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ABSTRACT

Few-Shot Class-Incremental Learning (FSCIL) aims to adapt to new classes with
very limited data, while remembering information about all the previously seen
classes. Current FSCIL methods freeze the feature extractor in the incremental
sessions to prevent catastrophic forgetting. However, to perform well on the incre-
mental classes, many methods reserve feature spaces during base training to allow
sufficient space for incremental classes. We hypothesize that such feature space
reservation sharpens the minima of the loss-landscape, resulting in sub-optimal
performance. Motivated by the superior generalization of wide minima, we pro-
pose LoRe - logarithm regularization to guide the model optimization to wider
minima. Moreover, we propose a denoised distance metric when considering sim-
ilarity with the poorly calibrated prototypes. Comprehensive evaluations across
three benchmark datasets reveal that LoRe not only achieves state-of-the-art per-
formance but also produces more robust prototypes. Additionally, we demonstrate
that LoRe can be leveraged to enhance the performance of existing methods.

1 INTRODUCTION

Modern artificial intelligence models, much like humans, are expected to continuously adapt and
learn. However, traditional deep learning approaches typically require large datasets to achieve
optimal performance. For instance, in class-incremental learning (CIL) Hou et al. (2019); Li &
Hoiem (2018); Rebuffi et al. (2017); Masana et al. (2022), models depend on substantial amounts of
data arriving in incremental sessions to adapt to new tasks. This reliance on extensive datasets for
each incremental task is often unrealistic. For example, a voice recognition system should be able
to identify new voices without needing hours or days of speech data for each new voice. As a result,
Few-Shot Class Incremental Learning (FSCIL) methods Zhang et al. (2021); Peng et al. (2022);
Song et al. (2023); Zhou et al. (2023; 2022) have garnered significant attention in recent years. In an
FSCIL framework, ample data is available only for the base classes, while the incremental sessions
provide only a limited number of examples for new classes.

The primary challenge in continual learning is achieving a balance between stability and plasticity,
i.e. retaining previously learned information while adapting to new data. This problem is fur-
ther exacerbated in FSCIL settings, where only a limited number of data points are available for
new classes. Consequently, incrementally-trained models are prone to overfitting on the new data,
thereby leading to catastrophic forgetting Rebuffi et al. (2017); Castro et al. (2018); Tao et al. (2020).
To mitigate this issue, many recent FSCIL methods Wang et al. (2023); Peng et al. (2022); Zhou et al.
(2022); Song et al. (2023) limit training to the base session. During the incremental sessions, the
backbone of the model is frozen, preventing updates that could result in catastrophic forgetting, and
it is only utilized to encode the data from the new classes.

Since training is confined to the base session, it is essential to adapt the training approach to accom-
modate new classes. Recent studies indicate that using cross-entropy loss can be sub-optimal for
effectively separating representations Peng et al. (2022); Song et al. (2023). Consequently, alternate
methods have been introduced for base-training. Peng et al. (2022) introduce a large-margin angu-
lar penalty that minimizes intra-class distance while maximizing inter-class separation. Song et al.
(2023) propose a semantic-aware virtual contrastive loss, which incorporates “fantasy” classes (cre-
ated by augmenting base classes) into the base training. This technique helps cluster representations
of the base classes together, creating more space in the feature space for novel (incremental) classes.
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Zhou et al. (2022) intentionally reserve areas in the feature space during base training by employing
virtual prototypes, ensuring that adequate space is available for accommodating incremental classes.
We hypothesize that artificially constraining the feature space to ensure room for novel classes in-
creases the sharpness of the loss minima. (A sharp minima is characterized by a rapid change in loss
value in its vicinity, while a flat/wide minima exhibits a slow variation in loss value nearby.). This
is because a smaller portion of the loss landscape becomes optimal for these artificial tasks, leading
increased sensitivity to perturbations and steeper minima.

Many works have found wider minima to generalize better to unseen data Keskar et al. (2017);
Izmailov et al. (2019); Foret et al. (2021); Zhang et al. (2024); Chaudhari et al. (2017). The reason for
this is that wide-minima ensure optimal performance is cases of some shift between the training and
testing loss surface Keskar et al. (2017). Consequently, flat minima are more robust to distribution
shifts. However, finding wide minima is non-trivial. Izmailov et al. (2019) propose stochastic
weight averaging (SWA) of model weights when trained with constant/cyclical learning rate. Foret
et al. (2021) propose a sharpness-aware minimization (SAM) strategy which considers the local loss
neighbourhood of a point, and drive optimization towards to large regions of low loss. However,
they are incompatible in the FSCIL setting - SWA imposes constraints on the learning rate Zhang
et al. (2024), whereas SAM Foret et al. (2021) does not take incremental classes into consideration.

To overcome this, we propose LoRe, logarithm regularization to inject information from a flattened
loss-landscape during gradient calculation to promote convergence to wider minima. LoRe can be
easily integrated into model training with minimal effort, thereby enabling us to incorporate LoRe
within existing methods to obtain state-of-the-art performance. Moreover, we identify systematic
differences between the prototypes of base classes and novel classes derived from existing methods.
To address these differences, we introduce a denoised distance metric when evaluating the closest
class prototype.

Specifically, we make the following contributions -

1) We propose LoRe - Logarithm Regularization to inject information from a widenend loss-
landscape during model optimization to guide the model towards wider minima.

2) We uncover systematic differences between the base-class and novel-class prototypes obtained
from existing methods. To overcome these, we propose a denoised distance metric when calculating
the nearest class mean.

3) We benchmark our approach on 3 benchmark datasets and obtain state-of-the-art performance.
Through experiments, we also show that LoRe improves the performance of existing methods.

4) Through experiments, we also show that regularizing a model with LoRe leads to representations
which are more robust to noise.

2 RELATED WORK

2.1 FEW-SHOT CLASS INCREMENTAL LEARNING

Few-shot class-incremental learning methods aim to adapt to incremental classes with few data-
points while remembering information from the base classes. Earlier works in the space aimed to
adapt class-incremental learning methods into the few-shot regime. Castro et al. (2018); Rebuffi
et al. (2017) jointly learn the data encoder and the classifier, using a combination of distillation,
to retain already learnt knowledge and cross-entropy to learn new classes. Recent works in FSCIL
focus on novel strategies for base-training to enhance separation of incremental classes. Zhang et al.
(2021) first proposed decoupling the learning of the representations and classifiers, with only the
classifiers being updated in the incremental sessions. Peng et al. (2022) introduce a large-margin
angular penalty that minimizes intra-class distance while maximizing inter-class separation, thereby
allowing sufficient space for incremental classes. Zhou et al. (2022) intentionally reserve areas in the
feature space during base training by employing virtual prototypes and predicting new classes. Song
et al. (2023) propose a semantic-aware virtual contrastive loss, which incorporates “fantasy” classes
(created by augmenting base classes) into the base training. This technique helps cluster represen-
tations of the base classes together, creating more space in the feature space for novel (incremental)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

classes. Wang et al. (2023) propose a training-free prototype-calibration mechanism which uses the
well-calibrated base-class prototypes to calibrate the novel class prototypes.

2.2 WIDE MINIMA IN DEEP LEARNING

Several works have examined the generalization properties of wide minima. Keskar et al. (2017)
demonstrated the superiority of wide minima by varying the batch sizes. They showed that large
batch sizes converged to sharp minima and exhibited sub-optimal generalization. Small batch sizes,
on the other hand, converged towards wide minima and demonstrated superior test performance.
Wide minima have a large proportion of almost-zero eigen values - Chaudhari et al. (2017) leverage
this observation to devise Entropy-SGD, an objective function that favors approximate solutions ly-
ing in flatter regions of the loss landscape (wide minima) and avoid solutions in sharp valleys (sharp
minima). Izmailov et al. (2019) propose averaging of model weights along the training trajectory
to converge to wide-minima. Foret et al. (2021) propose a sharpness-aware-minimization strategy
which formulates model training as a min-max optimization problem by maximizing the neighbour-
hood size of uniform loss around a loss minima. Zhang et al. (2024) point out how stochastic weight
averaging Izmailov et al. (2019) is sensitive to the learning rate used, and propose a Lookahead
strategy which involve weight interpolation to ensure convergence. while these methods aim to find
wide minima in a typical image classification setup, they do not take into account the incremental
learning requirements. F2M SHI et al. (2021) aim to overcome catastrophic forgetting by finding
flat minima of the base classes and fine-tuning within the region during the incremental sessions.
While the method confirms our hypothesis of flat minima helping prevent catastrophic forgetting, it
exhibits suboptimal performance because it uses the cross-entropy loss (which has been shown to
be sub-optimal Peng et al. (2022); Song et al. (2023)) and does not use the latest advancements in
computer vision (such as contrastive learning). Our method, LoRe is easily integrable within any
framework, and can therefore be used to improve the performance of the latest methods.

3 METHOD

3.1 PROBLEM SETUP

The FSCIL problem setup consists of one base session with sufficient training data and multiple
incremental sessions, each consisting of limited training data. The goal is to learn a model which
is able to perform well on the tasks in the incremental sessions without forgetting about the base
session task.

To be precise, FSCIL problems often assume m+1 sessions, with {Dtrain
0 , Dtrain

1 , ....Dtrain
m } being

the training set for each session, and {Dtest
0 , Dtest

1 , ....Dtest
m } being the corresponding testing sets.

The Dt
0rain/D

test
0 represent the training/ testing data of the base session and Dtrain

i /Dtest
i , i ∈

[1...m] corresponds to incremental session data. Here, we consider a classification problem, where
each Dtrain

i /Dtest
i consists of labelled image pairs (xk, yk) and the task is learn to classify the

images correctly. Typically, there is sufficient labelled data for the base session, i.e. |Dtrain
0 | is

large, whereas each incremental session is typically an N − way − K − shot classification task,
where the goal is to learning to differentiate between N classes, with only K images available per
class, following Vinyals et al. (2016); Tao et al. (2020). There is no overlap between the classes
of any sessions (base/ incremental), i.e. if Ci is the set of all classes seen in the ith session, then
Ci∩Cj = ϕ, ifi ̸= j, i, j ∈ [0...m]. The training data is streaming in nature, i.e. Dtrain

i is only seen
by the model in the ith session and is not accessible in any other session j ̸= i. On the other hand,
the model, in the ith session, is tested on all classes seen so far, i.e. C0 ∪ C1.....Ci. Typically, the
testing set is balanced consisting of equal amounts of data from base and incremental classes alike.
The goal of the model is to adapt well to the incremental classes, without forgetting information
about the base classes.

Many previous works Peng et al. (2022); Zhang et al. (2021); SHI et al. (2021) adopt the incremental-
frozen framework, where a classifier is learnt during the base session using the large amount of base
data, with various provisions to accomodate the incremental classes. The classifier ϕ consists of
2 components - a feature extractor f and a linear classification head W , i.e. for an input sample
x, ϕ(x) = WT f(x), where phi(x) ∈ R|C0|×1, f(x) ∈ Rd×1 and W ∈ Rd×|C0|, where d is the
dimension of the feature extractor. In essence, W consists of prototypes of the base classes in the
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Figure 1: Motivation for the proposed methodology. Wider minima benefits few-shot class in-
cremental learning by learning inherently robust prototypes (left). Using the logarithmic distance
further boosts performance by denoising the prototypes (right)

base session. In the incremental sessions, the feature extractor is frozen and W is expanded with the
prototypes of novel classes. The final prediction is made in terms of the nearest class mean (NCM)
Mensink et al. (2013) algorithm, calculated as

cx = argmaxi sim(f(x), wi), (1)

where sim is the cosine similarity between two vectors.

3.2 LOGARITHM REGULARIZATION

Due to the problem setting of FSCIL, very few datapoints are available from the incremental classes.
This inherently makes the incremental class prototypes poorly calibrated. Moreover, several meth-
ods incorporate constraints in the base training to reserve feature space for the incremental classes
Zhou et al. (2022); Song et al. (2023). While it clusters the base class representations together en-
abling base class separation, it also constrains a large number of base classes into a smaller portion
of the feature space. We hypothesize that that these constraints result in sharpening the minima in the
loss landscape, since a smaller portion of the feature space is available of optimization on the actual
base task. Models convergent on sharp minima are more susceptible to noise/ perturbations. Given
that only few-shot examples are available from incremental classes, sharper minima compound the
prototype-calibration problem, leading to sub-optimal performance. An example of this is shown in
Fig. 1 (right) - the figure on the top shows the L1-norm (blue) and standard deviation (orange) of the
L2 - normalized prototypes obtained from ALICE Peng et al. (2022) on the CIFAR-100 dataset. Ev-
idently, the L1-norm for the incremental class prototypes is larger than that of the base classes with
much smaller standard-deviation, indicating that many features in the incremental-class prototypes
are of roughly similar value. This highlights the poor calibration of incremental class prototypes.
Moreover, model convergence to sharp minima is more sensitive to hyperparameters such as the
learning rate.

Wider minima have been demonstrated to have better generalization properties. Keskar et al. (2017);
Izmailov et al. (2019); Foret et al. (2021). However, finding wide minima in large models is non-
trivial. Methods such as Sharpness-Aware Minimization Foret et al. (2021) formulate model opti-
mization as a min-max problem, maximizing the neighbourhood with uniformly low loss. However,
its extension into FSCIL settings is non-trivial because finding wider neighbourhoods of minima
during base-training might lead to increased plasticity of the model. Instead, we approach the prob-
lem by augmenting the loss-landscape, attempting to inject information from a wider loss-landscape
to aid model optimization. We call it LoRe or logarithmic regularization. Specifically, if L is the loss
function (typically, cross-entropy for classification problems) used to optimize a neural network, we
propose a regularized loss function L̂, such that -

L̂ = L+ λ ∗ 1

|w|
Σ∀wlog(1 + ||w||2) (2)
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Figure 2: Flattening the minima with
the log function

where |w| is the total number of parameters in the net-
work, ||.||2 denotes the L2-norm of the weights. λ is a
hyper-parameter - we tried out various values of λ from
0.1 to 1e-6 and found a value of 1e-5 to work well on all
datasets.

The log function smoothens the loss landscape, widening
the minima with respect to the weights the weights (see
Fig. 2). We hypothesize that regularizing a model with
LoRe helps guide the gradient with information from a
widened loss landscape, thereby aiding convergence to
flatter minima, and resulting in more robust representa-
tions.

3.3 DENOISED DISTANCE

As mentioned earlier, we observe systematic differences
in the scale of the prototypes of the base and novel
classes. Specifically, in Fig 1, we observe that the L1-
norm of the incremental class prototypes (L2-normalized) is significantly larger than the base class
prototypes. This biases the inner product calculation, due to the difference in scale. We attribute this
to the strict constraints imposed during the base training to reserve feature space for the incremental
classes. To overcome this, we attempt remove with this difference in scale, before calculating the
inner product. Specifically, we propose a modified distance measure when comparing the similarity
between two vectors. Specifically, for two vectors x and y, we propose a logarithmic inner-product
distance, as -

< x.y >=
x̂.ŷ

||x̂||||ŷ||
; x̂, ŷ = log(1 + x), log(1 + y); (3)

The log function is a concave function, making it suitable for scaling the prototypes and represen-
tations. Moreover, the prototypes and representations are also often learnt using a ReLU function,
thereby making them compatible with the log function.

4 EXPERIMENT

4.1 DATASETS

Following the setting of Zhang et al. (2021), we evaluate LoRe on three benchmark datasets -
CUB200 Wah et al. (2011), CIFAR100 Krizhevsky & et al. (2009) and miniImageNet Russakovsky
et al. (2015). Their details are as follows -

• CIFAR100 Krizhevsky & et al. (2009): The CIFAR100 dataset consists of 60,000 images
from 100 classes. Each image has a size of 32 x 32 pixels. The 100 classes are split into
60 base classes and 40 incremental classes, consisting of eight 5-way-5-shot incremental
sessions.

• CUB200 Wah et al. (2011): The CUB200 dataset is a fine-grained classification dataset
consisting of 11,788 images from 200 classes of birds. Each image has a size of 224 x
224 pixels. The 200 classes are split into 100 base classes and 100 incremental classes,
consisting of ten 10-way-5-shot incremental sessions.

• miniImageNet Russakovsky et al. (2015): The miniImageNet dataset consists of 60,000
images from 100 classes. Each image has a size of 84 x 84 pixels. The 100 classes are
split into 60 base classes and 40 incremental classes, consisting of eight 5-way-5-shot in-
cremental sessions.

All methods are evaluated on the same train/test splits, following Zhang et al. (2021) to ensure a fair
comparison.
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4.2 EVALUATION

To evaluate the performance of various methods, we report the average accuracy and harmonic
accuracy in each session. The average accuracy is the classwise accuracy, averaged over all the
classes in the current session. However, due to the high proportion of base classes among the overall
number of classes, it is possible to have a high average accuracy while performing poorly on the
incremental classes. Hence, following Peng et al. (2022), we also report the harmonic accuracy
in each session. The harmonic accuracy is calculated as the harmonic mean of the average base
class accuracy and average incremental accuracy (averaged of all incremental classes seen upto the
current session)

4.3 IMPLEMENTATION DETAILS

We adopt the ResNet18 He et al. (2016) architecture for experiments. Follwing previous work
Zhou et al. (2022); Peng et al. (2022); Song et al. (2023), the model is trained from scratch for the
miniImageNet and CIFAR100 datasets and initialized with the pretrained ImageNet weights for the
CUB200 datasets. Since we propose a regularization method, we incorporate it within each method
Wang et al. (2023); Peng et al. (2022); Song et al. (2023) and use their implementation details,
without modification. For example, ALICE Peng et al. (2022) uses class- and data- augmentation
for the CIFAR100 and miniImageNet datasets, but omits the class augmentation for the CUB200
dataset; we follow the same implementation setup. However, we train for an additional 30 epochs
in each setup. For example, if ALICE is trained for 120 epochs, we train our LoRe model for 150
epochs. We adopt the same learning rate, augmentation and hyperparameter configurations as any
original method, without making any modifications.1

5 RESULTS

5.1 COMPARISON WITH STATE-OF-THE-ART

We compare LoRe with several existing classical continual learning methods, namely iCARL Re-
buffi et al. (2017), EEIL Castro et al. (2018) and TOPIC Tao et al. (2020) and state-of-the-art FSCIL
methods namely CEC Zhang et al. (2021), FACT Zhou et al. (2022), LIMIT Zhou et al. (2023),
TEEN Wang et al. (2023), ALICE Peng et al. (2022) and SAVC Song et al. (2023) on three bench-
mark datasets, namely CUB200, CIFAR100 and miniImageNet datasets. Table. 1 shows the detailed
session-wise average accuracy comparison for all methods on the CUB200 dataset. We show that
LoRe, when integrated with existing methods such as SAVC Song et al. (2023) and ALICE Peng
et al. (2022), achieves state-of-the-art performance. SAVC Song et al. (2023), when optimized
with LoRe, outperforms the existing state-of-the-art method by achieving +1.43% performance im-
provement in the final session accuracy and a +1.87% improvement in the average accuracy across
sessions. Besides average accuracy, LoRe also achieves state-of-the-art performance in terms of har-
monic accuracy on the CUB200 dataset, as shown in Table. 2. Fig. 3 shows the performance of
various methods on the CUB200, CIFAR100 and miniImageNet datasets. LoRe achieves the high-
est final session accuracy on all datasets, outperforming the existing state-of-the-art method SAVC
Song et al. (2023) by 1.43% , 3.72% and 2.23% respectively.

5.2 IMPROVING EXISTING METHODS

The proposed method, LoRe, is easily integrable within existing methods, and can be used to im-
prove performance by guiding the optimization towards wider minima, which enable better cali-
brated class prototypes. When optimized with LoRe, the performance of ALICE Peng et al. (2022)
improves from 58.70% to 59.89% in the final session on the CUB200 dataset, as shown in Table.1.
To demonstrate this further, we incorporate LoRe within the learning framework of TEEN Wang
et al. (2023), a training-free prototype calibration method which uses the well-calibrated base class
prototypes to calibrate the novel class prototypes. TEEN uses a vanilla cross-entropy objective
feature-extractor, making it an efficient and elegant solution for few-shot class incremental learning.

1The code for our implementation will be made publicly available.
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Method Accuracy in each session(%) Avg. ∆0 1 2 3 4 5 6 7 8 9 10
FT-

CNN* 68.68 43.70 25.05 17.72 18.08 16.95 15.10 10.06 8.93 8.93 8.47 21.97 +47.09
iCARL* 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 36.67 +32.39
EEIL* 68.68 53.63 47.91 44.20 36.30 27.46 25.93 24.70 23.95 24.13 22.11 36.27 +32.79

TOPIC* 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28 43.92 +25.14
CEC 76.32 71.88 67.04 62.24 61.30 57.38 56.04 54.29 52.57 51.32 49.84 60.02 +9.04
FACT 75.89 73.34 70.20 65.21 64.67 61.49 60.73 59.31 57.69 57.22 56.20 63.81 +5.25
LIMIT 79.66 76.52 73.05 68.09 67.50 63.54 62.51 61.43 60.19 58.99 57.50 66.27 +2.79
TEEN 79.33 75.23 71.79 67.07 66.43 63.25 61.74 60.89 59.46 58.70 57.92 65.62 +3.44
ALICE 72.80 70.41 68.78 65.45 64.00 61.58 60.90 60.01 58.87 59.10 58.70 63.69 +5.37
SAVC 78.63 75.53 71.71 69.56 67.82 65.19 64.20 63.10 61.45 61.25 60.65 67.19 +1.87

ALICE +
LoRe (ours) 77.20 74.10 71.87 68.29 66.48 63.78 62.92 62.02 60.62 60.47 59.89 66.15

SAVC +
LoRe (ours) 80.48 77.38 74.75 71.19 69.76 66.94 65.97 65.08 63.22 62.81 62.08 69.06

Table 1: Detailed session-wise accuracy of LoRe and baselines on the CUB200 dataset. LoRe com-
bined with SAVC Song et al. (2023) produces state-of-the-art performance. * = performance re-
ported in prior works.

Method Harmonic Accuracy in each session (%) Avg. ∆1 2 3 4 5 6 7 8 9 10
FACT 62.07 58.17 50.57 52.38 50.54 51.44 51.96 50.44 51.85 51.67 53.11 +6.87
TEEN 64.46 60.78 54.50 55.88 54.50 54.76 54.52 53.18 54.36 54.52 56.15 +3.83
ALICE 67.78 64.78 58.13 58.23 56.06 57.08 57.10 56.43 57.59 57.72 59.09 +0.89
SAVC 60.47 59.49 55.44 56.23 54.46 55.78 56.40 55.50 56.81 57.24 56.78 +3.20

SAVC +
LoRe (ours) 63.60 61.86 56.21 58.63 56.01 57.34 58.28 57.02 58.07 58.33 58.54

ALICE +
LoRe (ours) 69.76 65.93 59.08 58.98 56.66 57.79 58.04 57.16 58.13 58.23 59.98

Table 2: Detailed session-wise harmonic accuracy of LoRe and baselines on the CUB200 dataset.
LoRe combined with ALICE Peng et al. (2022) produces state-of-the-art performance. Due to space
constraints, the lower performing methods have been omitted from the table.

Figure 3: Comparision of performances of state-of-the-art methods with LoRe. LoRe outperforms
SAVC Song et al. (2023) by 1.43% on the CUB200 dataset, 2.23% on the miniImageNet dataset and
3.72% on the CIFAR100 dataset in the last session accuracy. Detailed accuracies on the datasets can
be found in the Supplementary Material.

Method Average Accuracy in each incremental session Avg ↑ ∆0 1 2 3 4 5 6 7 8 9 10
TEEN 79.33 75.23 71.79 67.07 66.43 63.25 61.74 60.89 59.46 58.70 57.92 65.62 +1.91

TEEN+LoRe 79.29 76.05 72.75 68.20 68.16 65.20 65.79 63.58 62.01 61.34 60.45 67.53 -
Diff. -0.04 +0.82 +0.96 +1.13 +1.73 +1.95 +4.05 +2.69 +2.55 +2.64 +2.53

Table 3: Performance of TEEN Wang et al. (2023) without/with LoRe on the CUB200 dataset.
Addition of LoRe leads to a 2.53% improvement in the final session accuracy, and an average im-
provement of 1.91% across sessions.
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Method Harmonic Accuracy in each incremental session Avg. ↑ ∆1 2 3 4 5 6 7 8 9 10
TEEN 64.46 60.78 54.50 55.88 54.50 54.76 54.52 53.18 54.36 54.52 56.15 +2.72

TEEN + LoRe 65.93 63.03 56.56 58.58 57.19 58.06 57.81 56.43 57.59 57.54 58.87 -
Diff. +1.29 +2.25 +2.06 +2.70 +2.69 +3.30 +3.29 +3.25 +3.23 +3.02

Table 4: Performance of TEEN Wang et al. (2023) without/with LoRe on the CUB200 dataset.
Addition of LoRe leads to a 3.02% improvement in the final session harmonic accuracy, and an
average improvement of 2.72% across sessions in harmonic accuracy.

(a) CIFAR100 (b) CUB200 (c) MiniImageNet

Figure 4: Improvement in the average (and harmonic) accuracy of TEEN Wang et al. (2023) due
to the addition of LoRe. Detailed accuracies on the datasets can be found in the Supplementary
Material.

Table 3 shows the improvement in the performance of TEEN Wang et al. (2023) on the CUB200
dataset when optimized with LoRe. Addition of LoRe results in a +2.53% improvement in the
final session average accuracy and an average increase of +1.91% across sessions. Moreover, the
improvement in the average accuracy is due to improved performance on the incremental classes
as demonstrated by the +3.02% increase in the final session harmonic accuracy and the +2.72%
increase in the average harmonic across sessions in Table 4. Fig. 4 shows the improvement in the
average (and harmonic) accuracy at each session on the CIFAR100, CUB200 and miniImageNet
datasets, where the final session average ( harmonic) accuracy has improved by 1.22% (4.07%),
2.53% (3.02%) and 0.29% (0.18%), respectively. Addition of LoRe leads to improved performance
of TEEN Wang et al. (2023) by guiding the optimization towards flatter minima.

5.3 ROBUSTNESS ANALYSIS

Since wider minima reduce the sensitivity to perturbations, prototypes learnt with LoRe must be
more robust to noise. To verify this, we perform perturbation analysis wherein we manually perturb
the prototypes from their original configuration and observe the effect on average and harmonic
accuracy. Our expectation is that prototypes learnt with LoRe would be more robust to noise. To this
end, we add random noise sampled from a uniform distribution, U(0, α), to the prototype, before
calculating the cosine similarity. We vary α from 0 to 0.1 and observe the change in performance.

Noise
Level 0 0.001 0.01 0.025 0.05 0.075 0.1

SAVC 60.67 (57.24) 60.56 (57.13) 60.75 (57.47) 60.41 (57.12) 59.16 (55.58) 56.96 (53.08) 54.35 (49.98)
SAVC

+
LoRe

62.08 (58.33) 61.58 (57.96) 61.53 (57.88) 61.32 (57.54) 60.17 (56.00) 58.09 (53.51) 55.85 (51.01)

Diff. +1.41 (+1.09) +1.02 ( +0.83) +0.83 (+0.41) +0.91 (+0.42) +1.01 (+0.42) +1.13 (+0.43) +1.5 (+1.03)

Table 5: Perturbation Analysis of SAVC Song et al. (2023) prototypes learnt without/with LoRe on
the CUB200 dataset. LoRe prototypes are more robust to noise, as compared to the original SAVC
prototypes and show higher average (harmonic) accuracy across sessions.
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Average Accuracy
LR DD 0 1 2 3 4 5 6 7 8 9 10 Avg. ∆
✗ ✗ 78.63 75.53 71.71 69.56 67.82 65.19 64.20 63.10 61.45 61.25 60.65 67.19 -
✗ ✓ 78.39 75.22 72.74 69.61 68.00 65.49 64.43 63.47 61.83 61.65 61.06 67.40 +0.21
✓ ✗ 80.27 77.25 74.52 70.87 69.19 66.46 65.45 64.67 62.85 62.47 61.68 68.70 +1.51
✓ ✓ 80.48 77.38 74.75 71.20 69.76 66.94 65.97 65.08 63.12 62.81 62.08 69.05 +1.86

Table 6: Ablation Study of the average accuracy of LoRe, combined with SAVC Song et al. (2023).
LR = Logarithmic Regularization and DD = Denoised Distance

Table 5 shows the performance of SAVC Song et al. (2023) prototypes learnt with and without LoRe
with varying amount of noise on the CUB200 dataset. Prototypes learnt LoRe are more robust to
noise and exhibit superior performance to the original method.

5.4 ABLATION STUDY

Harmonic Accuracy
LR DD 1 2 3 4 5 6 7 8 9 10 Avg. ∆
✗ ✗ 60.47 59.50 55.44 56.62 54.46 55.78 56.40 55.50 56.81 57.24 56.82 -
✗ ✓ 58.90 59.64 55.76 57.10 55.01 56.02 56.80 55.87 57.23 57.67 57.00 +0.82
✓ ✗ 64.47 61.78 55.81 57.74 55.50 56.87 58.04 56.86 57.86 58.07 58.30 +1.48
✓ ✓ 63.60 61.86 56.21 58.63 56.01 57.34 58.28 57.02 58.07 58.33 58.54 +1.72

Table 7: Ablation Study of the harmonic accuracy of LoRe, combined with SAVC Song et al. (2023).
LR = Logarithmic Regularization and DD = Denoised Distance

Tables 6 and 7 show an ablation study of LoRe using SAVC Song et al. (2023) as the base method,
on the CUB200 dataset for average and harmonic accuracies, respectively. It must be noted that
both components, logarithmic regularization and denoised distance, are essential in obtaining the
observed improvement in performance. However, it can be said that the Logarithm Regularization
is more important because it guides the optimization of the feature encoder, and determines what
the prototypes look like, thereby showing a larger gain in performance. The logarithm distance,
on the other hand, is a post-hoc method to denoise the distances when considering proximity to
class prototypes, hence, resulting in a relatively smaller gain in performance. Nevertheless, both the
components together help in achieving state of the art performance on all benchmarks. It must be
noted that the proposed changes, not only help with the average accuracy across sessions, but also
help in improving the harmonic accuracy with enhanced performance on incremental classes.

6 CONCLUSION

In this paper, we propose LoRe - logarithm regularization for to utilize gradient information from a
flattened loss landscape to guide the model optimization towards wider minima. Further, we identify
systematic differences between the base class and incremental class prototypes derived from existing
methods and propose a denoised distance metric to overcome the bias. Evaluations across three
benchmark datasets demonstrated that LoRe achieves state-of-the-art performance. Furthermore,
LoRe can be seamlessly integrated into existing frameworks, and our results indicate that models
trained with LoRe significantly outperform those that do not incorporate this approach.
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