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ABSTRACT

In pure exploration problems, a statistician sequentially collects information to
answer a question about some stochastic and unknown environment. The proba-
bility of returning a wrong answer should not exceed a maximum risk parameter
δ and good algorithms make as few queries to the environment as possible. The
Track-and-Stop algorithm is a pioneering method to solve these problems. Specif-
ically, it is well-known that it enjoys asymptotic optimality sample complexity
guarantees for δ → 0 whenever the map from the environment to its correct an-
swers is single-valued (e.g., best-arm identification with a unique optimal arm).
The Sticky Track-and-Stop algorithm extends these results to settings where, for
each environment, there might exist multiple correct answers (e.g., ϵ-optimal arm
identification). Although both methods are optimal in the asymptotic regime, their
non-asymptotic guarantees remain unknown. In this work, we fill this gap and
provide non-asymptotic guarantees for both algorithms.

1 INTRODUCTION

In pure exploration problems, a statistician interacts with a set of K ∈ N probability distributions
denoted by φ = {φi}i∈[K], commonly referred to as arms. Their unknown means are denoted by
µ = {µi}i∈[K], and µ belongs to some set M ⊆ RK which encodes some possibly known structure
among the different arms, e.g., Lipschitzianity (Wang et al., 2021) or unimodality (Poiani et al., 2024).
During each step t ∈ N, the statistician chooses an arm At, and observes a sample Xt ∼ φAt

from
the corresponding reward distribution. Given a maximum risk parameter δ ∈ (0, 1), the statistician
aims to answer a question about the unknown means µ while using as few samples as possible.
Specifically, there is a known answer space I and a (set-valued) answer function i⋆(µ) that maps
each bandit µ to a subset of correct answers i⋆(µ) within I. The probability of returning an answer
that does not belong to i⋆(µ) should not exceed δ.

The most studied pure exploration problem is Best-Arm Identification (BAI, Garivier & Kaufmann,
2016), where the answer space is {1, . . . ,K} and the goal is to return the unique index of the arm
with the highest mean, i.e., i⋆(µ) = argmaxk∈[K] µk. The pioneering work by Garivier & Kaufmann
(2016) developed a tight lower bound for the unstructured BAI problem and proposed the Track-and-
Stop (TAS) algorithm to solve it. Remarkably, the expected number of samples required by TAS
to identify i⋆(µ) with high probability exactly matches the lower bound as δ approaches 0. In this
sense, TAS is asymptotically optimal for δ → 0. These results have been shown to hold even outside
the BAI setting. Indeed, they extend to the more general structured partition identification problem
(Kaufmann & Koolen, 2021). Here, M is partitioned into a finite number |I| of disjoint subsets, i.e.,
M =

⋃
i∈I Mi, and the statistician aims to find i such that µ ∈ Mi. In this sense, TAS turned out

to be a powerful tool that can be used to solve a wide variety of problems (i.e., all the problems where
i⋆(µ) is unique) while enjoying asymptotic optimality. If there exists multiple correct answers for
a certain bandit µ, i.e., i⋆(µ) is multi-valued, TAS fails to achieve optimality (Degenne & Koolen,
2019). This is the case, for instance, of the ϵ-best arm identification problem, where multiple arms j
might satisfy µj ≥ argmaxk∈[k] µk − ϵ. To solve this issue, Degenne & Koolen (2019) proposed a
modification of the TAS algorithm called Sticky Track-and-Stop (S-TAS). S-TAS enjoys asymptotic
optimality for any pure exploration problem with multiple correct answers.

Due to their generality and strong theoretical guarantees, both TAS and S-TAS have become funda-
mental algorithms. However, as noted in several works the analysis of TAS is asymptotic in nature and
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does not offer insights into its non-asymptotic behavior (Barrier et al., 2022; Barrier, 2023; Jourdan
& Degenne, 2023; Poiani et al., 2024; Russo et al., 2025). Barrier (2023) suggest that this difficulty
arises from instability in the sampling rule when data are scarce: the sampling rule employed by
TAS can vary significantly early on, when estimated means have not yet concentrated around their
expectations. The problem is even more pronounced for S-TAS. Intuitively, this is due to the fact that
the algorithm is more complex, and that it samples the next arm in a TAS fashion.

In this work, we address the following question:

Can we characterize the non-asymptotic guarantees of TAS and S-TAS?

We answer this question by providing the first non-asymptotic bounds for both Track-and-Stop and
Sticky Track-and-Stop, shedding light on their behavior in the finite-confidence setting.

Importantly, from an empirical side, the performance of TAS has been benchmarked several times
(e.g., Degenne et al., 2019; Wang et al., 2021; Jourdan et al., 2022; Barrier et al., 2022). The results
have consistently shown that TAS obtains highly competitive sample complexity even in the moderate
regime of δ. Thus, the theoretical findings that we present here complement these results, showing
that TAS also enjoys finite-confidence guarantees. Furthermore, since S-TAS is, to the best of the
authors’ knowledge, the only algorithm in the literature that can solve arbitrary multiple answer
problems, our work also provides the first finite-confidence analysis for this general class of problems.

1.1 RELATED WORK

Single-Answer Problems and TAS Since the work by Garivier & Kaufmann (2016), which studied
the unstructured bandit problem, several works have extended TAS to several structured problems
(e.g., Moulos, 2019; Juneja & Krishnasamy, 2019; Kocák & Garivier, 2020; Kaufmann & Koolen,
2021; Poiani et al., 2024; Kanarios et al., 2024). In these works, the optimality analysis of TAS
remained asymptotic, as they build upon the approach of Garivier & Kaufmann (2016). Beyond TAS,
several other algorithms have been proposed in the literature that achieve asymptotic optimality for
best-arm identification and/or single-answer problems (Degenne et al., 2019; Ménard, 2019; Wang
et al., 2021; Barrier et al., 2022; Jourdan et al., 2022; Jourdan & Degenne, 2023). Moreover, some of
these works also establish non-asymptotic upper bounds on the expected number of samples required
for their algorithm to stop (Degenne et al., 2019; Barrier et al., 2022; Jourdan & Degenne, 2023;
Wang et al., 2021). Among these studies, the works most closely related to ours are Degenne et al.
(2019) and Barrier et al. (2022), which propose two distinct approaches that solve the aforementioned
instability issue of TAS. Precisely, Degenne et al. (2019) propose an optimistic version of TAS
that incorporates confidence intervals within the sampling rule. This comes at the cost of solving
a significantly more challenging optimization problem to decide the next arm to query. In contrast,
Barrier et al. (2022) stabilizes the sampling rule by “skewing” its behavior toward uniform exploration
when the amount of data collected is scarce. Crucially, both analyses rely on specific properties of
the algorithms they introduce, which makes them different from the original framework of Garivier
& Kaufmann (2016). To the best of our knowledge, our work is the first to provide non-asymptotic
guarantees for the original TAS algorithm without requiring any substantial modifications to it.

Multiple-Answer Problems and S-TAS When there are multiple correct answers, S-TAS (De-
genne & Koolen, 2019) offers a solution to pure exploration problems while enjoying asymptotic
optimality. However, to the best of our knowledge, there is no variant of S-TAS that achieves
finite-confidence guarantees in arbitrary multiple-answer problems. More broadly, we are not aware
of any algorithm providing finite-confidence guarantees for general multiple-answer problems. Prior
work has largely focused on specific subclasses of pure exploration problems. Among these, the most
studied one is ϵ-best arm identification (e.g., Even-Dar et al., 2002; Kalyanakrishnan et al., 2012;
Karnin et al., 2013; Kocák & Garivier, 2021; Jourdan et al., 2023; Jin et al., 2024). Nonetheless, none
of these studies can be applied to the general pure exploration setting of Degenne & Koolen (2019).

2 BACKGROUND

We focus on bandit problems φ = {φk}k∈[K] with K ∈ N arms, where φk is a probability
distribution with mean µk. We denote by µ = {µk}k∈[K] the vector of the means of the distributions.
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As usual in the literature (see e.g., Garivier & Kaufmann (2016); Degenne et al. (2019)), we focus on
distributions that belong to a canonical exponential family1 It is well known that such distributions
are fully characterized by their means. For convenience, we will refer to a bandit model φ directly
by its vector of means µ. We denote by Θ ⊆ R an open set that defines the possible means of the
distributions. We consider the general case where µ ∈ M ⊆ ΘK . This allows to include in our
analysis also structured settings such as Lipschitz (Wang et al., 2021) or unimodal bandits (Poiani
et al., 2024). Indeed, since M is any subset of ΘK , it can directly encode the constraints imposed by
these structures.2 Moreover, we assume a finite answer space I, along with access to a set-valued
function i⋆ : M 7!7! I, which maps each model µ ∈ M to the set of all the answers that are correct
for the bandit instance µ.

At each step t ∈ N, the learner chooses an action At ∈ [K] and observes a sample Xt ∼ φAt
.

Let Ft = σ(A1, X1, . . . At, Xt) be the σ-field generated by the interactions with the bandit model
up to time t. Then, a pure exploration algorithm receives as input a confidence level δ ∈ (0, 1),
and implements the following procedures: (i) a Ft−1-measurable sampling rule which selects
the action At ∈ [K] based on the past observations, (ii) a stopping rule τδ which is a stopping
time w.r.t. (Ft)t∈N and controls the end of the data acquisition phase, and (iii) a Fτδ -measurable
recommendation rule ı̂τδ ∈ I that denotes the guess of the statistician for a correct answer for µ. A
pure exploration algorithm is δ-correct on M if it satisfies Pµ(̂ıτδ /∈ i⋆(µ)) ≤ δ for all µ ∈ M. The
goal is building algorithms which are δ-correct and that minimize the expected stopping time, i.e.,
Eµ [τδ] =

∑
k∈[K] Eµ[Nk(τδ)], where Nk(t) is the number of samples collected for arm k ∈ [K] up

to time t. In the following, we denote by N(t) the vector (N1(t), . . . , NK(t)).

Additional Notation For a given set X , we denote by cl(X ) its closure. Furthermore, for all i ∈ I ,
we denote by ¬i = {λ ∈ M : i /∈ i⋆(λ)}. In words, ¬i represents the set of bandit models for
which i is not a correct answer. Without loss of generality, we assume that for all µ ∈ M, there
exists i ∈ i⋆(µ) such that µ /∈ cl(¬i).3 Furthermore, for distributions with means p and q, we write
d(p, q) to denote their KL divergence. Moreover, for a distribution with mean p, we denote by νp
the corresponding natural parameter within the exponential family. For n ∈ N, ∆n denotes the
n-dimensional simplex. Finally, consider two topological spaces X and Y , and consider a set-valued
function F : X 7!7! Y that maps each x ∈ X to F (x) ⊆ Y . We say that F is upper hemicontinuous,
if for all x ∈ X and any open set V ⊆ Y such that F (x) ⊆ V , there exists a neighbourhood U of x
such that, for all x′ ∈ U , F (x′) is a subset of Y (Aubin, 1999).

Lower Bound for Single-Answer Problems Let us focus on the case where i⋆(µ) is unique for
all µ ∈ M. Lower bounds for these problems can be derived following the arguments presented
in Garivier & Kaufmann (2016). Specifically, for any δ-correct algorithm, it holds that Eµ[τδ] ≥
T ⋆(µ) log(1/(2.4δ)) (see Appendix B for a formal statement), where:

T ⋆(µ)−1 = sup
ω∈∆K

inf
λ∈¬i⋆(µ)

∑
k∈[K]

ωkd(µk, λk) (1)

= sup
ω∈∆K

max
i∈I

inf
λ∈¬i

∑
k∈[K]

ωkd(µk, λk). (2)

T ⋆(µ)−1 can be interpreted as a max-min game where the max player plays a sampling strategy ω to
quickly identify the correct answer i⋆(µ), and the min-player chooses a confounding instance λ ∈ M
where the correct answer changes (Degenne et al., 2019). The convex set of weights that attains the
argmax in T ⋆(µ)−1 are denoted by ω⋆(µ) and takes the name of oracle weights. Here, convexity
simply follows from the fact T ⋆(µ)−1 is a supremum over functions that are linear in ω. We note that
we provided two expressions for T ⋆(µ)−1. Equation (1) is the one that most frequently appears in
the literature (e.g., Garivier & Kaufmann (2016)). Equation (2) is a rewriting that allows to generalize
the expression of T ⋆(µ)−1 to bandit models µ’s that fall outside M, as i⋆(µ) is formally defined

1These include Gaussian with known variance and Bernoulli distributions. See Cappé et al. (2013).
2For completeness, we show in Appendix A how to encode these structures through M.
3It is easy to verify from the lower bounds that, whenever this assumption is not satisfied, one obtains infinite

sample complexity. This requirement is usually implicitly satisfied in the literature, e.g., argmaxk∈[K] µk is
unique over M in best-arm identification problems (Degenne & Koolen, 2019), and the different sets Mj are
open and disjoint in the partition identification problem (Wang et al., 2021).
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only for µ ∈ M. This is important from an algorithmic perspective as it allows us to generalize
the definition of oracle weights to models that are not in M.4 Furthermore, as we shall see, it will
also play an important role in our analysis. Finally, since the problem is single-answer, then for all
µ ∈ M the argmax over the different answers is attained only at i = i⋆(µ).

Lower Bound for Multiple-Answer Problems Lower bounds for multiple-answer problems were
established by Degenne & Koolen (2019). Specifically, the authors shows that, for any δ-correct
algorithm and any µ ∈ M, it holds that lim infδ→0

Eµ[τδ]
log(1/δ) ≥ T ⋆(µ), where T ⋆(µ)−1 is given by

(formal statement in Appendix B):

T ⋆(µ)−1 = sup
ω∈∆K

max
i∈i⋆(µ)

inf
λ∈¬i

∑
k∈[K]

ωkd(µk, λk) (3)

= sup
ω∈∆K

max
i∈I

inf
λ∈¬i

∑
k∈[K]

ωkd(µk, λk). (4)

We have introduced two expressions for T ⋆(µ)−1: one that only applies to models within M (Equa-
tion (3)), and another that extends the definition to models outside M (Equation (4)). While these
results closely resemble those of single-answer problems, a few differences need to be highlighted.
First, this lower bound only holds in the asymptotic regime of δ → 0. Second, the argmax in T ⋆(µ)−1

over the different answers can be attained at multiple points. Specifically, let iF (µ) be the set of
answers that attain the argmax, i.e., iF (µ) = argmaxi∈I supω∈∆K

infλ∈¬i

∑
k∈[K] ωkd(µk, λk).

Then, while for single answer problems |iF (µ)| = |i⋆(µ)| = 1 for all µ ∈ M, in multiple an-
swer problems it can happen that |iF (µ)| > 1. Since it plays a crucial role in our results, we
emphasize that the correspondence µ 7!7! iF (µ) is upper hemicontinuous (Theorem 4 of Degenne
& Koolen (2019)). Finally, we mention that the oracle weights ω⋆(µ) are no longer a convex
set when |iF (µ)| > 1. Instead, we have that ω⋆(µ) =

⋃
i∈iF (µ) ω

⋆(µ,¬i), where each element
ω⋆(µ,¬i) := argmaxω∈∆K

infλ∈¬i

∑
k∈[K] ωkd(µk, λk) is a convex set.

Track-and-Stop Track-and-Stop (TAS, Garivier & Kaufmann, 2016) works as follows. After a first
phase where each arm k ∈ [K] is pulled once, TAS computes, at each round t, the empirical oracle
weights ω(t) ∈ ω⋆(µ̂(t)), where µ̂k(t) = Nk(t)

−1
∑t

s=1 1{As = k}Xs denotes the empirical
estimate of µk at time t. Then, TAS applies a tracking procedure on {ω(t)}t to select the next action.
Specifically, the C-Tracking procedure projects each ω(t) onto ∆ϵs

K = ∆K ∩ [ϵs, 1]
K according to the

ℓ∞ norm. This projection takes the name of forced exploration, as it ensures that Nk(t) ≳
√
t for all

k ∈ [K] for ϵt ≈ t−1/2. The next action is selected as At+1 ∈ argmaxk∈[K]

∑t
s=K ω̃k(s)−Nk(t),

where each ω̃(s) denotes the projection of ω(s). Regarding the stopping and recommendation
rules, TAS halts as soon as maxi∈I infλ∈¬i

∑
k∈[K] Nk(t)d(µ̂k(t), λk) ≥ βt,δ, and recommends

an index that attains the argmax in the stopping rule. By calibrating the threshold βt,δ (typically,
βt,δ ≈ log(1/δ) + K log(t); see e.g., Kaufmann & Koolen (2021) for a complete expression of
βt,δ) one can prove that those stopping and recommendation rules yield δ-correctness (both for
single and multiple-answer problems) when paired with any sampling rule.5 TAS enjoys asymptotic
optimality guarantees whenever |iF (µ)| = 1, i.e., lim supδ→0

Eµ[τδ]
log(1/δ) ≤ T ⋆(µ). However, this

does not hold for |iF (µ)| > 1 (Degenne & Koolen, 2019). The reason is that its sampling rule
ensures that the empirical pull strategy N(t)/t converges (on a good event) to the convex hull of
the oracle weights, i.e., infω∈conv(ω⋆(µ)) ∥N(t)/t− ω∥ → 0.6 When |iF (µ)| = 1, this convex hull
coincides with ω⋆(µ), and this leads to optimality. However, this is not generally true in the context
of multiple-answer problems.

Sticky Track-and-Stop To solve this issue, Degenne & Koolen (2019) proposed the Sticky Track-
and-Stop (S-TAS) algorithm. The stopping and recommendation rules are the same used by TAS.
As for the sampling rule, S-TAS defines a confidence region Ct around µ̂(t), i.e., Ct = {λ ∈ M :∑

k∈[K] Nk(t)d(µ̂k(t), λk) ≤ 8K log(t)},and computes a set It of candidate answers as follows:

4Indeed, we observe that an empirical estimate of µ might not belong to M.
5For completeness, we report a formal statement and a proof in Lemma 10.
6See Lemma 6 and Theorem 7 in Degenne et al. (2019).
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It =
⋃

λ∈Ct
iF (λ). Then, S-TAS selects an answer it ∈ It according to some pre-specified total

order over I, and it computes ω(t) ∈ ω⋆(µ̂(t),¬it) for the selected answer it. Finally, it selects
the next action At by applying the C-Tracking sampling rule over the sequence {ω(t)}t. The main
idea behind S-TAS is that, due to the upper-hemicontinuity of µ 7!7! iF (µ), the set I will eventually
collapse (under a good event) to iF (µ) for sufficiently large t. Then, since it is chosen according to a
pre-specified total order over I , it will be fixed to some ı ∈ iF (µ), and the C-Tracking sampling rule
will ensure that infω∈ω⋆(µ,¬ı) ∥N(t)/t − ω∥ → 0. As shown by Degenne & Koolen (2019), this
property leads asymptotic optimality both in single and multiple-answer problems.

3 NON-ASYMPTOTIC BOUND FOR TRACK-AND-STOP

First, we present two assumptions that we will use in our analysis.

Assumption 1 (Sub-Gaussian Arms). Arms belongs to a σ2-sub-Gaussian exponential family, i.e.,
for all µ, µ′ ∈ Θ, it holds d(µ, µ′) ≥ (µ−µ′)2

2σ2 .

Assumption 2 (Bounded parameters). There exists [µmin, µmax] ⊂ Θ such that M ⊂ [µmin, µmax].

Both Assumptions 1 and 2 are mild requirements that have been frequently adopted in the literature;
see e.g., Degenne et al. (2019; 2020); Jourdan et al. (2021); Poiani et al. (2024). Assumption 1 is
used primarily for concentration arguments. Assumption 2 implies that, for any two distributions p
and q within [µmin, µmax] it holds that d(p, q) ≤ L and |νp − νq| ≤ D, for some constants L and D.
These two properties are the main reason for introducing Assumption 2 in our analysis.7

Before introducing our result, we make a minor modification to the TAS algorithm that allows for a
simpler analysis. Specifically, instead of computing ω(t) ∈ ω⋆(µ̂(t)), it computes ω(t) ∈ ω⋆(µ̃(t)),
where µ̃(t) denotes the orthogonal projection of µ̂(t) onto [µmin, µmax]

K .8 This modification is only
required to ensure that d(µ̃k(t), ·) “well-behaves” whenever t is small. Such projection has already
been adopted in sampling rules for algorithms that provide finite-confidence guarantees, see, e.g.,
the regret minimization approach presented in Degenne et al. (2019). More formally, its purpose
is ensuring that d(µ̃k(t), λ) is bounded for all steps and any λ ∈ [µmin, µmax]. We note that this
modification is only needed to handle pathological cases that might arises when dealing with arbitrary
canonical exponential families and it is not needed, e.g., when the family of distributions is Gaussian.
Later in this section, we discuss how to drop the projection step and how this affects the resulting
guarantees. We are now ready to state our finite-confidence result for TAS.

Theorem 1 (Non-Asymptotic Bound for TAS). Let i⋆(·) be single-valued, and suppose that As-
sumption 1 and Assumption 2 hold. Then, the expected stopping time of TAS satisfies Eµ[τδ] ≤
2eK + 10K4 + T0(δ), where T0(δ) is given by

T0(δ) = inf
{
t ∈ N : βt,δ ≤ tT ⋆(µ)−1 − g(t)

}
, (5)

where g(t) = 64σDLK2 log(K)
√

t log2(t) + 16σD
√

Kt3/2 log(t).

Theorem 1 provides the finite-confidence bound on the performance of TAS. First, we note that
the upper bound is expressed as a sum of three terms, i.e., 2eK, 10K4 and T0(δ). The first two δ-
independent terms are artifact of the analysis and their origin is detailed in the proof sketch provided
below. The last and more important term, T0(δ), is a function of δ, which essentially captures
how quickly the quantity maxi∈I infλ∈¬i

∑
k∈[K] Nk(t)d(µ̂k(t), λk) is approaching the stopping

threshold βt,δ. Indeed, tT ⋆(µ)−1 − g(t) is essentially a lower bound (under a good event) on the
aforementioned optimization problem: when this quantity exceeds βt,δ, TAS stops. In other words,
T0(δ) measures how fast TAS is gathering information to discriminate i⋆(µ) from all the other
candidate answers. By re-arranging the condition in Equation (5), i.e., βt,δ + g(t) ≤ tT ⋆(µ)−1,
we can see that the r.h.s. grows linearly in t, while the l.h.s. is growing sub-linearly with a rate of
O(log(1/δ) + t3/4).9 This ensures that T0(δ) is finite and that Theorem 1 recovers the asymptotic

7We refer the interested reader to Appendix C for further details.
8Note that, since M is know by definition, so are µmin and µmax. In other words, this kind of modification

does not require additional knowledge of the problem.
9Here, we plugged in βt,δ ≈ log(1/δ) +K log(t).
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optimality of TAS whenever δ → 0. Finally, although T0(δ) is defined somehow implicitly, in
Appendix G we derive a further upper bound that highlights that the scaling is T ⋆(µ) log(1/δ) up to
polylogarithmic factors and constant terms.

Proof Sketch As we discussed, the original analysis of TAS is asymptotic in nature. In
contrast, we follow a different path which is inspired by finite-confidence analysis in the
literature, e.g., Degenne et al. (2019); Jourdan & Degenne (2023). In particular, we con-
duct the analysis under a sequence of good events {Et}t. Specifically, we consider Et ={
∀s ∈

[
⌈
√
t⌉, t

]
:
∑

k∈[K] Nk(s)d(µ̂k(s), µk) ≤ 8K log(s)
}

. This sequence of events has two de-

sirable properties. First, one can show that
∑+∞

t=3 Pµ(Ec
t ) ≤ 2eK (see Lemma 9). Second, as

we discuss below, there exists a time T̄ such that for all t ≥ T̄ , Et implies stopping, namely
Et ⊆ {τδ ≤ t}. Using these two properties one obtains that Eµ[τδ] ≤ T̄ + 2eK (see Lemma 1).
In the remainder of the proof, we will show how T̄ := T0(δ) + 10K4 satisfies the require-
ment mentioned earlier. Before doing that, we introduce some additional notation. Recall that
ω(s) ∈ argmaxω∈∆K

maxi∈I infλ∈¬i

∑
k∈[K] ωkd(µ̃k(s), λk). Then, we denote by is ∈ I any

answer that attains the argmax when paired with ω(s).

Now, the key idea is analyzing the stopping rule of TAS and, in particular, lower bounding
maxi∈I infλ∈¬i

∑
k∈[K] Nk(t)d(µ̂k(t), λk) to obtain tT ⋆(µ)−1 − g(t). To this end, as we shall

see, the crucial step is approximating (up to a sublinear in t factor) the max-min problem
of the stopping rule with what TAS uses in the sampling rule in each round s ≥

√
t, i.e.,

infλ∈¬is

∑
k∈[K] ωk(s)d(µ̃k(s), λk). Further comments on this are provided right after the proof

sketch. Now, for any t ≥ 10K4,10 if TAS has not stopped at time t, then the following holds:

βt,δ > inf
λ∈¬i⋆(µ)

∑
k∈[K]

Nk(t)d(µ̂k, λk) (Stopping Rule)

≳
t∑

s=1

inf
λ∈¬i⋆(µ)

∑
k∈[K]

ωk(s)d(µk, λk)− Õ(
√
t) (Et + C-Tracking)

≥
t∑

s=1

inf
λ∈¬is

∑
k∈[K]

ωk(s)d(µk, λk)− Õ(
√
t).

Here, C-tracking ensures that N(t) ≈
∑t

s=1 ω(s), and under the event Et we have d(µ̂k(t), ·) ≈
d(µk, ·). In the last step, we have used that if is = i⋆(µ) then the claim is trivial, and
if is ̸= i⋆(µ), then, µ ∈ ¬is. We observe that this argument explicitly relies on the fact
that i⋆(µ) is single-valued.11 Now, we analyze the information accumulated by TAS by lower
bounding

∑t
s=1 infλ∈¬is

∑
k∈[K] ωk(s)d(µk, λk). Using the definition of Et and the fact that

µ̃k(s) ∈ [µmin, µmax],12 we have that
t∑

s=1

inf
λ∈¬is

∑
k∈[K]

ωk(s)d(µk, λk) ≳
∑
s≥

√
t

inf
λ∈¬is

∑
k∈[K]

ωk(s)d(µ̃k(s), λk)− Õ(
√
t).

We have reached our goal of lower bounding the stopping rule of TAS with its sampling rule. Using
the definition of is and ω(s), this allows for the following inequalities:∑

s≥
√
t

inf
λ∈¬is

∑
k∈[K]

ωk(s)d(µ̃k(s), λk) =
∑
s≥

√
t

sup
ω∈∆K

max
i∈I

inf
λ∈¬i

∑
k∈[K]

ωk(s)d(µ̃k(s), λk)

≥
∑
s≥

√
t

inf
λ∈¬i⋆(µ)

∑
k∈[K]

ω⋆
kd(µ̃k(s), λk) (for ω⋆ ∈ ω⋆(µ))

= (t−
√
t− 1)T ⋆(µ)−1 − Õ(

√
t3/2), (By Et)

10This requirement is due to some technical step that is used at the end of the proof.
11This is important to be noted, otherwise it might seems that TAS achieves asymptotically optimal results

even in problems with multiple correct answers.
12This is needed to upper bound d(µ̃k(s), λk)− d(µk, λk). Indeed, d(µ̃k(s), λk)− d(µk, λk) ≤ (νµ̃k(s) −

νλk )|µ̃k(s)− µk| ≤ D|µ̃k(s)− µk| since µ̃(s),λ ∈ [µmin, µmax].

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

where the second step holds for any ω⋆ ∈ ω⋆(µ) and the last one requires an algebraic step that
requires t ≥ 10K4. Intuitively, however, this last step is still using the fact that d(µ̃k(s), ·) ≈ d(µk, ·)
under the good event. Chaining together all the terms within the Õ(·) yields the desired result.

The proof idea As anticipated above, the main idea is approximating up to a sub-linear in t factor,
the condition used in the stopping rule with the quantity

∑
s≥

√
t infλ∈¬is

∑
k∈[K] ωk(s)d(µ̃k(s), λk),

which is what TAS uses in its sampling rule. Once this is done, we can use the definition of ω(s)
and is to introduce the optimal weights ω⋆ for the underlying unknown problem and the infimum
over ¬i⋆(µ). Importantly, we observe that the generalization of ω⋆ that we provided in Equation (2)
played a crucial role. Finally, by upper-bounding the difference between d(µ̃k(s), λk) and d(µk, λk),
we introduce T ⋆(µ)−1, which is the desired quantity as it allows to recover the asymptotic optimality.

Removing projection step We discuss how to obtain finite-confidence guarantees for a version of
TAS that does not use projection in the sampling rule, i.e., exactly the version of TAS by Garivier
& Kaufmann (2016). Before that, we make a remark on Assumption 2. Let µ ∈ M and let
Fk = min{|µk − µmin|, |µk − µmax|} and F = mink∈[K] Fk. Then, since Θ is an open interval and
since [µmin, µmax] is closed, it follows that Fk > 0 ∀k ∈ [K], and thus F > 0. That being said, the
simplest way to analyze TAS without projection follows by noticing that there exists a time TM ∈ N
such that, for all t ≥ TM, on Et, it holds that µ̂(s) ∈ [µmin, µmax] for all s ≥

√
t (see Lemma 3 in

Appendix E). TM depends only M and its distance F from the interval [µmin, µmax]; precisely:

TM = max

{
10K4, inf

{
n ∈ N :

√
64σ2K log(n)√√
n+K2 − 2K

≤ F

}}
. (6)

This allows us analyze the stopping time under a good event in the same way that we did above.
Indeed, it is sufficient that d(µ̂k(s), ·) well-behaves only at steps s ≥

√
t. Thus, the only difference

with respect to Theorem 1 would be the additional term TM in the upper bound of Eµ[τδ].

4 NON-ASYMPTOTIC BOUND FOR STICKY TRACK-AND-STOP

In this section, we present the finite-confidence analysis of S-TAS. As for TAS, we will rely on
Assumptions 1 and 2. Furthermore, for reasons similar to those discussed above, we consider a
slightly modified version of S-TAS that incorporates a projection into its sampling rule. Specifically,
the algorithm computes ω(s) ∈ ω⋆(µ̃(s),¬is).13 The following theorem summarizes our result.
Theorem 2 (Non-Asymptotic Bound for Sticky-TAS). Suppose that Assumption 1 and Assumption 2
hold. Let ϵµ > 0 be any number such that, for all µ′ : ∥µ − µ′∥∞ ≤ ϵµ, it holds that iF (µ′) ⊆
iF (µ) ∪ (I \ i⋆(µ)), and let Tµ ∈ N be defined as follows:

Tµ = max

{
10K4, inf

{
n ∈ N :

√
64Kσ2 log(n)√√
n+K2 − 2K

}
≤ ϵµ

}
.

Then, it holds that Eµ[τδ] ≤ 2eK + 10K4 + T0(δ), where T0(δ) is given by

T0(δ) = inf
{
t ∈ N : βt,δ ≤ (t− Tµ)T

⋆(µ)−1 − g(t)
}
,

where g(t) = 80σDLK2 log(K)
√

t log2(t) + 32σD
√

Kt3/2 log(t).

Theorem 2 provides a finite-confidence bound for S-TAS in multiple-answer problems. As one can
notice, the result is similar in nature to what we presented for TAS in Theorem 1. In particular, the
expression of T0(δ) is similar to that of TAS, and, for the same reasons outlined in Section 3, this
allows us to recover the asymptotic optimality guarantees of Degenne & Koolen (2019) whenever
δ → 0.14 The main difference between Theorem 1 and Theorem 2 is the presence of an additional
problem-dependent constant TµT

⋆(µ)−1 within the expression of T0(δ). As our proof will reveal,

13Using the same argument that we discussed in Section 3, it is possible to analyze the version of S-TAS that
does not use projection. The sample complexity results differs only by the additional term TM.

14As we did for TAS, in Appendix G we provide an explicit upper bound on T0(δ).
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Tµ is the time that is needed by S-TAS (under the good event) to distinguish iF (µ) ∪ (I \ i⋆(µ))
from i⋆(µ) \ iF (µ). In other words, from that point on, under Et, all the candidate models µ′ within
the confidence region Cs satisfy iF (µ

′) ⊆ iF (µ) ∪ (I \ i⋆(µ)) for all s ≥
√
t. Indeed, whenever

t ≥ Tµ it will be possible to link the stopping rule to T ⋆(µ)−1 (with some sub-linear terms) as we
did for TAS.15 Finally, we shortly comment on the nature of Tµ. In particular, the existence of ϵµ > 0
is guaranteed by the upper hemicontinuity of the set-valued function i⋆(µ). Our claim holds for any
ϵµ that satisfies ∀µ′ : ∥µ−µ′∥∞ ≤ ϵµ =⇒ iF (µ

′) ⊆ iF (µ)∪ (I \ i⋆(µ)), and hence the tightest
bound is obtained for the largest possible ϵµ. Now, we present a proof sketch of the result.

Proof Sketch As we did for TAS, the analysis is carried out under a sequence of good events
{Et}t which are exactly the ones that we considered when proving Theorem 1. As above, we will
show that for T̄ = 10K4 + T0(δ) and t ≥ T̄ , we have that Et ⊆ {τδ ≤ t}. As a consequence,
Eµ[τδ] ≤ 2eK + 10K4 + T0(δ). To do this, the main idea is lower bounding the condition used in
the stopping rule with what S-TAS uses in the sampling rule. First, we state an intermediate result,
which is a consequence of (i) the forced exploration of S-TAS, (ii) the definition of the region Ct of
candidate models, and (iii) the upper hemicontinuity of the set-valued function iF (µ). Specifically,
in Lemma 4 we prove that, ∀t ≥ Tµ, on Et, it holds that:

iF (µ
′) ⊆ iF (µ) ∪ (I \ i⋆(µ)) ∀s ≥

√
t and µ′ ∈ Cs. (7)

Indeed, by upper hemicontinuity, models µ′ similar to µ have answers in iF (µ
′) which are “close” to

the ones in iF (µ), and models in Ct shrink toward µ due to the forced exploration of the algorithm.

We now analyze the amount of information that is gathered by S-TAS under the good event Et. Let
t ≥ 10K4 and let T̃ = max{⌈

√
t⌉, Tµ}. Denote by ı ∈ I, the answer that is selected from iF (µ) by

the pre-specified total order over I . Then, for t ≥ 10K4, if S-TAS has not stopped at t, we have that:

βt,δ ≳
t∑

s=1

inf
λ∈¬ı

∑
k∈[K]

ωk(s)d(µk, λk)− Õ(
√
t) (8)

≥
t∑

s=T̃

inf
λ∈¬is

∑
k∈[K]

ωk(s)d(µk, λk)− Õ(
√
t), (9)

where the first step is due to concentration and C-Tracking, and the second one uses Equation (7).
Indeed, for s ≥ T̃ , either is = ı (and in this case the claim is trivial), or is ̸= ı. In this second
case, from Equation (7) we have that is /∈ i⋆(µ) and, therefore, µ ∈ ¬is. Now, by concentration
arguments (i.e., d(µ̃k(s), ·) ≈ d(µk, ·)), and using the definition of ω(s), we have that:

t∑
s=T̃

inf
λ∈¬is

∑
k∈[K]

ωk(s)d(µk, λk) ≳
t∑

s=T̃

inf
λ∈¬is

∑
k∈[K]

ωk(s)d(µ̃k(s), λk)− Õ(
√
t)

=
t∑

s=T̃

max
ω∈∆K

inf
λ∈¬is

∑
k∈[K]

ωkd(µ̃k(s), λk)− Õ(
√
t).

The next step is crucial for relating the amount of gathered information to T ⋆(µ)−1. Let µ′(s) ∈ Cs

be such that is ∈ iF (µ
′(s)). From concentration arguments and the definition of µ′(s), we have that:

t∑
s=T̃

max
ω∈∆K

inf
λ∈¬is

∑
k∈[K]

ωkd(µ̃k(s), λk) ≳
t∑

s=T̃

max
ω∈∆K

inf
λ∈¬is

∑
k∈[K]

ωkd(µ
′
k(s), λk)− Õ

(√
t3/2

)

=

t∑
s=T̃

max
ω∈∆K

max
i∈I

inf
λ∈¬i

∑
k∈[K]

ωkd(µ
′
k(s), λk)− Õ

(√
t3/2

)

≥
t∑

s=T̃

inf
λ∈¬ı

∑
k∈[K]

ω⋆
kd(µ

′
k(s), λk)− Õ

(√
t3/2

)
,

15It is interesting to note that in our proof we are not using Is = iF (µ), i.e., that S-TAS has actually “sticked”
to an answer in iF (µ). Instead, it is sufficient that Is excludes answers in i⋆(µ) that are not within iF (µ).
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for any ω⋆ ∈ ω⋆(µ,¬ı). The first step follows by observing that d(µ̃k(s), ·) can be upper-bounded
by d(µ̂k(s), ·), and d(µ̂k(s), ·) ≈ d(µ′(s), ·) since µ′(s) ∈ Cs by definition. Then, the proof is
simply concluded by noticing that:

t∑
s=T̃

inf
λ∈¬ı

∑
k∈[K]

ω⋆
kd(µ

′
k(s), λk) ≳

t∑
s=T̃

inf
λ∈¬ı

∑
k∈[K]

ω⋆
kd(µk, λk)− Õ(

√
t3/2)

= (T − T̃ )T ⋆(µ)−1 − Õ(
√

t3/2),

where the first step follows from concentration arguments and the fact that µ′(s) ∈ Cs. Rearrenging
all the terms yields the desired result.

The proof idea As for TAS, the general idea is approximating with sub-linear terms the stopping
rule with

∑t
s=T̃ infλ∈¬is

∑
k∈[K] ωk(s)d(µ̃k(s), λk), that is what S-TAS uses in its sampling rule.

Now, there are two key differences with respect to Theorem 1. First, to reach such objective we need
to consider sufficiently large timesteps, i.e., s ≥ T̃ . The issue is that when s is small, the S-TAS
sampling rule has no control over the selected answers is (apart from a generic total order over I).
This does not allow to easily switch from ¬ı to ¬is, i.e., the step from Equation (8) to Equation (9).
Second, once we have obtained

∑t
s=T̃ infλ∈¬is

∑
k∈[K] ωk(s)d(µ̃k(s), λk), this does not allow us

to directly introduce ω⋆(µ,¬ı) and ¬ı as we did for TAS. An intermediate step is necessary. This
requires studying the difference between d(µ̃k(s), ·) and d(µ′

k(s), ·). The reason is that is is an
answer that attains the argmax only when paired with a model µ′(s) ∈ Cs such that is ∈ iF (µ

′(s)).

S-TAS in single-answer problems Whenever i⋆(µ) is single-valued, the dependency on Tµ can be
removed as the step from Equation (8) and Equation (9) follows directly from the fact that |i⋆(µ)| = 1
(as we did for TAS). Thus, one would obtain a result identical to Theorem 1 (i.e., the same bound up
to constant multiplicative terms). Nonetheless, we actually note that the two proofs are still different,
and the reason is the different sampling rules adopted by the two algorithms. Specifically, in S-TAS
is is an answer in iF (µ

′(s)) for some µ′(s) ∈ Cs and ω(s) ∈ ω⋆(µ̃(s),¬is). On the other hand,
TAS directly uses ω(s) ∈ ω⋆(µ̃(s),¬is) for is ∈ iF (µ̃(s)).

On the behavior of S-TAS It is interesting to observe that our proof differs significantly from
the one of asymptotic optimality by Degenne & Koolen (2019). Beyond the obvious distinction
(i.e., our analysis is non-asymptotic), we also note that the proof of Theorem 2 does not rely on
what N(t)/t converges to, nor does it exploit the convexity of the set ω(µ,¬ı), which instead were
key components in the analysis of Degenne & Koolen (2019). Instead, we only reason in terms of
“information” collected by S-TAS by analyzing values of functions of the form

∑
k∈[K] ωkd(·, ·).

5 CONCLUSION

This work provided the first finite-confidence characterization of the performance of Track-and-Stop
and Sticky Track-and-Stop, two general algorithms that are able to solve optimally a large spectrum
of pure exploration settings. Overall, we solve two open problems in the literature. First, Theorem 1
sheds light on the finite-confidence guarantees of TAS, thus providing theoretical support on why
the algorithm usually enjoys good performance in practice. Secondly, Theorem 2 provides the first
finite-confidence guarantees for the general multiple-answer setting. To conclude, we note that
our results (Theorem 1 and Theorem 2) have simple and natural proofs, and they both recover the
asymptotic optimality whenever δ goes to 0.

Several questions remain open. For instance, is it possible to improve the finite-confidence analysis of
Sticky Track-and-Stop by removing the presence of the problem constant Tµ? We conjecture that this
would require to slightly modify the sampling rule. Indeed, by selecting answers it more strategically
than using any total order over I (e.g., using optimism) might lead to stronger finite-confidence
results and, eventually, more competitive performance. Furthermore, there remains a gap between
lower and upper bounds in the finite-confidence regime (Degenne et al., 2019; Wang et al., 2021;
Barrier et al., 2022; Jourdan & Degenne, 2023; Jourdan et al., 2023). Future work should focus on
developing a complete characterization of the finite-confidence regime and closing this gap.
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REPRODUCIBILITY STATEMENT

The nature of this work is theoretical. We precisely stated and discussed the assumptions that are
required to derive our result in the main text (see Assumptions 1 and 2), and we further discussed the
assumptions in Appendix C. In the main text, we provided proof sketches for both Theorem 1 and
Theorem 2, and we included complete proofs in Appendix D and Appendix F.
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A STRUCTURED BANDITS

For completeness, we now show that how to encode known structure such as Lipschitzianity and
unimodality through M.

We first focus on the the best-arm identification problem in Lipshitz bandit with finite arms, i.e., the
same setting studied in (Wang et al., 2021). This structure can be formalized as follows:

M = {µ ∈ [µmin, µmax]
K : ∃i s.t. µi > µk,∧ ∀k, k′, |µk − µk′ | ≤ ∥ak − ak′∥∞},

where l > 0 is a known constant, ak ∈ Rd are the known feature vectors for the arms, and
[µmin, µmax] are the boundary parameters that we introduced in Assumption 2.

Next, we consider the unimodal setting of Poiani et al. (2024). In this case, we have that:

M = {µ ∈ [µmin, µmax]
K : ∃i ∈ [K] : µi > µi+1 ≥ · · · ≥ µK ∧ µi > µi−1 ≥ · · · ≥ µ1}.

In other words, each bandit is characterized by an unknown index i such that, the arms’ mean will
consistently decrease both after and before i.

This reasoning can also be extended to other structures such as the dueling bandit formulation of
Wang et al. (2021).

B LOWER BOUND

B.1 SINGLE-ANSWER PROBLEMS

In this section, we provide a formal statement of the lower bound for single-answer problems.

The following result follows the same arguments of Theorem 1 in Garivier & Kaufmann (2016).
Since we provide two different expressions for T ⋆(µ), we also report a proof for completeness.
Proposition 1 (Lower Bound for Single-Answer Problems Garivier & Kaufmann (2016)). Suppose
that |i⋆(µ)| = 1 for all µ ∈ M. Let δ < 0.15. For any µ ∈ M and any δ-correct algorithm, it holds
that Eµ[τδ] ≥ T ⋆(µ) log(1/(2.4δ)).

Proof. Let µ ∈ M and λ ∈ ¬i⋆(µ). Then, from change of distribution arguments (i.e., Lemma 1 in
Kaufmann et al. (2016)) and the δ-correctness of the algorithm, we have that:∑

k∈[K]

Eµ[Nk(τδ)]d(µk, λk) ≥ log(1/(2.4δ)).

Applying this result for all λ ∈ ¬i⋆(µ) and since µ /∈ cl(¬i⋆(µ)), we have that:

log(1/(2.4δ)) ≤ inf
λ∈¬i⋆(µ)

∑
k∈[K]

Eµ[Nk(τδ)]d(µk, λk)

= Eµ[τδ] inf
λ∈¬i⋆(µ)

∑
k∈[K]

Eµ[Nk(τδ)]

Eµ[τδ]
d(µk, λk)

≤ Eµ[τδ] sup
ω∈∆K

inf
λ∈¬i⋆(µ)

∑
k∈[K]

ωkd(µk, λk)

= Eµ[τδ] sup
ω∈∆K

max
i∈I

inf
λ∈¬i

∑
k∈[K]

ωkd(µk, λk),

where, the last step follows from the fact that, for all i ̸= i⋆(µ), µ ∈ ¬i, and, hence
infλ∈¬i

∑
k∈[K] ωkd(µk, λk) = 0. The proof then follows by the definition of T ⋆(µ) together

with the fact that supω∈∆K
infλ∈¬i⋆(µ)

∑
k∈[K] ωkd(µk, λk) > 0 since µ /∈ cl(µ).

B.2 MULTIPLE-ANSWER PROBLEMS

In this section, we formally state the lower bound for multiple answer problems.
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Proposition 2 (Lower Bound for Multiple-Answer Problems Degenne & Koolen (2019)). Let I be a
finite set and let µ ∈ M. Then, it holds that:

lim inf
δ→0

Eµ[τδ]

log(1/δ)
≥ T ⋆(µ), (10)

where T ⋆(µ)−1 is given by:

T ⋆(µ)−1 = sup
ω∈∆K

max
i∈i⋆(µ)

inf
λ∈¬i

∑
k∈[K]

ωkd(µk, λk) (11)

= sup
ω∈∆K

max
i∈I

inf
λ∈¬i

∑
k∈[K]

ωkd(µk, λk). (12)

Proof. The proof is exactly as in Theorem 1 in Degenne & Koolen (2019). Specifically, in that paper,
the result was stated with the expression of T ⋆(µ)−1 given in Equation (11). Equation (12) follows
by noticing that, for all i /∈ i⋆(µ), then µ ∈ ¬i, and, hence, infλ∈¬i

∑
k∈[K] ωkd(µk, λk) = 0.

C ON THE ASSUMPTIONS

In this section, we further discuss our assumptions. As mentioned in the main text, Assumption 1 is a
mild requirement that is only needed for concentration arguments. Thus, in the following, we focus
on Assumption 2. As our proofs show, Assumption 2 is only needed to bound differences of infimum
of optimization problems which involve KL divergences. Specifically, it is employed only to control
differences in KL for functions of the form:∑

k

ωk(d(µk, λµ,k)− d(µ′
k, λµ′,k)), (13)

where λ′
µ is the minimizer of infλ∈¬i ωkd(µ

′
k, λk) for some ¬i. Therefore, our results holds for any

family M of bandits for which it is possible to upper bound (in a Lipschitz fashion w.r.t. µ) functions
of the form of Equation (13).

At this point, we remark on the following aspects.

• Degenne et al. (2019) originally provided the aforementioned intuitive relaxation of Assumption 2
and we invite the interested reader to check their Appendix F for further details.

• Degenne et al. (2019) also shows that for Gaussian setting on unbounded domains, Equation (13)
can actually be bounded in a Lipschitz fashion. Hence, when dealing with Gaussian distributions,
we can actually operate on unbounded domains (i.e., we can remove Assumption 2).

Finally, we conclude by noticing that there exist works that have provided finite-confidence guarantees
outside of Assumption 2. In particular:

• Jourdan & Degenne (2023) derived finite-confidence results for an optimistic variant of the Top-Two
Algorithm without using Assumption 2. Nonetheless, the authors are restricting their analysis to
Gaussian distributions, and, as we discussed above, our analysis can easily be generalized to cover
this scenario.

• Barrier et al. (2022) also provides finite-confidence analysis outside of Assumption 2. Nonetheless,
their non-asymptotic bounds feature an extra factor

1

ωmin(µ)2
exp
(
−ωmin(µ)

)
,

where ωmin(µ) = mink∈[K] ω
⋆
k(µ). We note that ωmin can be lower-bounded using the minimum

gap for Gaussian distributions (see the comment below Theorem 5 in Barrier et al. (2022)), and
thus it is not an issue for Gaussian best-arm identification problems, as it can become arbitrary
large only for instances which for which the sample complexity lower bound as well tends to ∞.
Nonetheless, this is not the case for Bernoulli bandits. Indeed, consider a best-arm identification
problem in a Bernoulli bandit scenario over 3 arms. Suppose that µ = (x, 0.8, 0.9). It is easy to
see that ω1 → 0 as x → 0. Therefore, without Assumption 2, that finite-confidence guarantees can
become vacuous outside of the Gaussian setting.
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• Finally, Wang et al. (2021) also provided finite-confidence guarantees outside of Assumption 2;
nonetheless, additional assumptions are needed in order to obtain the results. We refer the interested
reader to Assumption 1-3 in Wang et al. (2021) for the technical requirements. Here, we only note
that their finite-confidence analysis depend on assumptions that involve the gradients of the lower
bound as a function of ω. Importantly, the main purpose of their assumptions is the same as ours,
i.e., bounding functions of the form of (13). This is evident from Lemma 14 in Wang et al. (2021).

D NON-ASYMPTOTIC BOUND FOR TRACK-AND-STOP

In this section, we analyze the version of TAS that makes use of projection within the sampling
rule. Specifically, ω(s) ∈ ω⋆(µ̃(t)), where µ̃(t) denotes the orthogonal projection of µ̂(t) onto
[µmin, µmax]

K . Before delving into the analysis, we note that it holds, due to the convexity of d(·, ·)
(see, e.g., Cappé et al. (2013)), we have that:

d(µ̂k(t), λ) ≥ d(µ̃k(t), λ), ∀k ∈ [K], λ ∈ [µmin, µmax] (14)
d(λ, µ̂k(t)) ≥ d(λ, µ̃k(t)) ∀k ∈ [K], λ ∈ [µmin, µmax] (15)

Now, we start by upper bounding the expectation of τδ using an arbitrary good-event which implies
stopping. The following result is standard in pure exploration works (see, e.g.,, Degenne et al. (2019))
and the proof is reported for completeness.
Lemma 1 (Expectation Upper Bound). Consider a sequence of events {Et}t≥3 such that, there exists
T0(δ) and for t ≥ T0(δ) it holds that Et ⊆ {τδ ≤ t}. Then, it holds that:

Eµ[τδ] ≤ T0(δ) +

+∞∑
t=3

Pµ(Ec
t ).

Proof. It holds that:

Eµ[τδ] =

+∞∑
t=0

Pµ(τδ > t) ≤ 10K4 + T0(δ) +
∑

t=3+T0(δ)

Pµ(τδ > t) ≤ T0(δ) +

+∞∑
t=1

Pµ(Ec
t ).

In our analysis, we will make use of the following good event:

Et =

∀s ∈
[
⌈
√
t⌉, t

]
,
∑

k∈[K]

Nk(s)d(µ̂k(s), µk) ≤ 8K log(s)


Indeed, it can be shown with probabilistic arguments that

∑+∞
t=3 Pµ(Ec

t ) ≤ 2eK (Lemma 9). In
the following, we compact the notation and we define f(t) := 8K log(t). The function f(t) can be
understood as an exploration function.

Next, the following lemma is the key result behind our analysis.
Lemma 2 (Learning the Equilibrium (TAS)). Let t ≥ 10K4. If TAS has not stopped at t, on Et, it
holds that:

βt,δ

t
≥ t−

√
t− 1

t
T ⋆(µ)−1 −

4∑
i=1

hi(t)

where:

h1(t) ≤
D
√
2σ2Kf(t)t

t

h2(t) ≤
LK2 ln(K)

√
t+K2

t

h3(t) ≤
D
√
2σ2f(t)

t
(K lnK + 4

√
Kt+K2

√
t+K2)

h4(t) ≤
D
√
2σ2f(t)

t

√
8t3/2 + 8Kt ln(t).
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Proof. Let us define h1(t) as follows.

h1(t) :=
1

t

 inf
λ∈¬i⋆(µ)

∑
k∈[K]

Nk(t)d(µk, λk)− inf
λ∈¬i⋆(µ)

∑
k∈[K]

Nk(t)d(µ̂k(t), λk)


If TAS has not stopped at t ∈ N, then we have that:

βt,δ

t
≥ 1

t
max
i∈I

inf
λ∈¬i

∑
k∈[K]

Nk(t)d(µ̂k(t), λk) (Stopping Rule)

≥ 1

t
inf

λ∈¬i⋆(µ)

∑
k∈[K]

Nk(t)d(µ̂k(t), λk)

≥ 1

t
inf

λ∈¬i⋆(µ)

∑
k∈[K]

Nk(t)d(µk, λk)− h1(t). (Definition of h1(t))

Next, we upper bound h1(t) on the good event Et.

h1(t) =
1

t

 inf
λ∈¬i⋆(µ)

∑
k∈[K]

Nk(t)d(µk, λk)− inf
λ∈¬i⋆(µ)

∑
k∈[K]

Nk(t)d(µ̂k(t), λk)


≤ 1

t

∑
k∈[K]

Nk(t) sup
λ∈M

(d(µk, λ)− d(µ̂k(t), λ))

≤ 1

t

∑
k∈[K]

Nk(t) sup
λ∈M

(νµk
− νλ)|µk − µ̂k(t)| (Lemma 8)

≤ D

t

∑
k∈[K]

Nk(t)|µk − µ̂k(t)| (Assumption 2)

≤ D

t

∑
k∈[K]

Nk(t)
√
2σ2d(µ̂k(t), µk) (Assumption 1)

≤ D

t

∑
k∈[K]

Nk(t)

√
2σ2

f(t)

Nk(t)
(On Et, Lemma 9)

≤
D
√
2σ2Kf(t)t

t
. (By concavity of

√
·)

We continue with a lower bound on 1
t infλ∈¬i⋆(µ)

∑
k∈[K] Nk(t)d(µk, λk). Let {ω(s)}ts=1 be the

sequence of empirical oracle weights selected by TAS, i.e., ω(s) ∈ ω⋆(µ̂(t)). Then, we have that:

1

t
inf

λ∈¬i⋆(µ)

∑
k∈[K]

Nk(t)d(µk, λk) ≥
1

t
inf

λ∈¬i⋆(µ)

∑
k∈[K]

t∑
s=1

ωk(s)d(µk, λk)− h2(t),

where h2(t) is given by:

h2(t) :=
1

t
inf

λ∈¬i⋆(µ)

∑
k∈[K]

(
t∑

s=1

ωk(s)−Nk(t)

)
d(µk, λk)

≤ 1

t
K ln(K)

√
t+K2 inf

λ∈¬i⋆(µ)

∑
k∈[K]

d(µk, λk) (Lemma 7)

:=
LK2 ln(K)

√
t+K2

t
. (Assumption 2)

Then, we lower bound 1
t infλ∈¬i⋆(µ)

∑
k∈[K]

∑t
s=1 ωk(s)d(µk, λk). To this end, we recall that, by

definition:
ω(s) ∈ argmax

ω∈∆K

max
i∈I

inf
λ∈¬i

∑
k∈[K]

ωkd(µ̃k(s), λk).
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Let us denote by is an answer that attains the argmax when paired with ω(s). Then, we have that:

1

t
inf

λ∈¬i⋆(µ)

∑
k∈[K]

t∑
s=1

ωk(s)d(µk, λk) ≥
1

t

t∑
s=1

inf
λ∈¬i⋆(µ)

∑
k∈[K]

ωk(s)d(µk, λk)

≥ 1

t

t∑
s=1

inf
λ∈¬is

∑
k∈[K]

ωk(s)d(µk, λk)

≥ 1

t

∑
s≥

√
t

inf
λ∈¬is

∑
k∈[K]

ωk(s)d(µk, λk)

≥ 1

t

∑
s≥

√
t

inf
λ∈¬is

∑
k∈[K]

ωk(s)d(µ̃k(s), λk)− h3(t),

where the second inequality follows from the fact that (i) if is = i⋆(µ) then the claim is trivial, and (ii)
if is ̸= i⋆(µ), then, µ ∈ ¬is (since i⋆(µ) is single-valued) and infλ∈¬is

∑
k∈[K] ωk(s)d(µk, λk) =

0. Finally, the last step follows from the definition of h3(t), that is:

h3(t) :=
1

t

∑
s≥

√
t

inf
λ∈¬is

∑
k∈[K]

ωk(s)d(µ̃k(s), λk)−
1

t

∑
s≥

√
t

inf
λ∈¬is

∑
k∈[K]

ωk(s)d(µk, λk)

≤ 1

t

∑
s≥

√
t

∑
k∈[K]

ωk(s) sup
λ∈M

(d(µ̃k(s), λk)− d(µk, λk))

≤ 1

t

∑
s≥

√
t

∑
k∈[K]

ωk(s) sup
λ∈M

(νµ̃k(s) − νλk
)|µ̃k(s)− µk| (Lemma 8)

≤ D

t

∑
s≥

√
t

∑
k∈[K]

ωk(s)|µ̃k(s)− µk| (Assumption 2 and µ̃(s) ∈ [µmin, µmax])

≤ D

t

∑
s≥

√
t

∑
k∈[K]

ωk(s)
√
2σ2d(µ̃k(s), µk) (Assumption 1)

≤ D

t

∑
s≥

√
t

∑
k∈[K]

ωk(s)
√
2σ2d(µ̂k(s), µk) (Equation (14))

≤
D
√

2σ2f(t)

t

∑
s≥

√
t

∑
k∈[K]

ωk(s)

√
1

Nk(s)
(Lemma 9)

≤
D
√
2σ2f(t)

t

(
K ln(K) + 4

√
Kt+K2

√
t+K2

)
. (Lemma 7)

We now have to analyze 1
t

∑
s≥

√
t infλ∈¬is

∑
k∈[K] ωk(s)d(µ̃k(s), λk).

Specifically, we have that:

1

t

∑
s≥

√
t

inf
λ∈¬is

∑
k∈[K]

ωk(s)d(µ̃k(s), λk) =
1

t

∑
s≥

√
t

sup
ω∈∆K

max
j∈[M ]

inf
λ∈¬j

∑
k∈[K]

ωk(s)d(µ̃k(s), λk)

≥ 1

t

∑
s≥

√
t

inf
λ∈¬i⋆(µ)

∑
k∈[K]

ω⋆
kd(µ̃k(s), λk)

≥ 1

t

∑
s≥

√
t

inf
λ∈¬i⋆(µ)

∑
k∈[K]

ω⋆
kd(µk, λk)− h4(t)

=
t−

√
t− 1

t
T ⋆(µ)−1 − h4(t), (Def. of T ⋆(µ)−1)
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where the first step follows from the definition of the sampling rule of TAS, in the second one we
have chosen any ω⋆ ∈ ω⋆(µ), and the third one by definition of h4(t), that is:

h4(t) :=
1

t

∑
s≥

√
t

inf
λ∈¬i⋆(µ)

∑
k∈[K]

ω⋆
kd(µk, λk)−

1

t

∑
s≥

√
t

inf
λ∈¬i⋆(µ)

∑
k∈[K]

ω⋆
kd(µ̃k(s), λk)

Now, we conclude the proof by giving an upper bound on h4(t).

h4(t) ≤
1

t

∑
s≥

√
t

∑
k∈K

ω⋆
k sup
λ∈M

(d(µk, λk)− d(µ̃k(s), λk))

≤ 1

t

∑
s≥

√
t

∑
k∈K

ω⋆
k sup
λ∈M

(νµk
− νλk

)|µk − µ̃k(s)| (Lemma 8)

≤ D

t

∑
s≥

√
t

∑
k∈K

ω⋆
k|µk − µ̃k(s)| (Assumption 2)

≤ D

t

∑
s≥

√
t

∥µ− µ̃(s)∥∞

≤ D

t

∑
s≥

√
t

max
k∈[K]

√
2σ2d(µ̃k(s), µk) (Assumption 1)

≤
D
√
2σ2f(t)

t

∑
s≥

√
t

max
k∈[K]

√
1

Nk(s)
(Lemma 9)

≤
D
√
2σ2f(t)

t

∑
s≥

√
t

√
1√

s+K2 − 2K
(Lemma 7 and t ≥ 10K4)

≤
D
√
2σ2f(t)

t

√√√√t
∑
s≥

√
t

1√
s+K2 − 2K

(Concavity of
√
· and t ≥ 10K4)

≤
D
√
2σ2f(t)

t

√
8t3/2 + 8Kt ln(t) (Integral test and algebraic manipulations)

which concludes the proof.16

Proof of Theorem 1. Let t ≥ 10K4. Then, for t ≥ 10K4 + T0(δ), by Lemma 2, we have that
Et ⊆ {τδ ≤ t}. Lemma 1 and Lemma 9, then conclude the proof. To this end, it is sufficient to note
that T ⋆(µ)

∑4
i=1 h(t)t+

√
t+ 1 ≤ g(t).17 Indeed, using t ≥ 104 and simple algebraic arguments,

we have that:

th1(t) ≤ 4σD
√
Kt log(t) ≤ 4σDLK2 log(K)

√
t log2(t)

th2(t) ≤ LK2 log(K)
√
2t ≤ DLK2 log(K)

√
2t log2(t)

th3(t) ≤ 4σD

√
log2(t)

(
K logK + 4

√
Kt+K2

√
2t
)
≤ 4σDL

√
log2(t)

(
10K2 log(K)

√
t
)

th4(t) ≤ 16σD
√

Kt3/2 log(t) + 4σDLK2 log(K)

√
8t log2(t).

Combining these inequalities, we obtain:
t∑

i=1

thi(t) ≤ 62σDLK2 log(K)

√
t log2(t) + 16σD

√
Kt3/2 log(t).

16The requirement of t ≥ 10K4 is essentially needed to guarantee that the denominators in those steps are
always positive.

17In the relevant regime where D,L, σ, T ⋆(µ) ≥ 1.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Thus, since from Lemma 2 we know that, for t such that:

T ⋆(µ)βt,δ +
√
t+ 1 + T ⋆(µ)

4∑
i=1

thi(t) ≤ t,

implies stopping on the good event, we also have that, TAS is guaranteed to stop whenever:

T ⋆(µ)βt,δ + T ⋆(µ)g(t) ≤ t.

Rearranging the terms give the desired expression of T0(δ).

E A SIMPLE FIX WITHOUT USING PROJECTIONS

In this section, we discuss what happens when TAS is not using projections in the sampling rule.
The key idea is that there exists a time TM such that, for subsequent steps t, then the empirical
mean always lies within the interval [µmin, µmax]. Before that, we make a remark on Assumption 2.
Specifically, fix any µ ∈ M and let Fk := min{|µk − µmin|, |µk − µmax|} and F = mink∈[K] Fk.
As we discussed in Section 3, F > 0 holds to the fact that Θ is an open interval and [µmin, µmax] is
closed and contained in Θ.

The following lemma shows the existence of such a TM.
Lemma 3 (Empirical Means Lies in a Good Region). Under Assumption 1 and Assumption 2, there
exists a time TM ∈ N such that, for all t ≥ TM, on Et, it holds that µ̂(s) ∈ [µmin, µmax] for all
s ≥

√
t. Specifically,

TM = max

{
10K4, inf

{
n ∈ N :

√
64Kσ2 log(n)√√
n+K2 − 2K

≤ F

}}

Proof. Let T̄ be such that, for all t ≥ T̄ ,
√√

t+K2 − 2K, i.e., T̄ ≥ 10K4. Then, let t ≥ T̄ .

Let Fk := min{|µk − µmin|, |µk − µmax|} and F = mink∈[K] Fk. Then, we have that if ∥µ̂(t) −
µ∥∞ ≤ F , it holds that µ̂(t) ∈ [µmin, µmax]. As discussed above, from Assumption 2, F > 0.

Now, on Et, for any s ≥
√
t, we have that:

∥µ− µ̂(s)∥∞ ≤ max
k∈[K]

√
2σ2d(µ̂k(s), µk) (Assumption 1)

≤ max
k∈[K]

√
2σ2f(s)

Nk(s)
(Lemma 9)

≤

√
2σ2f(s)√

s+K2 − 2K
(Lemma 7)

≤
√

4σ2f(t)√√
t+K2 − 2K

. (s ≥
√
t and t ≥ T̄ )

Then, letting TM = max

{
T̄ , inf

{
n ∈ N :

√
4σ2f(n)√√
n+K2−2K

≤ F

}}
concludes the proof.

Then, one can exploit Lemma 3 to obtain a result that is analogous to one of Theorem 1, just adding
TM to the finite-confidence upper bound on Eµ[τδ]. Indeed, Lemma 2 holds as-is by analyzing any t
such that t ≥ TM.

F NON-ASYMPTOTIC BOUND FOR STICKY TRACK-AND-STOP

In this section, we derive finite-confidence bounds for Sticky Track-and-Stop. We start with the
following result, which shows the existence of a finite time after which (under the good event) the
answer it chosen by S-TAS follows within a “good set”, i.e., iF (µ) ∪ (I \ i⋆(µ)).
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Lemma 4 (Good Answers on the Good Event). Let Tµ be defined as follows

T = max

{
10K4, inf

{
n ∈ N,

√
64Kσ2 log(n)√√
n+K2 − 2K

≤ ϵµ

}}
,

where ϵµ > 0 is a problem dependent constant. Then, for all t ≥ T , on Et, it holds that is ∈
iF (µ) ∪ (I \ i⋆(µ)) for all s ≥

√
t.

Proof. We recall that µ 7!7! iF (µ) is upper hemicontinuous (Theorem 4 in Degenne & Koolen
(2019)). This implies that there exists ϵµ > 0 such that, for all µ′ : ∥µ− µ′∥∞ ≤ ϵµ, it holds that
iF (µ

′) ⊆ iF (µ) ∪ (I \ i⋆(µ)).
Now, consider T̄ defined as follows:

T̄ = inf

{
n ∈ N :

√√
n+K2 − 2K > 0

}
,

that is T̄ = 10K4. Then, for all t ≥ T̄ and all s ≥
√
t, it holds that

√
s+K2 − 2K > 0.

Consider t ≥ T̄ , and let us introduce, for all µ,µ′ ∈ M, ch(µ,µ′) = infλ∈RK

∑
k∈[K](d(λk, µk) +

d(λk, µ
′
k)). Now, on Et and for s ≥

√
t, we have that:∑

k∈[K]

Nk(s)d(µ̂k(s), µk)) ≤ 8K log(s).

Furthermore, by definition, for all µ′ ∈ Cs, we also have that:∑
k∈[K]

Nk(s)d(µ̂k(s), µ
′
k)) ≤ 8K log(s).

As a consequence, by applying Lemma 7, it holds that:

ch(µ,µ′)
(√

s+K2 − 2K
)
≤
∑
k∈

Nk(s) (d(µ̂k(s), µk) + d(µ̂k(s), µ
′
k) ≤ 16K log(s).

For t ≥ T̄ , and using the definition of ch, this leads to:18

∥µ− µ′∥2∞
8σ2

≤ ch(µ,µ′) ≤ 16K log(s)√
s+K2 − 2K

.

which leads to:

∥µ− µ′∥∞ ≤

√
32Kσ2 log(s)√
s+K2 − 2K

, on Et ∀s ≥
√
t,µ′ ∈ Cs.

Thus, for t ≥ max

{
T̄ , inf

{
n ∈ N,

√
64Kσ2 log(n)√√

n+K2−2K
≤ ϵµ

}}
, it holds that:

∥µ− µ′∥∞ ≤ ϵµ, on Et ∀s ≥
√
t,µ′ ∈ Cs.

Now, since is ∈ Is =
⋃

µ′∈Cs
iF (µ

′) and ∥µ−µ′∥∞ ≤ ϵµ for all µ′ ∈ Cs, it follows (by definition
of ϵµ) that, on Et, for s ≥

√
t, is ∈ iF (µ) ∪ (I \ i⋆(µ)), thus concluding the proof.

Next, the following result is the key lemma that provides a lower bound, under the good event Et, on
the information gathered by S-TAS.

18The lower bound on ch(·, ·) follows from using the sub-gaussianity of the arms to lower bound the
divergences d with the difference in means and solving the resulting inf problem over RK .
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Lemma 5 (Learning the Equilibrium (S-TAS)). Let t ≥ 10K4 and let Tµ as in Lemma 4. Define
T̃ = max{Tµ, ⌈

√
t⌉}. Then, for S-TAS, on Et, it holds that:

βt,δ

t
≥ t− T̃

t
T ⋆(µ)−1 −

5∑
i=1

hi(t),

where

h1(t) ≤
D
√
2σ2Kf(t)t

t

h2(t) ≤
LK2 ln(K)

√
t+K2

t

h3(t) ≤
D
√
2σ2f(t)

t

(
K ln(K) + 4

√
Kt+K2

√
t+K2

)
h4(t) ≤

D
√
2σ2f(t)

t

√
8t3/2 + 8Kt ln(t)

h5(t) ≤
2D
√
2σ2f(t)

t

√
8t3/2 + 8Kt ln(t).

Proof. Let h1(t) be defined as follows:

h1(t) =
1

t
max
i∈I

inf
λ∈¬i

∑
k∈[K]

Nk(t)d(µk, λk)−
1

t
max
i∈I

inf
λ∈¬i

∑
k∈[K]

Nk(t)d(µ̂k(t), λk)

If Sticky Track-and-Stop has not stopped at t ∈ N, then, it holds that:

βt,δ

t
≥ 1

t
max
i∈I

inf
λ∈¬i

∑
k∈[K]

Nk(t)d(µ̂k(t), λk) (Stopping Rule)

=
1

t
max
i∈I

inf
λ∈¬i

∑
k∈[K]

Nk(t)d(µk(t), λk)− h1(t). (Definition of h1(t))

Next, we upper bound h1(t) under the good event Et.

h1(t) ≤
1

t

∑
k∈[K]

Nk(t) sup
λ∈M

(d(µk, λk)− d(µ̂k(t), λk))

≤ 1

t

∑
k∈[K]

Nk(t) sup
λ∈M

(d(µk, λk)− d(µ̂k(t), λk))

≤ 1

t

∑
k∈[K]

Nk(t) sup
λ∈M

(νµk
− νλk

)|µk − µ̂k(t)| (Lemma 8)

≤ D

t

∑
k∈[K]

Nk(t)|µk − µ̂k(t)| (Assumption 2)

≤ D

t

∑
k∈[K]

Nk(t)
√

2σ2d(µ̂k(t), µk) (Assumption 1)

≤ D

t

∑
k∈[K]

Nk(t)

√
2σ2

f(t)

Nk(t)
(Lemma 9)

≤
D
√
2σ2Kf(t)t

t
. (Concavity of

√
·)
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Next, we continue by analyzing 1
t maxi∈I infλ∈¬i

∑
k∈[K] Nk(t)d(µk(t), λk). Let {ω(s)}s be the

sequence of empirical oracle weights computed by Sticky Track-and-Stop. To this end, let h2(t) be
defined as follows:

h2(t) =
1

t
max
i∈I

inf
λ∈¬i

∑
k∈[K]

(
t∑

s=1

ωk(s)−Nk(t)

)
d(µk, λk).

Then, by definition of h2(t), we have that:

1

t
max
i∈I

inf
λ∈¬i

∑
k∈[K]

Nk(t)d(µk(t), λk) ≥
1

t
max
i∈I

inf
λ∈¬i

t∑
s=1

∑
k∈[K]

ωk(s)d(µk, λk)− h2(t)

Next, we upper bound h2(t).

h2(t) ≤
1

t
max
i∈I

inf
λ∈¬i

∑
k∈[K]

K ln(K)
√
t+K2d(µk, λk) (Lemma 7)

≤ LK2 ln(K)
√
t+K2

t
. (Assumption 2)

Next, we focus on 1
t maxi∈I infλ∈¬i

∑t
s=1

∑
k∈[K] ωk(s)d(µk, λk). Let ı ∈ I be such that, given

the subset of answers iF (µ), then, the pre-specified total order over I selects ı. Furthermore, let Tµ

be as in Lemma 4 and let T̃ = max{Tµ, ⌈
√
t⌉} Then, it holds that:

1

t
max
i∈I

inf
λ∈¬i

t∑
s=1

∑
k∈[K]

ωk(s)d(µk, λk) ≥
1

t

t∑
s=1

inf
λ∈¬ı

∑
k∈[K]

ωk(s)d(µk, λk)

≥ 1

t

t∑
s=T̃

inf
λ∈¬ı

∑
k∈[K]

ωk(s)d(µk, λk)

≥ 1

t

t∑
s=T̃

inf
λ∈¬is

ωk(s)d(µk, λk),

where in the last step, we have used the fact that, (i) if is ∈ iF (µ), then is = ı on the good event Et19

and (ii) if is /∈ iF (µ), then is /∈ i⋆(µ) due to the definition of T̄ . Then, in this case, we have that
µ ∈ ¬is and infλ∈¬is ωk(s)d(µk, λk) = 0. Next, we have that:

1

t

t∑
s=T̃

inf
λ∈¬is

∑
k∈[K]

ωk(s)d(µk, λk) ≥
1

t

t∑
s=T̃

inf
λ∈¬is

∑
k∈[K]

ωk(s)d(µ̃k(s), λk)− h3(t),

where h3(t) is given by:

h3(t) :=
1

t

t∑
s=T̃

inf
λ∈¬is

∑
k∈[K]

ωk(s)d(µ̃k(s), λk)−
1

t

t∑
s=T̃

inf
λ∈¬is

∑
k∈[K]

ωk(s)d(µk, λk)

19Indeed, in that case, µ ∈ Cs, and, consequently, iF (µ) ∈ Is. Since the algorithm selects answers according
to a total order, it cannot select any answer in iF (µ) which is not ı.
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Now, we have that:

h3(t) ≤
1

t

t∑
s=T̃

∑
k∈[K]

ωk(s) sup
λ∈M

(d(µ̃k(s), λk)− d(µk, λk))

≤ D

t

∑
s=T̃

∑
k∈[K]

ωk(s)|µ̂k(s)− µk| (Lemma 8, Assumption 2, def. of µ̃k(s))

≤ D

t

t∑
s=T̃

∑
k∈[K]

ωk(s)
√
2σ2d(µ̂k(s), µk) (Assumption 1)

≤
D
√
2σ2f(t)

t

t∑
s=1

∑
k∈[K]

ωk(s)

√
1

Nk(s)
(Lemma 9)

≤
D
√
2σ2f(t)

t

(
K ln(K) + 4

√
Kt+K2

√
t+K2

)
. (Lemma 7)

Now, we continue by analyzing

1

t

t∑
s=T̃

inf
λ∈¬is

∑
k∈[K]

ωk(s)d(µ̃k(s), λk).

Specifically, by definition of is and ω(s), we have that:

1

t

t∑
s=T̃

inf
λ∈¬is

∑
k∈[K]

ωk(s)d(µ̃k(s), λk) =
1

t

t∑
s=T̃

max
ω∈∆K

inf
λ∈¬is

∑
k∈[K]

ωkd(µ̃k(s), λk)

=
1

t

t∑
s=T̃

max
ω∈∆K

inf
λ∈¬is

∑
k∈[K]

ωkd(µ
′
k(s), λk)− h4(t),

where µ′(s) ∈ M is such that is ∈ iF (µ
′(s)) and h4(t) is given by:

h4(t) :=
1

t

t∑
s=T̃

max
ω∈∆K

inf
λ∈¬is

∑
k∈[K]

ωkd(µ
′
k(s), λk)−

1

t

t∑
s=T̃

max
ω∈∆K

inf
λ∈¬is

∑
k∈[K]

ωkd(µ̃k(s), λk).
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Now, we upper bound h4(t).

h4(t) ≤
1

t

t∑
s=T̃

max
ω∈∆k

 inf
λ∈¬is

∑
k∈[K]

ωkd(µ
′
k(s), λk)− inf

λ∈¬is

∑
k∈[K]

ωkd(µ̃k(s), λk)


≤ 1

t

t∑
s=T̃

max
ω∈∆k

 ∑
k∈[K]

ωk sup
λ∈M

(d(µ′
k(s), λk)− d(µ̃k(s), λk)))


≤ 1

t

t∑
s=T̃

max
ω∈∆K

∑
k∈[K]

ωk sup
λ∈M

(νµ′
k(s)

− νλk
)|µ′

k(s)− µ̃k(s)| (Lemma 8)

≤ D

t

t∑
s=T̃

max
ω∈∆K

∑
k∈[K]

ωk|µ′
k(s)− µ̂k(s)| (Assumption 2)

≤ D

t

t∑
s=T̃

max
ω∈∆K

∑
k∈[K]

ωk

√
2σ2d(µ̂k(s), µ′

k(s)) (Assumption 1)

≤
D
√
2σ2f(t)

t

t∑
s=T̃

max
ω∈∆K

∑
k∈[K]

ωk

√
1

Nk(s)
(µ′

k(s) ∈ Cs)

≤
D
√
2σ2f(t)

t

t∑
s=T̃

√
1√

s+K2 − 2K
(Lemma 7)

≤
D
√
2σ2f(t)

t

√√√√t

t∑
s=T̃

1√
s+K2 − 2K

(Concavity of
√
·)

≤
D
√
2σ2f(t)

t

√
8t3/2 + 8Kt ln(t) (Integral test and algebraic manipulations)

Next, it remains to analyze 1
t

∑t
s=T̃ maxω∈∆K

infλ∈¬is

∑
k∈[K] ωkd(µ

′
k(s), λk). Let ω⋆ ∈

ω⋆(µ,¬ı). Then, we have that:

1

t

t∑
s=T̃

max
ω∈∆K

inf
λ∈¬is

∑
k∈[K]

ωkd(µ
′
k(s), λk) =

1

t

t∑
s=T̃

max
i∈I

max
ω∈∆K

inf
λ∈¬i

∑
k∈[K]

ωkd(µ
′
k(s), λk)

≥ 1

t

t∑
s=T̃

inf
λ∈¬ı

∑
k∈[K]

ω⋆
kd(µ

′
k(s), λk)

≥ 1

t

t∑
s=T̃

inf
λ∈¬ı

∑
k∈[K]

ω⋆
kd(µk, λk)− h5(t)

=
t− T̃

t
T ⋆(µ)−1 − h5(t),
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where the first step follows from the fact that is ∈ iF (µ
′(s)) and the last third one from the definition

of h5(t), that is:

h5(t) :=
1

t

t∑
s=T̃

inf
λ∈¬ı

∑
k∈[K]

ω⋆
kd(µk, λk)−

1

t

t∑
s=T̃

inf
λ∈¬ı

∑
k∈[K]

ω⋆
kd(µ

′
k(s), λk)

≤ 1

t

t∑
s=T̃

∑
k∈[K]

ω⋆
k sup
λ∈M

(d(µk, λk)− d(µ′
k(s), λk))

≤ 1

t

t∑
s=T̃

∑
k∈[K]

ω⋆
k sup
λ∈M

(νµk
− νλk

)|µk − µ′
k(s)| (Lemma 8)

≤ D

t

t∑
s=T̃

∑
k∈[K]

ω⋆
k|µk − µ′

k(s)| (Assumption 2)

≤ D

t

t∑
s=T̃

∥µ− µ′(s)∥∞

≤ D

t

t∑
s=T̃

∥µ− µ̂(s)∥∞ + ∥µ̂(s)− µ′(s)∥∞

≤
2D
√
2σ2f(t)

t

t∑
s=T̃

max
k∈[K]

1√
Nk(s)

(Lemma 9, Assumption 1, µ′(s) ∈ Cs)

≤
2D
√
2σ2f(t)

t

t∑
s=T̃

1√√
s+K2 − 2K

(Lemma 7)

≤
2D
√
2σ2f(t)

t

√√√√t

t∑
s=T̃

1√
s+K2 − 2K

(Concavity of
√
·)

≤
2D
√
2σ2f(t)

t

√
8t3/2 + 8Kt ln(t), (Integral test and algebraic manipulations)

which concludes the proof.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let t ≥ K2. Then, for t ≥ 10K4 + T0(δ), by Lemma 5, we have Et ⊆
{τδ ≤ t}. Lemma 1 and Lemma 9 then conclude the proof. To this end, it is sufficient to note that
T ⋆(µ)

∑5
i=1 h(t)t+

√
t+1 ≤ g(t).20 Here, we followed the same algebraic steps that we presented

for the proof of Theorem 1.

G AN EXPLICIT BOUND

One concern with the implicit definition of T0(δ) in Theorems 1 and 2 is whether they yield practically
useful rates. In this appendix, we demonstrate that they do. By carefully bounding T0(δ), we show
that it can be upper-bounded by clean and explicit expression of the form

O(T ⋆(µ) log(1/δ) + T ⋆(µ)K log log(1/δ)).

These bounds are nearly tight: they match the asymptotic lower bound up to polylogarithmic factors
and additive problem-dependent constants. Furthermore, they are also useful in understanding the
theoretical guarantees of the algorithms in the regime where T ⋆(µ) → +∞ (i.e., in a BAI problem,

20In the relevant regime where D,L, σ, T ⋆(µ) ≥ 1.
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these are the hard instances where the mean of the second best arm approaches the one of the optimal
arm).

This section is structured as follows. First, in Appendix G.1 we present the result of TAS, then in
Appendix G.2 we present the result for S-TAS.

G.1 AN EXPLICIT BOUND FOR TAS

For TAS, we show the following upper-bound on T0(δ).

Proposition 3. Consider any η1 ∈ (0, 1/2), η2 ∈ (0, 1/4) and let A1(η1) and A2(η2) be defined as
follows:

A1(η1) :=
66σDLK2 log(K)T ⋆(µ)

η1
A2(η2) :=

16σD
√
KT ⋆(µ)

η2
.

Furthermore, consider any α, γ ∈ (0, 1) such that α + γ < 1 and let Ã1(η, α) and Ã2(η, γ) be
defined as follows:

Ã1(η1, α) := A1(η1)

(
(0.5 + η1)A1(η1)

α

) 0.5+η1
0.5−η1

Ã2(η2, γ) := A2(η2)

(
(0.75 + η2)A2(η2)

γ

) 0.75+η2
0.25−η2

Then, it holds that:

T0(δ) ≤
T ⋆(µ) log(1/δ) + T ⋆(µ)K log(log(1/δ) + 1) + Ã1(η1, α) + Ã2(η2, γ)

1− α− γ
. (16)

Before proving the proposition, we comment on the result.

Proposition 3 provides an upper bound on T0(δ) that holds for all η1, η2, α, γ > 0 such that η1 < 1/2,
η2 < 1/4 and α+ γ < 1. Hence, the tightest bound is achieved while minimizing Equation (16) over
this domain. Some comments are in order.

Asymptotic Regime of δ → 0 First, whenever δ → 0, one can pick any valid η1, η2 together with α
and γ that goes progressively to 0, yielding to T0(δ) ≈ T ⋆(µ) log(1/δ)+T ⋆(µ)K log(log(1/δ)+1).
This shows how our result retrieves asymptotic optimality together with the dependency on minor
order terms of δ.

Asymptotic Regime of T ⋆(µ) → +∞ Second, by picking α = γ = 1
4 , we can easily evaluate

the moderate regime of δ in difficult instances where T ⋆(µ) → ∞ (e.g., the case of best-arm
identification where the gap between optimal arm and the second best one tends to 0). In this case,

one obtains a rate of the form O
(
A1(η1)

1+
0.5+η1
0.5−η1 +A2(η2)

1+
0.75+η2
0.25−η2

)
. To further understand the

dependencies in relevant quantities, let us first analyze the first term, that is:

inf
η∈(0, 12 )

A1(η)
1+ 0.5+η

0.5−η = inf
η∈(0, 12 )

A1(η)
1

0.5−η

= inf
η∈(0, 12 )

(
66σDLK2 log(K)T ⋆(µ)

η

) 1
0.5−η

:= inf
η∈(0, 12 )

(
A1

η

) 1
0.5−η

,
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where in the last step we introduced A1 := 66σDLK2 log(K)T ⋆(µ). Let L1 = log(4A1). Then,
for sufficiently large T ⋆(µ), we have that 1

4L1
∈ (0, 1

2 ). Hence, we obtain that:

inf
η∈(0, 12 )

(
A1

η

) 1
0.5−η

≤ (4A1L1)
1

0.5− 1
4L1

= (4A1L1)
4L1

2L1−1

= (4A1L1)
2(4A1L1)

2
2L1−1

= (4A1L1)
2 exp

(
2

2L1 − 1
log(4A1L1)

)
= (4A1L1)

2 exp

(
4L1 − 2

2L1 − 1

)
∈ O

(
A2

1 log(A1)
2
)
,

where, in the forth step, we have used that for T ⋆(µ) sufficiently large 4L1 − 2 ≥ 2L1 + 2 log(L1).

Following similar reasoning for the term with A2, we have that:

inf
η∈(0, 14 )

A2(η)
1+ 0.75+η

0.25−η ≤ O
(
A4

2 log(A2)
4
)
,

where A2 := 16σD
√
KT ⋆(µ).

Hence, we have that:

inf
η1∈(0,1/2),η2∈(0,1/4)

A1(η1)
1+

0.5+η1
0.5−η1 +A2(η2)

1+
0.75+η2
0.25−η2 ≤ 2max

{
A2

1 log(A1)
2, A4

2 log(A2)
4
}

For T ⋆(µ) → ∞, A4
2 log(A2)

4 is the dominant term, thus providing the relevant dependencies in
term of D,σ, L, K and T ⋆(µ).

We now conclude this section with a proof of Proposition 3.

Proof of Proposition 3. From Theorem 1, we have that:

T0(δ) = inf
{
t ∈ N : βt,δ ≤ (t−

√
t− 1)T ⋆(µ)−1 − g(t)

}
,

where g(t) is given by:

g(t) = 64σDLK2 log(K)

√
t log2(t) + 16D

√
Kt3/2 log(t).

Using log(t) ≤ tη

η together with the definition of βt,δ, i.e., Equation (25), it follows that T0(δ) can
be upper-bounded by:21

inf
{
t ∈ N : A0(δ) +A1(η1)t

0.5+η1 +A2(η2)t
0.75+η2 ≤ t

}
,

where, for brevity, we have shortened T ⋆(µ) log(1/δ) + T ⋆(µ)K log(log(1/δ) + 1) with A0(δ).
Note that since η1 < 1/2 and η2 < 1/4, the upper bound is still well-defined and finite.

Next, by applying Young’s inequality (Lemma 6), we can further upper-bound this expression as
follows:22

inf
{
t ∈ N : A0(δ) + αt+ Ã1(η1, α) + γt+ Ã2(η2, γ) ≤ t

}
,

Solving for t yields the desired result.
21Here, for simplicity, we incorporated the

√
t+ 1 term and the K log log(t) component of βt,δ within the√

t log(t) term.
22For the A1 term, apply Lemma 6 with a = t0.5+η, b = A1(η), p = 0.5+η, q = 1−0.5−η, ϵ = α/(0.5+η).

Similarly, for the A2 term, use a = t0.75+η, b = A2(η), p = 0.75 + η, q = 1− 0.75− η, ϵ = γ/(0.75 + η).
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G.2 AN EXPLICIT BOUND FOR S-TAS

Following the same reasoning that we presented above, it is possible to derive the following explicit
expression of T0(δ) for S-TAS.
Proposition 4. Consider any η1 ∈ (0, 1/2), η2 ∈ (0, 1/4) and let A1(η1) and A2(η2) be defined as
follows:

A1(η1) :=
80σDLK2 log(K)

√
t log2(t)

η1
A2(η2) :=

32σD
√
KT ⋆(µ)

η2
.

Furthermore, consider any α, γ ∈ (0, 1) such that α + γ < 1 and let Ã1(η, α) and Ã2(η, γ) be
defined as follows:

Ã1(η1, α) := A1(η1)

(
(0.5 + η1)A1(η1)

α

) 0.5+η1
0.5−η1

Ã2(η2, γ) := A2(η2)

(
(0.75 + η2)A2(η2)

γ

) 0.75+η2
0.25−η2

Then, it holds that:

T0(δ) ≤
T ⋆(µ)Tµ + T ⋆(µ) log(1/δ) + T ⋆(µ)K log(log(1/δ) + 1) + Ã1(η1, α) + Ã2(η2, γ)

1− α− γ
.

(17)

Proof. The proof is identical to the one of Proposition 3. The main difference is only in the presence
of T ⋆(µ)Tµ that is due to the additional complexity that affects S-TAS.

Proposition 4 provides the explicit expression of T0(δ) compared to its implicit version that is pre-
sented in Theorem 2. Here, comments that are analogous to those that we presented for Proposition 3
hold.

H AUXILIARY TOOLS

H.1 TECHNICAL TOOLS

Lemma 6 (Young’s Inequality). Let a ≥ 0, b ≥ 0 and consider integers p, q > 1 such that 1
p +

1
q = 1.

Furthermore, let ϵ > 0. Then, it holds that:

ab ≤ ϵap

p
+

bq

qϵq/p
.

H.2 CUMULATIVE TRACKING

The following lemma summarizes the main properties of the C-Tracking procedure.
Lemma 7 (C-Tracking). Let {ω(t)} be an arbitrary sequence of elements that belongs to a K-
dimensional simplex. Consider the C-Tracking applied on a sequence {ω(t)}t and let us denote by
ω̃(t) the l∞ projection of ω(t) onto ∆ϵt

K = ∆K ∩ [ϵt, 1] and ϵt = (K2 + t)−1/2/2. For all t ∈ N, it
holds that:

Nk(t) ≥
√

t+K2 − 2K (18)

−K ln(K)
√
t+K2 ≤ Nk(t)−

t∑
s=1

ωk(s) ≤ K
√

t+K2 (19)

t∑
s=1

∑
k∈[K]

ωk(s)√
Nk(t)

≤ K ln(K) + 4
√
Kt+K2

√
t+K2 (20)

Proof. Equation (18) is due to Lemma 7 in Garivier & Kaufmann (2016) and it is due to the forced
exploration of the C-Tracking procedure (i.e., the projection onto ∆ϵt

K).
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Now, from Theorem 6 in Degenne et al. (2020), we have that:

− ln(K) ≤ Nk(t)−
t∑

s=1

ω̃k(s) ≤ 1. (21)

However, from Lemma 7 in Garivier & Kaufmann (2016), we also have that:

max
k∈[K]

∣∣∣ t∑
s=1

ωk(s)− ω̃k(s)
∣∣∣ ≤ K

√
t+K2. (22)

Combining this result with Equation (21) leads to Equation (19).

Finally, from Lemma 6 in Degenne et al. (2020), we have that:
t∑

s=1

∑
k∈[K]

ω̃k(s)√
Nk(t)

≤ K ln(K) + 4
√
Kt

Combining these results with Equation (22) leads to Equation (20), thus concluding the proof.

H.3 PROPERTIES OF CANONICAL EXPONENTIAL FAMILIES

The following lemma reports standard properties of one-dimensional canonical exponential families.
Lemma 8 (KL Difference in Exponentialy Families). For three distributions in a canonical exponen-
tial family with means a, b, c, it holds that:

d(a, b) = d(a, c) + d(c, b) + (νb − νc)(c− a) (23)
d(c, b)− d(a, b) ≤ (νc − νb)(c− a) (24)

where ν(·) denotes the natural parameter of the distribution with mean (·).

Proof. For a proof, see, e.g., Lemma E.6 in Poiani et al. (2024).

H.4 CONCENTRATION RESULTS

Lemma 9 (Good Event). Consider {Et}t such that

Et =

∀s ∈
[
⌈
√
t⌉, t

]
,
∑

k∈[K]

Nk(s)d(µ̂k(s), µk) ≤ 8K log(s)


It holds that

∑+∞
t=3 Pµ(Ec

t ) ≤ 2eK.

Proof. The statement is a direct corollary of standard concentration arguments (see Lemma 6 in
Degenne et al. (2019)).

H.5 δ-CORRECTNESS

For simplicity of exposition, we consider the following choice of the threshold βt,δ:

βt,δ = log

(
1

δ

)
+K log

(
4 log

(
1

δ

)
+ 1

)
+ 6K log(log(t) + 3). (25)

This threshold has been shown to yield δ-correct algorithms for Gaussian distributions Ménard (2019).
At a cost of more involved expression, one can adopt the threshold proposed in Kaufmann & Koolen
(2021) to analyze the stopping time in generic canonical exponential families.

We now prove for completeness that this choice of βt,δ combined with the stopping and recommenda-
tion rules leads to a δ-correct algorithm for any sampling rule. Note that the above result holds for
both the cases when i⋆(µ) is both single and multiple-valued.
Lemma 10 (Correctness). For any sampling rule and µ ∈ M, it holds that Pµ(̂ıτδ /∈ i⋆(µ)) ≤ δ.
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Proof. With probabilistic arguments, we have that:

Pµ(̂ıτδ /∈ i⋆(µ)) ≤ Pµ

∃t ∈ N, j /∈ i⋆(µ) : inf
λ∈¬j

∑
k∈[K]

Nk(t)d(µ̂k(t), λk) ≥ βt,δ


≤ Pµ

∃t ∈ N :
∑

k∈[K]

Nk(t)d(µ̂k(t), µk) ≥ βt,δ


≤ δ,

where the first step follows from the definition of the stopping and recommendation rules, the second
one from the fact that µ ∈ ¬j for all j /∈ i⋆(µ), and the third one from Proposition 1 in Ménard
(2019).
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