussian noise € ~ N'(0,I), we form its Fourier transform Ngeq = ¥ (¢) and
scale each frequency bin by

we(f) = (r(f) +&)7, e=10"19, (10)
where @ € R controls the slope and ¢ is a small weight to prevent a DC singularity. The shaped

spectrum and spatial noise are

Nior () = Nixeg(D) - wa(), €@ = RFN), (11)

which we use in the forward step x; = \/a; X, + V1 — @, €@ . A minimal code implementation of

plw-SAGD can be found in[Appendix E]

Effect on spectrum and learning signal. Let w,(r) = (r + £)® be the radial spectral weight.
Because amplitudes are scaled by w,, while power scales with |w |2, the radially averaged power
spectral density (RAPSD) follows: logPSD(r) ~ (2a) logr + const, so & > 0 tilts energy toward
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high frequencies (sharper textures), @ < 0 toward low frequencies (coarser structure), and ¢ = 0
recovers white noise. Note also that the global scalar rescaling of 2, can be absorbed into the scalar
variance 0',2 in the forward process (or the noise schedule). What we aim to do, instead, is the relative
weighting of the modes (eigenvalues) of %, in the Fourier basis, (shape of w(f)).

BAND-PASS MASKING AND TWO-BAND MIXTURE (bpm-SAGD))

A band-pass mask can be viewed as a special case of a more general weighting function:
w(f) € {0,1}. (12)

In this case, the frequency domain is split into a set of permitted and excluded regions, or radial
thresholds. With this, we can construct several types of filters, including a low-pass filter retaining
only frequencies below a cutoff (e.g., ||f|| < w,), a high-pass filter keeping only frequencies above a
cutoff, or more generally a filter restricting ||f|| to lie between two thresholds [a, b]. We thus define a
simple band-pass filter as:

1, ifa<d(fefy)<b,

1
0, otherwise, (13)

Wa,b(f) = M[a,b](fmfy) = {

In this special case, w(f) is simply a binary mask, selecting only those frequencies within [a, b].

For the experiments in this paper we formulate a simple two-band mixture, where we limit ourselves
to constructing noise as a linear combination of two band-pass filtered components. Specifically, we
generate frequency-filtered noise €y via:

E(W) = Yi€a,b] t Yh€lan.byl» (1

where vy;, vy, > 0 denote the relative contributions of a low and a high-frequency component (y; +yy =
1), each filtering noise respectively in the ranges [a;, b;] (low-frequency range) and [ay,, by,] (high-
frequency range). We uniquely refer to €[, 5] as the noise filtered in the [a, b] frequency range
following |[Equation 5|and [Equation 6] Standard Gaussian noise emerges as a particular instance of
this formulation, for y; = 0.5, vy, = 0.5,a; = 0, b; = a5, = 0.5, and by, = 1. We provide a minimal

code implementation of bpm-SAGD in[Appendix E|

Selective omission: If w vanishes on a band, then X,, is rank-deficient and the model learns
the score projected onto range(X,,). In the two-band mixture operator, we can achieve this for
b; < ap, leaving the [by, aj] frequency band unsupported by the anisotropic covariance. Note that
the +—0 score-consistency result in our analysis requires full spectral support (Z,, >-0); when X,, is
singular, the smoothed marginals are not absolutely continuous and the estimator converges only to
the projected score, i.e., I1 Vy log ¢ (x) with IT the orthogonal projector onto range(X,,) (equivalently,
replace X! by the Moore—Penrose pseudoinverse in the score—e mapping). As later shown, we
exploit this to avoid learning components in the omitted band, while learning and recovering the
information in the bands of interest.

3 RESULTS

3.1 EXPERIMENTAL DETAILS

All experiments involve separately training and testing DPMs with various SAGD schedules, along-
side standard isotropic Gaussian baselines. We consider six image datasets—MNIST, CIFAR-10,
DomainNet-Quickdraw, WikiArt, FFHQ, and ImageNet-1k—spanning widely different visual distri-
butions, scales, and statistics. We study both pixel-space diffusion with U-Net denoisers and latent
diffusion with DiT backbones in a DINOv?2 feature space; the latter uses the public RAE implementa-
tion of state-of-the-art DiT models on ImageNet-1k at 256x256 resolution (Zheng et al.| 2025). We
use DDIM sampling (Song et al.,2021) in all experiments, so no step noise is injected at test time. As
quality metrics, we report FID and KID between generated samples and held-out data, computed from
Inception-v3 features: for all datasets except ImageNet-1k we use a 768-dimensional intermediate
block, while for ImageNet-1k we follow standard practice and use the 2048-dimensional penulti-
mate block. Unless otherwise stated, we report averages over multiple random seeds. Additional

experimental details are provided in
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3.2 IMPROVED SAMPLING VIA SAGD

In the first set of experiments, we wish to test our main hypothesis, i.e. that appropriate spectral
manipulations of the forward noise can better support the learning of particular aspects of the sampling
distribution. In the following experiments, we use the plw-SAGD formulation in [Equation 10]and
[Equation TT]to train and compare diffusion models with different anisotropic power-law weighted
operators, while varying the value of @ to emphasize or de-emphasize the learning of higher or lower
frequency components of the target distribution, where o € [-0.1,0.1].

3.2.1 QUALITATIVE OVERVIEW

First, we show a qualitative example of a
standard forward linear noising schedule in
DPMs, as compared to two particular set-
tings of p/iw-SAGD, emphasizing high and low-
frequency noising in With standard
noise, information is uniformly removed from
the image, with sample quality degrading evenly
over time. In the high-frequency noising sched-
ule (@ > 0), sharpness and texture are affected
more significantly than general contours and
shapes, which remain intact over longer trajec-
tories; in the low-frequency noising schedule
(@ < 0), instead, general shapes and homoge-
neous pixel clusters are quickly affected, yield-
ing qualitatively different information destruc-
tion operations over the sampling time steps. As
discussed previously, we hypothesize that this
will, in turn, purposely affect the information
learned by the denoiser, effectively focusing the
diffusion sampling process on different parts of
the distribution to learn.

3.2.2 LEARNING TARGET DISTRIBUTIONS
FROM FREQUENCY-BOUNDED INFORMATION

We conduct a controlled experiment to test
whether SAGD yields better samplers in the case
where the information content in the data lies, by
construction, in the high frequencies. We use the
CIFAR-10 dataset, and corrupt the original data
with low-frequency noise €[, 3], thus erasing the
low-frequency content while predominantly pre-
serving the high-frequency details in the range
€[.3,1]- We separately train DPMs with twelve
different a values, as well as a standard DPM at
a = 0 (baseline). We repeat the experiment over
three seeds and report the average FID and error
in[Figure 3] In the figure, we observe an almost
monotonically decreasing relationship between
the mean FID and increasing values of @, with a
significant 0.3 decrease in average FID score for
a = 0.08 from the standard DPM baseline. The
observation is in line with our original intuition,
whereby improved learning can be achieved by
aligning the forward noising operation with the

Standard Diffusion:
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Figure 2: Power spectra and image visuals of the
forward Process in standard diffusion, as compared
to high (@ = 0.5) and low-frequency (@ = —-0.5)
noise settings of a power-law weighted SAGD.
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Figure 3: Mean FID across seeds of plw-SAGD
diffusion samplers trained on CIFAR-10, pre-
processed to only retain high frequency informa-
tion (@ = 0 yields standard diffusion).

data’s dominant spectral content (the frequency bands carrying most of the information).

3.2.3 SAGD IN NATURAL DATASETS
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Table 1: FID across selected @ (frequency slope) settings for all datasets (mean + standard error
across seeds). FID is computed from block 768 for all datasets except ImageNetlk (block 2048).

Dataset — MNIST CIFAR-10 Domainnet-Quickdraw Wiki-Art FFHQ ImageNetlk
baseline 0.42+8.52¢ - 03 0.75+0.01 0.60+0.05 1.06+0.03 1.11=z0.01 8.6819+0.0739
a = —0.060 0.28+0.02 0.94+0.02 0.52+0.05 1.35=0.08 1.74+0.10 8.1098+0.0229
a=-0.040 0.31£7.76¢ - 03 0.86+0.02 0.49+0.02 1.250.07 1.76=0.08 7.5534+0.0556
@ =-0.020 0.376.36¢ - 03 0.76=0.01 0.52+0.03 1.14=0.05 1.68+0.19 7.6419=0.0581
a =-0.010 0.37+0.02 0.75+0.01 0.54+0.04 1.09=0.04 1.48=0.12 8.0400:0.0236
a =-0.001 0.40+0.02 0.76+0.01 0.56+0.04 1.02+5.66e 03 1.04+5.17¢ -03  8.5288+0.0112
a =0.010 0.43+0.02 0.80+0.02 0.66+0.02 1.20+0.07 2.06+0.06 9.3867+0.0348

We further test our hypothesis by training twelve ImageNet-1k - Min FID vs.

9.50 4
SAGD noising models with @ € [-0.08,0.08] @ 025 | p
against a standard DPM baseline for each of the 2
datasets considered in our experiments, varying ] %001
greatly in size, resolution, visual distribution, S75]  oOiTbaseine P a—
and complexity, namely: MNIST, CIFAR-10, 2 8501 °
Domainnet-Quickdraw, Wiki-Art, FFHQ and
ImageNet-1k. We report additional information GE) I
on the datasets and our pre-processing pipeline E 8.00 A
in[Appendix B|and|[Appendix C| We repeat the T s
experiments over 3 seeds and present a focused £ 3 SAGD
report of the mean FID and KID metrics forall = 750{ "~ -§ _______________________

ablations in (see additional results in R e R
o a - Frequency Slope
[Appendix Tj). In[Table 1] we observe significant q y Slop

SAGD improvements over standard DPM train-
Figure 4: Mean FID across seeds of plw-SAGD

ing (first row) in almost all datasets, where in  * | - ‘
5/6 we achieve substantially improved baseline ~diffusion samplers trained on ImageNetlk (a =0
yields standard diffusion).

FID scores.

On ImageNet-1k at 256x256 resolution, using the RAE DiT backbone in DINOvV2 latent space, the
isotropic baseline (a=0) attains an FID of 8.68 + 0.07, whereas SAGD with a low-frequency tilt
(@=-0.04) reaches 7.55 + 0.06, i.e., an absolute improvement of ~ 1.1 FID (about 13% relative).
As summarized in and visualized in [Figure 4] FID decreases almost monotonically as «
moves from 0 toward moderately negative values (down to around —0.04) and then worsens again
for more negative (—0.06) and positive values of «, indicating a non-trivial optimum away from the
standard Gaussian setting. This demonstrates that SAGD yields measurable gains even on large-scale,
high-resolution, natural-image generation in a state-of-the-art latent DiT setup, and that its benefits
are not limited to small or low-resolution datasets.

3.3 SELECTIVE LEARNING: NOISE CONTROL TO OMIT TARGETED INFORMATION

Following our original intuition, learning pressure in DPMs is aligned with the information deletion
induced by forward noising. Conversely, when the noising operator is crafted to leave parts of the
original distribution intact, no such pressure exists, and the sampler can effectively discard the left-out
information during generation.

In this section, we perform experiments whereby the original data is corrupted with noise at different
frequency ranges. The objective is to manipulate the inductive biases of diffusion samplers to avoid
learning the corruption noise, while correctly approximating the relevant information in the data. We
formulate our corruption process as X’ = A.(x), where A (X) = X + yc€f[q4.. b.] and €[4, p.] denotes
noise in the [a, b.] frequency range. We perform the corruption on the fly, and use the original
MNIST dataset for training while testing on 10K images. We default y. = 1. and show samples
of the original and corrupted distributions in [Figure 5] For any standard DPM training procedure,
as expected, the sampler learns the corrupted distribution presented at training time. As such, the
recovery of the original, noiseless, distribution would normally be impossible. Assuming knowledge
of the corruption process, we use our two-band mixture formulation in [Equation 14]and frame the
frequency diffusion learning procedures as a noiseless distribution recovery process, where a; = 0,
bp =1,b; = ac, and aj, = b.. This formulation effectively allows for the forward frequency-noising
operator to omit the range of frequencies in which the corruption lies. In line with our previous
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Original

Corrupted DPM (Standard) bpm-SAGD

Figure 5: Samples from the original data distribution, the degraded data distribution, a standard
diffusion sampler trained on the degraded data distribution, and a frequency diffusion sampler trained
on the degraded data distribution. We generate noise for data corruption in the frequency range
[ac =0.4,b. =0.5)].

rationale, this would effectively put no pressure on the denoiser to learn the corrupted part of the
target distribution, and focus instead on the frequency ranges holding the true signal.

We compare original and corrupted ) o
samples from MNIST, as well as sam- 1able 2: Resulting FID and KID between standard diffusion

ples from standard and bpm-SAGD- and bpm-SAGD samplers trained on noise-corrupted data,
trained models in In line With respect to samples from the true uncorrupted distribu-
with our hypothesis, we observe fre- tion (mean + standard error across 3 seeds). We report eight
quency diffusion DPMs trained with ~ablation experiments across different non-overlapping cor-
an appropriate two-band SAGD to be uption noise schemes.

able to discard the corrupting informa-

tion and recover the original distribu- ~Pataset = Baseline bpm-SAGD

tion after severe corruption. We fur- Cormetionl  FIDM) KID ) FID () KD b
€[0.1,0.2] 3.2273+8.50e - 03 0.0114+3.13¢ 05 2.7572+3.56e - 02 0.0095+1.47¢ - 04
ther measure the FID and KID of the " 36601043 - 03 0.013251.67 ~05  3.041654.47¢ ~02  0.01072179 — 04
Samples generated by the baseline and €[0.3,0.4] 3.4771+4.79¢ - 03 0.0125:1.89¢ 05 2.9952:3.35¢ - 02 0.0106+1.23¢ - 04
. .. €[0.4,0.5] 3.4281+5.46e -03  0.0123+1.98¢ -05 2.9218:2.54¢ - 02  0.0105+8.79¢ - 05
frequency DPMs against the original = ¢, 3363856.31e- 03 0.0121:232 ~05  2.8267:2.81~02  0.010259.32 - 05
1 b €[0.6,0.7] 3.2444+7.10e - 03 0.011642.55¢ - 05  2.70264+3.90¢ — 02 0.0097+1.28¢ — 04
(uncorrupted) data ,Samples, mn €[0.7.0.8] 3.0442:6.32¢ - 03 0.0109+2.29¢ 05 2.5469:6.39¢ - 02 0.0091:x2.00¢ - 04
We perform 8§ ablation studies, consid- 500 3.4660:7.90c —03  0.012452.96¢ 05 2.5138:9.63¢ — 02 0.0090:3.07¢ — 04

ering noises at 0.1 non-overlapping
intervals in the [0.1, .9] frequency range. We observe appropriately designed bpm-SAGD samplers
to outperform standard diffusion training across all tested ranges. Interestingly, we observe better
performance (lower FID) for data corruption in the high-frequency ranges, and reduced performance
for data corruption in low-frequency ranges, confirming a marginally higher information content in
the low frequencies for the MNIST dataset.

4 RELATED WORK

Beyond schedule tuning and architectural changes, several works have explicitly altered the forward
corruption to shape inductive biases. Cold Diffusion replaces Gaussian noise with deterministic
degradations (e.g., blur, masking), learning to invert arbitrary transforms without relying on stochastic
noise (Bansal et al.}[2023). Others introduce colored/ correlated Gaussian noise: for example, Huang
et al.| (2024) construct spatially correlated (blue/red) noise to emphasize selected frequency bands
and show improved fidelity in image synthesis. More recently, frequency-domain guidance has been
used to shape what diffusion models learn during sampling: FDG-Diff (Zhang et al.| [2025]) modulates
feature spectra via a frequency-domain guidance module, and Frequency-Guided Diffusion (Gao
et al.} 2025)) adjusts high-frequency components during text-driven image translation. Both operate in
the frequency domain but retain an isotropic Gaussian forward process. Diffusion-like models based

on reversing the heat equation similarly bias learning toward coarse-to-fine structure (Rissanen et al.|
2023).

In contrast to these methods, SAGD retains a Gaussian forward model with frequency-diagonal
covariance, providing a probabilistically consistent framework that is compatible with standard
samplers (e.g., DDIM) and supported by a proof that, under full spectral support, the learned score
converges to the true data score as t — 0 (Sec. D). Closest to our setting, [Voleti et al.| (2022)) formulate
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diffusion with a non-isotropic Gaussian forward covariance X, and derive the corresponding denoising
relations; their experiments, however, do not instantiate a spectrally structured operator and only show
preliminary results on CIFAR-10. In contrast, we construct two noising operators while constraining
Y to be diagonal in the Fourier basis (i.e., ¥ = #~'Diag(|w(f)|?)F), which (i) yields a simple,
drop-in implementation via per-frequency weighting — IFFT, (ii) leaves the standard £, e-objective
unchanged while enabling a closed-form score—e conversion by multiplying with £~! (trivial in the
spectral domain), and (iii) admits principled selective omission by zeroing prescribed bands. To our
knowledge, this is the first forward—covariance manipulation method implemented with a frequency-
diagonal Gaussian and validated through both spectral ablations and multi-dataset studies—while
recovering standard isotropic Gaussian diffusion as a special case.

5 DISCUSSION AND CONCLUSION

Summary. In this work, we studied the potential to build inductive biases in the training and
sampling of Diffusion Probabilistic Models (DPMs) by purposeful manipulation of the forward
covariance in the noising process. We introduced spectrally anisotropic Gaussian diffusion (SAGD),
an approach that guides DPMs via an anisotropic Gaussian forward operator with frequency-diagonal
covariance. We compare SAGD to DPMs trained with standard Gaussian noise on generative
visual tasks spanning datasets with significantly varying structures and scales. We show several
key findings. First, we show that under full spectral support, the learned score converges to the
true data score as t — 0, while anisotropy deterministically reshapes the probability—flow path from
noise to data. Second, we show how shaping the forward covariance serves as a strong inductive
bias that steers diffusion samplers to better learn information at particular frequencies. Third, this
property can be leveraged on both standard natural-image benchmarks (e.g., FFHQ, ImageNet-1k)
and less conventional datasets (e.g., MNIST, DomainNet-Quickdraw), often yielding comparable or
superior sampling quality to standard diffusion schedules, while remaining a minimal drop-in change
to existing diffusion pipelines. Finally, SAGD enables selective omission, whereby by zeroing chosen
bands the model ignores unwanted content and recovers clean signals in desired ranges.

Future Work. In our approach, we crafted two particular choices of SAGD forward-noise operators:
a power-law weighting and a two-band mixture. In future work, several other alternatives may be
considered, which can serve as more flexible tools to inject useful inductive biases for similar tasks.
Moreover, the approach can be extended beyond constant schedules. For instance, time-varying
spectral strategies (2,,,) could shift focus from low-frequency (general shapes) to high-frequency
(edges/textures) components over the sampling trajectory. Such methods could more closely align
with human visual processing, which progressively sharpens details over time, offering a more natural
sampling process. Additionally, other domains of noise manipulation, outside of spectral operations,
may also present new opportunities for further steerability and improvements.

Limitations and Considerations. A current limitation lies in the complexity of relating spatial
percepts to their frequency-domain representations. The perception of information in the frequency
domain does not always translate straightforwardly to visual content, impeding the process of
designing optimal ad hoc operators. In practice, empirical validation is still required to identify
the best inductive biases for a given dataset. We believe it worthwhile for future work to develop
analytical tools to guide operator design using data-specific considerations (e.g., spectral diagnostics
and band-consistent metrics).

Finally, while our experiments focus on images, the approach applies to any domain with an intrinsic
spectral basis in which the forward covariance can be specified and (approximately) diagonalized
(e.g., 1D time series, 2D/3D grids and videos via Fourier/DCT, geospatial fields, and graph/mesh
signals via Laplacian eigenbases). In contrast, domains lacking a coherent topology or spectral
geometry (e.g., unordered sets or purely categorical tabular data) offer no natural basis for anisotropic
forward covariances, making our construction less applicable.

Conclusion Overall, this work opens the door for more targeted and flexible diffusion generative
modeling by building inductive biases through the manipulation of the forward nosing process.
The ability to design noise schedules that align with specific data characteristics holds promise for
advancing the state of the art in generative modeling.
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Reproducibility Statement. We take several steps to facilitate the reproducibility of our results.
The SAGD formulation and training objective are specified in Secs. 2.THZ2.2) (forward step in Eq. equa-
tion [3] spectral operator in Eqs. equation [5}-equation [6]), with the score—e relation, posterior, and
probability—flow ODE derived in Appendix [D] We provide minimal code to generate noise according
to our two proposed SAGD operators (power-law and band-pass) in Appendix [E] Datasets and prepro-
cessing details appear in Appendices [B]and[C} controlled corruptions and synthetic data procedures
(power-law random fields) are documented alongside the code. All ablation settings (e.g., @ grids,
two-band ranges and weights, and seed counts) are enumerated in the Results tables/figures (e.g., ??,
[Figure F.I). Finally, all evaluations follow standard FID/KID protocols using Inception-v3 (block
768); sample counts and metrics are reported per experiment.
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A ANIMATED PARTICLE TRAJECTORIES (SUPPLEMENTARY VIDEOS)

We include three short animations of particle flows under the probability—flow ODE (deterministic
DDIM; cf. Eq. equation [33). Each video shows N particles transported from an isotropic Gaussian
prior toward a fixed mixture-of-Gaussians target in R2.

Files:

* particles_alpha-0p5git: SAGD with power-law weighting w,(r) = (r + &)¢
(Eq. equation[T0) and @ = 0.5 (low-frequency tilt).

* particles_iso.gif: isotropic baseline, @ = 0 (white-noise forward covariance).
* particles_alphaOp5.gif: SAGD with @ = +0.5 (high-frequency tilt).

All three runs share the same prior, target, and B(¢); only the forward covariance differs via %,, =
F~'Diag(|wq|*)F. As time decreases t : 1 — 0, there is a perceived spatial bias in the particle
trajectory to the target. In all cases with full spectral support (X, > 0), the endpoint score at t — 0 is
consistent with the true data score. In practice, the anisotropic path deviations favor the learning of
particular aspects of the sampling distribution.

B DATASETS

For the experiments, we consider five datasets, namely: MNIST, CIFAR-10, Domainnet-Quickdraw,
Wiki-Art and FFHQ; providing examples of widely different visual distributions, scales, and domain-
specific statistics.

MNIST: MNIST consists of 70, 000 grayscale images of handwritten digits (0-9) (Matthey et al.|
2017). MNIST provides a simple test-bed to for the hypothesis in this work, as a well understood
dataset with well structured, and visually coherent samples.

CIFAR-10: CIFAR-10 contains 60,000 color images distributed across 10 object categories
(Krizhevsky et al., 2009). The dataset is highly diverse in terms of object appearance, backgrounds,
and colors, with the wide-ranging visual variations across classes like animals, vehicles, and other
common objects.

DomainNet-Quickdraw: DomainNet-Quickdraw features 120, 750 sketch-style images, covering
345 object categories (Peng et al 2019). These images, drawn in a minimalistic, abstract style,
present a distribution that is drastically different from natural images, with sparse details and heavy
visual simplifications.

WikiArt: WikiArt consists of over 81, 000 images of artwork spanning a wide array of artistic styles,
genres, and historical periods (Saleh & Elgammal, [2015). The dataset encompasses a rich and varied
distribution of textures, color palettes, and compositions, making it a challenging benchmark for
generative models, which must capture both the global structure and fine-grained stylistic variations
that exist across different forms of visual art.

FFHQ: The Flickr-Faces-HQ (FFHQ) dataset comprises 70,000 high-resolution, aligned face
images (Karras et al.l[2019), curated to increase diversity in age, ethnicity, pose, lighting, accessories
(e.g., eyeglasses, hats), and backgrounds. The dataset offers a rich distribution of facial features, and it
is a strong benchmark for testing generative models’ ability to capture fine-grained identity-preserving
details and global facial structure.

ImageNet-1k: ImageNet-1k is a large-scale benchmark of over 1.2 million training images and
50,000 validation images, spanning 1,000 object categories drawn from everyday visual concepts such
as animals, vehicles, tools, and scenes (Deng et al.|2009). The dataset consists of high-resolution
high-variability natural images with complex backgrounds, diverse viewpoints, and significant intra-
class variation in appearance, scale, and context, making it a challenging benchmark for generative
models.
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C IMPLEMENTATION DETAILS

DATA PREPROCESSING

We form a minimal preprocessing pipeline across datasets and vary only the target spatial resolution.
We standardize pixel intensities to [—1, 1] and resample each image to at three resolutions: 32 x 32
(MNIST, CIFAR-10, and DomainNet-Quickdraw); 64 x 64 (WikiArt), 254 x 254 (FFHQ, and
Imagenetlk). MNIST is treated as single-channel (channels = 1), while all other datasets are
RGB (channels = 3).

CODE BASE

For our small- and medium-scale diffusion experiments on MNIST, CIFAR-10, DomainNet-
Quickdraw, WikiArt, and FFHQ, we build on the di f fusers library from Hugging Face, using its
standard DDPM-style training loop and replacing only the forward noise with our SAGD operators.
All other components (optimizer, scheduler, and sampling code) follow the default configurations
described in the main text. For large-scale ImageNet- 1k experiments, we adapt the public codebase
of [Zheng et al|(2025)), which implements latent DiT models in a DINOv2 feature space and has been
shown to reach state-of-the-art performance in diffusion modeling at scale. In this setting, we again
change only the forward noise generation to SAGD, leaving the architecture, optimizer, and training
schedule unchanged.

DENOISER ARCHITECTURE

For all 2D image experiments on MNIST, CIFAR-10, DomainNet-Quickdraw, WikiArt, and FFHQ,
we use a standard U-Net denoiser with four resolution levels and channel widths (32, 64, 128, 256)
in the encoder (mirrored in the decoder), resulting in approximately 15.9M trainable parameters.
This architecture is kept fixed across all SAGD and isotropic baselines. For ImageNet-1k, we use
the DiT-based latent diffusion model from [Zheng et al| (2023)), operating in the DINOv2 latent
space at 256x256 resolution with 196M parameters. We do not modify the DiT architecture or
hyperparameters; SAGD is introduced solely as a drop-in replacement for the isotropic forward noise,
demonstrating that our method is compatible with—and beneficial for—state-of-the-art large-scale
diffusion setups.

POWER-LAW WEIGHTING IMPLEMENTATION

~
S
—_

Discretization and batching. In code, we construct the grid with f, (k) = % - % and fy, (£ 3
fork € {0,...,W -1}, ¢ € {0,...,H — 1} (equivalently, np.linspace (-0.5,0.5, W) and
H). This follows the standard £ ft f req convention, where frequencies are expressed in cycles per
pixel on [—%, %] and i% correspond to Nyquist. If one instead parameterizes frequencies on [—1, 1]
via f’ = 2f (and hence r’(f’) = 2r(f)), the same power-law shape can be recovered by defining
wi,(f") =" (f")/2 + €)?; any resulting global scale factor in w (and thus in X,,) is absorbed into
0'12 or removed by the per-sample variance normalization used in our implementation, so the inductive
bias depends only on the relative weighting across frequencies, not on the chosen numeric range. The
weight w,, is broadcast across batch (and channels, if present). For convenience, one may multiply
in the £ ft shift-centered domain and undo the shift before the inverse FFT; this is equivalent to
multiplying in the unshifted domain since w, is radial.

Opltional variance calibration. To keep E||e(?) ||§ roughly constant across @, an energy-preserving
scalar

15)

1
Co = (W uzvlwa(fuv)|2

can be applied in equation , ie., Ngrf;i ¢ Cq Nfreq + Weo. (Our experiments omit this by default,
matching the implementation 1n the main text.)
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PRACTICAL CONSIDERATIONS.

We instantiate SAGD by sampling € via FFTs, multiplying Fourier coefficients by a real, per-
frequency weight w(f), and inverting to the spatial domain (Eqs. equation equation |§|) The
¢> training objective equation [3] remains unchanged, and converting €, to a score only requires
multiplying by X..! (see above). The computational overhead is non-existent at inference time, and
negligible during training, as FFTs dominate and weights are broadcastable; for RGB, we apply w
per channel.

D NOISE PARAMETERIZATION, SCORES, AND FREQUENCY-BASED DYNAMICS

In this section, we wish to formalize the role of frequency diffusion in correctly learning the gradient
of the log probability density of the data distribution at various noise levels (the score function). We
model frequency-based corruption as an anisotropic Gaussian forward process, derive the score—e
relation for this general case, and prove that as  — O the learned score converges to the true data score
whenever all frequencies are represented (full-rank covariance). We also derive the reverse/posterior
formulas and discuss how shaping the forward covariance changes the path to the score, shifting the
information burden across frequencies. Finally, we formalize the selective-omission case when some
bands are removed.

Setup and notation. Let a; € (0, 1) be the per-step scaling, @, = ni:[ g, and 0't2 =1-a.1In
standard DDPM, the forward marginal is

q(x |%0) = N(Varxo, 07 1), (16)
and one trains an e-predictor €4 (X;, #) by minimizing
L = B enon|le-eoxnly ], x=Vax+oe (17)

The optimal predictor is €} (x;, ) = E[€ | x,] and the true score relates to it via

1
Vx, logq:(x;) = - €x(X;,1), where € (x;,1) = E[e|x]. (18)

t
D.1 FREQUENCY-BASED FORWARD PROCESS AS ANISOTROPIC GAUSSIAN
Let w(f) > 0 be a (time-independent) radial spectral weight and let # denote the discrete Fourier
transform (unitary). The linear operator
T, := ¥ 'o Diagw(f)) o F (19)

mags spatial white noise to frequency-based noise. Writing & ~ N'(0,I) and €™) = T,, &, we have
™ ~ N(0, Z,,) with

2, = T,T), = 7 Diag(lw(f)?) 7, (20)
i.e., X, is circulant and diagonalized by the Fourier basis, with eigenvalues given by the power
spectrum |w|?

Our forward process uses this shaped noise at each step:

X = Vorxet + VI—a e, ™ YN0, 3,). 1)
A simple induction gives the marginal
qw (% |%0) = N(V@ xo, o7 Zu). (22)

Hence, relative to equation we have replaced the isotropic covariance by ,,, while @, and o2
remain unchanged.

Support condition. If w(f) > O for all f, then X, > O (full rank) and the forward kernels have full
support in R“W _If w vanishes on a band, X,, is singular and the forward kernels are supported on a
strict subspace (Section[D.3). In practice, adding a small DC floor (e.g., r(f) — r(f) + £ with £ > 0)
ensures w(0) > 0 and thus X, > 0.

2With the usual Hermitian pairing in the discrete Fourier basis, € is real-valued.
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D.2 SCORE—€ RELATION UNDER ANISOTROPIC COVARIANCE

From equation[22]

| —
Vs, log qu (xi [%0) = = T3 = V@i xo). (23)
t
Taking the posterior expectation over ¢,, (X | X;) and using x; — V&, xo = 0 €™, we obtain the
marginal score
1

Vs log qu.i(xi) = —— I3 E[e™) | x,]. (24)
! | —
= €™ (x,.1)
Training with the natural generalization of equation |17}
LY = B comonioz | 1€ —eoxe 3], xe = Vaixo+ oy ™), (25)

the optimal predictor is €} (X;,) = E[e™) | x,]. Therefore, a consistent score estimator is

I _
so(x1,1) = Vy logqu (%) ~ —— X! eg(x,,1). (26)
t
Equation equation 26| reduces to equation [I8 when X,, = I. Since the corruption covariance X,, is

fixed, the £, objective needs no reweighting—the optimal €, remains the conditional mean; X!
appears only when converting €y to the score via Eq. equation [26]

D.3 TWEEDIE’S IDENTITY AND THE LIMIT ¢t —0

Write the marginal as a (scaled) Gaussian smoothing of the data:
G (x) = / q(x0) N(x; Vaixo, 07Z,) dxo. 27)

Let z; := X, /\/&;; then z; = Xg + & €™ with 6',2 = a't2 /@;. The anisotropic Tweedie identity gives
E[xo | z,] =1z; + 6}2 Xy Vg, log pi(2;), pr = law(z;). (28)

Equivalently, in the original variable,

‘/@_t -1 Xt
Vs logana(x) = 5 %! (Bllx] - =), 29)

Ast—0,a& — 1,0;—0,and ¢,,; = q. If £,, > 0 and ¢ admits a locally positive C! density with
Vliogg € Lloc, the anisotropic Gaussian mollifier is an approximate identity and

li_rg Vyx, log gy :(X;) = Vxlogg(x) forae. x. (30)
T

Intuitively, the anisotropic Gaussian kernel in equation [27]shrinks to a Dirac as oy — 0 regardless
of its orientation, so the smoothed score converges to the true data score. Combining equation [24}-
equation [30] the e-parameterization with frequency-based noise yields a correct score at t = 0,
provided Z,, > 0.

To visualize how frequency noising alters trajectories and score geometry through time, Fig.[D.T|shows
particle flows under the probability—flow ODE for isotropic noise (top), and p/w-SAGD high (@=0.1,
middle), and low-frequency (a=-0.1, bottom) tilt, while Fig. shows the corresponding score
fields Vy log p,(x) at five equally spaced times. Frequency noising changes the path deterministically
by reweighting modes through %,,, while preserving the #—0 endpoint score under full support (see

Sec.|D).
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Figure D.1: Particle trajectories under the probability—flow ODE from a Gaussian prior to a mixture-
of-Gaussians target (black contours), visualized at five equally spaced times (left to right). Rows: (top)
isotropic noise (@=0), (middle) high-frequency tilt (¢=0.1), (bottom) low-frequency tilt (#=-0.1).
plw-SAGD alters the path by reweighting modes via X,, while keeping the endpoint consistent under
full support (cf. Sec. D).
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Figure D.2: Evolving score fields Vylog p,(x) for the same three settings as Fig. Arrows
indicate the instantaneous score on a grid; black contours show the target density. plw-SAGD
stretches/compresses the field along principal modes, biasing the trajectory toward frequencies
emphasized by Z,,,.
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D.4 REVERSE/POSTERIOR WITH FREQUENCY-BASED NOISE

Since all covariances are proportional to the same X,,, linear-Gaussian posteriors retain the standard
scalar coefficients while the covariances inherit X, as a factor. In particular,

aw (- X0 %0) = N (xe.%0), i B ). 31)
with
Bi = —11_ YL (1 ), 32)
-
(%0 %0) = —= [x0 = 122 (x, = 1 x0) (33)
t 1o \/O{_t t 1 — (_Y[ t t .

Replacing x¢ by Xo in equation [33| yields the usual mean update. For the e-parameterization we
recover an estimate of xg via

1
Ro(Xs,1) = — (X — 07 €9(X4,1)) . (34)

V&,

Stochastic sampling: if one samples stochastically (e.g., DDPM), the injected noise should be drawn
as r]t(w> ~ N(0,%,) (not N(0,1)) for consistency with the forward process.

Probability-flow ODE: if one uses the deterministic sampler (e.g., DDIM), no step noise is injected.
In continuous time, the associated probability-flow ODE with frequency-based forward noise reads

dx

— = —3B()x = 3 B(1) Ty Vxlog p;(x), (35)
dt

which reduces to the standard probability—flow ODE when X,, = I. In practice with the e-
parameterization, one uses Xo from equation [34] in the standard DDIM deterministic update; no
extra noise term appears.

D.5 SELECTIVE OMISSION AND RANK-DEFICIENT X,,

If w vanishes on a measurable band, then X, 0 is singular. The forward kernels in equation [22] are
supported on an affine subspace determined by range(Z,,), and the smoothed marginals ¢g,, ; are not
strictly positive in R#W . The score V log ¢,, , exists only on that subspace and is undefined along
the null space. Training with equation [25]then recovers the projected score, i.e., the model learns to
ignore the omitted bands by construction (this is the mechanism exploited in our corruption-recovery
experiments).

D.6 PATH TO THE SCORE EFFECTS OF SAGD

Even though the r — 0 limit recovers the true data score under X, >0, the evolution of the score with
t changes substantially:

1. Geometry of the score. From equation the conversion from e-prediction to score
multiplies by £!. In the Fourier basis (where %, is diagonal), modes with larger variance
(large |w|?) are downweighted in the score, while low-variance modes are amplified. Thus,
shaping the forward spectrum changes the relative gradient magnitudes across frequencies
during training and sampling.

2. Signal-to-noise during supervision. The target ¢) has covariance Z,,, so its per-mode
variance follows |w|%. The ¢, loss in equationtherefore exposes the model to larger target
amplitudes (and larger gradients) in bands where |w| is large, shifting the inductive bias
toward fitting those modes sooner/more accurately.

3. Reverse dynamics. The reverse posterior covariance in equation is B;Z,, so the
stochasticity injected at each reverse step is anisotropic. This changes the trajectory taken
from ¢t down to 0, biasing the generation process to consolidate structure along directions
favored by X,,. Under DDIM, no step noise is instead injected, so the anisotropic stochastic
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effect disappears. However, the drift in the probability-flow ODE equation [35]still carries
%, through the term —B(¢) X, Vx log p;(x), inducing trajectories to be frequency-biased
deterministically. In this context, modes emphasized by X, contribute more strongly to the
drift, reshaping the path from =T to r=0 even without randomness.

Collectively, these effects explain why different datasets benefit from different w: the endpoint
score is consistent (under full rank), but the path—and thus the optimization landscape and sample
trajectories—is reshaped by frequency weighting.

Time-varying weights. If one uses a schedule w,(f), the ¢-step marginal covariance becomes a
scalar-weighted sum of commuting matrices:

12

COV(XI |X0) = zt: (,83 1_[ Qk) Ewss Bs =1 —as. (36)

s=1 k=s+1

When all 2, are diagonal in the Fourier basis (true for any per-frequency diagonal weight, not neces-

sarily radial), the analysis carries through modewise with eigenvalues replaced by the corresponding

positive weighted sums Y wy |wy (f)|? (which form a convex combination after normalization by
2

oy = Zs Ws).

E REFERENCE CODE FOR SAGD NOISE GENERATORS

Below we provide minimal, implementation-oriented pseudo-code for the two SAGD operators used
in this paper: (i) a power-law (radial) weighting and (ii) a band-pass mask (building block for the
two-band mixture). Both follow the same template:

w(f) Niw) 7! G(W).
req

€~ N(O’ I) i’ Nfreq

We normalize the spatial noise to unit variance so that the overall scale still comes from the schedule
via 0. Multiplying by a real, per-frequency weight preserves Hermitian symmetry and thus yields a
real inverse transform.

Power-law weighting. This implements a plw-SAGD with wo(f) = (r(f) + ), r(f) = \[f + /3
and a small DC floor & > 0.

import numpy as np

def sagd_powerlaw_noise (shape, alpha, eps=le-10):
# shape: (B, C, H, W)
B, C, H, W = shape
# 1) white noise
eps_white = np.random.randn(B, C, H, W)
# 2) FFT over spatial axes
F = np. fft. fftn (eps_white, axes=(-2, -1))

# 3) radial grid in normalized frequency (cycles/pixel)
fy = np. fft. fftfreq(H)[:, None] # shape HxI

fx = np. fft. fftfreq (W)[None, :] # shape IxW

r = np.sqrt(fx=%2 + fy==2) # shape HxW

# 4) power—law weight

w = (r + eps)=x=xalpha # shape HXW (real)
# 5) apply weight and invert

Fw = F % w[None, None, ...]

eps_w = np. fft.ifftn (Fw, axes=(-2, -1)).real

# 6) unit—variance normalization (per—sample)

std = eps_w.std(axis=(-2, -1), keepdims=True) + le-8
return eps_w / std
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Band-pass mask (single band [a, b]). This implements a bpm-SAGD with w, ;(f) = 1{a <
r(f) < b}. Cutoffs a, b are given in frequency units of cycles/pixel (e.g., a=0.1, b=0.3); we can also
express them as fractions of the Nyquist radius.

import numpy as np

def sagd_bandpass_noise(shape, a, b):
# shape: (B, C, H, W); choose 0 <= a <= b <= ~sqrt(2)/2 (cycles/pixel)
B, C, H, W = shape
# 1) white noise
eps_white = np.random.randn(B, C, H, W)
# 2) FFT over spatial axes
F = np. fft. fftn (eps_white, axes=(-2, -1))

# 3) radial grid in normalized frequency (cycles/pixel)
fy = np. fft. fftfreq(H)[:, None] # shape Hxl

fx = np. fft. fftfreq (W)[None, :] # shape IxW

r = np.sqrt(fx==2 + fy==%2) # shape HxW

# 4) band-pass mask (keep a <= r <= b)

M = ((r > a) & (r <= b)).astype(float) # shape HxW
# 5) apply mask and invert

Fw = F * M[None, None, ...]

eps_w = np. fft.ifftn (Fw, axes=(-2, -1)).real

# 6) unit—variance normalization (per—sample)

std = eps_w.std(axis=(-2, -1), keepdims=True) + le-8
return eps_w / std

Two-band mixture. We combine two band-pass noises with nonnegative coefficients y;, yj, (typi-
cally y;+yn=1):

e™ = v; sagd_bandpass_noise(-,a;,b;) + y, sagd_bandpass_noise(-,ap, by).

SAGD Forward step. Replace the isotropic noise in the DDPM forward step with either generator
above:
Xy = \/a'_tX,_l + l—a, E(W).

The training loss and DDIM update remain unchanged; when converting €4 to a score, multiply by
Z;,l (diagonal in the Fourier basis).

F ADDITIONAL RESULTS

F.1 SAGD IN NATURAL DATASETS - FULL RESULTS

We present in[Table F.1]and the full set of results from running pwd-SAGD on all datasets
and values of @ considered. In [Figure F.I} we can better discern the learning performance over
different a settings, where we observe interesting monotonically decreasing performance (increasing
FID) for MNIST and DomainNet, showcasing improved learning for negative values of a, and
suggesting that semantically informative content (strokes/contours) for these datasets may lie in
the lower frequency ranges. By contrast, CIFAR-10, Wiki-Art, and FFHQ exhibit a much flatter
dependence with shallow optima near @ = 0 (within £0.02), consistent with their broader, mixed
spectra. In[Figure F1] we can better discern the learning performance over different « settings, where
we observe interesting monotonically decreasing performance (increasing FID) for MNIST and
DomainNet, showcasing improved learning for negative values of @, and suggesting that semantically
informative content (strokes/contours) for these datasets may lie in the lower frequency ranges. By
contrast, CIFAR-10, Wiki-Art, and FFHQ exhibit a much flatter dependence with shallow optima
near @ ~ 0 (within £0.02), consistent with their broader, mixed spectra.
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Table F.1: Results for FID across different @ (frequency slope) settings (mean + standard error across
seeds). The setting for @ = 0 corresponds to standard DPM training (baseline).

Dataset — MNIST CIFAR-10 Domainnet-Quickdraw Wiki-Art FFHQ ImageNetlk
baseline 0.42+8.52¢ - 03 0.75+0.01 0.60+0.05 1.06+0.03 1.11z0.01 8.6819+0.0739
a = —0.080 0.31+0.03 0.98+0.03 0.55+0.04 1.39=0.10 1.48+0.02 -
a = —0.060 0.28+0.02 0.94+0.02 0.52+0.05 1.350.08 1.74=+0.10 8.1098+0.0229
@ =-0.040 0.31+7.76¢ - 03 0.86+0.02 0.49+0.02 1.25x0.07 1.76=+0.08 7.5534+0.0556
@ =-0.020 0.376.36¢ - 03 0.76=0.01 0.52+0.03 1.14+0.05 1.68+0.19 7.6419+0.0581
a =-0.010 0.37+0.02 0.75+0.01 0.54+0.04 1.09=0.04 1.48=x0.12 8.0400:0.0236
a =—-0.001 0.40+0.02 0.76=0.01 0.56=+0.04 1.02+5.66e - 03  1.04+5.17¢ - 03 8.5288+0.0112
a = 0.001 0.39+0.02 0.76+0.02 0.58+0.03 1.02+6.63¢ - 03 1.45+0.19 -
a =0.010 0.43+0.02 0.80+0.02 0.66+0.02 1.20+0.07 2.06=0.06 9.3867+0.0348
a =0.020 0.47+0.02 0.85+0.01 0.72+0.03 1.40+0.05 2.34+0.04 -
a =0.040 0.56+0.02 0.95+0.02 0.90+0.04 1.47+0.01 2.81+0.03 -
a = 0.060 0.65+0.04 1.06+0.04 1.22+0.05 1.56+0.04 2.97+0.03 -
a = 0.080 0.78+0.04 1.15+0.05 1.52+0.05 1.58+0.04 3.10+9.95¢ - 03 -

Table F.2: Results for KID across different @ (frequency slope) settings (mean + standard error across

seeds). The setting for @ = 0 corresponds to standard DPM training (baseline).

Dataset — MNIST CIFAR-10 Domainnet-Quickdraw Wiki-Art FFHQ
baseline 9.16e-0416.44¢ —05  2.11e-04+1.15¢ - 05 7.15e-04+1.06¢ - 04 8.08e-04+1.28¢ - 04  1.42e-03+8.12¢ - 05
a =-0.080 5.63e-04:7.19¢ - 05 8.64e-04+6.72¢ - 05 6.54e-04+5.45¢ - 05 2.03e-03+3.32¢ - 04 2.79e-03+1.01¢ - 04
a =-0.060 4.53e-0418.19¢ - 05 7.42e-04+5.04¢ - 05 5.28e-04+8.75¢ - 05 1.97e-03+3.32¢ - 04  3.81e-03+3.43¢ - 04
a =-0.040 5.29e-0415.44¢ -05 4.71e-04+5.95¢ - 05 4.73e-04+1.54¢ - 05 1.69e-03+2.94¢ - 04  3.75e-03+3.14¢ - 04
a =-0.020 7.87e-04+2.19¢ -05 2.25e-04+1.42¢ - 05 5.47e-04+4.14¢ - 05 1.32e-03+1.50e - 04  3.44e-03+6.55¢ - 04
a =-0.010 7.62e-0418.03¢ -05 1.90e-04+2.01¢ - 05 5.87e-04+7.17¢ - 05 9.64e-04+1.16¢ - 04  2.82e-03+3.94¢ - 04
a =-0.001 8.32e-04:6.08¢ -05 2.29e-04+3.56¢ - 05 6.59e-04+8.39¢ - 05 6.87e-04+7.94¢ 05  1.23e-03+5.66¢ - 05
a =0.001 8.00e-04+6.49¢ - 05 2.49e-04+3.57¢ - 05 7.02e-04+6.25¢ - 05 7.21e-04+7.45¢ =05  2.48e-03+6.59% - 04
a =0.010 9.49e-0418.17¢ - 05 3.28e-04+2.90¢ - 05 8.99¢e-04+5.53¢ - 05 1.36e-03+2.58¢ - 04 4.74e-03+1.00e - 04
a =0.020 1.09e-03+6.57¢ - 05 5.05e-04+2.52¢ - 05 1.06e-03+7.36¢ - 05 2.18e-03+2.05¢ - 04  5.80e-03:x1.26¢ - 04
a =0.040 1.39e-03+7.64¢ - 05 8.03e-04+5.90¢ - 05 1.51e-03+1.30e - 04 2.45e-03+1.26e - 04  7.65e-03+8.05¢ - 05
a = 0.060 1.72e-03+1.53¢ —04  1.12e-03+8.61¢ - 05 2.37e-03+1.47¢ - 04 2.83e-03+2.40¢ - 04  8.37e-03+1.5% — 04
a =0.080 2.18e-03+1.59¢ - 04  1.37e-03+1.09¢ - 04 3.30e-03+1.68¢ - 04 2.94e-03+1.84¢ - 04  8.87e-03+7.44¢ - 05
i L £

(a) MNIST (b) CIFAR-10 (c) WikiArt (d) DomainNet (e) FFHQ

Figure F.1: Minimum FID vs. frequency slope (). Bars show mean FID with inter-quartile error
bars across runs across three seeds.
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