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ABSTRACT

In pure exploration problems, a statistician sequentially collects information to
answer a question about some stochastic and unknown environment. The proba-
bility of returning a wrong answer should not exceed a maximum risk parameter
¢ and good algorithms make as few queries to the environment as possible. The
Track-and-Stop algorithm is a pioneering method to solve these problems. Specif-
ically, it is well-known that it enjoys asymptotic optimality sample complexity
guarantees for § — 0 whenever the map from the environment to its correct an-
swers is single-valued (e.g., best-arm identification with a unique optimal arm).
The Sticky Track-and-Stop algorithm extends these results to settings where, for
each environment, there might exist multiple correct answers (e.g., e-optimal arm
identification). Although both methods are optimal in the asymptotic regime, their
non-asymptotic guarantees remain unknown. In this work, we fill this gap and
provide non-asymptotic guarantees for both algorithms.

1 INTRODUCTION

In pure exploration problems, a statistician interacts with a set of i € N probability distributions
denoted by o = {p;}, c[K]’ commonly referred to as arms. Their unknown means are denoted by
n= {/J,i}ie[ k- and p belongs to some set M C RX which encodes some possibly known structure
among the different arms, e.g., Lipschitzianity (Wang et al., 2021) or unimodality (Poiani et al., 2024).
During each step ¢ € N, the statistician chooses an arm A;, and observes a sample X; ~ ¢ 4, from
the corresponding reward distribution. Given a maximum risk parameter § € (0, 1), the statistician
aims to answer a question about the unknown means @ while using as few samples as possible.
Specifically, there is a known answer space Z and a (set-valued) answer function i*() that maps
each bandit p to a subset of correct answers ¢* () within Z. The probability of returning an answer
that does not belong to i* () should not exceed 0.

The most studied pure exploration problem is Best-Arm Identification (BAI, Garivier & Kaufmann,
2016), where the answer space is {1, ..., K} and the goal is to return the unique index of the arm
with the highest mean, i.e., i*(p) = argmax;¢ () p. The pioneering work by Garivier & Kaufmann
(2016) developed a tight lower bound for the unstructured BAI problem and proposed the Track-and-
Stop (TAS) algorithm to solve it. Remarkably, the expected number of samples required by TAS
to identify ¢* (p) with high probability exactly matches the lower bound as § approaches 0. In this
sense, TAS is asymptotically optimal for § — 0. These results have been shown to hold even outside
the BAI setting. Indeed, they extend to the more general structured partition identification problem
(Kaufmann & Koolen, 2021). Here, M is partitioned into a finite number |Z| of disjoint subsets, i.e.,
M= Uz‘eI M, and the statistician aims to find ¢ such that g € M. In this sense, TAS turned out
to be a powerful tool that can be used to solve a wide variety of problems (i.e., all the problems where
1*(p) is unique) while enjoying asymptotic optimality. If there exists multiple correct answers for
a certain bandit , i.e., i* () is multi-valued, TAS fails to achieve optimality (Degenne & Koolen,
2019). This is the case, for instance, of the e-best arm identification problem, where multiple arms j
might satisfy p; > argmaxy,c) tx — €. To solve this issue, Degenne & Koolen (2019) proposed a
modification of the TAS algorithm called Sticky Track-and-Stop (S-TAS). S-TAS enjoys asymptotic
optimality for any pure exploration problem with multiple correct answers.

Due to their generality and strong theoretical guarantees, both TAS and S-TAS have become funda-
mental algorithms. However, as noted in several works the analysis of TAS is asymptotic in nature and



does not offer insights into its non-asymptotic behavior (Barrier et al., 2022; Barrier, 2023; Jourdan
& Degenne, 2023; Poiani et al., 2024; Russo et al., 2025). Barrier (2023) suggest that this difficulty
arises from instability in the sampling rule when data are scarce: the sampling rule employed by
TAS can vary significantly early on, when estimated means have not yet concentrated around their
expectations. The problem is even more pronounced for S-TAS. Intuitively, this is due to the fact that
the algorithm is more complex, and that it samples the next arm in a TAS fashion.

In this work, we address the following question:
Can we characterize the non-asymptotic guarantees of TAS and S-TAS?

We answer this question by providing the first non-asymptotic bounds for both Track-and-Stop and
Sticky Track-and-Stop, shedding light on their behavior in the finite-confidence setting.

Importantly, from an empirical side, the performance of TAS has been benchmarked several times
(e.g., Degenne et al., 2019; Wang et al., 2021; Jourdan et al., 2022; Barrier et al., 2022). The results
have consistently shown that TAS obtains highly competitive sample complexity even in the moderate
regime of §. Thus, the theoretical findings that we present here complement these results, showing
that TAS also enjoys finite-confidence guarantees. Furthermore, since S-TAS is, to the best of the
authors’ knowledge, the only algorithm in the literature that can solve arbitrary multiple answer
problems, our work also provides the first finite-confidence analysis for this general class of problems.

1.1 RELATED WORK

Single-Answer Problems and TAS Since the work by Garivier & Kaufmann (2016), which studied
the unstructured bandit problem, several works have extended TAS to several structured problems
(e.g., Moulos, 2019; Juneja & Krishnasamy, 2019; Kocdk & Garivier, 2020; Kaufmann & Koolen,
2021; Poiani et al., 2024; Kanarios et al., 2024). In these works, the optimality analysis of TAS
remained asymptotic, as they build upon the approach of Garivier & Kaufmann (2016). Beyond TAS,
several other algorithms have been proposed in the literature that achieve asymptotic optimality for
best-arm identification and/or single-answer problems (Degenne et al., 2019; Ménard, 2019; Wang
et al., 2021; Barrier et al., 2022; Jourdan et al., 2022; Jourdan & Degenne, 2023). Moreover, some of
these works also establish non-asymptotic upper bounds on the expected number of samples required
for their algorithm to stop (Degenne et al., 2019; Barrier et al., 2022; Jourdan & Degenne, 2023;
Wang et al., 2021). Among these studies, the works most closely related to ours are Degenne et al.
(2019) and Barrier et al. (2022), which propose two distinct approaches that solve the aforementioned
instability issue of TAS. Precisely, Degenne et al. (2019) propose an optimistic version of TAS
that incorporates confidence intervals within the sampling rule. This comes at the cost of solving
a significantly more challenging optimization problem to decide the next arm to query. In contrast,
Barrier et al. (2022) stabilizes the sampling rule by “skewing” its behavior toward uniform exploration
when the amount of data collected is scarce. Crucially, both analyses rely on specific properties of
the algorithms they introduce, which makes them different from the original framework of Garivier
& Kaufmann (2016). To the best of our knowledge, our work is the first to provide non-asymptotic
guarantees for the original TAS algorithm without requiring any substantial modifications to it.

Multiple-Answer Problems and S-TAS When there are multiple correct answers, S-TAS (De-
genne & Koolen, 2019) offers a solution to pure exploration problems while enjoying asymptotic
optimality. However, to the best of our knowledge, there is no variant of S-TAS that achieves
finite-confidence guarantees in arbitrary multiple-answer problems. More broadly, we are not aware
of any algorithm providing finite-confidence guarantees for general multiple-answer problems. Prior
work has largely focused on specific subclasses of pure exploration problems. Among these, the most
studied one is e-best arm identification (e.g., Even-Dar et al., 2002; Kalyanakrishnan et al., 2012;
Karnin et al., 2013; Kocak & Garivier, 2021; Jourdan et al., 2023; Jin et al., 2024). Nonetheless, none
of these studies can be applied to the general pure exploration setting of Degenne & Koolen (2019).

2 BACKGROUND

We focus on bandit problems ¢ = {@x}re(x] With K € N arms, where ¢y is a probability
distribution with mean z;.. We denote by o = {1 } re[k] the vector of the means of the distributions.



As usual in the literature (see e.g., Garivier & Kaufmann (2016); Degenne et al. (2019)), we focus on
distributions that belong to a canonical exponential family' It is well known that such distributions
are fully characterized by their means. For convenience, we will refer to a bandit model ¢ directly
by its vector of means p. We denote by © C R an open set that defines the possible means of the
distributions. We consider the general case where 1 € M C ©X. This allows to include in our
analysis also structured settings such as Lipschitz (Wang et al., 2021) or unimodal bandits (Poiani
et al., 2024). Indeed, since M is any subset of ©, it can directly encode the constraints imposed by
these structures.> Moreover, we assume a finite answer space Z, along with access to a set-valued
function ¢* : M =2 Z, which maps each model p € M to the set of all the answers that are correct
for the bandit instance p.

At each step t € N, the learner chooses an action A; € [K] and observes a sample X; ~ @y4,.
Let F; = 0(A1, X1, ... Ay, X;) be the o-field generated by the interactions with the bandit model
up to time ¢. Then, a pure exploration algorithm receives as input a confidence level 6 € (0,1),
and implements the following procedures: (i) a F;_;-measurable sampling rule which selects
the action A; € [K| based on the past observations, (ii) a sfopping rule 75 which is a stopping
time w.r.t. (F;)ten and controls the end of the data acquisition phase, and (iii) a F,,-measurable
recommendation rule i, € 7 that denotes the guess of the statistician for a correct answer for p. A
pure exploration algorithm is d-correct on M if it satisfies P, (i, ¢ i*(p)) < 0 for all u € M. The
goal is building algorithms which are J-correct and that minimize the expected stopping time, i.e.,
By [7s] = > ke () Eu[Nk(7s)], where Ny (t) is the number of samples collected for arm k € [K] up

to time ¢. In the following, we denote by N (¢) the vector (Ny(t),. .., Nk(t)).

Additional Notation For a given set X', we denote by cl(X') its closure. Furthermore, for all ¢ € Z,
we denote by =i = {A € M : i ¢ i*(A)}. In words, —i represents the set of bandit models for
which i is not a correct answer. Without loss of generality, we assume that for all o € M, there
exists i € i*(p) such that p ¢ cl(—i).? Furthermore, for distributions with means p and ¢, we write
d(p, q) to denote their KL divergence. Moreover, for a distribution with mean p, we denote by v,
the corresponding natural parameter within the exponential family. For n € N, A,, denotes the
n-dimensional simplex. Finally, consider two topological spaces X and ), and consider a set-valued
function F' : X % ) that maps each x € X to F(z) C ). We say that F' is upper hemicontinuous,
if for all z € X and any open set VV C ) such that F'(x) C V, there exists a neighbourhood I/ of z
such that, for all 2’ € U, F(z') is a subset of ) (Aubin, 1999).

Lower Bound for Single-Answer Problems Let us focus on the case where i*(g) is unique for
all p € M. Lower bounds for these problems can be derived following the arguments presented
in Garivier & Kaufmann (2016). Specifically, for any d-correct algorithm, it holds that E,, [75] >
T*(w)log(1/(2.49)) (see Appendix B for a formal statement), where:

T*(u) = sup inf wid (g, A 6]
() wEAKAE—‘i*(“)k%] ks Ar)

= sup max inf wrd(pg, Ak)- 2)
wEAK i€L )\Gﬁzke[K]

T*(p) ™! can be interpreted as a max-min game where the max player plays a sampling strategy w to
quickly identify the correct answer ¢* (), and the min-player chooses a confounding instance A € M
where the correct answer changes (Degenne et al., 2019). The convex set of weights that attains the
argmax in T*(p) ! are denoted by w* () and takes the name of oracle weights. Here, convexity
simply follows from the fact 7% ()~ is a supremum over functions that are linear in w. We note that
we provided two expressions for 7% (u) 1. Equation (1) is the one that most frequently appears in
the literature (e.g., Garivier & Kaufmann (2016)). Equation (2) is a rewriting that allows to generalize
the expression of 7* () ™! to bandit models p’s that fall outside M, as i* () is formally defined

'These include Gaussian with known variance and Bernoulli distributions. See Cappé et al. (2013).

?For completeness, we show in Appendix A how to encode these structures through M.

31t is easy to verify from the lower bounds that, whenever this assumption is not satisfied, one obtains infinite
sample complexity. This requirement is usually implicitly satisfied in the literature, e.g., argmax; ¢ pk i8
unique over M in best-arm identification problems (Degenne & Koolen, 2019), and the different sets M are
open and disjoint in the partition identification problem (Wang et al., 2021).



only for i € M. This is important from an algorithmic perspective as it allows us to generalize
the definition of oracle weights to models that are not in M.* Furthermore, as we shall see, it will
also play an important role in our analysis. Finally, since the problem is single-answer, then for all
p € M the argmax over the different answers is attained only at ¢ = i* ().

Lower Bound for Multiple-Answer Problems Lower bounds for multiple-answer problems were
established by Degenne & Koolen (2019). Specifically, the authors shows that, for any §-correct

algorithm and any p € M, it holds that lim infs_,o lfé‘([l%) > T*(p), where T* ()1 is given by
(formal statement in Appendix B):

T ()

sup max )\infl wrd(pg, Ak) 3)
we i€ (u) At £

= sup max inf Wrd(pk, Ak)- ()
wEAy €L A€ KeK]

We have introduced two expressions for 7*(u) ~1: one that only applies to models within M (Equa-
tion (3)), and another that extends the definition to models outside M (Equation (4)). While these
results closely resemble those of single-answer problems, a few differences need to be highlighted.
First, this lower bound only holds in the asymptotic regime of § — 0. Second, the argmax in 7% () !
over the different answers can be attained at multiple points. Specifically, let iz () be the set of
answers that attain the argmax, i.e., ip(p) = argmax;cz SUP e, Ifae—i Dope(r) Wid(bis Ak)-
Then, while for single answer problems |ip(p)| = |i*(p)| = 1 for all g € M, in multiple an-
swer problems it can happen that |iz(p)| > 1. Since it plays a crucial role in our results, we
emphasize that the correspondence g = i () is upper hemicontinuous (Theorem 4 of Degenne
& Koolen (2019)). Finally, we mention that the oracle weights w*(u) are no longer a convex
set when |ip(p)| > 1. Instead, we have that w*(p) = U, () @ (1, i), where each element

w*(p, i) = argmax e a . Infac—i Yo pepr) Wed(pe, Ak) is a convex set.

Track-and-Stop Track-and-Stop (TAS, Garivier & Kaufmann, 2016) works as follows. After a first
phase where each arm k € [K] is pulled once, TAS computes, at each round ¢, the empirical oracle

weights w(t) € w*(fu(t)), where g (t) = Ng(t)™! 22:1 1{A; = k}X, denotes the empirical
estimate of py, at time ¢. Then, TAS applies a tracking procedure on {w(¢)}; to select the next action.

Specifically, the C-Tracking procedure projects each w(t) onto A% = A N[es, 1]% according to the
{+, norm. This projection takes the name of forced exploration, as it ensures that Ny (t) > /1 for all
k € [K] for ¢ =~ t~'/2. The next action is selected as A;11 € argmax;,¢ ] S n(s) — Ni(t),
where each @(s) denotes the projection of w(s). Regarding the stopping and recommendation
rules, TAS halts as soon as max;c7 infye—; Eke[m Ni(t)d(fue(t), A) > Bi,5, and recommends
an index that attains the argmax in the stopping rule. By calibrating the threshold 3; s (typically,
Be.s =~ log(1/0) + K log(t); see e.g., Kaufmann & Koolen (2021) for a complete expression of
B¢,5) one can prove that those stopping and recommendation rules yield d-correctness (both for
single and multiple-answer problems) when paired with any sampling rule.” TAS enjoys asymptotic
optimality guarantees whenever |ip ()| = 1, i.e., limsups_,q % < T*(p). However, this
does not hold for |ip(p)| > 1 (Degenne & Koolen, 2019). The reason is that its sampling rule
ensures that the empirical pull strategy N (¢)/t converges (on a good event) to the convex hull of
the oracle weights, i.e., inf,econy(w* () [ IV (£)/t — w|| — 0.° When |ip ()| = 1, this convex hull
coincides with w* (), and this leads to optimality. However, this is not generally true in the context
of multiple-answer problems.

Sticky Track-and-Stop To solve this issue, Degenne & Koolen (2019) proposed the Sticky Track-
and-Stop (S-TAS) algorithm. The stopping and recommendation rules are the same used by TAS.
As for the sampling rule, S-TAS defines a confidence region C; around fi(t), i.e., Cy = {\ € M :
2oreir) Ne(t)d(fik(t), Ax) < 8K log(t)},and computes a set Z; of candidate answers as follows:

“Indeed, we observe that an empirical estimate of p might not belong to M.
SFor completeness, we report a formal statement and a proof in Lemma 10.
8See Lemma 6 and Theorem 7 in Degenne et al. (2019).



Z.=U G, ip(A). Then, S-TAS selects an answer i; € Z; according to some pre-specified total
order over Z, and it computes w(t) € w*(fu(t), ~i,) for the selected answer ;. Finally, it selects
the next action A; by applying the C-Tracking sampling rule over the sequence {w(t)}:+. The main
idea behind S-TAS is that, due to the upper-hemicontinuity of p % ip (), the set Z will eventually
collapse (under a good event) to i g () for sufficiently large ¢. Then, since i; is chosen according to a
pre-specified total order over Z, i; will be fixed to some ¢ € i (), and the C-Tracking sampling rule
will ensure that inf,c o (0, —0) [[IN (£)/t — w|| — 0. As shown by Degenne & Koolen (2019), this
property leads asymptotic optimality both in single and multiple-answer problems.

3 NON-ASYMPTOTIC BOUND FOR TRACK-AND-STOP

First, we present two assumptions that we will use in our analysis.

Assumption 1 (Sub-Gaussian Arms). Arms belongs to a o?-sub-Gaussian exponential family, i.e.,
"2
Sorall p, ' € ©, it holds d(p, 1') > %

Assumption 2 (Bounded parameters). There exists [fimin, fhmax] C O such that M C [timin, bmax)-

Both Assumptions | and 2 are mild requirements that have been frequently adopted in the literature;
see e.g., Degenne et al. (2019; 2020); Jourdan et al. (2021); Poiani et al. (2024). Assumption 1 is
used primarily for concentration arguments. Assumption 2 implies that, for any two distributions p
and ¢ within [f4min, tmax] it holds that d(p, ¢) < L and |v, — v4| < D, for some constants L and D.
These two properties are the main reason for introducing Assumption 2 in our analysis.’

Before introducing our result, we make a minor modification to the TAS algorithm that allows for a
simpler analysis. Specifically, instead of computing w(t) € w*(f1(t)), it computes w(t) € w*(fi(t)),
where fi(t) denotes the orthogonal projection of fi(t) onto [tmin, ftmax) . This modification is only
required to ensure that d(fix(t), -) “well-behaves” whenever ¢ is small. Such projection has already
been adopted in sampling rules for algorithms that provide finite-confidence guarantees, see, e.g.,
the regret minimization approach presented in Degenne et al. (2019). More formally, its purpose
is ensuring that d(fig(t), \) is bounded for all steps and any A € [timin, imax]- We note that this
modification is only needed to handle pathological cases that might arises when dealing with arbitrary
canonical exponential families and it is not needed, e.g., when the family of distributions is Gaussian.
Later in this section, we discuss how to drop the projection step and how this affects the resulting
guarantees. We are now ready to state our finite-confidence result for TAS.

Theorem 1 (Non-Asymptotic Bound for TAS). Let i*(-) be single-valued, and suppose that As-
sumption 1 and Assumption 2 hold. Then, the expected stopping time of TAS satisfies B, [75] <
2e K + 10K* + To(65), where Ty(9) is given by

To(8) = inf {t € N: By5 < tT*(p) ™" — g(t)}, )

where g(t) = 640 DLK? log(K)4/tlog?(t) + 160 D\/Kt3/2 log(t).

Theorem 1 provides the finite-confidence bound on the performance of TAS. First, we note that
the upper bound is expressed as a sum of three terms, i.e., 2e K, 10K 4 and Ty (6). The first two o-
independent terms are artifact of the analysis and their origin is detailed in the proof sketch provided
below. The last and more important term, To(6), is a function of §, which essentially captures
how quickly the quantity max;c7 infxc—; ZkE[K] Ni(t)d(fix(t), \x) is approaching the stopping
threshold 3; 5. Indeed, tT™*(p)~! — g(t) is essentially a lower bound (under a good event) on the
aforementioned optimization problem: when this quantity exceeds 3 s, TAS stops. In other words,
To(9) measures how fast TAS is gathering information to discriminate ¢*(u) from all the other
candidate answers. By re-arranging the condition in Equation (5), i.e., B5 + g(t) < tT* ()7L,
we can see that the r.h.s. grows linearly in ¢, while the Lh.s. is growing sub-linearly with a rate of
O(log(1/8) + t3/*).° This ensures that Tp(6) is finite and that Theorem 1 recovers the asymptotic

"We refer the interested reader to Appendix C for further details.

8Note that, since M is know by definition, so are jimin and pimax. In other words, this kind of modification
does not require additional knowledge of the problem.

“Here, we plugged in 3; 5 ~ log(1/5) + K log(t).



optimality of TAS whenever 6 — 0. Finally, although T () is defined somehow implicitly, in
Appendix G we derive a further upper bound that highlights that the scaling is 7* () log(1/) up to
polylogarithmic factors and constant terms.

Proof Sketch As we discussed, the original analysis of TAS is asymptotic in nature. In
contrast, we follow a different path which is inspired by finite-confidence analysis in the
literature, e.g., Degenne et al. (2019); Jourdan & Degenne (2023). In particular, we con-
duct the analysis under a sequence of good events {&;};. Specifically, we consider & =

{Vs € [V, t] : Xheir) Ni(s)d(fun(s), ux) < 8K 1og(s)}. This sequence of events has two de-

sirable properties. First, one can show that ijog P.(&7) < 2eK (see Lemma 9). Second, as
we discuss below, there exists a time 7" such that for all ¢ > T, & implies stopping, namely
& C {75 < t}. Using these two properties one obtains that E,,[75] < T + 2eK (see Lemma 1).
In the remainder of the proof, we will show how T := Ty(6) + 10K* satisfies the require-
ment mentioned earlier. Before doing that, we introduce some additional notation. Recall that
w(s) € argmax,,ca, maxier infac—i o pe(r wed(fin(s), Ax). Then, we denote by i; € T any
answer that attains the argmax when paired with w(s).

Now, the key idea is analyzing the stopping rule of TAS and, in particular, lower bounding
max;er infxe—i 3oy epre Nu(t)d(fuk(t), Ar,) to obtain t7*(p) ! — g(t). To this end, as we shall
see, the crucial step 1s approximating (up to a sublinear in ¢ factor) the max-min problem
of the stopping rule with what TAS uses in the sampling rule in each round s > +/, i.e.,
infae—i, D pe(r) wr(8)d(fik(s), k). Further comments on this are provided right after the proof

sketch. Now, for any ¢ > 10K4,'% if TAS has not stopped at time #, then the following holds:

Bro > inf N Ny(t)d(fi, M) (Stopping Rule)
Aemi(w) ke[K]
> Z mf Z wi(8)d(pi, Ak) — O(V1) (& + C-Tracking)
ey
> Z;gf, wi(8)d(p, M) — O(VE).
" kelK]

Here, C-tracking ensures that N (£) ~ .'_, w(s), and under the event & we have d(fix(t), ) ~
d(pg,-). In the last step, we have used that if iy = ¢*(w) then the claim is trivial, and
if is # i*(u), then, u € —is. We observe that this argument explicitly relies on the fact
that i*(p) is single-valued.!" Now, we analyze the information accumulated by TAS by lower

bounding 22:1 infae—i, Zke[K] wi(s)d(pr, A\k). Using the definition of & and the fact that
Pk (S) € [/Jmina ,U/max],]2 we have that

ZAiEn—\fig Z wk( l’l’k7)\k Z mf Z wk )\k) 6(\/%)

s=1 ° ke[K] €>\[ * ke[K)

We have reached our goal of lower bounding the stopping rule of TAS with its sampling rule. Using
the definition of 7, and w( ) this allows for the following inequalities:

Z 1nf Z wi (s s), Ak) Z sup max inf wi(8)d((8), Ak)

wEAR 1ET AE—

SNV ET s>Vi ke[K]
= Z Aeiﬂril*f(u) Z wid(fix(s), A)  (for w* € w*(p))

s>/t ke[K]
= (ti\/iil)T*(“)il *6(\/15‘37)’ (By &)

'9This requirement is due to some technical step that is used at the end of the proof.

"This is important to be noted, otherwise it might seems that TAS achieves asymptotically optimal results
even in problems with multiple correct answers.

"This is needed to upper bound d(fir(s), Ax) — d(pr, Ax). Indeed, d(fir(s), Ae) — d(pr, Ak) < (Vo (s) —
Ui )|k (s) — pik| < D|fi(s) — pe| since fi(s), A € [Hmin, fimax]-



where the second step holds for any w* € w*(u) and the last one requires an algebraic step that
requires ¢ > 10K *. Intuitively, however, this last step is still using the fact that d(fix(s), -) ~ d(jx, -)

under the good event. Chaining together all the terms within the O(+) yields the desired result.

The proof idea As anticipated above, the main idea is approximating up to a sub-linear in ¢ factor,
the condition used in the stopping rule with the quantity > - 7 infae—i, D g wr(8)d(fin(s), Ax),
which is what TAS uses in its sampling rule. Once this is done, we can use the definition of w(s)
and i, to introduce the optimal weights w* for the underlying unknown problem and the infimum
over —i* (). Importantly, we observe that the generalization of w* that we provided in Equation (2)
played a crucial role. Finally, by upper-bounding the difference between d(fix(s), A\x) and d(ug, Ax),
we introduce T* () !, which is the desired quantity as it allows to recover the asymptotic optimality.

Removing projection step We discuss how to obtain finite-confidence guarantees for a version of
TAS that does not use projection in the sampling rule, i.e., exactly the version of TAS by Garivier
& Kaufmann (2016). Before that, we make a remark on Assumption 2. Let p € M and let
Fy. = min{|px — fmin, |4k — pmax|} and F' = mingc ) Fy. Then, since © is an open interval and
since [femin, tmax) 18 closed, it follows that Fy, > 0 Vk € [K], and thus F' > 0. That being said, the
simplest way to analyze TAS without projection follows by noticing that there exists a time Thy € N
such that, for all £ > Ty, on &, it holds that f1(s) € [tmin, ftmax] for all s > v/t (see Lemma 3 in
Appendix E). T depends only M and its distance F' from the interval [fimin, ftmax]; pPrecisely:

102K 1
T :max{10K4,inf{n€N: 6d0°Klog(n) F}} (6)

Vyn+ K2 —-2K ~

This allows us analyze the stopping time under a good event in the same way that we did above.

Indeed, it is sufficient that d(i(s), -) well-behaves only at steps s > v/t. Thus, the only difference
with respect to Theorem 1 would be the additional term Tx4 in the upper bound of E, [75].

4 NON-ASYMPTOTIC BOUND FOR STICKY TRACK-AND-STOP

In this section, we present the finite-confidence analysis of S-TAS. As for TAS, we will rely on
Assumptions | and 2. Furthermore, for reasons similar to those discussed above, we consider a
slightly modified version of S-TAS that incorporates a projection into its sampling rule. Specifically,
the algorithm computes w(s) € w*(fi(s), —is).'? The following theorem summarizes our result.

Theorem 2 (Non-Asymptotic Bound for Sticky-TAS). Suppose that Assumption 1 and Assumption 2
hold. Let €, > 0 be any number such that, for all p’ : ||pp — p'||cc < €, it holds that ip(p') C
ip(p) U (Z\i*(w)), and let T,, € N be defined as follows:

4Ko21
T,Lmax{loK‘l,inf{nEN: 64K 07 log(n) }geu}.

Vvn+ K? - 2K

Then, it holds that E,,[75] < 2eK + 10K* + Ty(5), where Ty (0) is given by
To(6) =inf{t eN: B 5 < (t —Tp) T ()" —g(t)},

where g(t) = 800 DLK?log(K)4/tlog?(t) + 320 D\/Kt3/2log(t).

Theorem 2 provides a finite-confidence bound for S-TAS in multiple-answer problems. As one can
notice, the result is similar in nature to what we presented for TAS in Theorem 1. In particular, the
expression of Ty(4) is similar to that of TAS, and, for the same reasons outlined in Section 3, this
allows us to recover the asymptotic optimality guarantees of Degenne & Koolen (2019) whenever
§ — 0.'* The main difference between Theorem | and Theorem 2 is the presence of an additional
problem-dependent constant 7,7 (p) ! within the expression of Ty (8). As our proof will reveal,

3Using the same argument that we discussed in Section 3, it is possible to analyze the version of S-TAS that
does not use projection. The sample complexity results differs only by the additional term T'a4.
A5 we did for TAS, in Appendix G we provide an explicit upper bound on 7 0(9).



T, is the time that is needed by S-TAS (under the good event) to distinguish iz (pe) U (Z \ ¢*(p))
from ¢*(p) \ i7 (). In other words, from that point on, under &;, all the candidate models g’ within
the confidence region C; satisfy iz (p') C ip(p) U (T \ i*(n)) for all s > /. Indeed, whenever
t > T,, it will be possible to link the stopping rule to 7* () " (with some sub-linear terms) as we
did for TAS."® Finally, we shortly comment on the nature of 7),. In particular, the existence of €, > 0
is guaranteed by the upper hemicontinuity of the set-valued function i* (). Our claim holds for any
€, that satisfies V' : || — ' ||oc < €y = irp(p’) C ip(p) U (Z )\ i*(p)), and hence the tightest
bound is obtained for the largest possible €,,. Now, we present a proof sketch of the result.

Proof Sketch As we did for TAS, the analysis is carried out under a sequence of good events
{&:}+ which are exactly the ones that we considered when proving Theorem 1. As above, we will
show that for T = 10K* + Ty(6) and t > T, we have that & C {75 < t}. As a consequence,
E,[7s) < 2eK 4+ 10K* + Ty(9). To do this, the main idea is lower bounding the condition used in
the stopping rule with what S-TAS uses in the sampling rule. First, we state an intermediate result,
which is a consequence of (i) the forced exploration of S-TAS, (ii) the definition of the region C} of
candidate models, and (iii) the upper hemicontinuity of the set-valued function i (). Specifically,
in Lemma 4 we prove that, V¢ > T},, on &, it holds that:

ip(p') Cip(p)U(Z\i*(p) Vs>+Vtandp' €. @)
Indeed, by upper hemicontinuity, models g’ similar to g have answers in iz (') which are “close” to

the ones in i (), and models in Cy shrink toward g due to the forced exploration of the algorithm.

We now analyze the amount of information that is gathered by S-TAS under the good event &:. Let
t > 10K* and let T = max{[v/t],7},}. Denote by 1 € Z, the answer that is selected from i () by
the pre-specified total order over Z. Then, for ¢ > 10K, if S-TAS has not stopped at ¢, we have that:

Brs 2 Z inf > wi(s)d(ur, k) — O(V) ®)
ke[K
> Z (inf wi(8)d(pr, Ar) — O(V1), ©)
€ ke[K]

where the first step is due to concentration and C-Tracking, and the second one uses Equation (7).
Indeed, for s > T, either 75 = 1 (and in this case the claim is trivial), or i5; # 2. In this second
case, from Equation (7) we have that i ¢ i*(u) and, therefore, u € —i,. Now, by concentration
arguments (i.e., d(fix(s), -) = d(ug, -)), and using the definition of w(s), we have that:

>0t 3wl M) 2 Y- it > w(s)d(in(s), M) — O(VD)
s=T °

ke[K] s=T " ke[K]

- f i — 0.
wnéli); )\lenﬁzb Wkd<uk (8), )\k) O(\/E)
s=T ke[K]
The next step is crucial for relating the amount of gathered information to 7*(u) ~1. Let p/(s) € Cy
be such that i, € ip(p(s)). From concentration arguments and the definition of p'(s), we have that:

t t
max _inf wrd(fi(8), A\g) = max _inf wied (1t (s), \i) — O (\/ t3/2)

< WEA K AE—ig < WEA K AE—ig
s=T ke[K] s=T ke[K]

¢
= Z max max inf wed (il (s), Ag) — O (\/ t3/2>

< WEAK i€EL AE—i
T ke[K]

inf 3 wid(pi(s), M) - O (Vi)

s=T ke[K]

31t is interesting to note that in our proof we are not using Zs = i (1), i.e., that S-TAS has actually “sticked”
to an answer in iz (p). Instead, it is sufficient that Z, excludes answers in ¢* () that are not within i ().



for any w* € w*(p, —2). The first step follows by observing that d(fix(s), ) can be upper-bounded
by d(fir(s),-), and d(fix(s),-) =~ d(p'(s),-) since p'(s) € Cs by definition. Then, the proof is
simply concluded by noticing that:

> inf wid(py(s), \e) 2 inf wid(pe, Ae) — O(V13/2)

A€

o kelK) o RelK)
= (T=T)T*(w) ™" = O(V#3/2),

where the first step follows from concentration arguments and the fact that p/(s) € Cs. Rearrenging
all the terms yields the desired result.

The proof idea As for TAS, the general idea is approximating with sub-linear terms the stopping
rule with ZZ:T Infae—i, D oke(n) wr(8)d(fir(s), Ax), that is what S-TAS uses in its sampling rule.
Now, there are two key differences with respect to Theorem 1. First, to reach such objective we need
to consider sufficiently large timesteps, i.e., s > T. The issue is that when s is small, the S-TAS
sampling rule has no control over the selected answers ¢4 (apart from a generic total order over 7).
This does not allow to easily switch from — to —i,, i.e., the step from Equation (8) to Equation (9).
Second, once we have obtained ZZ:T infaei, D operr) wr(8)d(fik(s), Ax), this does not allow us
to directly introduce w* (g, —2) and — as we did for TAS. An intermediate step is necessary. This
requires studying the difference between d(fix(s),-) and d(u},(s),-). The reason is that i, is an
answer that attains the argmax only when paired with a model p'(s) € C; such that is € ip(p/(s)).

S-TAS in single-answer problems Whenever ¢* (1) is single-valued, the dependency on 7, can be
removed as the step from Equation (8) and Equation (9) follows directly from the fact that |¢*(p)| = 1
(as we did for TAS). Thus, one would obtain a result identical to Theorem 1 (i.e., the same bound up
to constant multiplicative terms). Nonetheless, we actually note that the two proofs are still different,
and the reason is the different sampling rules adopted by the two algorithms. Specifically, in S-TAS
is is an answer in ¢ (p'(s)) for some p'(s) € Cs and w(s) € w*(fi(s), ~is). On the other hand,
TAS directly uses w(s) € w*(a(s), is) for is € ip(fa(s)).

On the behavior of S-TAS It is interesting to observe that our proof differs significantly from
the one of asymptotic optimality by Degenne & Koolen (2019). Beyond the obvious distinction
(i.e., our analysis is non-asymptotic), we also note that the proof of Theorem 2 does not rely on
what IV (t)/t converges to, nor does it exploit the convexity of the set w (g, —2), which instead were
key components in the analysis of Degenne & Koolen (2019). Instead, we only reason in terms of
“information” collected by S-TAS by analyzing values of functions of the form ; ;) wxd(-, ).

5 CONCLUSION

This work provided the first finite-confidence characterization of the performance of Track-and-Stop
and Sticky Track-and-Stop, two general algorithms that are able to solve optimally a large spectrum
of pure exploration settings. Overall, we solve two open problems in the literature. First, Theorem 1
sheds light on the finite-confidence guarantees of TAS, thus providing theoretical support on why
the algorithm usually enjoys good performance in practice. Secondly, Theorem 2 provides the first
finite-confidence guarantees for the general multiple-answer setting. To conclude, we note that
our results (Theorem | and Theorem 2) have simple and natural proofs, and they both recover the
asymptotic optimality whenever ¢ goes to 0.

Several questions remain open. For instance, is it possible to improve the finite-confidence analysis of
Sticky Track-and-Stop by removing the presence of the problem constant 7},? We conjecture that this
would require to slightly modify the sampling rule. Indeed, by selecting answers 7, more strategically
than using any total order over Z (e.g., using optimism) might lead to stronger finite-confidence
results and, eventually, more competitive performance. Furthermore, there remains a gap between
lower and upper bounds in the finite-confidence regime (Degenne et al., 2019; Wang et al., 2021;
Barrier et al., 2022; Jourdan & Degenne, 2023; Jourdan et al., 2023). Future work should focus on
developing a complete characterization of the finite-confidence regime and closing this gap.



REPRODUCIBILITY STATEMENT

The nature of this work is theoretical. We precisely stated and discussed the assumptions that are
required to derive our result in the main text (see Assumptions 1 and 2), and we further discussed the
assumptions in Appendix C. In the main text, we provided proof sketches for both Theorem 1 and
Theorem 2, and we included complete proofs in Appendix D and Appendix F.
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A STRUCTURED BANDITS
For completeness, we now show that how to encode known structure such as Lipschitzianity and
unimodality through M.

We first focus on the the best-arm identification problem in Lipshitz bandit with finite arms, i.e., the
same setting studied in (Wang et al., 2021). This structure can be formalized as follows:

M= {l»l' S [Mmirn/”'max]K : Ji st i > ,ukv/\ Vka k/a |,uk - ,uk" S ||ak - ak/Hoo}a

where [ > 0 is a known constant, a; € R? are the known feature vectors for the arms, and
[tmin; fmax] are the boundary parameters that we introduced in Assumption 2.

Next, we consider the unimodal setting of Poiani et al. (2024). In this case, we have that:
M = {1 € [fmin, fmax] ™ 2 30 € [K] 1 1y > prign > -+ > i Ay > frim1 > -+ > fir }.

In other words, each bandit is characterized by an unknown index ¢ such that, the arms’ mean will
consistently decrease both after and before .

This reasoning can also be extended to other structures such as the dueling bandit formulation of
Wang et al. (2021).

B LOWER BOUND

B.1 SINGLE-ANSWER PROBLEMS

In this section, we provide a formal statement of the lower bound for single-answer problems.

The following result follows the same arguments of Theorem 1 in Garivier & Kaufmann (2016).
Since we provide two different expressions for 7* (), we also report a proof for completeness.

Proposition 1 (Lower Bound for Single-Answer Problems Garivier & Kaufmann (2016)). Suppose
that |i*(p)| = 1 forall p € M. Let § < 0.15. For any p € M and any 6-correct algorithm, it holds
that E,,[15] > T*(p)log(1/(2.49)).

Proof. Let p € M and A € —i* (). Then, from change of distribution arguments (i.e., Lemma 1 in
Kaufmann et al. (2016)) and the §-correctness of the algorithm, we have that:

> EulNe(7s)ld(r, M) > log(1/(2.45)).
ke[K]

Applying this result for all A € —i*() and since p ¢ cl(—i*(w)), we have that:

log(1/(2.46)) inf Z E. [Nk (7s5)1d(pr, Ar)
>\€ﬂ*(u),C
€[K]
. E, | Nk (T
=Eu[rs]  inf Md(ﬂkﬂ\k)
A€E—i*(p) ke [K] E“ [7'5]

< E,[rs] su inf Wrd (g, A
- Mé}ueApKAeﬂi*(u)kez[;{] ks )

=E f A, Ai),
wlrsl s g ot 2 ol M)

where, the last step follows from the fact that, for all ¢ # i*(u), p € —i, and, hence
infae—i > peprg wed(pe, Ak) = 0. The proof then follows by the definition of 7™ (pt) together

with the fact that supy, e a . Ifxe—iv(u) 2oper) Wrd(tn, A) > 0since p ¢ cl(p). O

B.2 MULTIPLE-ANSWER PROBLEMS

In this section, we formally state the lower bound for multiple answer problems.
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Proposition 2 (Lower Bound for Multiple-Answer Problems Degenne & Koolen (2019)). Let Z be a
finite set and let p € M. Then, it holds that:

P EH[T5] *
hgn_:(f)lfm =T (p), (10)

where T*(u) =1 is given by:

T*(u)™' = sup max inf wrd(pg, Ak) (11)
wEA 1€ (1) A€~ ke [K]
= sup max inf wid(fhg, Ak )- (12)
wEAy €L XET relK] ( )

Proof. The proof is exactly as in Theorem 1 in Degenne & Koolen (2019). Specifically, in that paper,
the result was stated with the expression of 7*(u)~* given in Equation (11). Equation (12) follows
by noticing that, for all ¢ ¢ i*(p), then p1 € i, and, hence, infae—i 3 pe gy wrd(pin, Ax) = 0. O

C ON THE ASSUMPTIONS

In this section, we further discuss our assumptions. As mentioned in the main text, Assumption 1 is a
mild requirement that is only needed for concentration arguments. Thus, in the following, we focus
on Assumption 2. As our proofs show, Assumption 2 is only needed to bound differences of infimum
of optimization problems which involve KL divergences. Specifically, it is employed only to control
differences in KL for functions of the form:

> " wr(d(prs M) — d(pth, A i), (13)
k

where X/, is the minimizer of infxe—; wrd(u},, Ax) for some —i. Therefore, our results holds for any
family M of bandits for which it is possible to upper bound (in a Lipschitz fashion w.r.t. p) functions
of the form of Equation (13).

At this point, we remark on the following aspects.

* Degenne et al. (2019) originally provided the aforementioned intuitive relaxation of Assumption 2
and we invite the interested reader to check their Appendix F for further details.

* Degenne et al. (2019) also shows that for Gaussian setting on unbounded domains, Equation (13)
can actually be bounded in a Lipschitz fashion. Hence, when dealing with Gaussian distributions,
we can actually operate on unbounded domains (i.e., we can remove Assumption 2).

Finally, we conclude by noticing that there exist works that have provided finite-confidence guarantees
outside of Assumption 2. In particular:

* Jourdan & Degenne (2023) derived finite-confidence results for an optimistic variant of the Top-Two
Algorithm without using Assumption 2. Nonetheless, the authors are restricting their analysis to
Gaussian distributions, and, as we discussed above, our analysis can easily be generalized to cover
this scenario.

* Barrier et al. (2022) also provides finite-confidence analysis outside of Assumption 2. Nonetheless,
their non-asymptotic bounds feature an extra factor

1
m eXp(—wmin(M)>>

where Wpin (1) = mingepx) wi (). We note that wii, can be lower-bounded using the minimum
gap for Gaussian distributions (see the comment below Theorem 5 in Barrier et al. (2022)), and
thus it is not an issue for Gaussian best-arm identification problems, as it can become arbitrary
large only for instances which for which the sample complexity lower bound as well tends to co.
Nonetheless, this is not the case for Bernoulli bandits. Indeed, consider a best-arm identification
problem in a Bernoulli bandit scenario over 3 arms. Suppose that y = (x,0.8,0.9). It is easy to
see that w; — 0 as ¢ — 0. Therefore, without Assumption 2, that finite-confidence guarantees can
become vacuous outside of the Gaussian setting.
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* Finally, Wang et al. (2021) also provided finite-confidence guarantees outside of Assumption 2;
nonetheless, additional assumptions are needed in order to obtain the results. We refer the interested
reader to Assumption 1-3 in Wang et al. (2021) for the technical requirements. Here, we only note
that their finite-confidence analysis depend on assumptions that involve the gradients of the lower
bound as a function of w. Importantly, the main purpose of their assumptions is the same as ours,
i.e., bounding functions of the form of (13). This is evident from Lemma 14 in Wang et al. (2021).

D NON-ASYMPTOTIC BOUND FOR TRACK-AND-STOP

In this section, we analyze the version of TAS that makes use of projection within the sampling
rule. Specifically, w(s) € w*(f(t)), where fi(t) denotes the orthogonal projection of fi() onto
[£4min, fimax) & . Before delving into the analysis, we note that it holds, due to the convexity of d(-, -)
(see, e.g., Cappé et al. (2013)), we have that:
d(ﬂk(t)v >‘) 2 d(ﬁk(t)a /\)a Vk € [K]a A€ [.umina ,Umax] (14)
d()\, ﬂk(t)) > d()‘vﬂk(t)) vk € [K]7 Ae [,umim,umax] (15)

Now, we start by upper bounding the expectation of 75 using an arbitrary good-event which implies
stopping. The following result is standard in pure exploration works (see, e.g.,, Degenne et al. (2019))
and the proof is reported for completeness.

Lemma 1 (Expectation Upper Bound). Consider a sequence of events {E; }>3 such that, there exists
To(0) and for t > Ty(0) it holds that & C {75 < t}. Then, it holds that:

E [T5 <T0 +ZP gc

Proof. It holds that:

400 too
Eulrs] = Pu(rs > 1) 10K + To(6) + > Pulrs > 1) <To(6) + > Pu(&).
t=0 t=3+To(J) t=1

In our analysis, we will make use of the following good event:

&= ¥s e [[VEL1], D Nu()d(in(s), i) < 8K log(s)

ke[K]

Indeed, it can be shown with probabilistic arguments that 3% P,,(£¢) < 2¢K (Lemma 9). In
the following, we compact the notation and we define f(t) := 8K log(t). The function f(¢) can be
understood as an exploration function.

Next, the following lemma is the key result behind our analysis.

Lemma 2 (Learning the Equilibrium (TAS)). Lett > 10K*. If TAS has not stopped at t, on &;, it
holds that:

B, t_\/i_l * — -
s LV Lt - 3 )
i=1
where:
D+\/202K f(t)t
hl(t)gaff()
2 2
hg(t)SLK ln(Kt)\/tJrK

ha(t) < Divfzf(t)(Kan—i—%/ﬂ—kK?\/t—kK?)
t) < Diw\/sﬁ/? + 8KtIn(t).
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Proof. Let us define h(t) as follows.

hi(t) = - inf Ni( S A inf N (t)d A
1(t) NS Z k() d(prs k) — aeo kz % (8)d(fun (1), Ak)
€[K]
If TAS has not stopped att € N then we have that:
% > = ; max }\125 Z Ni(t t), A\k) (Stopping Rule)
> 1 Z Ne(O)d(jue (£), M)
2 k(t)d(fu (1), Ak
t AG—\Z (p.) relK]
1
— inf Ni( Ak) — hi(t). Definition of hq (¢
> 7 D Ne(O)d(p, M) — I (t) (Definition of A1 (t))
kE[K]
Next, we upper bound h; (¢) on the good event &;.
1
hat) =< | inf > Ne(®)d(ur, M) —  inf > Ni(t t), Ae)
t | xe—ir(p) vl Ae—i (;L)’CE T4
1 .
<= Y Nk(t) sup (d(p, A) — d(fu(t), V)
relK] AEM
1 N
<= ) Nk(t) sup (v, — va)l — ik(t)| (Lemma 8)
t re[K] xeM

IN

D .
— D Nu(®)lm — k(1)
kE[K]

? 37 Nk(t)v/202d (e (0), )

IN

IN

D ft)
* kez[:] Nl Ni(t)

D QGin(t)t'

(Assumption 2)

(Assumption 1)

(On &;, Lemma 9)

(By concavity of /-)

We continue with a lower bound on } inf xe .+ (,.) >oreir) Ne(t)d(pe, Ak). Let {w(s) t_, be the
sequence of empirical oracle weights selected by TAS, i.e., w(s) € w*(f1(t)). Then, we have that:

D SR OTIRNES ST 9P oLt

A€t (k) ) pelK) s=1
where ho(t) is given by:

ke[K s=1
1
< SKW(E)Wt+ K2 inf > d(u, M
t A€E—i “)kE[K]

t

d(pm, M) — ha(t),

(Lemma 7)

(Assumption 2)

Then, we lower bound + infc_;+ () > orelK] St wi(8)d (g, A). To this end, we recall that, by

definition:

w(s) € argmaxmax inf wrd(fig(s), Ak)-

wEAx €T AEﬂ
ke[K]
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Let us denote by ¢ an answer that attains the argmax when paired with w(s). Then, we have that:

t
1 1 .
rein > E wi (s uzc,/\k:)Z;E e >~ wi(s)d(pr, Ar)

ke[K] s=1 s=1 ke[K]
1
ST o,
s=1 ke[K]
1 .
1Y Y o
s>\/f ke[K]
> = 0 _
> Z Alenﬁf% wi(8)d(fir(s), \e) — ha(t),
s>f ke[K]

where the second inequality follows from the fact that (i) if i; = ¢* () then the claim is trivial, and (ii)
if is # i*(p), then, p € i, (since i*(p) is single-valued) and infxe i, 3y x) Wh(8)d(pk, Ak) =
0. Finally, the last step follows from the definition of h3(t), that is:

hs(t) ::% Z inf Z wi(8)d(fur(s), Ak) —% Z inf Z wi(8)d(prey k)

s>f ke[K] s>VE AETie K

éf 3> wils) sup (d(jn(s), Ak) — d(r, Ar))

S>\[k€[K] AeM
<37 Z D wils) sup Wy o) — v ) k() — puel (Lemma 8)
s>\fke[K AEM
S Z Z w ()| ik (s) — o (Assumption 2 and fi(s) € [tmin, fmax])
3>\/ke[K]
D
< + Z Z wi(s)v/20°d(fi (), pur) (Assumption 1)
s>t kE[K]
D Iy .
< n Z Z wi(s) v/ 202d(fu(s), pur) (Equation (14))
s>t kE[K]
D+\/202f(t 1
< @ Z Z wre(s)y [ 7= (Lemma 9)
t Ni(s)
s>t kE[K]

2
DVUf (Kln —|—4F—|—K2\/t+K2). (Lemma 7)

We now have to analyze § 3 7 infac—i, Dopeir) wh(8)d(fin(s), Ar)-
Specifically, we have that:

- Z inf Z wi (s $), Ak) :% sup max 1nf Z wi(s $), Ak)

S>\f AT ke[K] s>Vt ke[K]

wid(pk(s), Ak)

Y%
| =
>
e
N»:Eﬁ
E

z3 )\eij},f(u D whd(pr, Ak) — ha(t)
s>Vt ke[K]
t—Vt—1

= T*(u)t = ha(t),  (Def. of T*(p)™ 1)



where the first step follows from the definition of the sampling rule of TAS, in the second one we
have chosen any w* € w*(u), and the third one by definition of hy(¢), that is:

1 , . 1 . o
ha(t) = 5 > AELI}f(”) > wid(p, M) — n > AELI}*f(“) > wid(fik(s), \i)

s>vi ke(K] NG ke(K]

Now, we conclude the proof by giving an upper bound on hy/(t).

NOEED BB E: sup (dlp M) = dl7as). )

s>Vt kEK
1 N N
< : Z Z wi sup (Y, — Un,) e — Br(s)] (Lemma 8)
STiker  AeM
D - .
<D S S - o) (Assamption 2)
s>Vt kEK
D -
<= D = i)l
s>Vt
D .
< — max \/202d(fix(s), px) (Assumption 1)
t s>\/ik€[K]
D+\/202%f(t 1
= #() Z max 4| —— (Lemma 9)
t kelK] \| Ni(s)
s>Vt
D+/202f(t 1
< #() Z _— (Lemma 7 and t > 10K%)
t vVs+ K2 -2K
s>Vt
D\/252f(t) 1
< —~Y "~ C |t _— Concavity of 1/ and t > 10K*
< ; ;/Z — ok ( y of /- > )

< Div%fzf(t) \/8753/2 + 8KtIn(t)

(Integral test and algebraic manipulations)

which concludes the proof.'® O

Proof of Theorem 1. Let t > 10K®. Then, for t > 10K* + Ty(5), by Lemma 2, we have that
&t C {75 < t}. Lemma | and Lemma 9, then conclude the proof. To this end, it is sufficient to note

that T* () S5, h(t)t + VT + 1 < g(t)."” Indeed, using ¢ > 10* and simple algebraic arguments,
we have that:

thy(t) < 40D+/Ktlog(t) < 406 DLK?log(K)y/tlog?(t)

tha(t) < LK?log(K)V2t < DLK?log(K)4/2tlog*(t)

tha(t) < 40D1/log?(t) (K log K + 4VETL + KQ\/ﬂ) < 40D L/log?(t) (10K2 1og(K)x/i)
tha(t) < 160D/ Kt3/21og(t) + 40 DLK? log(K )4/ 8t log?(t).

Combining these inequalities, we obtain:

t
> thi(t) < 620 DLK? log(K)y/tlog?(t) + 160D/ Kt3/2log(t).
i=1

!5The requirement of ¢ > 10K* is essentially needed to guarantee that the denominators in those steps are
always positive.
""In the relevant regime where D, L, o, T* () > 1.
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Thus, since from Lemma 2 we know that, for ¢ such that:
4
T*()Bes + VE+1+T () > thi(t) <t,
i=1

implies stopping on the good event, we also have that, TAS is guaranteed to stop whenever:

T*()Bes + T (w)g(t) < t.
Rearranging the terms give the desired expression of 7j(0). O

E A SIMPLE FIX WITHOUT USING PROJECTIONS

In this section, we discuss what happens when TAS is not using projections in the sampling rule.
The key idea is that there exists a time 7'y such that, for subsequent steps ¢, then the empirical
mean always lies within the interval [ftmin, ftmax]- Before that, we make a remark on Assumption 2.
Specifically, fix any p € M and let Fj, = min{|pr — fiminl, [tk — fimax|} and F' = minge ) Fp.
As we discussed in Section 3, F' > 0 holds to the fact that © is an open interval and [fimin, ftmax] 1S
closed and contained in ©.

The following lemma shows the existence of such a T'y.

Lemma 3 (Empirical Means Lies in a Good Region). Under Assumption 1 and Assumption 2, there
exists a time Try € N such that, for all t > Ty, on &, it holds that [1(s8) € [timin, tmax] fOr all

s > \/t. Specifically,

4Ko?1
TM:max{10K4,inf{neN: 64K o* log(n) <F}}

VVn+ K2 —2K ~

Proof. Let T be such that, forall t > T, /vt + K2 — 2K, i.e., T > 10K*. Then, lett > T.

Let Fy, == min{|py — fmin|, [tk — Hmax|} and F' = mingex) Fi. Then, we have that if ||f(t) —
oo < F,itholds that fi(t) € [timin, max)- As discussed above, from Assumption 2, F' > 0.

Now, on &, for any s > /%, we have that:

[ = f(s)]loc < max 202d(jur.(s), i) (Assumption 1)
€
202 f(s)
< L 9
< 5161%()(] Ni(s) (Lemma 9)
2

< L (O (Lemma 7)

s+ K2 2K
402 f(t _
< AP ORI (s> iandt >T)

VVE+ K2 — 2K

. _ 5 . 402 f(n)

Then, letting Ty = max {T7 inf {n eN: 7\/W_2K <F }} concludes the proof. O

Then, one can exploit Lemma 3 to obtain a result that is analogous to one of Theorem 1, just adding
T'aq to the finite-confidence upper bound on E,, [75]. Indeed, Lemma 2 holds as-is by analyzing any ¢
such that t > T'y4.

F NON-ASYMPTOTIC BOUND FOR STICKY TRACK-AND-STOP

In this section, we derive finite-confidence bounds for Sticky Track-and-Stop. We start with the
following result, which shows the existence of a finite time after which (under the good event) the
answer i; chosen by S-TAS follows within a “good set”, i.e., ip(p) U (Z \ i*(w)).
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Lemma 4 (Good Answers on the Good Event). Let T}, be defined as follows

1K o2
T = max { 10K inf {n e N, , [ 4o oeln) UL
Vn+ K? - 2K

where €, > 0 is a problem dependent constant. Then, for all t > T, on &, it holds that iy €
ip(p) U (Z\i*(w)) forall s > /1.

Proof. We recall that p =% ip(p) is upper hemicontinuous (Theorem 4 in Degenne & Koolen
(2019)). This implies that there exists €, > 0 such that, for all g’ : ||t — p'[|oc < €, it holds that

ir(p) Cip(p) U (Z\i*(p)).

Now, consider T defined as follows:

T:inf{nEN:\/\/ﬁ+K2—2K>O},

thatis T = 10K*. Then, for all ¢ > T and all s > /%, it holds that v/s + K2 — 2K > 0.

Consider ¢ > T, and let us introduce, for all p, o' € M, ch(p, p') = infycpx > ke (A Ak i) +
d(Ag, 11},)). Now, on &; and for s > 1/t, we have that:

S Nils)d(in(s), 1)) < 8K log(s).

ke[K]

Furthermore, by definition, for all ' € C§, we also have that:

> Ni(s)d(f(s), p)) < 8K log(s).
ke[K]

As a consequence, by applying Lemma 7, it holds that:

ch(ps, 1) (Vs + K2 = 2K ) <37 Ni(s) (dlii(s), ) + i (s), 1) < 16K log(s).
ke

For t > T, and using the definition of ch, this leads to:'®

[l — |12 / 16K log(s)
=Pl « chiy,py) < ——2 28
sor . s s Te=m
which leads to:
32Ko?log(s)
— oo < 4 "0 on& Vs > Vit € C.
=l <\ =7 5K Vs> Vi

Thus, for ¢ > max {T, inf {n €N, /“ﬁ\/%i;{g(z; < e#}}, it holds that:

H/J‘_IJ'/HOO < €u, on & VSZ\/LIJ/EC&
Now, since is € Zs = U, e, ir(p') and [ — p'[loo < €, forall p' € C, it follows (by definition
of €,) that, on &, for s > /t,is € ip(p) U (Z \ i*(u)), thus concluding the proof. O

Next, the following result is the key lemma that provides a lower bound, under the good event &;, on
the information gathered by S-TAS.

'8The lower bound on ch(,-) follows from using the sub-gaussianity of the arms to lower bound the
divergences d with the difference in means and solving the resulting inf problem over R¥.
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Lemma 5 (Learning the Equilibrium (S-TAS)). Lett > 10K* and let T, as in Lemma 4. Define
T = max{T,, [V't]}. Then, for S-TAS, on &, it holds that:

s » 12T ™ =3 om
where )
ity < YT
ha(t) < LK21n(K)m

ha( DVQJth (Kln K)+ VKt + K2Vt + K)
ha(t) < Divz‘ff \/8632 1 8K tIn(t)

hs(t) < 2Dy207]1) ”2;72"%)\/8153/2 + 8Kt In(t).

Proof. Let hq(t) be defined as follows:

(0 = g o, 2 Nt ) = o ol 2, N0, )

If Sticky Track-and-Stop has not stopped at ¢ € N, then, it holds that:
Bt.s

t t €T )\e_‘l

), \k) (Stopping Rule)

== I?eal)'( A%lfz Z Ni(t t), \x) — ha(t). (Definition of hy(t))

Next, we upper bound /. (¢) under the good event &;.

M) < 5 37 Nult) sup (e, M) — d(e(0) M)

ke[K] AeM
1 .
<7 > Ni(t) sup (d(pn, M) — d(fu(t), i)
ke[K] AEM
1 N
< - Z Ni(t) sup (v, — va,) e — fx(t)] (Lemma 8)
t AeM
G[K]
< — Z N ()| pr — [k (t)] (Assumption 2)
ke[K
< = Z Ni () 202d(fu (1), px) (Assumption 1)
ke[K
52 )
< — Ni( (Lemma 9)
kz k(t)
€[K]
D\/202K
< U—f(). (Concavity of /%)

- t
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Next, we continue by analyzing } max;cz infxe—; >oreir] Ne(®)d(pk(t), k). Let {w(s)}s be the
sequence of empirical oracle weights computed by Sticky Track-and-Stop. To this end, let h2(t) be
defined as follows:

t i€ Xe—i
ke[K]

t
1 .
ha(t) = = max inf <Z wi(s) — Nk(t)> d(pg, \k)-
Then, by definition of hy(t), we have that:

P, 3 N0t 02 5 f?eazx;gfégng A 2e) = ha®)

Next, we upper bound ha(t).

1
ho(t) < = max )\mf KIn(K)vVt+ K2d(pg, \i) (Lemma 7)
1€ €1 ke[K]
LK?In(K)v K2
< nE)VE+ . (Assumption 2)

t

Next, we focus on maxzez infye—; ZZ:I Zke[K] wi(8)d(pk, A\ ). Let2 € Z be such that, given
the subset of answers i (), then, the pre-specified total order over Z selects 2. Furthermore, let T},
be as in Lemma 4 and let 7' = max{7T},, [/*]} Then, it holds that:

t

1
fmax inf E Z wi(s)d(pe, Ak) > = Z inf wi(8)d (o, Ak)
t ieT Ae_\ls 1 kelK] t oy AE— ke[K]

I \/

- Z nf () Ar)
kE[K]

> - Z inf - wy(s)d(pr, M),

)\E—\zé

where in the last step, we have used the fact that, (i) if i € ¢ (), then ¢5 = 2 on the good event &; 19
and (ii) if is ¢ ip(w), then i5 ¢ i*(w) due to the definition of 7. Then, in this case, we have that
p € —ig and infye—;, wi(s)d(pk, Ak) = 0. Next, we have that:

t

1 1 i
S D M) 2 T3 S wn(s)d(s) Ne) — bt
=T " ke[K) s=T ke[K]

where h3(t) is given by:

1 , i 1o
hs(t) = - Z inf > wils)d(fin(s), A) — : leerlfzs wie(8)d (ks Ak)
s=T kE[K] s=T ke[K]

YIndeed, in that case, p € Cs, and, consequently, i () € Zs. Since the algorithm selects answers according
to a total order, it cannot select any answer in ¢z () which is not 2.
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Now, we have that:

hat) < 530 37 wils) sup (dljie(s), M) — djus, M)

s—The[k] M
D N . .
< n wi ()| (8) — pk] (Lemma 8, Assumption 2, def. of fix(s))
s=T ke[K]
D
< n Z wi(8)\/202d(fix(s), k) (Assumption 1)
s=T k€[K]
5 ¢
< w Z wi(s) Nkl(s) (Lemma 9)
s=1ke[K]
2
< w (K In(K) + 4VEt + K2/t + K2) . (Lemma 7)

Now, we continue by analyzing

*Z;g:f;s > wnls)d(in(s), M)
ke[K]

Specifically, by definition of i; and w(s), we have that:

t t

1 . . 1 -

DINUPITIEICIERRES S oI SRV LYORY
s=T

ke[K]

WEAK AEig

t
1 .
=3 > max inf Y wpd(u(s), k) — ha(t),
=T ke[K]

where p/(s) € M is such that i, € ip(p'(s)) and hy(t) is given by:

1
inf ' S f m .
> gmax inf Y wid(ui(s), M) = 7 ) max At 2 wnd(in(s): M)
s=T ke[K] s=T ke[K]
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Now, we upper bound /4 (t).

1 . . -
ha(t) < 2> max | inf Y wrd(u(s), Ae) — inf Y 7 wpd(fik(s), Mr)
I " kelK] " kelK]
L
<5 | nax Z N (d(pp(5); Ak) — d(fir(s), Ax)))
s=T ke[K]
L
< - Z max Z Wi SUP (M (s) = V)1 (8) — fn ()] (Lemma 8)
< WEAK AEM
S:T ke[K]
D
< - max Z wi |y (8) — fur(8)] (Assumption 2)
s=T ke[K]
D
< < max kez[;(] wk\/QUQd(,uk(s),,u;C(s)) (Assumption 1)
s=T

IN
v
ﬁ ,
[\V]
=

]~

(]
€
-

(/i;c (s) € Cy)

t s:TwEAK relK] Ni(s)
t
DV s~ [ (Lemma 7
t s+ K?—-2K
o
D252 f(t) | < 1
< DVt I Concavity of 4/
== 2 ROk (Conesiy o/
D\/252f(t
< @\/ 8t3/2 + 8Kt In(t) (Integral test and algebraic manipulations)

Next, it remains to analyze 723 FMaXwe faei, Dpep wed(py(s), Ar).  Let w* €
w*(p, ). Then, we have that:

t

1 . . ’
72 e, 2 el mmf a2 M)
=T ke[K] ke[K]
1 . .
> < Z;gﬁz whd(p(s), Ak)
ke[K]

t

1 . N

n > Jnf wid (i, Ak) — hs(t)
T ke[K]

v

=T )
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where the first step follows from the fact that i; € iz (p’(s)) and the last third one from the definition
of hs(t), that is:
t
hs(t) = Z mf Z wid(pg, M\e) — = Z inf wird(uy(s), \k)
s:T

< A€
s:T ke[K]

< - Z Z Wi Sup d(pur, M) — d(pg(s), Ar))

s= TkG[K

< fZ D i b (Y = )k = 1(5) (Lemma 8)
s= TkE[K

<D . , A -

=7 Z Z wilpe — g (s)] (Assumption 2)
s=T k€[K]

< *leu 1 (8) 0o

< *leu B(8) oo + 12(s) = 1’ (8)]l oo

max ———— (Lemma 9, Assumption 1, p/(s) € Cy)

2D\/202f Z

kG[K] \/Nk

< 2D\/ O'2f z

B ZVVs+ K2 2K
2D /2521 (1) 1

< ZZVvo SN

=T Z < 5T KT 2K

2D\ /202f (1)
< +f\/8t3/2 +8KtIn(t),

(Lemma 7)

(Concavity of 1/-)

(Integral test and algebraic manipulations)

which concludes the proof. O
We are now ready to prove Theorem 2.

Proof of Theorem 2. Let t > K?2. Then, for t > 10K* + Ty(5), by Lemma 5, we have & C
{rs <t}. Lemma 1 and Lemma 9 then conclude the proof. To this end, it is sufficient to note that

T*(w) Zle h(t)t ++/t+1 < g(t).* Here, we followed the same algebraic steps that we presented
for the proof of Theorem 1. O

G AN EXPLICIT BOUND

One concern with the implicit definition of T () in Theorems 1 and 2 is whether they yield practically
useful rates. In this appendix, we demonstrate that they do. By carefully bounding T5(d), we show
that it can be upper-bounded by clean and explicit expression of the form

O(T*(p) log(1/6) + T™(p) K loglog(1/4)).

These bounds are nearly tight: they match the asymptotic lower bound up to polylogarithmic factors
and additive problem-dependent constants. Furthermore, they are also useful in understanding the
theoretical guarantees of the algorithms in the regime where 7* () — +00 (i.e., in a BAI problem,

In the relevant regime where D, L, o, T* (@) > 1.
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these are the hard instances where the mean of the second best arm approaches the one of the optimal
arm).

This section is structured as follows. First, in Appendix G.1 we present the result of TAS, then in
Appendix G.2 we present the result for S-TAS.

G.1 AN EXPLICIT BOUND FOR TAS

For TAS, we show the following upper-bound on Ty ().

Proposition 3. Consider any n1 € (0,1/2), o € (0,1/4) and let A1(n1) and Aa(n2) be defined as
follows:

660 DLK21og(K)T* 160 DVKT*
A1(771) :: o 7701g( ) (N) A2(772) — 0772(”)_

Furthermore, consider any o,y € (0,1) such that o« +~ < 1 and let A1(n, ) and Ay(n,~) be
defined as follows:

0.5+m 0.75+m9

1211(771,@) = Al(nl) (W:W) 05— ;12(772’7) — A2(772) ((0.75 + 7’7;)‘42(772>> 0.25—

Then, it holds that:

T*(p) log(1/6) + T*(p) K log(log(1/6) + 1) + Ai (i, @) + As(n2,7) .

T <
(o) .

(16)

Before proving the proposition, we comment on the result.

Proposition 3 provides an upper bound on T () that holds for all 1, 12, o, v > 0 such that ; < 1/2,
72 < 1/4 and a4+ v < 1. Hence, the tightest bound is achieved while minimizing Equation (16) over
this domain. Some comments are in order.

Asymptotic Regime of 6 — 0  First, whenever 6 — 0, one can pick any valid 71, 72 together with
and ~y that goes progressively to 0, yielding to Ty () ~ T* () log(1/6) +T™* () K log(log(1/6) +1).
This shows how our result retrieves asymptotic optimality together with the dependency on minor
order terms of 4.

Asymptotic Regime of 7*(u) — +0o Second, by picking o = v = 1, we can easily evaluate
the moderate regime of § in difficult instances where T*(u) — oo (e.g., the case of best-arm
identification where the gap between optimal arm and the second best one tends to 0). In this case,

. 1+ 0-f+711 1+ 0.7;5+7;2
one obtains a rate of the form O <A1(771) 05=n1 4 Ay(ng)” " 025 m2

dependencies in relevant quantities, let us first analyze the first term, that is:

). To further understand the

inf Ay () o5 = inf_ Ay ()75
n€(0,3) ne(0,%)
. <660DLK210g(K)T*(u)>0-51—n
n€(0,3) ]

A\ 750
= inf () ,
n€(0,3) \ 1
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where in the last step we introduced A; = 660 DLK?log(K)T*(p). Let L1 = log(4A;). Then,
for sufficiently large T*(p), we have that g7- € (0, 3). Hence, we obtain that:

inf (1> D < (4A L)
ne(0,3) \ 7

— (4A,L;)7

= (4A1L1)2(4A1L1)2L12_1

2
= (4A1L1)? log(4A;L
(4A1Ly) eXp(QLll og(44; 1))

4L — 2
_ 2 1

= (4A1L1) exp (2L1 — 1)
eO (A% log(Al)Q) ,

where, in the forth step, we have used that for T* () sufficiently large 4L; — 2 > 2L + 2log(L1).

Following similar reasoning for the term with A5, we have that:
inf  Ay(n)' 9B < O (Adlog(Ay)t)
n€(0,3)

where Ay = 160 DVKT* ().

Hence, we have that:

0.54n1 0.75+4m9

Ay (171)1+0-57'r11 + A2(772)1+°'25*"’2 < 2max {A% log(Al)Q,Aé1 10g(A2)4}

inf
11€(0,1/2),m2€(0,1/4)

For T*(p) — oo, A3log(Az)?* is the dominant term, thus providing the relevant dependencies in
term of D, o, L, K and T* ().

We now conclude this section with a proof of Proposition 3.

Proof of Proposition 3. From Theorem 1, we have that:
To(8) = inf {t EN: s < (t—Vi—1)T* ()" - g(t)} :

where ¢(t) is given by:

g(t) = 640 DLK? log(K )4/ tlog?(t) + 16D/ K13/2 log(t).

Using log(t) < % together with the definition of S, s, i.e., Equation (25), it follows that T5(6) can
be upper-bounded by:*!

inf {t € N: Ag(0) + Ay (m)t*5FM 4 Ay (no)t* 752 < ¢}

where, for brevity, we have shortened 7* () log(1/9) + T (p) K log(log(1/6) + 1) with Ag(9).
Note that since 177 < 1/2 and 12 < 1/4, the upper bound is still well-defined and finite.

Next, by applying Young’s inequality (Lemma 6), we can further upper-bound this expression as
follows:*

inf{t e N: Ay(d) —|—o¢t+/~11(m,o¢) —|—7t+ﬁz(n2,’y) < t},

Solving for ¢ yields the desired result. O

*'Here, for simplicity, we incorporated the v/Z + 1 term and the K log log(t) component of 3; s within the

tlog(t) term.

2For the A; term, apply Lemma 6 witha = t°-577 b = Ay (n),p = 0.541n,¢ = 1-0.5—n, ¢ = a/(0.5+n).
Similarly, for the Ay term, use a = t* 77" b= As(n),p =0.75+n,¢=1—0.75 — n,e = v/(0.75 + n).
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G.2 AN EXPLICIT BOUND FOR S-TAS

Following the same reasoning that we presented above, it is possible to derive the following explicit
expression of Ty(9) for S-TAS.

Proposition 4. Consider any n, € (0,1/2), n2 € (0,1/4) and let A1(n1) and As(n2) be defined as
follows:

800 DLEK? log(K)y/tlog?(t) 320DVKT*
Ar(m) = " As(12) = 0772(’”

Furthermore, consider any o,y € (0,1) such that o« +~ < 1 and let A1(n, ) and Ay(n,~) be
defined as follows:

0.54n7 0.754n9

Ai(n1, @) = Ai(m) (W) T ) As(m) ((0.75 + ?)Az(m)) T

Then, it holds that:

_ T (W) T + T* () log(1/8) + T* (1) K log(log(1/6) + 1) + Ay (m, @) + As (2, 7)
- 1l—a—v '

Ty(9)
(17)

Proof. The proof is identical to the one of Proposition 3. The main difference is only in the presence
of T* ()T, that is due to the additional complexity that affects S-TAS. O

Proposition 4 provides the explicit expression of T((d) compared to its implicit version that is pre-
sented in Theorem 2. Here, comments that are analogous to those that we presented for Proposition 3
hold.

H AUXILIARY TOOLS

H.1 TECHNICAL TOOLS

Lemma 6 (Young’s Inequality). Leta > 0, b > 0 and consider integers p, q > 1 such that % + % =1
Furthermore, let € > 0. Then, it holds that:

eaP b4

P ng/p ’
H.2 CUMULATIVE TRACKING

The following lemma summarizes the main properties of the C-Tracking procedure.

Lemma 7 (C-Tracking). Let {w(t)} be an arbitrary sequence of elements that belongs to a K-
dimensional simplex. Consider the C-Tracking applied on a sequence {w(t)}+ and let us denote by
@(t) the I, projection of w(t) onto A = Ag N [e, 1] and ¢; = (K2 +t)1/2/2. Forallt €N, it
holds that:

Nip(t) > Vt+ K2 — 2K (18)
t
— KIn(K)Vt+ K? < Ni(t) = Y wi(s) < K/t + K2 (19)
s=1
t
>3 _wr(s)_ < KIn(K) + 4Kt + K2Vt + K2 (20)

s=1ke[K] V Nig(t)

Proof. Equation (18) is due to Lemma 7 in Garivier & Kaufmann (2016) and it is due to the forced
exploration of the C-Tracking procedure (i.e., the projection onto A%).
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Now, from Theorem 6 in Degenne et al. (2020), we have that:

t
—In(K) < Ny(t Z 1)

However, from Lemma 7 in Garivier & Kaufmann (2016), we also have that:

max ‘ Zwk — (s ’ <KVit K 22)
Combining this result with Equation (21) leads to Equation (19).
Finally, from Lemma 6 in Degenne et al. (2020), we have that:

ZZ Nk <Kln( )+ 4VKt

s=1ke[K]

Combining these results with Equation (22) leads to Equation (20), thus concluding the proof. [

H.3 PROPERTIES OF CANONICAL EXPONENTIAL FAMILIES

The following lemma reports standard properties of one-dimensional canonical exponential families.

Lemma 8 (KL Difference in Exponentialy Families). For three distributions in a canonical exponen-
tial family with means a, b, c, it holds that:

d(a,b) =d(a,c) 4+ d(c,b) + (vp — vc)(c — a) (23)
d(e,b) —d(a,b) < (V. — ) (c — a) (24)

where v(.y denotes the natural parameter of the distribution with mean (-).
Proof. For a proof, see, e.g., Lemma E.6 in Poiani et al. (2024). O

H.4 CONCENTRATION RESULTS

Lemma 9 (Good Event). Consider {&;}+ such that

E=<(Vse “\[ } Z Ny (s (8), ) < 8K log(s)

ke[K]

It holds that 3", %5 P,,(Ef) < 2¢K.

Proof. The statement is a direct corollary of standard concentration arguments (see Lemma 6 in
Degenne et al. (2019)). O

H.5 §-CORRECTNESS

For simplicity of exposition, we consider the following choice of the threshold j; s:

Bi,s = log <(15) + K log <4 log <(15) + 1) + 6K log(log(t) + 3). (25)

This threshold has been shown to yield §-correct algorithms for Gaussian distributions Ménard (2019).
At a cost of more involved expression, one can adopt the threshold proposed in Kaufmann & Koolen
(2021) to analyze the stopping time in generic canonical exponential families.

We now prove for completeness that this choice of 3, 5 combined with the stopping and recommenda-
tion rules leads to a J-correct algorithm for any sampling rule. Note that the above result holds for
both the cases when i* () is both single and multiple-valued.

Lemma 10 (Correctness). For any sampling rule and p € M, it holds that P, (i, ¢ i*(p)) < 0.
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Proof. With probabilistic arguments, we have that:

Puliry ¢ 7"(n) <Py [ HeN,j&i"(p): Aigfj Z Ni(®)d(fig(t), Ar) > Br.s
ke[K]

<P, [JteN: Z N (t)d(fin(t), x) > Br.s
kE[K]

<9,

where the first step follows from the definition of the stopping and recommendation rules, the second
one from the fact that g € —j for all j ¢ ¢*(u), and the third one from Proposition 1 in Ménard
(2019). O
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