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Abstract

Efficient transfer learning has shown remarkable performance in tuning large-
scale vision-language models (VLMs) toward downstream tasks with limited
data resources. The key challenge of efficient transfer lies in adjusting image-
text alignment to be task-specific while preserving pre-trained general knowledge.
However, existing methods adjust image-text alignment merely on a set of observed
samples, e.g., data set and external knowledge base, which cannot guarantee
to keep the correspondence of general concepts between image and text latent
manifolds without being disrupted and thereby a weak generalization of the adjusted
alignment. In this work, we propose a Homology Consistency (HC) constraint
for efficient transfer on VLMs, which explicitly constrains the correspondence of
image and text latent manifolds through structural equivalence based on persistent
homology in downstream tuning. Specifically, we build simplicial complex on the
top of data to mimic the topology of latent manifolds, then track the persistence of
the homology classes of topological features across multiple scales, and guide the
directions of persistence tracks in image and text manifolds to coincide each other,
with a deviating perturbation additionally. For practical application, we tailor the
implementation of our proposed HC constraint for two main paradigms of adapter
tuning. Extensive experiments on few-shot learning over 11 datasets and domain
generalization demonstrate the effectiveness and robustness of our method.

1 Introduction

Large-scale vision-language models (VLMs) such as CLIP [1] and ALIGN [2] trained on web-scale
data have learned broad visual concepts and demonstrated promising generalization capability on a
wide range of downstream tasks, such as classification [3, 4], detection [5, 6] and segmentation [7, 8].
In transferring to downstream tasks with limited data resources, the conventional full fine-tuning
on VLMs often forgets the general knowledge learned in pre-training and falls into overfitting. To
mitigate this, how to efficiently transfer the knowledge from pre-trained VLMs to downstream tasks
in a low-data regime has been intensively studied.

To possess both task-specific knowledge exploration and general knowledge preservation, efficient
transfer learning proposes to adapt VLMs to fit downstream tasks by tuning a few parameters, which
mainly exists in two paradigms: prompt tuning and adapter tuning. Prompt tuning methods adapt
VLMs toward downstream tasks by introducing learnable prompts on the input side. Topics in this
branch include the configuration of learnable prompts [9–13] and injecting semantic priors, such as
external knowledge [14, 15], category distribution [16] or visual diversity [17, 18], in tuning. As a
promising alternative, adapter tuning inserts a learnable lightweight adapter into the frozen pre-trained
VLMs on the output side and the insertion manner allows modifying flexibly. By residual blending,
CLIP-Adapter [19] tuned the image or text embeddings by appending a learnable bottleneck layer
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to the frozen encoder. TaskRes [20] added learnable parameters as prior-independent residuals to
text embeddings. Another line is based on key-value cache model. Tip-Adapter [21] proposed to
construct an adapter with training images as keys and one-hot label encodings as values for image
recognition. Some work further enhanced the cache model by discriminative prior refinement [22]
or knowledge augmentation [23]. For efficient transfer, existing methods mainly focus on how to
configure tunable parameters or the leverage of external prior knowledge in tuning.

The essence of task-specific tuning on VLMs is to adjust the semantic alignment of image and text
latent manifolds to fit downstream tasks. In this view, efficient transfer learning aims to establish new
semantic alignments while keeping the correspondence of pre-trained general concepts between image
and text latent manifolds from being corrupted. This correspondence stems from the equivalence of
semantics between the two manifolds. However, existing methods adjust image-text alignment toward
downstream tasks on a set of observed samples from the latent manifolds. The discrete samples are
incapable of adequately capturing the underlying structure of manifolds. The lack of perspective on
latent manifolds in alignment adjusting risks devolving the desired manifold equivalence into localized
closeness on the observed data, particularly in a low-data regime, which causes the unguaranteed
generalization of adjusted alignment beyond the data samples.

To this end, we propose to explicitly constrain the equivalence of image and text latent manifolds
in transferring VLMs toward downstream tasks. We study the structure of the image and text latent
manifolds from the lens of topological data analysis [24–26]. Topology encodes the connectivity
of a space to describe its underlying structure, and the preservation of topology between spaces is
fundamental for their structural equivalence. Topological data analysis employs homology groups
to quantify the topological features of manifold structure, such as connected components, loops,
voids, and higher-dimensional holes, as homology classes and tracks the survival of the topological
features across multiple scales via persistent homology [26] to capture their size and position, which
summaries the global shape of manifold. These topology insights provide an avenue to achieve a
structural equivalence of image and text latent manifolds.

In this work, we propose a Homology Consistency (HC) constraint for efficient transfer on VLMs,
which constrains the structural equivalence of image and text latent manifolds based on persistent
homology in downstream tuning. Given image-text data samples, we construct simplicial complex on
the top of data to mimic the topological structure of latent manifolds, and induce a nested sequence
of subcomplexes called filtration. Through the filtration, we capture the persistence of homology
classes from their appearance to non-existence and guide the homology persistences of image and
text manifolds to be consistent. Specifically, we locate the births and deaths of homology classes
in latent manifolds and track these homology persistences, then guide the directions of persistence
tracks in image and text manifolds to coincide each other so as to achieve a homology-level structural
equivalence. Additionally, we apply a deviating perturbation to persistence-related text samples to
encourage their respective semantically related images to be distributed uniformly relative to them in
embedding, in order to enhance the generalization of the track coincidence in adjusting image-text
alignment. Further, we tailor the implementation of the proposed HC constraint for the main residual
blending and key-value cache based paradigms of adapter tuning. Extensive experiments on few-shot
learning over 11 benchmarks and domain generalization demonstrate the effectiveness and robustness
of HC constraint in efficient transfer learning on VLMs.

Our main contributions are summarized as follows:

• We propose to explicitly constrain the structural equivalence of image and text latent manifolds
in efficient transfer on VLMs, to improve the generalization of downstream image-text alignment
adjusting beyond data samples in a low-data regime.

• We propose a theoretically well-founded homology consistency (HC) constraint based on persistent
homology for efficient transfer on VLMs. We coincide the persistences of homology classes of
topological features between image and text manifolds, and apply a deviating perturbation to
generalize the persistence coincidence to unseen data.

• We tailor the implementation of the proposed HC constraint for the two main paradigms of adapter
tuning respectively, showing the transferability of our method.

• We evaluate the proposed HC constraint on few-shot classification over 11 popular benchmarks.
The extensive experiments demonstrate that HC constraint can boost the performance of baselines
significantly and achieve state-of-the-art.
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2 Related Work

Efficient Transfer Learning. To better transfer VLMs to downstream tasks especially with limited
target domain data, a lot of research on efficient transfer learning has been done, which mainly
exists in two types, prompt tuning and adapter tuning. Advanced than manual prompt that demands
domain expertise to develop suitable format, prompt tuning methods design learnable prompts to
adapt VLMs on downstream data. As a pioneer work, CoOp [9] for the first time composed prompts
by concatenating text category embedding and learnable context vectors. The learnable prompts
can be configured in text input [9, 10], image input [11] or jointly both [12, 13]. A line of work
focuses on injecting semantic priors, such as category-related external knowledge [14, 15], category
embedding distribution [16] and the diversity of visual concepts [17, 18], in prompt tuning. In
another branch, adapter tuning methods insert a learnable lightweight adapter module into the frozen
pre-trained VLMs and show excellent performance. The adapter architecture and insertion manner
allow for flexible modifications. There are two main paradigms: residual blending and key-value
cache based. By residual blending, CLIP-Adapter [19] appended learnable bottleneck layer to frozen
encoder to tune embeddings. TaskRes [20] added a set of prior-independent parameters to frozen text
category embeddings to obtain an image classifier. GraphAdapter [27] proposed to learn downstream
knowledge with inter-class relationship of image and text samples. Based on the key-value cache
model, Tip-Adapter [21] constructed an adapter with training images and label encodings as key-
value to recognize query images. APE [22] refined the cache model by visual discrimination priors.
CaFo [23] cascaded diverse external knowledge from DINO [28], DALL-E [29], and GPT-3 [30] to
assist recognition. However, although existing methods have attained remarkable achievements in
VLMs transfer, they adjust the semantic alignment [31–33] of image and text latent manifolds toward
downstream tasks merely on observed samples, e.g., data sets and external knowledge bases, and lack
insight into underlying manifold structure, which may cause unguaranteed generalization beyond the
data samples. In this work, we propose to explicitly constrain the structural equivalence of image and
text latent manifolds in downstream tuning to facilitate the transfer of VLMs.

Topological Data Analysis in Machine Learning. The area of topological data analysis [26] infers
the topological structure of data spaces using algebraic tools such as persistent homology, and has been
applied in many fields of machine learning, e.g., image segmentation [34–37], graph machine learning
[38–40], molecular representation [41, 42], point cloud analysis [43, 44], etc. For instance, in image
segmentation, [35] proposed to drive the segmentations to contain the specified topological features
without requiring ground-truth labels. [36] used discrete Morse theory and persistent homology to
learn the structural representation of images for fine-scale structure segmentation. In graph machine
learning, [39] integrated vertex- and edge-level topological features into message-passing graph neural
networks to boost their expressive power. In point cloud analysis, [44] developed a learnable filtration
on point clouds to obtain adaptive topological features for given tasks. Besides, [45] preserved the
topological structures of input space into latent space of autoencoders by aligning topologically
relevant distances. [46] applied representation topology divergence [47] in dimensionality reduction
to force closeness on topological structures. How to analyse the structure of data spaces for semantic
alignment in vision-language tasks through topology remains under-explored in the literature. In this
work, we characterize and align the structure of the image and text latent manifolds by means of
persistent homology in efficient transfer learning on VLMs.

3 Methodology

3.1 Preliminaries

3.1.1 Contrastive Language-Image Pre-training (CLIP)

As a representative VLM, CLIP [1] is trained on massive image-text pairs and shows promising
zero-shot performance on downstream tasks. CLIP adopts two separate encoders to embed images
and texts into latent manifolds, and aligns the bi-modal embeddings by contrastive learning that forces
paired image and text closer and unpaired ones away. For the transfer to image classification with N
classes, CLIP obtains the class embedding wi by feeding the prompt templates, e.g., “A photo of a
[CLASS]”, filled with class name ci into text encoder, and the probability that an image x belongs to
category ci can be formulated as p(y = ci|x) = exp

(
x⊤wi/τ

)
/
∑N

j=1 exp
(
x⊤wj/τ

)
, where the

embeddings are l2-normalized and τ denotes a temperature hyper-parameter.
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3.1.2 Persistent Homology

Discrete data points contain only observations from the latent space in which they reside and do
not have interesting topology. To peek at the topological structure of latent space, we mimic its
connectivity by constructing a simplicial complex with the data points as vertices. As a basic
element, simplex σ with dimension p is the convex hull of a set of p+ 1 affinely independent points
(x0, . . . , xp). Given a finite data point set X in metric space (M,d) and a threshold a > 0, the
commonly used Vietoris-Rips (Rips in short) complex is defined as:

Ka(X) = {σ ⊂ X | d (xi, xj) < a,∀xi, xj ∈ σ} , (1)

which is fully determined by the pairwise distances of X . The dimension of Ka is the maximum
dimension of any simplex within it. The formal sums of p-simplices added with Z2-additions form a
chain group Cp(Ka) (Cp for brevity). Then, define a boundary operator ∂p on p-simplex σ as a map
that sends σ to the (p− 1)-chain consisting of σ’s (p− 1)-faces referred as σ ’s boundary. Applying

∂p to the chain groups can obtain a sequence of homomorphisms: Ck
∂k−→ Ck−1 · · ·C1

∂1−→ C0. All
p-chains whose boundaries are empty form a cycle group Zp, which is the kernel of ∂p. The image
of boundary operator ∂p+1 on Cp+1 forms a boundary group Bp. Further, taking the quotient of the
Zp with Bp, the p-th homology group Hp = Zp/Bp classifies the p-cycles in Zp by collecting those
cycles that differ by a boundary into the same homology class. In a topological view, the rank of
homology group Hp captures the number of p-dimensional holes in space.

Figure 1: The sublevel set filtration on a
nested family of Rips complexes.

Persistent homology offers a way to compute the
quantified summary of topological structures of the
latent space from sampled data. For the data point set
X in space (M,d), we define a function f : M →
R, f ((x0, . . . , xp)) = maxi,j∈{0,...,p} f ((xi, xj))
on simplices. Then, given a sequence of thresholds
a1 ≤ a2 ≤ . . . ,≤ an, the growing sublevel sets
f−1(−∞, a] at these values give rise to a nested se-
quence of subcomplexes, Ka1

⊆ Ka2
⊆ · · · ⊆ Kan

,
called a filtration F , as shown in Fig. 1. The inclu-
sions in F induce:

0 = Hp (K0) → · · · → Hp (Ki) →
hi,j
p· · ·→ Hp (Kj) → · · · → Hp (Kn) = Hp(K), (2)

where the images of the homomorphisms hi,j
p are persistent homology groups Hi,j

p . A non-trivial
homology class ϵ ∈ Hp (Ka) is born at Ki, if ϵ ∈ Hi,a

p but ϵ /∈ Hi−1,a
p . Likewise, the homology class

ϵ dies entering Kj , if ϵ ∈ Ha,j−1
p but ϵ /∈ Ha,j

p . The persistence of a homology class is the lifespan
from its birth to death. See Appendix A for more details.

3.2 Homology Consistency

Figure 2: Schematic illustration of our proposed HC con-
straint. (a) TC guides the directions of the persistence
tracks to coincide each other to establish the alignment of
underlying structures beyond the observed samples. (b)
DP encourages samples to be uniformly distributed.

Given a set of pre-trained image embed-
dings X and text embeddings T , we con-
struct a Rips complex KaM

(X) with the
maximum pairwise distance aM of X
and further derive a sublevel set filtration,
F(K), as the nested family of subcom-
plexes Ka0

⊆ Ka1
⊆ · · · ⊆ KaM

at
the increasing scale sequence of pairwise
distances {ai}Mi=0 where a0 = 0. Then
we arrive at p-th persistent homology
groups that capture the survival of the
homology classes of p-dimensional topo-
logical features (e.g., 0-dimension: con-
nected components, 1-dimension: loops,
2-dimension: voids, etc.) and pair the
birth and death times of p-th homology
classes, following [45]. Since the edge skeleton of Rips complex fully determines all of its simplices,
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under the assumption that pairwise distances of X are unique, every birth-death time pair can be
mapped back to the simplices that respectively created and destroyed the unique corresponding
homology class. The schematic illustration of HC constraint is shown in Fig. 2.

Persistence Track Coincidence. Let µ be a p-th homology class that is born at ab and dies at ad,
then the birth simplex β forms µ in Kab

and the death simplex δ causes µ to disappear entering Kad
.

For example, if µ were to be 0-dimensional, it emerges at a0, and δ is the edge that joins it with some
other point; if µ were to be 1-dimensional, then β is the edge that forms the loop corresponding to µ
in Kab

, and δ is the triangle that incurs the loop to be contractible in Kad
. Since the Rips complex is

pairwise distance based, on every p-simplex we have:
f ((x0, . . . , xp)) = max

i,j∈{0,...,p}
f ((xi, xj)) . (3)

For the birth simplex β and death simplex δ, this means they will not be established until their longest
edge (xi(β), xj(β))argmax f(β) and (xi(δ), xj(δ))argmax f(δ) appear at time ab and ad, which we refer
to as birth edge and death edge, respectively. It can be said that the simplex β is completed by the
birth edge and δ by the death edge. Such edges mark the creation and destruction of the homology
class µ in the image latent manifold. Defining the direction of the edges as from i to j such that i < j
in the given vertex sequence of simplices, we track the persistence direction of p-th homology class µ
from its birth edge to death edge as:

trap(µ,X) = (xi(δ), xj(δ))argmax f(δ) − (xi(β), xj(β))argmax f(β). (4)
Then we obtain the persistence track of µ in text latent manifold, trap(µ, T ), through determining its
birth and death edges directly by taking the corresponding texts of the end-points of µ’s birth and
death edges in image manifold accordingly. Further, for aligning the structure of image and text latent
manifolds, we guide the track coincidence (TC) of p-th homology classes between the two by:

LTC(Γp, X, T ) = 1− 1

|Γp|
∑
µ∈Γp

φ(trap(µ,X), trap(µ, T )), (5)

where Γp is the set of p-th homology classes in latent manifolds and φ is cosine similarity.

Deviating Perturbation. In a low-data regime where samples are not sufficient to fully characterize
the topology of the latent manifold of interset, the sight of persistence track coinciding is confined
on the given limited samples, which hinders the generalization of structural equivalence guided by
track coincidence. For all end-point images of birth and death edges of p-th homology classes in Γp

and their corresponding texts, we drive every text to deviate from its semantically related images
in embedding (what we consider here is that multiple images are related to the same category text
in classification) without breaking the track coincidence, so as to encourage the text-related images
beyond samples in latent manifold to be uniformly distributed around the text.

Specifically, since the persistence tracks of the 0-th homology classes are exactly the death edges
(birth edges are 0), their end-point samples are available from the given dataset. We quantify the
degree of deviation as the similarity between the orientations of the text’s embedding relative to the
embeddings of its related images. Then, for 0-th homology classes in Γ0, we enlarge the deviation
between end-point texts and their respective semantically related images by reducing the variation in
their relative orientations, by applying a deviating perturbation (DP) as:

LDP (Γ0, X, T ) =
1

|XΓ0 |
∑

xi∈XΓ0

(1− 1

|X ′
i|

∑
x′
i∈X′

i

φ(xi − (xi)T , x
′
i − (xi)T )), (6)

where XΓ0
denotes the set of all end-point images of 0-th homology classes in Γ0, (xi)T denotes

xi’s corresponding text, X ′
i ∈ XΓ0

denotes a set of images of the same category that are semanti-
cally related to xi and φ is cosine similarity. The deviating perturbation can benefit the structural
equivalence to get rid of a biased reconstruction of latent topology caused by insufficient sampling.

Homology Consistency. To constrain the structural equivalence of image and text latent manifolds,
we coincide persistence tracks of homology classes along with the deviating perturbation by:

LHC(Γ, X, T ) =

n∑
p=0

LTC(Γp, X, T ) + λLDP (Γ0, X, T ), (7)

where λ is the hyper-parameter controlling the perturbation strength. We mainly focus on the 0-th
homology classes (p = 0), since higher-dimensional classes significantly increase computational cost
but bring almost no additional performance benefits in VLMs tuning in practice.
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3.3 Implementation

To examine the structural equivalence constrained by our proposed homology consistency in the
efficient transfer of VLMs and show its transferability, we tailor the implementation of homology
consistency constraint to the two main paradigms of adapter tuning, residual blending based and
key-value cache model based, respectively.

Residual blending based tuning methods construct an adapter to produce learnable residuals and
blend them with the pre-trained features. As a representative, TaskRes [20] adds prior-independent
parameters x as a residual to the pre-trained text embeddings t to form a learnable image classifier
t′ = t+ αx, where α is a scaling factor, and updates the classifier by cross-entropy loss LCE .

In this paradigm, given frozen pre-trained image embeddings X and tunable text embeddings T ,
our method can naturally construct a filtration on X to capture the image persistence tracks and
further obtain their text tunable counterparts, and then employ the persistence track coincidence with
deviating perturbation through LHC(Γ, X, T ) in downstream tuning together with LCE .

Key-value cache based tuning methods build adapters via a key-value cache model with pre-trained
embeddings of all training images as keys and one-hot encodings of corresponding labels as values.
The image keys can be unfreezed as learnable parameters. As a representative, to recognize an
image x, Tip-Adapter-F [21] first measures its affinity weights with the cached keys Ftrain by
A = exp

(
−β

(
1− xFT

train

))
, then aggregates the cached values Ltrain with weights A as a prediction

ALtrain, and further combines ALtrain with the similarity between image x and pre-trained text
category embeddings Wc as final classification logit αALtrain + xWT

c /τCLIP in LCE .

In this paradigm, the cache-based adapter represents the categories as one-hot label encodings Ltrain,
that is, the Ltrain is the only textual representation of categories in this adapter. To be comparable
to label encodings, we regard the affinity weights A of an image as a sparse visual representation
of this image. For implementing homology consistency, we first capture the birth and death edges
of image homology classes based on pre-trained image embeddings, then replace end-point images
of the edges with their corresponding affinity weights A or label encoding Ltrain and follow Eq. 4
to construct trap(µ,A) and trap(µ,Ltrain) analogically. We implement HC as LHC(Γ, A, Ltrain) by
taking trap(µ,A) and trap(µ,Ltrain) as proxies for original image and text tracks.

Optimization. Efficient transfer learning commonly adopts the cross-entropy loss LCE between
labels and the predicted class probability to tune learnable parameters, e.g., θ, on downstream
classification tasks. We have two ways to integrate the gradient from our proposed HC constraint
into parameter tuning. (1) We alter the cross-entropy gradient ∇θLCE toward the direction of
HC by adding the gradient of HC constraint to ∇θLCE with a constant factor η by: ∇θL =
∇θLCE+η∇θLHC . (2) For Tip-Adapter-F, due to its slightly complex hyper-parameter configuration,
fixing a constant factor is difficult to control the contribution of each gradient. We adaptively keep
the gradients at the same order of magnitude through scaling the gradient of homology consistency
constraint based on gradient norm by ∇θL = ∇θLCE + ω ∥∇θLCE∥2

∥∇θLHC∥2
∇θLHC in optimization.

4 Experiments

4.1 Experimental Settings

Datasets. Following previous efficient transfer learning works, we conduct the few-shot learning eval-
uation on 11 benchmark datasets including Caltech101 [48], DTD [49], EuroSAT [50], FGVCAircraft
[51], Flowers102 [52], Food101 [53], ImageNet [54], OxfordPets [55], StanfordCars [56], SUN397
[57] and UCF101 [58]. These datasets cover a wide range of visual recognition on generic objects,
fine-grained categories, scenes, actions, etc. We sample 1, 2, 4, 8 and 16 shots per class, respectively,
for model training and evaluate on full test sets. In addition, we evaluate the domain generalization
performance of our method with the ImageNet [54] as source and its variants ImageNetV2 [59],
ImageNet-Sketch [60], ImageNet-A [61] and ImageNet-R [62] as targets.

Implementation Details. In addition to HC, following TaskRes, we augment the original pre-trained
text features into ones tuned on downstream tasks in HC∗. In implementing HC / HC∗ on TaskRes
(HC-TR / HC∗-TR), we set the values of η and λ on different datasets according to the procedure
of factor determination in ablation studies. We set the scaling factor α to 1 for all datasets. The
training batch size is 256. We employ the Adam optimizer with an initial learning rate of 1e−4
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Figure 3: The performance comparison of baselines and our proposed HC and HC∗ on few-shot
learning, including 1-/2-/4-/8-/16-shots on 11 benchmark datasets and the average accuracy. The full
numerical results are provided in the Appendix B.

on ImageNet and 1e−3 on others, and the learning rates decay with cosine learning rate schedule
following TaskRes. In implementing HC / HC∗ on Tip-Adapter-F (HC-TAF / HC∗-TAF), ω and λ are
also set according to the factor determination procedure in ablation studies. The λ here is significantly
larger than the above because the magnitude difference between the ∇θLTC and ∇θLDP here is
relatively large. The training batch size is 256. Following Tip-Adapter-F, we employ the AdamW
optimizer with a cosine annealing scheduler. We set initial learning rate as 1e−3. All experiments are
conducted on a single NVIDIA A40 GPU. Note that the experiments on baseline and with the HC /
HC∗ are conducted in the same setting for fair comparison. The code is publicly available 2.

4.2 Performance Analysis

Few-shot Learning. We validate the effectiveness of our proposed HC constraint on 11 benchmark
datasets using representative adapter tuning methods, the residual blending based TaskRes and
key-value cache based Tip-Adapter-F, as baselines. The experimental results are shown in Fig. 3,
from which it can be observed that our method brings performance improvements for 1 to 16 shots

2https://github.com/htzhang-code/HC
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consistently. Taking the 16 shots average accuracy as an example, HC-TR exceeds TaskRes by 0.40%
and HC-TAF exceeds Tip-Adapter-F by 1.04%. At 16-shot, HC-TAF outperforms Tip-Adapter-F
by 0.61% on ImageNet. For the challenging fine-grained classification dataset FGVCAircraft, the
proposed HC constraint gains 1.38% and 1.92% on TaskRes and Tip-Adapter-F, respectively. The
further improvements of HC∗-TR and HC∗-TAF yielded by pre-tuned text classifier suggest that the
HC-equipped tuning can still significantly benefit from representation enhancement.

Table 1: The performance comparison of our methods
with the state-of-the-art methods on ImageNet.

Method 1-shot 2-shot 4-shot 8-shot 16-shot

Zero-shot CLIP [1] 58.18 58.18 58.18 58.18 58.18
CLIP-Adapter [19] 61.20 61.52 61.84 62.68 63.59
TaskRes [20] 61.44 62.28 62.78 64.30 65.41
Tip-Adapter-F [21] 61.16 61.74 62.65 64.07 65.43
GraphAdapter [27] 61.50 62.32 63.12 64.23 65.70
APE-T [22] 62.51 63.25 63.66 64.80 66.07
HC-TR (Ours) 61.46 62.34 62.86 64.47 65.90
HC-TAF (Ours) 61.17 61.79 62.73 64.37 66.04
HC∗-TR (Ours) 62.15 62.59 63.60 64.81 66.25
HC∗-TAF (Ours) 62.04 62.61 63.28 64.86 66.40

The performance comparison of our HC
constraint with the state-of-the-art adapter
tuning methods on ImageNet is shown in
Tab. 1. APE-T performs markedly best
at 1 and 2 shots, whereas the models con-
strained by homology consistency, e.g.,
HC∗-TAF, exceed it and other state-of-the-
arts on the 8-/16-shot setting in more sam-
ple cases. This arises from the fact that the
efficacy of homology consistency in vision-
language aligning depends primarily on the
modeling capability of the simplicial com-
plex builded on training data towards the
topological structure of latent space. The
denser the data samples, the more sufficiently they summarize the structure, and the more effective
the homology consistency constraint is. It is worth noting that HC boosts baselines to achieve state-
of-the-art without introducing any additional training parameters. We respectively take TaskRes and
Tip-Adapter-F as representative methods of residual blending based (e.g., CLIP-Adapter, TaskRes,
GraphAdapter) and key-value cache based (e.g., Tip-Adapter-F, APE-T) adapter tuning for applying
HC constraint. The HC constraint is verified to be effective on these two baselines by extensive
experiments, and can theoretically be extended to other VLMs efficient transfer learning methods.

Table 2: The performance comparison on domain generalization over four CLIP visual backbones.
All methods are trained on the ImageNet in 16-shot setting and evaluated on the domain-shifted
datasets, ImageNet-V2, -Sketch, -A, and -R.

Method Backbone Source Target
ImageNet -V2 -Sketch -A -R Average

Zero-shot CLIP [1]

ResNet-50

58.18 51.34 33.32 21.65 56.00 40.58
Linear Probe CLIP [1] 55.87 45.97 19.07 12.74 28.16 28.16
TaskRes [20] 65.41 56.84 35.54 21.68 59.96 43.51
Tip-Adapter-F [21] 65.43 57.20 35.99 23.52 60.45 44.29
HC-TR (Ours) 65.90 56.97 35.36 21.20 59.57 43.28
HC-TAF (Ours) 66.04 57.44 36.17 23.49 60.52 44.41
Zero-shot CLIP [1]

ResNet-101

61.62 54.81 38.71 28.05 64.38 46.49
Linear Probe CLIP [1] 59.75 50.05 26.80 19.44 47.19 35.87
TaskRes [20] 68.26 59.94 41.30 28.91 67.36 49.38
Tip-Adapter-F [21] 68.47 59.69 41.63 30.05 68.04 49.85
HC-TR (Ours) 68.62 59.66 41.12 29.07 66.97 49.21
HC-TAF (Ours) 68.80 60.30 41.76 30.08 68.15 50.07
Zero-shot CLIP [1]

ViT-B/32

62.05 54.79 40.82 29.57 65.99 47.79
Linear Probe CLIP [1] 59.58 49.73 28.06 19.67 47.20 36.17
TaskRes [20] 68.45 59.54 42.09 30.60 68.80 50.18
Tip-Adapter-F [21] 68.55 59.10 42.62 32.08 69.53 50.83
HC-TR (Ours) 68.71 59.57 42.09 30.59 68.86 50.28
HC-TAF (Ours) 69.04 59.75 42.74 32.16 69.60 51.06
Zero-shot CLIP [1]

ViT-B/16

66.73 60.83 46.15 47.77 73.96 57.18
Linear Probe CLIP [1] 65.85 56.26 34.77 35.68 58.43 46.29
TaskRes [20] 73.55 65.81 48.86 49.85 77.35 60.47
Tip-Adapter-F [21] 73.77 65.90 49.13 50.81 77.96 60.95
HC-TR (Ours) 73.85 65.98 48.88 50.08 77.51 60.61
HC-TAF (Ours) 74.08 66.18 49.30 50.75 78.01 61.06

Domain Generalization. We investigate the generalization ability of the models constrained by HC
under domain shift. We train the models on ImageNet with 16 shots and test the trained models
on ImageNet variant datasets ImageNet-V2, ImageNet-Sketch, ImageNet-A and ImageNet-R. As
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shown in Tab. 2, HC-TR and HC-TAF outperform their respective baselines on the source dataset
ImageNet across four different visual backbones ResNet-50, ResNet-101, ViT-B/32 and ViT-B/16.
The performance of HC-TR is slightly inferior to that of TaskRes on ImageNet-Sketch, -A and
-R with backbones ResNet-50, ResNet-101 and ViT-B/32, which concurs with TaskRes’s reported
source-overfitting pitfall. Nonetheless, HC-TR outperforms TaskRes with the more representative
ViT-B/16. HC-TAF shows better generalization than Tip-Adapter-F in almost all target domains with
various backbones. Experiments demonstrate that the performance improvement is not reliant on the
shortcut to overfit the seen data domain.

4.3 Ablation Studies

Table 3: The ablation studies for the constraint terms,
track coincidence (TC) and deviating perturbation (DP).

Baseline TC DP 1-shot 2-shot 4-shot 8-shot 16-shot

TaskRes

61.44 62.28 62.78 64.30 65.41
✓ 61.46 62.38 62.95 64.40 65.74

✓ - 62.14 62.67 64.23 65.33
✓ ✓ - 62.34 62.86 64.47 65.90

Tip-Adapter-F

61.16 61.74 62.65 64.07 65.43
✓ 61.17 61.76 62.70 64.22 65.99

✓ - 61.76 62.63 63.95 65.17
✓ ✓ - 61.79 62.73 64.37 66.04

Constraint terms: track coincidence and
deviating perturbation. The homology
consistency constraint consists of track co-
incidence and deviating perturbation, and
the effect of homology consistency con-
straint in efficient transfer comes from their
collaboration. Here, we investigate the in-
dividual roles of track coincidence and de-
viating perturbation in tuning. The ablation
on ImageNet dataset is shown in Tab. 3,
from which we can observe that (1) With-
out the generalization enhancement in la-
tent spaces brought by DP, the performance
of TC alone decreases relative to full homology consistency constraint. (2) Conversely, if we do not
guide the coincidence of persistence tracks and only apply DP to track end-point samples, the original
performance of baselines will be damaged. This is because DP plays a role of regularization term
for TC. Without coinciding persistence tracks by TC, not only the direct constraint on the structural
equivalence of latent manifolds is lost, but also the only DP will cause the track end-point samples
to randomly deviate from the hetero-modal training samples, which interferes with the downstream
tuning and thus performance drop.

Table 4: The ablation studies for the scaling factors
of gradients in homology consistency constraint.

η (λ = 2.5) 5 10 15 20 25

HC-TR 65.67 65.83 65.90 65.79 65.72

λ (η = 15) 1.5 2.0 2.5 3.0 3.5

HC-TR 65.83 65.88 65.90 65.87 65.82

ω (λ = 100) 0.1 0.2 0.3 0.4 0.5

HC-TAF 65.59 65.82 65.96 66.04 65.99

λ (ω = 0.4) 50 100 150 200 250

HC-TAF 66.03 66.04 66.00 66.00 65.98

Scaling factors of HC gradients in tuning. The
hyper-parameters η and ω scale the weight of
homology consistency constraint in tuning and
λ controls the strength of deviating perturbation
within the constraint (Sec. 3.3). We adopt the
constant scaling (with η, λ) for TaskRes and
adaptive scaling (with ω, λ) for Tip-Adapter-F.
In general, performance first increases and then
decreases as η (or ω) and λ increase, and the
optimal performance is achieved by a specific
combination of their values. Taking 16-shot
ImageNet as an example, as shown in Tab. 4,
the optimal η and λ are 15 (i.e., 0.15/τCLIP) and
2.5 on HC-TR, the optimal ω and λ are 0.4 and
100 on HC-TAF. In implementation, we first determine the values of scaling factors at 16-shot, and
then migrate them to HC∗-TR / HC∗-TAF and other few-shot settings. The setting of hyper-parameter
factors on other datasets follows a similar procedure.

5 Conclusions, Limitations and Future Work

In this work, we study the generalizability of image-text alignment adjusting in the efficient transfer
of VLMs under a low-data regime. We propose to explicitly constrain the structural equivalence
of image and text latent manifolds in downstream tuning and design a theoretically well-founded
homology consistency constraint based on persistent homology for VLMs transfer. Our method
constraint coincides the persistences of homology classes of topological features between image
and text manifolds and applies a deviating perturbation to generalize the persistence coincidence to
unseen data. Extensive experiments demonstrate the effectiveness and robustness of our method.
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Limitations and Future Work. In structural equivalence constraint, we do not explore the effects
of higher-dimensional homology classes in depth. Besides, following previous work on efficient
transfer learning for VLMs, we only apply the proposed homology consistency constraint on a series
of few-shot recognition tasks. As a next step, we will further extend the application scenarios of our
method to other VLMs downstream tasks.
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A Simplicial Complex, Homology Class, Persistent Homology and Homotopy
Equivalent Assumption

A.1 Simplicial Complex

A simplicial complex consists of a set of simplices, such as points, line segments, triangles, and
p-dimensional analogues. A simplex σ with dimension p is the convex hull of a set of p+ 1 affinely
independent points (x0, . . . , xp). For 0 ≤ p′ ≤ p, a p′-face of σ is a p′-simplex that is the convex
hull of a non-empty subset. A simplicial complex K consists of a set of finite simplices that satisfy:
K contains every face of each simplex in K and for any two simplices σ, τ ∈ K, their intersection
σ ∩ τ is either empty or a face of both σ and τ . The dimension of K is the maximum dimension
of any simplex in K. Given a finite data point set X in metric space (M,d) and a real a > 0, the
Vietoris-Rips complex KRips

a (X) is the set of simplices σ such that d(x, x′) ≤ a for every pair of
vertices of σ, and the Čech complex KCech

a (X) is the set of simplices σ such that the closed balls
centering its vertices have a non-empty interaction.

A.2 Homology Class

In complex K, let the number of p-simplices be mp, a p-chain c is a formal sum of p-simplices added
with some coefficients, i.e., c =

∑mp

i=1 αiσi. In particular, the p-chains with Z2-additions form a chain
group Cp(K) where the identity is the chain 0 =

∑mp

i=1 0σi, and since c+c = 0, the inverse of a chain
c is itself. When K is clear from the context, Cp(K) can also be notated as Cp. Define a boundary
operator ∂p on p-simplex σ as a map that sends σ to the (p− 1)-chain consisting of σ’s (p− 1)-faces
referred as σ ’s boundary, i.e., ∂pσ =

∑p
i=0(x0, . . . , x̂i, . . . , xp) where x̂i indicates that xi is omitted.

The boundary of a vertex is empty. The ∂p induces a homomorphism ∂p : Cp → Cp−1 that produces a
(p− 1)-chain when extended to a p-chain c through ∂pc =

∑mp

i=1 αi (∂pσi). Applying ∂p to the chain

groups, a sequence of homomorphism, 0 = Ck+1
∂k+1−−−→ Ck

∂k−→ Ck−1 · · ·C1
∂1−→ C0

∂0−→ C−1 = 0,
where 0 denotes a trivial group, is obtained. A p-chain c is a p-cycle if c has empty boundary. All
p-cycles together form a cycle group Zp under the Z2-addition operation inherited from Cp. Zp is
the subgroup of Cp that is mapped to the 0 of Cp−1 by ∂p, i.e., Zp is the kernel of ∂p. The image of
the boundary operator ∂p is a subgroup of (p− 1)-chains, called boundary group Bp−1 = ∂p (Cp).
For any p-simplex σ, every (p − 2)-faces is involved in exactly two (p − 1)-faces in ∂pσ, thus
∂p−1Bp−1 = 0 for p > 0 and Bp−1 ⊆ Zp−1. The homology group Hp is defined to classify the
cycles in Zp by collecting those cycles that differ by a boundary into the same class. This is achieved
by Hp = Zp/Bp, taking the quotient of the Zp with boundary group Bp. By definition, the elements
of Hp are cosets of Bp in Zp, i.e., {c+Bp | c ∈ Zp}. For a cycle c, c+Bp in Hp forms its homology
class [c]. Two cycles c and c′ in the same class [c] = [c′] are homologous. In fact, [c] = [c′] holds if
and only if c ∈ c′ +Bp.

A.3 Persistent Homology

For data point set X in metric space (M,d), define a function f : M → R, f ((x0, . . . , xp)) =
maxi,j∈{0,...,p} f ((xi, xj)) on simplices. Then, given a sequence of thresholds a1 ≤ a2 ≤ . . . ,≤ an,
the growing sublevel sets f−1(−∞, a] at these values give rise to a nested sequence of subcomplexes,
Ka1 ⊆ Ka2 ⊆ · · · ⊆ Kan , called a filtration F . The inclusions in filtration F induce a sequence

of homomorphisms hi,j
p , HpF : 0 = Hp (K0) → Hp (K1) → · · · → Hp (Ki) →

hi,j
p· · ·→ Hp (Kj) →

· · · → Hp (Kn) = Hp(K), called a homology module. The images of the homomorphisms hi,j
p

are persistent homology groups Hi,j
p for the module, Hi,j

p = imhi,j
p , for 0 ≤ i ≤ j ≤ n. The non

trivial elements of persistent homology groups Hi,j
p consist of homology classes that survive from

Ki to Kj , i.e., the homology classes that do not quotient out by boundaries, which implies that
Hi,j

p = Zp (Ki) / (Bp (Kj) ∩ Zp (Ki)). A non-trivial homology class ϵ ∈ Hp (Ka) is born at Ki, if
ϵ ∈ Hi,a

p but ϵ /∈ Hi−1,a
p . Likewise, the ϵ dies entering Kj , if ϵ ∈ Ha,j−1

p but ϵ /∈ Ha,j
p . When a class

dies, it may be merged with several classes and raises a new birth. The persistence of homology class
that is created at Ki and destoryed at Kj is defined as ai − aj . The homology classes that never die
are set to remain alive till an+1 = a∞ = ∞. As a visual representation, the persistence diagram
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Dgmp (F) of filtration F draws the paired birth at ai and death at aj that bound the survival interval

of one or more homology classes as a point (ai, aj) on the extended plane R2
:= (R ∪ {±∞})2.

A.4 Assumption on Homotopy Equivalent of Image and Text Latent Manifolds

Topology specifies how points are connected and is a key geometric signature of metric spaces.
Topological equivalence can be formalized by continuous functions that map points from one space
to the other while preserving the connectivity. A straightforward equivalence is that the points as well
as their neighborhoods in two spaces are in one-to-one correspondence, called being homeomorphic
[24, 26], which requires a bijecitve map with continuous inverse. Two homeomorphic spaces share
the exact same topological properties, i.e., from the topological point of view, the two are completely
consistent. Another less rigid relation is homotopy equivalent [24, 26]. Formally, given spaces X
and Y, two maps f0, f1 : X → Y are homotopic if they can be joined by a continuous function
F : X × [0, 1] → Y such that F (x, 0) = f0(x) and F (x, 1) = f1(x) for every x ∈ X, denoted as
f0 ≃ f1. The spaces X and Y are homotopy equivalent if there exist two maps f : X → Y and
g : Y → X such that f ◦ g ≃ idY and g ◦ f ≃ idX, which suggests an intuitive fact that space X is
homotopy equivalent to Y if and only if both X and Y are deformation retracts of a common space Z.

Vision and language are key information modalities for human cognition and have intrinsic corre-
spondence on semantics. Observe that similar image scenes tend to be described by synonymic texts,
that is, the connectivity of image data samples is preserved after mapping them to the text latent
manifold, and vice versa. This preservation of connectivity suggests that the two manifolds have
similar topological structures. Besides, image and text data are both relevant and complementary
concrete expressions of the real world. The latent manifolds in which they reside can be seen as
deformation retracts of the general world knowledge space. Thus, it is rational to consider that the
image latent manifold and text latent manifold are homotogy equivalent. As a topological invariant of
homotogy equivalent spaces, the homology is a viable tool for quantifying and aligning the structure
of image and text latent manifolds.

B Full numerical results on few-shot learning
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Table 5: Full numerical results of performance comparison on few-shot learning.
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Zero-Shot CLIP

1-shot

58.18 86.29 42.32 37.56 17.28 66.14 77.31 85.77 55.61 58.52 61.46
CLIP-Adapter 61.20 88.60 45.80 61.40 17.49 73.49 76.82 85.99 55.13 61.30 62.20
TaskRes 61.44 89.49 49.65 63.52 21.36 79.09 75.03 84.60 59.78 61.87 64.26
Tip-Adapter-F 61.16 89.21 49.17 59.10 20.46 79.29 77.52 86.43 59.69 61.95 65.05
HC-TR 61.46 89.78 49.88 63.43 21.39 79.37 75.25 84.66 59.68 62.13 64.16
HC∗-TR 62.15 89.61 49.70 64.02 21.48 80.02 75.47 84.57 59.84 62.92 64.79
HC-TAF 61.17 89.57 50.00 61.70 20.67 80.23 77.59 86.64 59.61 62.03 65.69
HC∗-TAF 62.04 89.33 50.77 60.65 21.39 80.39 77.89 86.84 59.56 63.75 66.51

Zero-Shot CLIP

2-shot

58.18 86.29 42.32 37.56 17.28 66.14 77.31 85.77 55.61 58.52 61.46
CLIP-Adapter 61.52 89.37 51.48 63.90 20.10 81.61 77.22 86.73 58.74 63.29 67.12
TaskRes 62.28 89.86 54.43 65.99 23.67 83.09 75.88 85.64 62.70 64.89 67.41
Tip-Adapter-F 61.74 89.86 54.37 66.19 23.34 85.30 77.73 87.05 61.52 64.25 68.28
HC-TR 62.34 89.90 54.79 66.91 24.63 83.11 76.03 85.66 63.06 65.04 67.57
HC∗-TR 62.59 90.14 55.67 66.22 25.20 85.71 75.81 85.83 64.48 65.41 69.18
HC-TAF 61.79 90.26 54.61 67.53 24.21 85.99 77.78 87.22 63.11 64.42 68.31
HC∗-TAF 62.61 90.63 56.09 67.33 24.69 87.49 77.65 88.14 64.48 65.77 69.94

Zero-Shot CLIP

4-shot

58.18 86.29 42.32 37.56 17.28 66.14 77.31 85.77 55.61 58.52 61.46
CLIP-Adapter 61.84 89.98 56.86 73.38 22.59 87.17 77.92 87.46 62.45 65.96 69.05
TaskRes 62.78 90.71 59.40 74.42 26.49 89.97 76.45 87.03 66.60 67.22 69.36
Tip-Adapter-F 62.65 90.95 58.22 73.46 25.98 89.69 78.12 87.49 65.73 67.13 71.05
HC-TR 62.86 90.83 59.40 75.02 26.76 90.86 76.49 87.10 66.98 67.34 69.92
HC∗-TR 63.60 91.60 59.34 75.14 27.69 92.13 76.86 87.22 68.54 67.36 71.64
HC-TAF 62.73 91.44 58.87 78.54 28.65 90.99 78.20 87.71 67.07 67.06 72.03
HC∗-TAF 63.28 91.76 59.99 78.74 28.80 91.80 78.53 88.17 68.29 67.84 73.17

Zero-Shot CLIP

8-shot

58.18 86.29 42.32 37.56 17.28 66.14 77.31 85.77 55.61 58.52 61.46
CLIP-Adapter 62.68 91.40 61.00 77.93 26.25 91.72 78.04 87.65 67.89 67.50 73.30
TaskRes 64.30 92.09 63.48 78.07 32.25 94.05 77.82 87.35 70.70 69.29 74.46
Tip-Adapter-F 64.07 92.25 63.12 78.04 32.16 91.76 78.52 87.79 70.12 69.43 74.97
HC-TR 64.47 92.41 63.36 78.35 32.34 94.19 77.98 87.79 71.38 69.37 74.81
HC∗-TR 64.81 92.62 64.30 78.96 33.57 94.88 77.99 88.12 73.03 69.39 75.84
HC-TAF 64.37 92.45 63.83 81.35 34.62 93.02 78.92 88.61 71.98 69.74 76.02
HC∗-TAF 64.86 93.06 65.13 81.83 35.52 94.36 78.86 89.13 73.39 69.88 77.24

Zero-Shot CLIP

16-shot

58.18 86.29 42.32 37.56 17.28 66.14 77.31 85.77 55.61 58.52 61.46
CLIP-Adapter 63.59 92.49 65.96 84.43 32.10 93.9 78.25 87.84 74.01 69.55 76.76
TaskRes 65.41 93.31 67.02 83.25 35.82 95.53 78.33 88.53 77.07 71.41 78.43
Tip-Adapter-F 65.43 93.06 66.55 84.98 36.42 94.64 79.4 89.67 75.80 71.52 78.09
HC-TR 65.90 93.59 67.61 83.19 37.20 96.06 78.57 88.93 77.61 71.64 78.54
HC∗-TR 66.25 93.75 67.85 83.78 38.25 95.98 78.49 88.96 77.75 71.34 78.20
HC-TAF 66.04 93.35 68.32 86.65 38.34 95.37 79.54 90.49 77.55 72.01 79.22
HC∗-TAF 66.40 93.83 68.56 85.73 38.82 95.82 79.61 90.24 77.64 71.62 79.54
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly express our motivation and insight in the Abstract and Introduction.
The contributions are summarized in the Introduction.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made

in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We clearly express our limitations in the Sec. 5, Conclusions, Limitations and
Future Work.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution is
low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We discuss the homotopy equivalent assumption underpinning our method in
Appendix A.4 and explain the rationale for such an assumption.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our paper provides a detailed account of implementation details and hyper-
parameter settings of our method for reproducing.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good
way to accomplish this, but reproducibility can also be provided via detailed instructions
for how to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are appropriate to
the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We will make all code avaliable when paper is accepted.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized ver-
sions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide implementation details in Sec. 4.1, Experimental Settings.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We fix the random seeds in experiments for fair comparison.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We specify the type of compute workers in implementation details in Sec. 4.1.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We believe that our study will not pose any negative societal due to its
theoretical nature.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not contain data or models that are at high risk of misuse.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the datasets used in our paper and give a brief introduction.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.
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13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We does not release new assets.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribution

of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper has nothing to do with crowdsourcing and human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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