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Abstract

Neural networks can learn local interactions to faithfully reproduce large-scale
dynamics in important physical systems. Trained on PDE integrations or noisy
observations, these emulators can assimilate data, tune parameters and learn sub-
grid process representations. However, implicit integration schemes cannot be
expressed as local feedforward computations. We therefore introduce linear im-
plicit layers (LILs), which learn and solve linear systems with locally computed
coefficients. LILs use diagonal dominance to ensure parallel solver convergence
and support efficient backward mode differentiation. As a challenging test case,
we train emulators on semi-implicit integration of 2D shallow-water equations
with closed boundaries. LIL networks learned compact representations of the local
interactions controlling the 30.000 degrees of freedom of this discretized system of
PDEs. This enabled accurate and stable LIL-based emulation over many time steps
where feedforward networks failed.

1 Introduction

Numerical integration of partial differential equations (PDEs) is essential for many quantitative
sciences, including fluid dynamics, numerical weather prediction and climate science [1, 6, 22].
Simulating these systems at scale requires substantial effort and computational resources [8, 36].

Recent studies used machine learning to emulate the PDE integration schemes that define full
simulation models [12, 37, 29, 35] or their physical subcomponents [38, 26]. Applications include
accelerated integration [37], system identification [18], automatic differentiation for data assimilation
[2, 9, 24] and model tuning to match observations [32]. Many PDE integration schemes based on
machine learning employ convolutional neural networks (CNNs) [18, 23, 21], whose kernels can
precisely express spatial differential operators discretized as translation-invariant stencils.

However, a CNN that can express all of a PDE’s mathematical terms may still fail to emulate
numerical integration with implicit schemes, as required for stiff PDEs such as incompressible flow
[1] and chemical dynamics [30]. Implicit schemes update the state by solving a systems of equations,
and while the equation coefficients usually depend on local information, their solutions can depend on
the entire previous state (Fig. 1a). This long-range spatial dependence prevents purely feed-forward
networks from scaling efficiently to large systems.
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To address this limitation, we introduce linear implicit layers (LILs), which define and solve a linear
system with locally determined coefficients. This operation defines a nonlinear, differentiable implicit
function with long-range spatial dependencies. LILs differ fundamentally from existing implicit
layers based on Lipschitz constraints [7, 20], quadratic programming [39] or root-finding [5], instead
constraining the linear system to be diagonally dominant to ensure convergence with a parallel solver
in the forward pass. An efficient backward pass is implemented as a second linear solve. Using
a challenging test problem based on the 2D shallow-water equations [34], we show that neural
architectures incorporating LILs can learn dynamics integrated with semi-implicit schemes.

2 Methods

2.1 Problem Statement: Dynamical System Emulation

Let x0, x∆t, x2∆t, . . . be a sequence of system states produced by numerical integration of a space-
and time-discretized PDE.1 Given a collection of such sequences, our aim is to learn the update
function xt+∆t = f(xt).

From a data-centric perspective, f predicts the next sequence element. From a PDE-centric view, f
numerically integrates over ∆t time units, with the given discretization and integration schemes. As
function family for f , we consider deep neural networks consisting of convolutional layers and LILs.

2.2 Linear implicit layers

Implicit layers can be written as Fθ(y, z) = 0, where y is the layer input, θ the parameter vector and
and z the layer output [19, 39]. We here consider the particular case of a system of linear equations,

Aθ(y) vec(z) = bθ(y). (1)

where coefficients Aθ, bθ are local functions of y and are parametrized by some vector θ. While the
output z is a solution to a linear system, it depends nonlinearly on the inputs y. Firstly, since Aθ(y)
and bθ(y) are in general nonlinear functions, and second since vec(z) = Aθ(y)−1bθ(y) depends
bilinearly on Aθ(y)−1 and bθ(y). We parameterize Aθ instead of its inverse to efficiently describe
linear constraints z which are sparse and local, which would not be the case for Aθ(y)−1 (Fig. 1a).

When viewed as function fθ(y) = z, then for use as a network layer, we need to be able to evaluate
fθ and we need its partial derivatives wrt. A, b, θ and y for automatic differentiation. For evaluation
of fθ, all we need is a solver for systems of linear equations with matrix Aθ. For computing gradients
of a target loss Lθ(y) within reverse-mode differentiation, we need to solve another linear system
with matrix A>θ , as stated by straight-forward application of the implicit function theorem [17]:

A>θ
∂Lθ

∂vec(bθ)
=

∂Lθ
∂vec(z)

, (2)

where ∂L
∂z is the backpropagating gradient up to z. The implicit function theorem also gives ∂L

∂A =

−∂L∂b vec(z)>, and the remaining partial derivatives for computing ∂L
∂y ,

∂L
∂θ then are handled entirely

by backpropagation. In particular, ∂A∂y ,
∂A
∂θ and ∂b

∂y ,
∂b
∂θ depend on our choice for parametrizing the

coefficients Aθ(y), bθ(y).

2.3 Parametrization of the system of linear equations

For many applications dim(xt) can easily reach between tens of thousands and billions [15]. This
requires a sparse parametrization of the coefficient matrix Aθ, whose number of entries otherwise
scales quadratically with system size. Importantly, Aθ also has to be full rank for the mapping
fθ(y) = z to be well-defined. We chooseAθ to be a banded matrix. To exploit translation equivariance
common to PDEs, we compute the bands of Aθ(y) as convolutional outputs:

diagσc
(Aθ) = (Mθ(y))c , c = 1, . . . , C, (3)

where Mθ(y) is the output tensor of a CNN, c is a channel index, and diagσ(A) indexes the main
diagonal (σ = 0) and offdiagonals (σ 6= 0) of A. We choose the non-zero bands of Aθ to correspond

1We focus on regular Cartesian grids, though our approach is not limited to these [10, 14].
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Figure 1: a) Sparse banded matrices representing convolutional stencils (upper: second derivative
filter [-1,2,-1]) can have dense inverses (lower). b) The linear implicit layer generates output z (blue)
by solving a linear system Az = b, with coefficients computed by convolutional layers applied to
the inputs. c) Linear implicit layers are straightforward to embed in convolutional networks, by
computing A, b from a subset of convolution outputs and concatenating the solution z with the rest.

to elements of computational stencils applied to output z: For systems with two spatial dimensions,
we select the main diagonal and four off-diagonal bands (C = 5) of Aθ to represent the central and
outer points of a classical 5-point stencil, respectively (Fig. 1b). The righthand-side

bθ = (Mθ(y))c=C+1 (4)

of the system of linear equations is computed as another convolutional output channel. By this choice
of Aθ(y), bθ(y), the partial derivatives ∂A

∂y ,
∂A
∂θ ,

∂b
∂y , ∂b

∂θ are computed from those of the network
output Mθ(y) and, in the case of ∂A∂y ,

∂A
∂θ , a simple look-up operation for where the bands are within

Aθ. To avoid degeneracies, we normalize each row of Aθ and bθ such that diag0(Aθ) = 1.

2.4 Linear Solver

The main computational burden of linear implicit layers lies with the solver for the system of
equations, which is called twice per gradient step. We use Red-Black Gauss-Seidel [28], an iterative
solver that parallelizes well across large system sizes and only requires repeated (sparse) products of
the form Aθ vec(z). This solver requires Aθ to be diagonally dominant, which we enforce through

diag0(Aθ) =
∑
σ 6=0

|diagσ(Aθ)|+ exp((Mθ)k), (5)

where σk = 0, before normalizing rows of Aθ, bθ. Diagonal dominance ensures Aθ is full rank.

2.5 Boundary conditions

A particular challenge [23] for the definition of the system of equations is posed by boundary
conditions (BCs), which enforce equations on the domain boundaries Ω that can differ drastically
from those in the interior. With binary boundary map IΩ we compose the full system of equations as

Mcom(y) = (1− IΩ) Mθ(y) + IΩ MBC(y), (6)

and analogous for bcom. The equations on the boundary are defined by IΩ MBC , IΩ bBC , which we
can learn with a dedicated model, or in simple cases define manually.

3 Numerical experiments on Shallow-Water Equations

We test2 our implicit integration models on the shallow-water equations (SWE) in two spatial
dimensions, with bottom friction and variable depth profile h. The SWE describe the interactions of
water height ξ, vertical and horizontal velocities v = (vx, vy). We use a semi-implicit integration

2Code for reproducing our results is found at https://github.com/m-dml/lil2021swe
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scheme [4] that advances the system state xt = (ξt, vt, h) by ∆t in three steps:

v∗ = f∗(ξt, vt, h) interim velocities (explicit) (7)
A∗(v∗) ξt+∆t = b∗(v∗) implicit treatment of water height (8)

vt+∆t = f∆(ξt+∆t, v
∗) explicit velocity update (9)

We use an Arakawa C-grid [3] with 100x100 grid points at 10km resolution (Fig. 2a). Depth profile
maps h are drawn from correlated Gaussian noise, and BCs enforce ξ, vx, vy = 0 on the boundary.

Models are trained on 60.000 numerically integrated pairs (xt, xt+∆t), with a mean-squared loss
to predict the next system state, and data variances normalized per channel. The data consists of
numerical simulations from different initial conditions and depth profiles. Initial conditions are
ξ, vx, vy = 0 with different local perturbations to water height ξ of varying strength, spatial extent
and location. For each initial condition we simulate 25 hours of dynamics. We use 80% of simulations
for training and 20% as validation data. For model training we use Adam [16] with default parameters.
We train 5-layer CNNs with 3x3 kernels, both ReLU and bilinear activations [11] and 14.4k free
parameters. Six output channels of the 4th convolutional layer are used to define Mθ (xt) and bθ(xt)
for a 5-point stencil system Aθ ξ̂t+∆t = bθ. ξ̂t+∆t is passed to the final network layer to estimate
v̂t+∆t. For comparison, we train fully explicit models (pure CNNs) in which the channels for Mθ

and bθ act as regular convolutional channels. We enforce BCs on ξ for the semi-implicit models at
the level of Mcom, bcom, and for the explicit models and v we enforce them directly on the model
output through masking with IΩ.

We train the models on three datasets with different integration step-sizes ∆t ∈ {300s, 900s, 1500s}.
All experiments combined required 160 hours on a V100 GPU. For evaluation we compare trained
models to numerical integration on novel initial conditions. Models with LILs perform well for all
step sizes, while pure CNNs fail at high ∆t (Fig. 2b-c), for which long-range dependencies emerge.
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Figure 2: a) Shallow water equation system state (left) and magnified surface height dynamics
(right). b) Mismatch between numerical integration and emulation with CNNs with and without LILs
vs. simulated time, for different ∆t. RMSE ±1std over 100 initial conditions. c) Comparison of
CNNs with and without LILs over 20h with ∆t = 1500s, starting from the same state 5h after initial
perturbation.

4 Discussion

We showed that LILs enable deep learning of spatially extended dynamics that require semi-implicit
integration. Previously Look et al. [19] studied implicitly-integrated neural models on ordinary
differential equations with up to 150-dimensional system states. Here we focused on scalability
in PDE systems with multiple spatial axes and variable fields, reaching 10.000 grid points with 3
variables each. Choosing diagonally-dominant banded matrices allows fast parallel solvers to scale
to large systems, but also limits the expressiveness of LILs. For instance, LILs could learn a fully
implicit model scheme for the SWE by defining a system of equations over all system variables,
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but with larger systems the requirement of diagonal dominance becomes increasingly restricting,
especially for large time steps.

Other LIL parametrizations such as low-rank perturbations of diagonal matrices are possible, as
would be other solvers such as conjugate gradient methods [31]. While we used LILs to incorporate
the long-range input output dependence appearing in (semi-)implicit schemes, other approaches
are possible as well, such as U-Nets [27, 35] and self-attention [33]. Unlike LILs, U-Nets have a
restricted dependency range by construction, and self-attention for multi-axis systems typically is
spatially restricted as well [25, 13].

LILs provide efficient and straightforward backward-mode differentiation, and require relatively few
parameters, requiring only six convolutional channels per output field with a 5-point stencil. Several
LILs can be stacked within a network.These features suggest that LILs could prove useful as general
building blocks for deep models requiring non-local computations.

5 Acknowledgments

M. Nonnenmacher and D. Greenberg were supported by the Helmholtz AI initiative. We thank
Kai Logemann for help with the SWE numerical simulator, and Jan-Matthis Lueckmann, Tobias
Machnitzki, Shivani Sharma and Vadim Zinchenko for comments on the manuscript.

References
[1] John David Anderson and J Wendt. Computational fluid dynamics, volume 206. Springer, 1995.

[2] A Apte, Christopher KRT Jones, AM Stuart, and Jochen Voss. Data assimilation: Mathematical
and statistical perspectives. International journal for numerical methods in fluids, 56(8):1033–
1046, 2008.

[3] Akio Arakawa and Vivian R Lamb. Computational design of the basic dynamical processes of the
ucla general circulation model. General circulation models of the atmosphere, 17(Supplement
C):173–265, 1977.

[4] Jan O Backhaus. A semi-implicit scheme for the shallow water equations for application to
shelf sea modelling. Continental Shelf Research, 2(4):243–254, 1983.

[5] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. arXiv preprint
arXiv:1909.01377, 2019.

[6] Peter Bauer, Alan Thorpe, and Gilbert Brunet. The quiet revolution of numerical weather
prediction. Nature, 525(7567):47–55, 2015.

[7] Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, and Jörn-Henrik Jacobsen.
Invertible Residual Networks. arXiv:1811.00995 [cs, stat], May 2019. arXiv: 1811.00995.

[8] Stewart Cant. High-performance computing in computational fluid dynamics: progress and
challenges. Philosophical Transactions of the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences, 360(1795):1211–1225, 2002.

[9] Alberto Carrassi, Marc Bocquet, Laurent Bertino, and Geir Evensen. Data assimilation in the
geosciences: An overview of methods, issues, and perspectives. Wiley Interdisciplinary Reviews:
Climate Change, 9(5):e535, 2018.

[10] Taco S Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical cnns. arXiv preprint
arXiv:1801.10130, 2018.

[11] Ronan Fablet, Said Ouala, and Cédric Herzet. Bilinear residual neural network for the identi-
fication and forecasting of geophysical dynamics. In 2018 26th European Signal Processing
Conference (EUSIPCO), pages 1477–1481. IEEE, 2018.

[12] Radek Grzeszczuk, Demetri Terzopoulos, and Geoffrey Hinton. Neuroanimator: Fast neural
network emulation and control of physics-based models. In Proceedings of the 25th annual
conference on Computer graphics and interactive techniques, pages 9–20, 1998.

5



[13] Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in
multidimensional transformers. arXiv preprint arXiv:1912.12180, 2019.

[14] Chiyu Jiang, Jingwei Huang, Karthik Kashinath, Philip Marcus, Matthias Niessner, et al.
Spherical cnns on unstructured grids. arXiv preprint arXiv:1901.02039, 2019.

[15] Hyun-Gyu Kang, Katherine J Evans, Mark R Petersen, Philip W Jones, and Siddhartha Bishnu.
A scalable semi-implicit barotropic mode solver for the mpas-ocean. Journal of Advances in
Modeling Earth Systems, 13(4):e2020MS002238, 2021.

[16] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[17] Steven G Krantz and Harold R Parks. The implicit function theorem: history, theory, and
applications. Springer Science & Business Media, 2012.

[18] Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. In
International Conference on Machine Learning, pages 3208–3216. PMLR, 2018.

[19] Andreas Look, Simona Doneva, Melih Kandemir, Rainer Gemulla, and Jan Peters. Differentiable
implicit layers. arXiv preprint arXiv:2010.07078, 2020.

[20] Cheng Lu, Jianfei Chen, Chongxuan Li, Qiuhao Wang, and Jun Zhu. Implicit normalizing flows.
arXiv preprint arXiv:2103.09527, 2021.

[21] Suryanarayana Maddu, Dominik Sturm, Bevan L Cheeseman, Christian L Müller, and Ivo F
Sbalzarini. Stencil-net: Data-driven solution-adaptive discretization of partial differential
equations. arXiv preprint arXiv:2101.06182, 2021.

[22] K McGuffie and A Henderson-Sellers. Forty years of numerical climate modelling. International
Journal of Climatology: A Journal of the Royal Meteorological Society, 21(9):1067–1109, 2001.

[23] Arvind T Mohan, Nicholas Lubbers, Daniel Livescu, and Michael Chertkov. Embedding hard
physical constraints in convolutional neural networks for 3d turbulence. In ICLR 2020 Workshop
on Integration of Deep Neural Models and Differential Equations, 2020.

[24] Marcel Nonnenmacher and David S Greenberg. Deep emulators for differentiation, forecasting
and parametrization in earth science simulators. Journal of Advances in Modeling Earth Systems,
13(7), 2021.

[25] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku,
and Dustin Tran. Image transformer. In International Conference on Machine Learning, pages
4055–4064. PMLR, 2018.

[26] Ali Ramadhan, John Marshall, Andre Souza, Gregory LeClaire Wagner, Manvitha Ponnapati,
and Christopher Rackauckas. Capturing missing physics in climate model parameterizations
using neural differential equations. arXiv preprint arXiv:2010.12559, 2020.

[27] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing and
computer-assisted intervention, pages 234–241. Springer, 2015.

[28] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[29] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and
Peter W. Battaglia. Learning to Simulate Complex Physics with Graph Networks. arXiv
preprint arXiv:2002.09405 [physics, stat], 2020.

[30] Adrian Sandu and Rolf Sander. Simulating chemical systems in fortran90 and matlab with the
kinetic preprocessor kpp-2.1. Atmospheric Chemistry and Physics, 6(1):187–195, 2006.

[31] Gerard LG Sleijpen and Diederik R Fokkema. Bicgstab (ell) for linear equations involving
unsymmetric matrices with complex spectrum. Electronic Transactions on Numerical Analysis.,
1:11–32, 1993.

6



[32] Kiwon Um, Philipp Holl, Robert Brand, and Nils Thuerey. Solver-in-the-loop: Learning from
differentiable physics to interact with iterative pde-solvers. arXiv preprint arXiv:2007.00016,
2020.

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[34] Cornelis Boudewijn Vreugdenhil. Numerical methods for shallow-water flow, volume 13.
Springer Science & Business Media, 1994.

[35] Nils Wandel, Michael Weinmann, and Reinhard Klein. Unsupervised deep learning of incom-
pressible fluid dynamics. arXiv preprint arXiv:2006.08762, 2020.

[36] Warren M Washington, Lawrence Buja, and Anthony Craig. The computational future for
climate and earth system models: on the path to petaflop and beyond. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1890):833–846,
2009.

[37] Steffen Wiewel, Moritz Becher, and Nils Thuerey. Latent space physics: Towards learning the
temporal evolution of fluid flow. Computer graphics forum, 38(2):71–82, 2019.

[38] Janni Yuval and Paul A O’Gorman. Stable machine-learning parameterization of subgrid
processes for climate modeling at a range of resolutions. Nature communications, 11(1):1–10,
2020.

[39] Qianggong Zhang, Yanyang Gu, Michalkiewicz Mateusz, Mahsa Baktashmotlagh, and Anders
Eriksson. Implicitly Defined Layers in Neural Networks. arXiv:2003.01822 [cs], March 2020.
arXiv: 2003.01822 version: 1.

7


	Introduction
	Methods
	Problem Statement: Dynamical System Emulation
	Linear implicit layers
	Parametrization of the system of linear equations
	Linear Solver
	Boundary conditions

	Numerical experiments on Shallow-Water Equations
	Discussion
	Acknowledgments

