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Abstract

This paper presents a new self-supervised video representation learning framework ARVideo,
which autoregressively predict the next video token in a tailored sequence order. Two key
designs are included. First, we organize autoregressive video tokens into clusters that
span both spatially and temporally, thereby enabling a richer aggregation of contextual
information compared to the standard spatial-only or temporal-only clusters. Second,
we adopt a randomized spatiotemporal prediction order to facilitate learning from multi-
dimensional data, addressing the limitations of a handcrafted spatial-first or temporal-first
sequence order. Extensive experiments establish ARVideo as an effective paradigm for
self-supervised video representation learning. For example, when trained with the ViT-B
backbone, ARVideo competitively attains 81.2% on Kinetics-400 and 70.9% on Something-
Something V2, which are on par with the strong benchmark set by VideoMAE. Importantly,
ARVideo also demonstrates higher training efficiency, i.e., it trains 14% faster and requires
58% less GPU memory compared to VideoMAE.

1 Introduction

The transformer architecture, as introduced in Vaswani et al. (Vaswani et al., 2017), has fundamentally
transformed the field of natural language processing (NLP) through its ability to model long-range dependencies
with minimal inductive bias. A crucial catalyst for its success lies in self-supervised learning of robust and
transferable representations from large volumes of unlabeled data. Within this paradigm, masked language
modeling (MLM) (Devlin et al., 2019) and autoregressive modeling (AR) (Radford et al., 2018; Brown et al.,
2020; OpenAI, 2023) stand out as two leading approaches. Specifically, MLM masks random portions of input
tokens and trains models to predict masked elements; whereas AR predicts subsequent words in a sequence
based on all preceding words. These methods have propelled state-of-the-art performance in various NLP
tasks.

In the video domain, however, the landscape is different. Previous studies have predominantly relied on
supervised pretraining using image datasets, often overlooking the critical aspect of temporal dynamics (Liu
et al., 2022b; Bertasius et al., 2021). Recently, there has been a shift towards leveraging NLP-inspired mask
language modeling (Devlin et al., 2019) or image-inspired mask image modeling (He et al., 2022; Bao et al.,
2022) to directly exploit unlabeled video datasets for pretraining. For instance, VideoMAE (Tong et al.,
2022; Feichtenhofer et al., 2022) introduces mask autoencoder (He et al., 2022) for self-supervised video
video representation learning; BEVT (Wang et al., 2022a) learns spatial representations from image data
and joint-masked image and video modeling. Despite these advancements, autoregressive modeling—another
powerful self-supervised learning approach in NLP—has yet to be extensively explored within the context of
video data analysis.

Critically, applying autoregressive pretraining to video data entails the same principle of autoregressively
predicting the next element in a sequential order based on its predecessors. In natural language, these
elements—words—are clearly defined and inherently follow a chronological order. For images, elements could
be conceptualized as pixels or patches arranged in a flattened sequence (Chen et al., 2020; El-Nouby et al.,
2024; Ren et al., 2024). The further transition to video data, however, introduces additional complexity due
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Figure 1: ARVideo autoregressive predicts spatiotemporal cluster from grouping tokens span spatial and
temporal dimension.

to its inherently multidimensional nature (i.e., including both spatial and temporal dimensions). This raises
a crucial inquiry: how should we define an autoregressive ‘video element’ and establish a visual sequence order
for self-supervised video representation learning?

We note traditional methods, such as converting video into a sequence of cubes (Tong et al., 2022; Bertasius
et al., 2021; Wang et al., 2022a; Liu et al., 2022b) and subsequently linearly mapping these cubes into
video tokens, generally reveal critical limitations in addressing this query. Specifically, the granularity of
these video tokens often fails to encapsulate the rich semantics typically represented by words in text-based
models—primarily because 1) these video tokens are too dimensionally limited, and 2) video inherently lacks
a sequential order in its spatial dimensions, although it retains this feature in its temporal aspects.

To address these challenges, we hereby present ARVideo, a novel autoregressive-based video representation
learning paradigm with two key designs (see Figure 1). Firstly, we redefine ‘video elements’ by grouping
video tokens into spatiotemporal video clusters, differentiating from conventional single-dimensional strategies
like spatial video clusters or temporal video clusters. This approach improves semantic representation by
aggregating more contextually relevant multidimensional information. Secondly, we find that, compared
to well-defined yet single-dimensional spatial-first or temporal-first sequence orders, a sequence order that
randomly integrates both spatial and temporal dimensions empirically yields significantly stronger results. This
suggests that effectively capturing the inherent multidimensionality of video data is crucial for autoregressive
modeling. Extensive experiments establish our ARVideo as an effective paradigm for video representation
learning. For example, while the autoregressive video representation learning baseline only attains 74.2%
on Kinetics-400 and 66.4% on Something-Something V2, ARVideo significantly boosts the results to 81.2%
(+7%) and 70.9% (+4.5%), respectively. Notably, these results not only match but, in some aspects, surpass
the strong benchmark set by VideoMAE, particularly with respect to training efficiency—ARVideo achieves
faster training speeds by 14% and reduces GPU memory consumption by 58%.

2



Under review as submission to TMLR

2 Related Work

2.1 Video Representation Learning

Video representation learning has witnessed significant exploration, historically driven by supervised learning
methods (Tran et al., 2018; Wang et al., 2019; Simonyan & Zisserman, 2014; Bertasius et al., 2021; Liu
et al., 2022b) that pretrain backbone networks on labeled image or video data before fine-tuning. However,
such methods face challenges due to inherent discrepancy between image and video data, compounded by the
scarcity of comprehensively labeled video datasets.

In the era of self-supervised learning, recent work have designed pre-tasks incorporating temporal information
for self-supervised video representation learning (Xu et al., 2019; Benaim et al., 2020; Huang et al., 2021;
Qian et al., 2021; Ranasinghe et al., 2022) and leveraging contrastive learning for effective visual representa-
tions (Qian et al., 2021; Kuang et al., 2021; Li et al., 2021; Diba et al., 2021; Han et al., 2020a;b). Additional,
mask reconstruction-based methods inspired by masked language modeling (Devlin et al., 2019) are introduced
into self-supervised image and video representation learning. For example, MAE (He et al., 2022) presents
a scalable self-supervised learning method to reconstruct masked image patches while VideoMAE (Tong
et al., 2022) extends this approach to video data and reconstructs masked spacetime patches. BEVT (Wang
et al., 2022b) separates spatial learning from temporal dynamics, training on masked images initially before
jointly on masked images and videos. Christoph et al. (Feichtenhofer et al., 2022) introduce an efficient
video-based MAE extension with minimal biases and significant speedups. In contrast to prior works, our
ARVideo proposes a new path for self-supervised video representation learning via autoregressive pretraining.

2.2 Autoregressive Pretraining

As a representative approach for autoregressive pretraining, Generative Pretrained Transformer (GPT)
trains language models by autoregressively predicting the next word based on all preceding words in a
sentence. Inspired by the success of autoregressive modeling in NLP, researchers start to apply autoregressive
pretraining in computer vision. ImageGPT (Chen et al., 2020) learns effective image representations by
training a Transformer to autoregressively predict image pixels without any prior knowledge of their 2D
structure. SAIM (Qi et al., 2023) adopts an encoder to autoregressively learn contextual information like a
standard vision transformer (ViT) and a decoder to predict the current content, mutually reinforcing each
other’s functions. RandSAC (Hua et al., 2022) arranges image tokens into segments for parallel intra-segment
and sequential inter-segment autoregressive prediction. However, applying autoregressive pretraining on
video data faces notable challenges due to the extra temporal dimension. ARVideo explores the design of
autoregressive video elements and visual sequence orders for video representation learning.

3 Method

In this section, we first revisit GPT (Radford et al., 2018) and ImageGPT (Chen et al., 2020) to establish the
foundation for the proposed ARVideo, as illustrated in Figure 1. We then analyze the inherent difference
between image and video data, followed by the design of elements and the optimal prediction order as the
key ingredients in ARVideo for autoregressive prediction with videos.

3.1 Generative Pretrained Transformer

We first outline the Generative Pretrained Transformer (GPT) framework. Consider an unlabeled language
dataset U comprising sentences [u1, ..., uN ], where each sentence uj consists of words uj = {uj

1, ..., uj
n}.

GPT (Radford et al., 2018) autoregressively predicts the next word given all preceding words, minimizing the
negative log-likelihood with model parameter θ:

p(uj) = −log

n∏
i=1

p(uj
i |uj

1, ..., uj
i−1, θ). (1)
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Figure 2: Comparison between video token and different cluster.

This modeling strategy has fundamentally changed the landscape of natural language processing, leading to
the development of tremendously successful models like ChatGPT (Radford et al., 2018) and GPT-4 (OpenAI,
2023).

3.2 ImageGPT

Transitioning from natural language processing to image processing necessitates the design of image elements
for autoregressive prediction. In ImageGPT, it treats individual pixels as elements. Specifically, given an image
x ∈ RH×W ×C , ImageGPT flattens it into a 1D pixel sequence of length N = H × W , and autoregressively
predicts the next pixel given all preceding pixels:

p(x) = −log

N∏
i=1

p(xi|x1, ..., xi−1, θ) (2)

This approach incurs significant computational overhead due to the quadratic complexity of self-attention
w.r.t. the input sequence length. ImageGPT thereby uses smaller image sizes (e.g., 32 × 32) in pretraining,
yielding suboptimal performance. This limitation is pertinent in our development of ARVideo and becomes
more pronounced due to the added complexity of video data.

3.3 ARVideo

Illustrated in Figure 1, ARVideo autoregressively pretrains on video data x ∈ RT ×H×W ×C . Note that directly
extending ImageGPT to videos faces significant challenges, primarily due to the added temporal dimension,
which would significantly escalate computational demands, even with low-resolution videos like 4 × 32 × 32.
Moreover, pixels as autoregressive elements lack semantic richness compared to words in the language, further
necessitating pixel grouping strategies to enhance representation learning. To better facilitate learning from
multi-dimensional video data, we also explore prediction orders across spatial and temporal dimensions.

3.3.1 Pixel grouping

From Pixels to Video Tokens. With patch embeddings in ViT, videos can be patchified into non-
overlapping cubes (Tong et al., 2022; Bertasius et al., 2021; Wang et al., 2022a; Liu et al., 2022b) of size
PT × PW × PH . Then, each cube is transformed into a video token through a linear projection layer,
resulting in N = T

PT
× H

PH
× W

PW
video tokens. This tokenization significantly reduces operational elements,

thus alleviating computational demands while ensuring that each video token encapsulates richer semantics
compared to individual pixels. For example, as reported in Table 1, using video tokens as autoregressive
elements for pretraining significantly outperforms approaches without tokenization by 3.3% while keeping
pretraining resolution consistent with previous work (Tong et al., 2022; Wang et al., 2022a).

This promising transition from pixels to video tokens introduces a compelling query: Can further performance
gains be realized by aggregating more tokens? In pursuit of this, we examine three options: grouping video

4



Under review as submission to TMLR

Element Resolution Something- Something V2
Pixel 8 × 14 × 14 60.7
Token 16 × 224 × 224 64.0

Table 1: Grouping pixels into video tokens facilitates autoregressive pretraining on higher-resolution videos
and improves performance by 3.3%.

tokens into spatial, temporal, or spatiotemporal clusters. It is important to note that within each cluster,
video tokens are always fully attended to each other. This full-attention configuration helps to enable a more
effective consolidation of semantic content within each autoregressive element.

From Tokens to Spatial Clusters. As shown in Figure 2(b), we strategically group spatially neighbored
tokens—those sharing the same temporal positions but varying spatially—into spatial clusters. Following
the patch embedding step, video tokens within the spatial domain H

PH
× W

PW
are grouped into one element,

resulting in T
PT

autoregressive elements. For example, a video of size 16 × 224 × 224 with a cube embedding
size of 2 × 16 × 16 (Tong et al., 2022) here will be transformed into 8 autoregressive elements, with each
element comprising 14 × 14 tokens.

From Tokens to Temporal Clusters. As illustrated in Figure 2(c), our method integrates temporal
information by grouping tokens that are temporally adjacent into temporal clusters. Specifically, tokens
within the temporal domain T

PT
are grouped into one element, resulting in H

PH
× W

PW
autoregressive elements.

For instance, a video of size 16 × 224 × 224 with a cube embedding size of 2 × 16 × 16 (Tong et al., 2022)
here will transformed into 14 × 14 autoregressive elements, with each element comprising 8 tokens.

From Tokens to Spatiotemporal Clusters. Moving beyond the single-dimensional grouping strategies
discussed above, we now consider the inherently multidimensional nature of video data by grouping neighboring
KT × KH × KW tokens into spatiotemporal clusters with no overlaps, as illustrated in Figure 2(d). This
strategy results in a total number of T

PT KT
× H

PH KH
× W

PW KW
clusters, with each containing both spatial and

temporal information as an autoregressive element.

3.3.2 SpatialTemporal Prediction Order

For the spatiotemporal cluster, we further explore its prediction order. Specifically, this strategy is expected
to yield T

PT KT
clusters at each spatial position, and H

PH KH
× W

PW KW
clusters at each temporal position.

Pre-defined order. We implement two systematic strategies: a spatial-first order and a temporal-first order.
The spatial-first approach prioritizes autoregressive pretraining within the H

PH KH
× W

PW KW
spatiotemporal

clusters along the spatial dimension, before transitioning to clusters in subsequent temporal positions.
Conversely, the temporal-first approach prioritizes within the T

PT KT
spatiotemporal clusters along the

temporal dimension, then proceeds to clusters in subsequent spatial positions.

Random Rasteration. Inspired by the random sentence permutation technique used in XLNet (Yang et al.,
2019) for enhancing autoregressive pretraining, our random rasterization approach scrambles the order of
clusters randomly during autoregressive pretraining. This method avoids the constraints of fixed sequential
patterns, such as spatial-first or temporal-first, and allows ARVideo to adaptively model both long- and
short-range spatial-temporal information. Such flexibility in autoregressive prediction orders not only captures
the inherent multidimensionality of video data more effectively but also fosters a richer, more comprehensive
video representation.

3.3.3 Model Architecture

We adopt the ViT (Dosovitskiy et al., 2021; Tong et al., 2022) as the encoder. For the decoder, we take the
Transformer decoder with cross attention but without self-attention. This design choice aims to simplify
the decoding process, emphasizing interaction between the encoded inputs while reducing training costs.
The query of the decoder is randomly initialized but includes position information to facilitate sequence
generation. Our model utilizes a strategically designed attention mask as in previous work (Chen et al., 2020;
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Method Backbone pretrain Epoch Frames GFLOPs Param Top-1
Supervised pretraining
TANet (Liu et al., 2021) ResNet152 IN-1K 100 16 242×4×3 59 79.3
TDNEn (Wang et al., 2021) ResNet101 IN-1K 100 8+16 198×10×3 88 79.4
TimeSformer (Bertasius et al., 2021) ViT-B IN-21K 15 8 196×1×3 121 78.3
Motionformer (Patrick et al., 2021) ViT-B IN-21K+K400 35 16 370×1×3 109 81.1
Video Swin (Liu et al., 2022a) Swin-B IN-21K+K400 30 32 321×1×3 88 82.7
Mask video modeling
VIMPAC (Tan et al., 2021) ViT-L HowTo100M 100 10 N/A×10×3 307 77.4
BEVT (Wang et al., 2022a) Swin-B K400 150 32 282×1×3 88 76.2
VideoMAE (Tong et al., 2022) ViT-B K400 800 16 180×2×3 87 80.0
VideoMAE (Tong et al., 2022) ViT-B K400 1600 16 180×2×3 87 81.5
Autoregressive pretraining
iGPT (Chen et al., 2020) ViT-B IN-1K 300 16 180×2×3 87 61.2
Randsac (Hua et al., 2022) ViT-B IN-1K 1600 16 180×2×3 87 70.3
TokenGPT† ViT-B IN-1K 300 16 180×2×3 87 68.5
TokenGPT† ViT-B K400 800 16 180×2×3 87 74.2
ARVideo ViT-B K400 800 16 180×2×3 87 80.1
ARVideo ViT-B K400 1600 16 180×2×3 87 81.2

Table 2: Comparison with the state-of-the-art methods on Kinetics-400. “Ex. labels ✗” means only
unlabelled data is used during the pretraining phase. “N/A” indicates the numbers are not available for us. †
indicates the implementation by us with the token replacing pixel in iGPT.

Radford et al., 2018) to enable efficient autoregressive prediction in a parallel computation framework. When
transferring to downstream tasks, we remove the decoder and only finetune the encoder.

4 Experiment

4.1 Dataset and Implementation Details

We primarily evaluate ARVideo on Kinetics-400 (Kay et al., 2017) and Something-Something V2 (Goyal et al.,
2017). Specifically, Kinetics-400 contains 400 classes and 260k videos of 10s, with 240k for training and 20k for
validation; Something-Something V2 contains 174 classes with 169k videos for training and 25k for validation.
While Kinetics-400 provides a broad spectrum of actions with minimal context, Something-Something V2
focuses more on the interaction of actions with objects.

For our experiments, we first pretrain a vanilla video Transformer (Tong et al., 2022) with ARVideo, and then
fine-tune the pretrained model on the target action recognition datasets. Additionally, we assess the feature
transferability on AvA v2.2 (Gu et al., 2018) and HMDB (Kuehne et al., 2011). AvA v2.2 is a human action
localization dataset with 211k videos for training and 57k for validation; HMDB is a small video dataset with
3.5k videos for training and 1.5k videos for validation.

We follow the established protocol in prior work (Tong et al., 2022) to train our models. Instead of using
negative log-likelihood as in GPT (Radford et al., 2018), we employ mean square error (MSE) loss to measure
the discrepancy between the predicted and target cubes, as utilized in MAE (He et al., 2022). We randomly
mask 80% tokens in each element to reduce the overall training costs; note that, unlike MAE or VideoMAE,
we do not reconstruct those masked regions.

4.2 Main results

Kinetics-400. We pretrain the ViT-B backbone for both 800 and 1600 epochs on Kinetics-400, and report
the corresponding results in Table 2. Notably, ARVideo attains 80.1% top-1 accuracy under 800 epochs and
81.2% top-1 accuracy under 1600 epochs, exhibiting significant improvements over previous autoregressive
methods. Specifically, taking 1600-epoch-pretrained ARVideo for comparison, it outperforms iGPT, the
baseline model, by a striking +20.0%, and Randsac, the previous state-of-the-art autoregressive model
on images, by +10.9%. Additionally, compared to TokenGPT, which performs token-level autoregressive
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Method Backbone Pretrain Epoch Frames GFLOPs Param Top-1
Supervised pretraining
TEINetEn (Liu et al., 2020) ResNet50×2 IN-1K 50 8+16 99×10×3 50 66.5
TANetEn (Liu et al., 2021) ResNet50×2 IN-1K 50 8+16 99×2×3 51 66.0
TDNEn (Wang et al., 2021) ResNet101×2 IN-1K 60 8+16 198×1×3 88 69.6
SlowFast (Feichtenhofer et al., 2019) ResNet101 K400 196 8+32 106×1×3 53 63.1
MViTv1 (Fan et al., 2021) MViTv1-B K400 100 64 455×1×3 37 67.7
TimeSformer (Bertasius et al., 2021) ViT-B IN-21K 15 8 196×1×3 121 59.5
TimeSformer (Bertasius et al., 2021) ViT-L IN-21K 15 64 5549×1×3 430 62.4
ViViT FE (Arnab et al., 2021) ViT-L IN-21K+K400 35 32 995×4×3 N/A 65.9
Motionformer (Patrick et al., 2021) ViT-B IN-21K+K400 35 16 370×1×3 109 66.5
Video Swin (Liu et al., 2022a) Swin-B IN-21K+K400 30 32 321×1×3 88 69.6
Mask video modeling
VIMPAC (Tan et al., 2021) ViT-L HowTo100M 100 10 N/A×10×3 307 68.1
BEVT (Wang et al., 2022a) Swin-B IN-1K+K400 150 32 321×1×3 88 70.6
MaskFeat↑312 (Wei et al., 2022) MViT-L K600 1600 40 2828×1×3 218 75.0
VideoMAE (Tong et al., 2022) ViT-B SSv2 800 16 180×2×3 87 69.6
VideoMAE (Tong et al., 2022) ViT-B SSv2 2400 16 180×2×3 87 70.8
Autoregressive pretraining
iGPT (Chen et al., 2020) ViT-B IN-1K 300 16 180×2×3 87 54.3
Randsac (Hua et al., 2022) ViT-B IN-1K 1600 16 180×2×3 87 59.6
TokenGPT† ViT-B IN-1K 300 16 180×2×3 87 59.2
TokenGPT† ViT-B SSv2 800 16 180×2×3 87 66.4
ARVideo ViT-B SSv2 800 16 180×2×3 87 69.8
ARVideo ViT-B SSv2 2400 16 180×2×3 87 70.9

Table 3: Comparison with the state-of-the-art methods on Something-Something V2. “Ex. labels
✗” means only unlabelled data is used during the pretraining phase. “N/A” indicates the numbers are not
available for us. † indicates the implementation by us with the token replacing pixel in iGPT.

Method K400 → AVA v2.2 K400 → HMDB
Contrastive Learning

MoCo - 67.9
Mask video modeling
VideoMAE 26.7 73.3
Autoregressive pretraining
ARVideo 26.9 74.1

Table 4: Comparison of model transferability. We first pretrain models on Kinetics-400, and then transfer
them to AVA v2.2 and HMDB.

prediction, ARVideo showed advancements of +12.7% when TokenGPT was pretrained on an image dataset,
and +7.0% when it was pretrained on the Kinetics-400 dataset.

Moreover, we note that ARVideo performs competitively against the strong benchmark—the mask video
modeling method, VideoMAE. For example, the performance difference between ARVideo and VideoMAE is
only 0.1% with 800 epochs of pretraining; this margin remains minimal at 0.3% with 1600 epoch pretraining.
These results validate the effectiveness of ARVideo as a pioneering autoregressive pretraining method in
self-supervised video representation learning, equalling—and in some aspects surpassing—the performance of
established mask modeling methods.

Something-Something V2. We pretrain the ViT-B backbone for 800 and 2400 epochs on the Something-
Something V2 dataset. As reported in Table 3, ARVideo achieves top-1 accuracies of 69.8% and 70.9% for
800 and 2400 epochs, respectively, which are significantly stronger than prior autoregressive pretraining
methods. For example, under 2400 epochs, ARVideo surpassed the baseline model iGPT by +16.6% and
outperforms the best-performing image-based autoregressive method, Randsac, by +11.3%. It also surpassed
TokenGPT pre-trained on image datasets by +11.7% and on the Something-Something V2 dataset by +4.5%.
Additionally, when compared to the strong masked video modeling method VideoMAE, ARVideo also performs
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Method Encoder Decoder Training Time GPU MemoryQ Key/Value Q Key/Value
VideoMAE 160 160 1568 1568 145h 41.3G
ARVideo 300 300 1372 300 127h (-12.4%) 26.1G (-36.8%)

Table 5: The comparison of pretraining time and GPU memory.
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Figure 3: The attention rank comparison between VideoMAE and ARVideo

competitively in both 800 epochs of pretraining (i.e., 0.2% accuracy difference) and 2400 epochs of pretraining
(i.e., 0.1% accuracy difference). Together with the observations in Kinetics-400, these results can establish
ARVideo as a strong alternative to masked modeling approaches for video analysis.

Transfer Learning. To investigate the feature transferability of ARVideo, we transfer the model trained
on Kinetics-400 to AvA v2.2 and HMDB. We can observe that ARVideo demonstrate strong transferability,
achieving 26.9 mAP on AvA v2.2 and 74.1% Top-1 accuracy on HMDB—outperforming both VideoMAE and
MoCo (see Table 4). For example, compared to VideoMAE, ARVideo shows (slight) improvements of 0.2%
on AvA v2.2 and 0.8% on HMDB.

Computation cost. We report the training time and GPU memory usage in Table 5 (with ViT-B trained
on Kinetics-400 for 800 epochs, using 8×A6000). Compared to VideoMAE, ARVideo presents significant
reductions in both GPU memory usage and training time—ARVideo reduces training cost by 12.4% (from
145 hours to 127 hours) and GPU memory consumption by 36.8% (from 41.3G to 26.1G). This advantage
stems from ARVideo’s shorter sequence length as we drop the last cluster in the autoregressive modeling.

Attention rank. The self-attention mechanism computes attention scores for a given input sequence, forming
what is known as the attention map. The rank of this matrix can serve as a measure of its ability to capture
complex patterns in the data. Typically, high-rank attention matrices suggest a model that can capture a
wide variety of patterns and relationships within the data, while low-rank matrices may suggest a model
that does not well utilize its full capacity or operates on simpler data (Wang et al., 2020). Following this
instruction, we plot the rank of the attention map in each layer of VideoMAE and our ARVideo in Figure 3.
We can observe that, across nearly all layers except the 6th, ARVideo maintains higher attention ranks than
VideoMAE, indicating a stronger representational ability of our model’s self-attention layers.
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case KT KH KW Something-Something V2
Token/Cube 1 1 1 64.0

spatial cluster 1 H
PH

H
PH

66.0
spatial cluster 1 7 7 66.2

temporal cluster T
PT

1 1 65.2
temporal cluster 2 1 1 65.6

spatiotemporal cluster 4 7 7 65.5
spatiotemporal cluster (ARVideo) 2 7 7 66.8

Table 6: Ablation study on the cluster shape.

4.3 Ablation Study

In this part, we ablate four factors—cluster shape, mask ratio, prediction order, and decoder design. Note
that, unless otherwise specified, all ablations are conducted on the ViT-B backbone with 200 epochs of
pretraining.

Cluster shape. We group neighboring and non-overlapped KT ×KH ×KW tokens into one cluster and analyze
the effect of different cluster shapes. Three situations are considered: 1) KT = KW = KH = 1, equivalent
to the TokenGPT, which pertains autoregressively at the token/cube level; 2) KT = T

PT
, KW = KH = 1,

representing a temporal cluster; and 3) KT = 1, KW = W
PW

, KH = H
PH

, representing a spatial cluster.

We report the results in Table 6. Firstly, we can observe that all clustered configurations significantly
enhance performance over the TokenGPT baseline. For example, simply grouping tokens into spa-
tial/temporal/spatiotemporal clusters yields 2.0%/2.2%/2.8% improvements, respectively. Then, when compar-
ing different clusters, we note that our spatiotemporal cluster (ARVideo) with KT = 2, KW = KH = 7 attains
the best performance of 66.8%, outperforming the best-performed spatial cluster (KT = 1, KW = KH = 7) by
0.8% and the best-performed temporal clusters (KT = 2, KW = KH = 1) by 1.2%. However, it is interesting
to note that, if a poorly designed spatiotemporal cluster (KT = 4, KW = KH = 7) is used, the performance
will drop to 65.5%.

Order SSv2
Spatial-First 65.6
Temporal-First 66.0
Spatial-temporal random 66.8

Table 7: Ablation study on the prediction
order.

Mask Ratio SSv2
75% 66.0
80% 66.8
90% 65.6
95% 64.8

Table 8: Ablation study on the mask ratio from 75%
to 95%.

Method Decoder Something-Something V2Self-Atten Cross-Atten
ARVideo ✓ 66.8
ARVideo ✓ ✓ 66.6

Table 9: Ablation study on the decoder architecture.

Prediction order. In our evaluation of prediction order, which plays an important role in constructing
the video sequence, we first check with the predefined spatial-first and temporal-first orders. As shown in
Table 7, temporal-first order achieves 66.0% top-1 accuracy, which is 0.4% higher than spatial-first order.
However, our randomized spatial-temporal prediction order, adept at learning both long- and short-range
spatial-temporal dynamics, exhibits a superior performance of 66.8%, surpassing the predefined spatial-first
approach by 1.2% and the temporal-first approach by 0.8%.
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Decoder Width Decoder Depth Something-Something V2
384 4 66.0
512 4 66.8
768 4 66.8
512 2 66.2
512 4 66.8
512 8 66.6

Table 10: Ablation study on the decoder depth and width.

Mask Ratio. To reduce the temporal redundancy, ARVideo randomly mask a portion of tokens as in Flip (Li
et al., 2023), MAE (He et al., 2022) and VideoMAE (Tong et al., 2022). We hereby check how the masking
ratio affects the overall performance. As shown in Table 8, our study starts from a mask ratio of 75% (i.e.,
same as the MAE’s setup), which achieves 66.0% top-1 accuracy. Increasing the mask ratio to 80% boosted
the top-1 accuracy to 66.8%, while further increases to 90% and 95% lower the top-1 accuracies by 1.2% and
2.0%, respectively. We stress that, although ARVideo used a lower mask ratio than VideoMAE, it still enjoys
faster training speeds and reduced GPU load (see Section 4.2 and Table 5).

Decoder Architecture. We hereby explore the effects of different decoder architectures. As reported in
Table 9, whether or not having self-attention in the decoder has little effect on performance (i.e., 66.6% vs.
66.8%), but excluding self-attention significantly reduces computational costs. Therefore, we take the decoder
without self-attention by default in ARVideo.

Decoder Width and Depth. Lastly, we systematically ablate two critical aspects in designing decoders: its
width and depth. We start with a four-layer decoder and follow the default setup in VideoMAE. As presented
in Table 10, increasing the decoder width shows performance improvement from 66.0% at a width of 384 to
66.8% at a width of 512. Further width increase makes the performance plateau. Meanwhile, in terms of
depth, deviations from the four-layer standard negatively impacted performance: e.g., increasing to eight
layers decreased performance by 0.2%, while reducing to two layers dropped performance by 0.6% (see the
last three rows in Table 10).

5 Conclusion

In this paper, we introduce ARVideo for self-supervised video representation learning, inspired by the
autoregressive principles of GPT in natural language processing. Diverging from conventional methods, our
approach innovatively uses video token clusters as the element for autoregressive prediction, significantly
reducing computational demands while still managing to capture essential spatial-temporal dynamics. This
advancement improves the efficiency of video data processing and sets a new paradigm for self-supervised
video representation learning. The promising results obtained from ARVideo underscore its potential and
advocate for further exploration and development of autoregressive pretraining methods within the video
domain.
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