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Abstract

While multi-modal large language models (MLLMs) have shown significant
progress across popular visual reasoning benchmarks, whether they possess abstract
visual reasoning abilities remains an open question. Similar to the Sudoku puzzles,
abstract visual reasoning (AVR) problems require finding high-level patterns (e.g.,
repetition constraints on numbers) that control the input shapes (e.g., digits) in a
specific task configuration (e.g., matrix). However, existing AVR benchmarks only
consider a limited set of patterns (addition, conjunction), input shapes (rectangle,
square), and task configurations (3 × 3 matrices). And they fail to capture all
abstract reasoning patterns in human cognition necessary for addressing real-world
tasks, such as geometric properties and object boundary understanding in real-
world navigation. To evaluate MLLMs’ AVR abilities systematically, we introduce
MARVEL founded on the core knowledge system in human cognition, a multi-
dimensional AVR benchmark with 770 puzzles composed of six core knowledge
patterns, geometric and abstract shapes, and five different task configurations. To
inspect whether the model performance is grounded in perception or reasoning,
MARVEL complements the standard AVR question with perception questions in
a hierarchical evaluation framework. We conduct comprehensive experiments on
MARVEL with ten representative MLLMs in zero-shot and few-shot settings. Our
experiments reveal that all MLLMs show near-random performance on MARVEL,
with significant performance gaps (40%) compared to humans across all patterns
and task configurations. Further analysis of perception questions reveals that
MLLMs struggle to comprehend the visual features (near-random performance).
Although closed-source MLLMs, such as GPT-4V, show a promising understanding
of reasoning patterns (on par with humans) after adding textual descriptions, this
advantage is hindered by their weak perception abilities. We release our entire
code and dataset at https://github.com/1171-jpg/MARVEL_AVR.

1 Introduction

Recent advances in novel training pipelines, computational resources, and data sources have enabled
multi-modal large language models (MLLMs) [21, 49, 37, 16, 8, 10] to show strong visual reasoning
ability in tasks that require combining both visual and textual cues [64], such as visual question
answering [7, 22] and visual commonsense reasoning [70, 76]. These tasks are typically under
real-world settings [40]. On the other hand, abstract visual reasoning (AVR) [27, 77] focuses on
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Task Configuration

How many panels, including 
blank panel, in the question 
part? Answer: Six panels.

Are there two or three circles 
in the left half of choice 4?
Answer: Three circles.

The puzzle consists of a question part in a 2 by 3 matrix with 
the right piece missing. Which choice is the answer to 
fill the missing part? Answer: Choice 4.
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Figure 1: An abstract visual reasoning puzzle in MARVEL. The puzzle contains mathematical
pattern governing the element number in geometric shapes with two-row task configuration. The
AVR question focuses on the final answer for the puzzle, while the perception questions focus on the
fine-grained detail about one choice or coarse-grained detail over the whole puzzle. In the example,
the left-side elements (black stars/circles) increase by one in each panel, while the right-side elements
(white stars/circles) in the first panel equal the sum of those in the second and third panels.

recognizing patterns among 2D shapes and their attributes. As the puzzle shown in Figure 1 (top-right),
AVR problems require identifying the hidden pattern (addition and subtraction) that governs the input
shapes and their attribute (number of stars/circles) in a task configuration (2 × 3 matrix). AVR ability
is crucial for various practical applications, including human pose estimation (understanding pose
through abstract representation) [50], and anomaly detection(finding outliers in videos) [55]. AVR
ability is also indispensable for developing artificial general intelligence (AGI) [40]. This significance
encourages fundamental research on evaluating MLLMs against AVR benchmarks [4, 73].

However, two significant issues remain unsolved in evaluating MLLMs comprehensively. 1) The
scope of current AVR benchmarks is not fully cognitively supported and fails to encompass
the variety of real-world scenarios[63]. Some datasets, such as RAVEN [77], only cover a few
reasoning patterns (mostly in mathematical patterns) over a limited set of input shapes arranged
in a predetermined configuration of puzzle panels. Human cognition builds the foundation for
inference and skill acquisition in the real world[59]. Without theoretical foundations, existing
benchmarks lack diverse reasoning patterns in real-world tasks and fail to provide a holistic evaluation
of MLLM’s ability[15], which can not be solved by simple joint evaluations[40]. 2) Most prior
studies [11, 28] employ an end-to-end evaluation framework, leaving it unclear whether the
model’s performance is attributed to perception or reasoning[56]. Current visual literature
claims they are both compositional components of the visual reasoning process and should be treated
separately for in-depth analysis[4, 60, 75].

To address the limitation of evaluation scope (issue 1), we introduce MARVEL, a multi-dimensional
abstract visual reasoning benchmark designed to evaluate MLLMs across six patterns, both geometric
and abstract shapes and five task configurations. To ensure cognitive foundations and real-world
applicability, MARVEL’s underlying reasoning patterns are rooted in key core knowledge of human
cognition, observed in newborn infants, necessary for reasoning about their environment (real-world
scenario) [59] even without a clear real-world understanding (abstraction). We crawl relevant puzzles
from publicly available websites, manually filter low-quality and irrelevant puzzles based on the
expanded patterns and input shapes, and reformat them into different task configurations. We annotate
the AVR question by briefly describing the puzzle and asking for its answer. In total, we collect 770
diverse and high-quality puzzles assessing abstract visual reasoning abilities (Figure 1).
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Dimension RAVEN G-set VAP Bongard-
LOGO SVRT DOPT ARC* MARVEL

Input Shape Geometric ✔ ✔ ✔ ✔ ✔ ✔
Abstract ✔ ✔ ✔

Pattern

Temporal Movement ✔ ✔ ✔ ✔ ✔
Spatial Relationship ✔ ✔ ✔
Quantities ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Mathematical ✔ ✔ ✔ ✔ ✔
2D-Geometry ✔ ✔ ✔
3D-Geometry ✔

Configuration

Sequence ✔ ✔
Two-row ✔ ✔
Matrix ✔ ✔ ✔
Group ✔ ✔ ✔
Reassembling ✔

Perception Question ✔

Table 1: Comparing MARVEL to related benchmarks: RAVEN [77], G-set [41], VAP [27], Bongard-
LOGO [47], SVRT [19], ARC [15], DOPT [67]. *ARC puzzles are provided in a generative format.

To determine if the model’s performance is based on perception or reasoning (issue 2), we also
provide a hierarchical evaluation framework by enriching each puzzle with perception questions
focusing on perceiving puzzles’ visual details (e.g., number of grids, edges of a triangle) to measure
models’ reasoning consistency [31, 56]. We conduct comprehensive experiments on MARVEL
involving different model structures, model sizes, and prompting strategies. Our experiments reveal
that all MLLMs show near-random performance in all patterns, even with few-shot demonstrations
and prompt engineering, leaving a huge gap (40%) in the abstract reasoning ability of humans. An
in-depth analysis based on perception questions points out that MLLMs’ performance is hindered by
their fine-grained visual feature comprehension, failing to provide foundations for subsequent abstract
reasoning. Our contributions can be summarized as follows: 1) A novel multidimensional AVR
benchmark, MARVEL, which consists of six patterns rooted in cognitive theory across five distinct
task configurations. 2) A hierarchical evaluation framework incorporating perception questions
with AVR questions to enable fine-grained diagnosis of model capability. 3) Extensive experiments
on a wide range of state-of-the-art MLLMs with various prompting strategies, providing insights into
the connection between their perception and reasoning abilities.

2 Related Work

MLLM Evaluations. Benefiting from the rich representation from visual encoders [52] and
strong reasoning ability of LLMs [62, 14], MLLMs [33, 16, 48, 37] have been applied to solve
not only traditional vision-language tasks, such as image captioning [1, 74], visual question answer-
ing [23, 43, 29, 57] and refer expression comprehension [32, 24], but also on more complicated
scenarios, such visually-grounded conversation [37, 5], multimodal web/UI agents [25, 81, 72] and
embodied tasks [17]. Besides end-to-end evaluation, several recent works also try to reveal MLLMs’
visual shortcomings from different aspects, including visual details [79, 69], perceptual bias [78],
and small visual pattern recognition [61]. Although some of the existing benchmarks have accessed
MLLM’s mathematical visual reasoning abilities requiring an understanding of abstract and geom-
etry shapes [38, 39], their evaluation still heavily relies on textual descriptions. In contrast, AVR
benchmarks assess MLLMs’ ability under diverse patterns with only visual understanding settings.

AVR Benchmarks. AVR problems have great potential impact on various domains [40, 51, 55],
sparking interests in evaluating MLLMs on AVR benchmarks [4, 46, 45]. Existing AVR benchmarks
present the evaluation in a wide range of formats, such as selective completion [77, 28, 11, 67], group
discrimination [19, 47] and generative completion [15]. However, less attention is paid to the scope
and pattern of the AVR benchmark; most focus only on a few simple abstract patterns and testing
models end-to-end without considering the intermediate perception and reasoning procedures [46, 44].
In contrast, MARVEL not only includes geometric and abstract shapes and five different task
configurations but also builds its reasoning patterns based on the core knowledge system in cognitive
science, enriching abstract reasoning that exists in the real world. Inspired by prior analysis of
visual details and perceptual bias, MARVEL introduces perception questions to ensure the MLLMs
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correctly perceive the presented visual patterns. MARVEL and related AVR benchmarks are
compared in Table 1.

3 MARVEL Benchmark Construction

As a multidimensional benchmark for AVR, MARVEL covers different task configurations (Sec-
tion 3.1), various input shapes (Section 3.2), as well as different reasoning patterns involved in the
puzzles (Section 3.3). We present the data collection process in Section 3.4.

3.1 Task Definition and Configurations

Each puzzle in MARVEL consists of a context on the top and possible choices (ci; i ∈ {1, 2, 3, 4})
to choose from at the bottom, formatted in a multiple-choice question answering setting (see Figure 1
for an example). The context part consists of n puzzle panels (p1, p2, . . . , pn, pb with pb being a
blank panel), with their specific number and arrangement driven by a task configuration and reasoning
pattern, P , that governs the relationship between puzzle panels. The choice will be considered
the correct answer and fill in pb that can satisfy the following equation: P (p1, p2, . . . , pn) =
P (p1, p2, . . . , pn, cc).

Puzzle panels in MARVEL are organized in five task configurations. We visualize these configura-
tions in Figure 1 (see detailed examples in Appendix D).

1. Sequence Format arranges panels in a 1× n line (n ∈ [4, 7]).
2. Two-row Format presents panels in a 2 × 3 matrix∗ , p11, p

1
2, p

1
3 and p21, p

2
2, p

2
3. The solution

requires identifying the same pattern at the first row and the second row, which is P (p11, p
1
2, p

1
3) =

P (p21, p
2
2, cc).

3. Matrix Format organizes panels in a 3 by 3 matrix, the pattern can be reflected in either
row- or column-wise way: P (p11, p

1
2, p

1
3) = P (p21, p

2
2, p

2
3) = P (p31, p

3
2, cc) or P (p11, p

2
1, p

3
1) =

P (p12, p
2
2, p

2
3) = P (p13, p

2
3, cc).

4. Group Format has three panels in the question part (p1, p2, pb) with one choice reflecting the
context’s pattern and other choices differing: P (p1, p2, cc) ̸= P ′(choices− cc).

5. Reassembling Format is designed for 3D-Geometry pattern visualizes 3D geometric shapes, such
as cubes or tetrahedrons, in the choice section of the puzzle. The context section provides a panel
featuring the unfolded 2D diagram of one of the choices. Models must reason about the visual
details in the 2D diagram to identify the correct 3D shape.

3.2 Input Shapes

As shown in Figure 1, each panel of a puzzle contains various shapes that can be generally differenti-
ated into two types [40]:

1. Geometric Shapes are easily described and come from a limited vocabulary. For instance, a
square is a shape that has four sides of equal length and four equal angles. Most existing AVR
benchmarks [77, 27] focus on elementary shapes such as oval, rectangle, triangle, and trapezoid.
MARVEL includes geometric shapes consisting of more than two different elementary geometric
shapes to mitigate the issue and improve the complexity.

2. Abstract Shapes come from a wide set of possibilities and vary widely from one problem to
another[40]. Unlike geometric shapes, which are typically fixed, easily describable, and belong to
a finite set (e.g., both a larger square and a black square are classified as squares due to shared
fundamental properties), abstract shapes are atypical, lacking fixed properties and marked by
variability and complexity. They provide a fair step as most MLLMs encounter the shapes for the
first time and are gaining more preference for AVR-related research [19, 47].

3.3 Core Knowledge and Patterns

Core knowledge theory [59] from cognition science is largely shared among humans and particularly
for human infants. Human infants with no real-world knowledge and limited experience represent

*pba: the panel on the a th row and b th column of matrix.
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their environment using abstraction patterns. These abstraction patterns can be categorized into four
types of core knowledge, which is the foundation for inference and reasoning [34] in real-world
scenarios. We do not feature the agent representation core knowledge because it concentrates on
goal-directed and interactive action, which is not adaptable in MARVEL setting. For the other three
types of core knowledge, we expand each into two patterns for a fine-grained assessment of abstract
reasoning in MARVEL, based on insights drawn from contemporary cognitive literature:

1. Object Core Knowledge represents objects’ spatiotemporal motions and their contact, enabling
humans to predict objects’ movement and perceive object boundaries. We expanded this core
knowledge to Temporal Movement Pattern focusing on the related position change or move-
ment [58] and Spatial Relationship Pattern examining objects’ relative positional relationship [2].

2. Number Core Knowledge helps infants process abstract representations of small numbers and
perform comparisons. We include Quantities Pattern testing the accuracy of number comprehen-
sion [71] and Mathmatical Pattern for elementary mathematical operations [9].

3. Geometry Core Knowledge captures the environment’s geometry, which helps humans orient
themselves in their surroundings. We divide the concept into 2D-Geometry Pattern [26] and
3D-Geometry Pattern [13].

3.4 Data Collection

We collect puzzles from several public resources websites1 and filter out unfit or low-quality data by
three human annotators based on the puzzle’s input shapes (some puzzles contain textual information)
and patterns. Unaligned puzzles are first segmented into panels and then reassembled into the correct
task configuration. To ensure each pattern in each task configuration has at least 45 puzzles2, we also
manually created 220 puzzles by following the pattern in existing data and replacing the input shape
drawn from scratch. Each puzzle contains an AVR question (Figure 1) generated from templates based
on their task configuration. AVR questions provide a brief description and ask only for the puzzle’s
final answer, which is widely adopted in previous AVR benchmark [40]. In the end, MARVEL
includes 770 high-quality puzzles over six high-level patterns across five distinct task configurations.
In Table 1, we compare MARVEL with existing AVR benchmarks to show its comprehensive scope.

4 Hierarchical Evaluation Framework

Previous works evaluate MLLMs on AVR benchmarks with end-to-end setting only [46, 45], po-
tentially overlooking shortcut learning and inductive biases [40]. On the other hand, precisely
comprehending visual details is the foundation for subsequent reasoning in AVR problems [20]. We
enrich MARVEL puzzles with perception questions [56] designed to test models’ perception ability
on visual details (Figure 1). We design a hierarchical evaluation framework by combining two types
of perception questions with AVR questions (Figure 1) to examine if model accuracy is based on
perception and reasoning. For each puzzle, our framework provides three coarse-grained questions
and one pattern-related fine-grained question:

Coarse-grained Perception Question in an open-ended fashion aims to test if models can understand
the task configuration correctly by directly asking about the number of panels in puzzles. We use
templates to generate three questions focusing on the number of panels in the context part, choice
part, and the whole puzzle. We remove the choice index (the number marking each choice panel)
when testing models with this question to avoid shortcut learning.

Fine-grained Perception Question in binary-choice format examines models’ understanding of
input shapes, which focus on the visual details categorized by Tong et al. [60] such as shape
attributes (number of edges) and spatial relationship (left, right) based on the pattern contained in
the puzzle. For example, in Figure 1, the fine-grained perception question tests whether models can
understand the number of circles because the puzzle is based on Mathematical Pattern. For each
puzzle, we randomly pick one choice panel in the puzzle and manually create questions with two

1https://www.gwy.com/; https://www.chinagwy.org/
2Some patterns can not be presented in specific configurations. For example, the Mathmatical Pattern can

not be adapted to group format as it requires comparison between adjacent panels.
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choices. The correct answer is randomly placed to avoid inductive bias3. We have five types of
questions based on the pattern and how it adapts to the input shape, which are listed with examples:

1. Location: Is the dot outside or inside of the star in choice 4?
2. Color: Is the triangle black or white in choice 1?
3. Shape: Is there a circle or a triangle inside choice 3?
4. Quantity: Are there five or four circles in choice 2?
5. Comparison: Are the left and right halves of the rectangle in choice 3 the same?

5 Experimental Setup

Closed-source MLLMs. We include API-based MLLMs including 1) GPT-4 [48], 2) Gemini [21]
and 3) Claude3 [6]. With the massive computation and training data, these models show promising
performance on a wide range of visual-focused tasks [23, 70]. We evaluate closed-source MLLMs in
both zero-shot and few-shot [12] settings.

Open-source MLLMs. We include MLLMs smaller than 13B due to our limited computing resources:
1) InstructBLIP [16], 2) BLIP-2 [33], 3) Fuyu [10], 4) Qwen-VL [8] and 5) LLaVA [36]. We only
evaluate these MLLMs in a zero-shot setting due to their single-image input settings [80].

Human Evaluation. To access the upper bound performance on MARVEL, we simulate a realistic
human assessment by inviting 30 annotators aged from 10 to 50 years to solve a subset of MARVEL
and ensure each subset contains every pattern in all task configurations. We compute the average
performance of these 30 annotators as the human baseline. Each puzzle is solved by at least two
annotators. We invited three annotators to solve perception questions and report their average
performance. The demonstrations and instructions used are presented in Appendix J.

Evaluation Metrics. Following a similar setting as previous research evaluating MLLMs on AVR
benchmarks [4], we use regex matching to extract the choices picked (e.g., "choice 4" in the response
"The correct answer is choice 4."), with failure cases re-extracted by GPT-4 [3, 82]. We use accuracy
as the metric, commonly used for evaluating multiple-choice questions, and has been utilized by
many AVR papers [27, 77]. Based on the hierarchical evaluation framework, we evaluate MLLMs
with two types of accuracy-based metrics:
1. Instance-based Accuracy considers questions separately. We report accuracy results for AVR

question and fine-grained perception question.
2. Group-based Accuracy considers questions as groups to assess the consistency in model rea-

soning [31, 75]. The model receives a score of 1 only if it correctly answers all questions within
the same group. We report the group-based accuracy result of combining all three coarse-grained
perception questions and the further result after introducing fine-grained and AVR questions into
the group.

6 Results

We focus on five research questions: 1) What’s the abstract reasoning ability on visual puzzles
of current SOTA MLLMs? 2) Can MLLMs do better with different few-shot prompting strategies?
3) How do MLLMs perform on different patterns and task configurations? 4) To what extent do
MLLMs visually understand the puzzle? 5) Do they show consistent reasoning ability?

Overall Performance. The AVR question results are shown in Table 2. Human performance
reaches 68.86%, with a standard deviation of 9.74, confirming the validity and challenging nature of
MARVEL. For both open and closed source categories, all models show near-random performance
with a huge gap (40%) compared to human performance, in which closed-source MLLMs (avg:
25.7%) perform slightly better than open-sourced ones (avg: 24.0%). We observed an extremely
imbalanced distribution in the outputs of some MLLMs. For example, BLIP-2 consistently selecting
choice 1 for all puzzles (marked † in Table 2). We tried different approaches with our best effort to
avoid potential bad prompts or engineering settings, including adding question marks in the black
panel, replacing the choice index with letter (1 → A), and changing the description in the AVR

3The inductive bias (also known as learning bias) of a learning algorithm is the set of assumptions that the
learner uses to predict outputs of given inputs that it has not encountered. For example, the model may always
output ’D’ for unfamiliar questions
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Table 2: Main zero-shot accuracy over MARVEL across all MLLMs in two accuracy metrics:
PrecC = group-based accuracy over all coarse-grained perception questions (model must answer
all three questions correctly), PercC&F = group-based accuracy combining all perception questions
(coarse/fine-grained), AVR = AVR Question. The best performance among all models is in bold, and
the best result in two MLLMs categories is underlined. *Gemini refuses to answer the puzzle due to
safety problems in 7% cases so the performance is computed based on the left set. † notes the result
is attributed to inductive bias.

Category Model AVR Fine-grained PercC PercC&F PercC&F & AVRQuestion Perception
Random 25.00 50.00 - - -

Open-
source
MLLMs

Qwen-VL (7B) 19.61 37.27 0.52 0.39 0.00
Fuyu (8B) 24.29† 34.94 0.00 0.00 0.00
BLIP-2 (FlanT5XXL-11B) 24.81† 53.38 1.04 0.52 0.26
InstructBLIP (Vicuna-13B) 24.68† 49.48 0.00 0.00 0.00
LLaVA-1.5 (Vicuna-13B) 26.36 51.43 1.14 0.52 0.13

Closed-
source
MLLMs

GPT-4V 22.34 51.56 18.31 9.22 2.73
GPT-4o 27.79 68.44 62.73 43.77 12.21
Gemini-pro-vision* 25.06† 44.42 15.19 6.75 1.69
Claude3 (Sonnet) 26.49† 50.91 38.70 19.87 5.06
Claude3 (Opus) 28.83 47.27 44.94 20.13 5.97

Human 68.86 ± 9.74 98.67 - - -

question. None of them can mitigate and may even exacerbate the issue, highlighting the potential
inductive biases [66] in models. Among open-source MLLMs, LLAVA performs the best, yet the gap
is very small, and it is unclear whether the gain comes from its larger model size. In closed-source
models, even the strongest MLLMs, Claude3 (Opus) and GPT-4o, which demonstrated promising
results on various vision tasks [6], failed to present a significant performance difference from the
random baseline. Claude3 (Sonnet) and Gemini also have imbalanced output distributions, with both
selecting choice 4 in most cases.

Impact of Few-Shot CoT. Given the poor zero-shot performance and the mod-
els’ capability of in-context learning [12], we explore few-shot prompting with
Chain-of-Thought (CoT) [68] to guide MLLMs with abstract reasoning patterns.

Zero-shot One-shot Two-shot
22

24

26

28

30

A
cc

ur
ac

y

Gemini
GPT-4o
GPT-4V

Claude3 (Sonnet)
Claude3 (Opus)

Figure 2: MLLMs performance in
different few-shot COT.

We experiment with all closed-source MLLMs in one-shot and
two-shot settings using manually created CoT context, similar
to Yang et al. [73]. For each puzzle, we randomly select puz-
zles with the same pattern in the sequence task configuration
and annotate the CoT reasoning with answers as demonstra-
tions. We chose the sequence task because it is more straightfor-
ward (only along the sequence) than other configurations. Each
demonstration is formatted as image-text pairs. Our result is
shown in Figure 2, and we present the full results in Appendix I.
The few-shot demonstrations show a marginal positive impact
on GPT-4V and a decreasing trend on Claude3 (Opus).

Further analysis reveals that the main improvement in GPT-4V’s
results lies in the 3D-Geometry pattern. As this pattern focuses
on reassembling, the demonstration can guide the model to
pay attention to the relative position of each side of the object.
However, since most patterns are uniquely implemented on
different input shapes and their attributes, the model struggles to learn generalizable patterns from
the few-shot demonstrations. Figure 3 provides an example of zero-and few-shot results from
Claude3 (Opus). With the demonstration, the model learns to focus on the correct pattern (blue) at the
beginning of the reasoning. However, it fails to adapt precisely to the input shapes in the puzzle (red),
leading to errors in subsequent reasoning. We also test different prompt engineering approaches,
including selecting demonstration samples from different 1) patterns, 2) task configurations, and
3) prompting MLLMs by dividing puzzles panel by panel. None of these approaches yields a positive
impact; instead, they lead to a significant drop in performance (Appendix I). Given the complexity
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Figure 4: MLLMs and human performance across patterns and task configurations.

and challenging nature of the dataset, the effectiveness of few-shot prompting on MARVEL remains
minimal. The inductive bias is mitigated in few-shot settings.

Performance on Different Patterns and Configurations. We further break down the results4

Claude3-Opus (Zero-shot):

To determine which choice best fits the missing piece in the bottom 

right, we need to identify the pattern in the given 3x2 grid. Looking at 

the grid, we see that each row follows a specific pattern:

Row 1: The number of vertical lines increases by 1 from left to right.

Row 2: The number of horizontal lines increases by 1 from left to 

right.

Based on this pattern, the missing piece in the bottom right should 

have 3 horizontal lines, as it follows the pattern in the second row.

Looking at the choices provided, choice 3 is the only option that has 3 

horizontal lines. Therefore, choice 3 is the most appropriate answer to 

fill the missing part in the given puzzle.

Claude3-Opus (Two-shot):

Let's analyze the pattern in the given 3x2 matrix, focusing on the 

number of vertical and horizontal lines in each cell

Row 1: Cell 1 has one vertical line, Cell 2 has two vertical lines

Row 2: Cell 1 has one vertical and one horizontal line, forming a plus 

sign. Cell 2 has two vertical and two horizontal lines, forming a hash 

symbol.

Row 3: Cell 1 has three vertical lines. The missing cell should follow 

the pattern established in the previous rows.

Based on the pattern, the missing cell should have three vertical and 

three horizontal lines, forming a grid of nine squares. This corresponds 

to choice 4 among the given options. Therefore, choice 4 is the most 

appropriate answer to complete the matrix.

Perception Question:

Are there two or three parallel 

horizontal lines in choice 2?

Claude3-Opus:

Choice 2 contains three parallel 

horizontal lines.

Context

Choices

Figure 3: Perception question, zero- and two-
shot example of Claude3 (Opus).

into different patterns and task configurations in Fig-
ure 4 (full results in Appendix E). In general, MLLMs
show near-random performance on all patterns and
task configurations. Among the six patterns, 3D-
Geomertry pattern is the most challenging for hu-
mans and MLLMs. The difficulty may be rooted in
the requirement for the 3D imaginative ability [42]
and the relatively lower frequency of such data in
the models’ pre-training datasets, which leads to a
significant gap (12.5%) between open and closed-
sources MLLMs. On the other hand, 2D-Geomertry,
involving understanding geometric attribute of input
shape, seems relatively easier for MLLMs, evidenced
further by their proficiency on similar tasks such as
interpreting graphs plots [73].

Among the five task configurations, the two-row and
matrix formats provide more panels (i.e., informa-
tion) to verify the pattern, facilitating puzzle-solving.
On the contrary, the group and reassembling formats
containing the least panel number tend to be challeng-
ing. Four out of five MLLMs rank 1st in different
task configurations, which verifies our assumption
of potential bias in single-configuration evaluation.
According to their pre-training dataset, models may
be familiar with specific input types, highlighting the
necessity of MARVEL’s multidimensional settings.

Perception Ability on Visual Details. Visual per-
ception forms the foundation for advanced reason-
ing [54]. By incorporating perception questions, our
hierarchical evaluation framework effectively investigates to what extent the models understand the
visual information from the puzzle. In Table 2, closed-source MLLMs demonstrate more robust
performance on coarse-grained perception group accuracy compared to open-sourced MLLMs, with
a performance gap ranging from 14.05% to 61.59%. However, even the best model fails to reach an
acceptable accuracy (<65%), indicating that current MLLMs struggle to simultaneously understand
the number of grids, choices, and the puzzle as a whole, despite their promising performance on
real-world datasets [30]. The simplicity of the coarse-grained perception questions (all puzzles
contain less than 13 panels) highlights the poor perception ability of current MLLMs in the abstract
visual reasoning domain. Fine-grained perception questions further confirm this argument, with

4We only select MLLMs that do not show significantly imbalanced output distributions.
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Table 3: Performance of different models after introducing text description in the input. † notes the
result is attributed to inductive bias.
Input Open-sourced MLLMs Closed-sourced MLLMs

Qwen-VL Fuyu Blip-2 InstructBLIP LLaVA-1.5 GPT-4V GPT-4o Gemini Claude3 (Sonnet) Claude3 (Opus)
AVR 23.16 23.16† 23.16† 23.16† 21.05 21.05 23.16 26.32† 27.37† 30.53
AVR+Text 24.21↑1.05 26.32↑3.16 26.32↑3.16 13.68↓9.48 28.42↑7.37 65.26↑44.21 58.95↑35.79 37.89↑11.57 49.47↑22.10 55.79↑25.26

all models except GPT-4o showing near-random performance. Further analysis of fine-grained
perception performance based on five categories (Table in Appendix F) reveals that models perform
relatively better at color perception but have difficulty recognizing location (e.g., ‘a’ is on the left of
‘b’). We hypothesize that the difficulty in understanding location stems from the lack of labeled data
on location and relations during training, especially in abstract visual understanding. In contrast, the
models’ color perception is well-trained during their multi-modal alignment, and the simplicity of
RGB understanding allows for easier transfer to the abstract domain.

Consistency of Model Reasoning. The further group-based accuracy (PrecC&F and
PrecC&F&AV R) shows that no model can solve the AVR puzzles with consistent reasoning,
with the best model reaching only 12.21% group accuracy. Based on the result of our evaluation
framework, we hypothesize the inconsistency stems from their poor visual perception ability [20]. As
shown in Figure 3, the model’s reasoning is based on the perception of the puzzle (e.g., number of
lines), which needs to be completely precise to support correct reasoning. The perception questions
in our framework reveal that the model cannot clearly understand the number of lines, explaining
why it fails to answer the puzzle even with correct hints (few-shot). A single error in visual feature
perception can impact reasoning since the correct pattern must apply to all puzzle shapes. The densely
packed information distribution—where the majority of the puzzle remains blank—ensures that each
piece of visual perception is an essential foundation for subsequent reasoning. That also explains why
GPT-4o struggles to achieve significant reasoning performance even with the highest performance on
fine-grained perception questions. However, the importance of visual detail perception has received
little attention in previous evaluations [46, 45], highlighting the significance of our new evaluation
framework.

7 A Lens to Reasoning Through the Haze of Perception

Since poor visual perception is the main obstacle to improving MLLMs’ abstract reasoning ability, in
this section, we conduct three additional experiments to understand these models’ potential when
perceptual barriers are mitigated (full detail in Appendices G and H).

In the first experiment, we analyze the model’s perception ability on the question part by presenting
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Figure 5: MLLMs performance on pat-
tern classification. The black dotted
line represents the random baseline.

models with the same puzzle but asking for possible un-
derlying patterns in a multiple-choice setting instead of
the whole AVR reasoning question. As shown in Figure 5,
closed-source models show non-random results when rea-
soning about the underlying pattern, while nearly all open-
source models struggle to outperform random baselines.
This gap indicates that closed-source models partially un-
derstand the patterns, but more accurate visual perception
is needed to complete the entire task.

To further alleviate perception barriers, we add accurate text
descriptions of the puzzle on a subset of MARVEL (Ta-
ble 3). The result shows a significant boost in performance,
with GPT-4V achieving human-level accuracy (65%). On
the contrary, open-source MLLMs still lag behind, indicat-
ing that while enhanced textual descriptions can improve performance, they do not fully bridge the
gap between closed-source and open-source models. This further supports that closed-source models
possess superior reasoning capabilities often overshadowed by visual perception. The distinction
between different MLLMs also underscores the potential effectiveness of MARVEL in evaluating
AVR ability, particularly when the weakness of visual perception is addressed.

To address concerns about domain shifts affecting model performance, we conducted domain adap-
tation experiments to evaluate the effectiveness of fine-tuning on perceptual tasks. We fine-tuned
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LLaVA-1.5 [35] using Qwen-1.5B [8], with a 4:1 training-validation split over 10 epochs. The model
was trained on both AVR and perception questions, and performance was measured on the validation
set after each epoch. For AVR questions, the average accuracy was 19.76%, ranging from 12.99% to
29.87% (random chance 25%). For perception questions, average accuracy reached 59.74%, ranging
from 53.89% to 62.98% (random chance 50%). These results indicate that poor performance is not
solely attributable to domain shifts, aligning with prior studies [38, 53], which emphasize the inherent
complexity of perception tasks that may require multi-task integration. The perception questions in
MARVEL thus serve as a valuable benchmark for assessing MLLMs’ perceptual capabilities.

8 Conclusion

In this work, we develop MARVEL, a multidimensional abstract visual reasoning benchmark
consisting of 770 puzzles with both geometric and abstract input shapes across six patterns and five
task configurations. We also design a hierarchical evaluation framework that enriches MARVEL
with perception questions to enable granular analysis of models’ visual details understanding and
reasoning consistency. Our comprehensive experiments with ten SOTA MLLMs reveal a huge gap
in abstract visual reasoning ability between (40%) humans and MLLMs, where all MLLMs often
perform close to random. Further analysis based on our evaluation framework shows MLLMs’ poor
perception ability in understanding visual details, which hinders their subsequent reasoning and leads
to poor AVR performance. We hope future works can build on the foundation of MARVEL for
enhancing MLLM abstract visual perception and reasoning abilities.
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A Limitation

While our work draws from cognitive science to address gaps in current AVR literature, it’s important
to note that research in human cognition is ongoing. The exact nature of innate human core knowledge
remains an open question, and it is necessary to continually update the scope of MARVEL as related
cognitive studies progress.

Also, We chose a multiple-choice QA format with additional perception questions for hierarchical
evaluation. Future research should explore better evaluation metrics such as open-ended generation
or interactive (multi-step) setups, providing the possibilities to implement the fourth core knowledge:
agent representation related to goal-directed and interactive actions.

B Ethical Considerations

As our abstract visual reasoning puzzles are published on various websites, checking all original
licenses comprehensively is challenging. However, the website owners permit printing and down-
loading for non-commercial use without modification. We will require future dataset users to sign a
document stating that the data will be used solely for research purposes before providing access.

We also emphasize that puzzles in MARVEL are intended for research use only and should not
be used to make critical decisions about individuals’ capabilities. Such misuse could cause undue
pressure and anxiety for participants and may not accurately reflect their true potential or abilities in
real-world scenarios.

Puzzles in MARVEL only contain geometric and abstract shapes, which leaves no space for the
disclosure of any personally identifiable information or offensive content. We still go through all the
puzzles to make sure that no harmful or personal information exists in MARVEL.

C Data Source

Our code and data are available at https://github.com/1171-jpg/MARVEL_AVR/tree/main.
and the link to our dataset website is https://marvel770.github.io/

D Data Examples

We present examples with 5 different task configurations and 6 patterns in Figures 6 to 12.

Figure 6: The example is formatted in Sequence configuration with the Quantities pattern. The
answer to this puzzle is B.

E Performance on Different Pattern and Tasks

Table 4 and Table 5 show MLLMs’ AVR question performance on different patterns and tasks.
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Figure 7: The example is formatted in Sequence configuration with the Temporal Movement pattern.
The answer to this puzzle is C.

Figure 8: The example is formatted in Two-row configuration with the Spatial Relationship pattern.
The answer to this puzzle is B.

F Coarse-grained Perception on Different Categories

Table 6 shows MLLMs coarse-grained perception performance on different categories.

G Experiment on Pattern Classification

To further understand the potential abstract visual reasoning abilities of MLLMs when perceptual
barriers are mitigated, we replace the original AVR question with a pattern classification problem
with the prompt shown in Table 13. We use regex mapping to extract MLLMs output, and the result
visualized in Figure 5 is listed in Table 7

H Experiment on Question with Text Description

To investigate how the models perform subsequent reasoning with accurate visual detail awareness,
we randomly select 95 puzzles (five for each pattern in each task configuration) and provide text
descriptions for each panel in the puzzle. To ensure a similar level of granularity for text descriptions,
we first use GPT-4V to provide the original text descriptions, which human annotators further modify
without introducing unrelated details (Figure 13).
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Figure 9: The example is formatted in Matrix configuration with the Spatial Relationship pattern.
The answer to this puzzle is B.

Figure 10: The example is formatted in Matrix configuration with the Mathematical pattern in
Geometric shapes. The answer to this puzzle is A.
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Figure 11: The example is formatted in Group configuration with the 2D-Geometry pattern in Abstract
input shapes. The answer to this puzzle is C.

Figure 12: The example is formatted in Reassembling configuration with the 3D-Geometry Quantities.
The answer to this puzzle is B.

We input MLLMs with both the AVR question and text descriptions. The result is shown in Table 3.
With the help of text descriptions, MLLMs, especially closed-sourced MLLMs, can build their
abstract visual reasoning on correct visual detail foundations, gaining significant improvement in the
performance (11.57% to 44.21%). GPT-4V even shows on-par performance (65.26%) with humans,
highlighting the importance of visual perception ability. We also want to point out that some puzzles
containing abstract shapes are challenging to describe. A tool that can convert images to SVGs and
text descriptions [65] can be a possible approach to mitigate the difficulty and enhance MLLMs
performance.

I Few-Shot COT

We show our prompting template in Table 13. We discuss few-shot performance in Tables 8 to 10
and 12. Table 8 shows few-shot result with Chain-of-Thought demonstrations in the prompt. Table 9
compares one-shot result with Chain-of-Thought demonstrations from same pattern or different
pattern picked randomly (OOD). Table 10 compares one-shot result with Chain-of-Thought demon-
strations from single task format (sequence) and two different task formats (sequence and two-row).
Table 12 shows the model’s few-shot performance on different patterns.

We also test whether breaking puzzles separately and prompting MLLMs with panels one by one can
enhance abstract reasoning performance. We construct our prompt by adding "This is the {index}
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Context

Choices

Question part:
In the first panel: There is a circle with a smaller circle inside it.
In the second panel: There is a square with a smaller square inside it.
In the third panel: There is a triangle with a smaller triangle inside it.
In the fourth panel: There is a rectangle with a smaller rectangle inside it.
In the fifth panel: This panel is missing and needs to be filled with the correct choice from the options below.

Choices part:
In the first choice: There is a triangle with a line through it from the bottom left corner to the mid-right side.
In the second choice: There is a triangle with a line through it from the top to the bottom center.
In the third choice: There is a triangle with a line through it from the top left corner to the bottom right corner.
In the fourth choice: There is a triangle with a line through it from the top right corner to the bottom left corner.

GPT-4V version

Modified version
Question part:
In the first panel: There is a circle with a smaller circle inside it.
In the second panel: There is a square with a smaller square inside it.
In the third panel: There is a triangle with a smaller triangle inside it.
In the fourth panel: There is a rectangle with a smaller rectangle inside it.
In the fifth panel: This panel is missing and needs to be filled with the correct choice from the options below.

Choices part:
In the first choice:  There is a triangle with a smaller triangle inside it.
In the second choice:  There is a triangle with a smaller triangle intersecting with it on the top left part.
In the third choice:  There is a triangle with a smaller triangle above it on the top left part. Two triangles don't touch each other.
In the fourth choice:  There is a triangle with a smaller triangle intersecting with it on the bottom part.

Figure 13: An example of the annotation process. We first generate text descriptions from GPT-4V,
and the output will further be modified by human annotators (red → green).

Table 4: Performance of different models for different patterns. † notes the result is attributed to
inductive bias.

Pattern Human Open-sourced MLLMs Closed-sourced MLLMs
Qwen-VL Fuyu† Blip-2† InstructBLIP† LLaVA-1.5 GPT-4o GPT-4V Gemini† Claude3 (Sonnet)† Claude3 (Opus)

Temporal Movement 82.08 23.81 24.76 25.71 25.71 20.95 23.81 26.67 22.86 23.81 31.43
Spatial Relationship 70.42 20.83 25.00 26.67 26.67 26.67 30.83 24.17 29.17 34.17 26.67
Quantities 81.57 15.76 24.85 27.88 27.27 28.48 29.09 21.21 24.85 24.85 27.88
Mathematical 60.00 21.25 25.00 24.17 24.17 28.75 26.25 21.67 23.75 23.33 27.50
2D-Geometry 59.17 17.50 22.50 20.83 20.83 25.00 30.0 18.33 25.00 30.83 33.33
3D-Geometry 50.00 15.00 15.00 15.00 15.00 15.00 25.00 30.00 30.00 20.00 25.00

panel in the context of the puzzle" to each panel in the context part and adding "This is the {index}
choice of the puzzle" to each choice panel. Due to the limitation in resources, we sample 50 puzzles
from MARVEL and compare zero-shot prompting settings with one-by-one prompting settings on
Gemini and GPT-4V. As shown in Table 11, one-by-one prompting can not enhance model reasoning
performance by providing panels separately. Thus, we decide to choose zero-shot prompting as our
base prompting strategy.

J Human Evaluation

AVR Question. We provide each human annotator with the following instructions on AVR reasoning
question evaluation:
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Table 5: Performance of different models for different task configurations. † notes the result is
attributed to inductive bias.

Task format Human Open-sourced MLLMs Closed-sourced MLLMs
Qwen-VL Fuyu† Blip-2† InstructBLIP† LLaVA-1.5 GPT-4o GPT-4V Gemini† Claude3 (Sonnet)† Claude3 (Opus)

Sequence 67.84 18.18 22.42 23.03 23.03 23.64 31.52 28.48 23.03 26.06 30.30
Two-row 71.56 16.00 22.67 24.89 24.44 25.78 25.78 22.22 24.00 25.78 32.00
Matrix 73.56 23.56 29.78 28.89 28.89 30.67 27.11 20.44 26.67 27.56 27.56
Group 58.18 21.48 21.48 21.48 21.48 25.19 28.15 17.04 25.93 27.41 24.44
Reassembling 50.00 15.00 15.00 15.00 15.00 15.00 25.00 30.00 30.00 20.00 25.00

Table 6: Coarse-grained perception performance on different categories bias.
Category Qwen-VL Fuyu Blip2 InstructBLIP LLaVA-1.5 GPT-4o GPT-4V Gemini Claude3 (Sonnet) Claude3 (Opus)

Location 40.00 15.38 40.00 35.38 61.54 66.15 41.54 41.54 32.31 32.31
Color 37.74 26.42 58.49 58.49 58.49 69.01 52.83 54.72 47.17 62.26
Shape 33.33 36.16 45.20 36.72 29.38 69.08 45.76 53.67 57.63 45.76
Quantity 36.84 36.84 60.86 56.25 57.57 58.49 51.64 39.47 56.58 48.36
Comparison 40.94 40.35 52.05 53.22 57.31 70.62 60.82 41.52 42.11 47.95

Welcome to our IQ Test Challenge! Test your cognitive skills and problem-solving abilities with a
variety of questions in logical reasoning, pattern recognition, math, and more.

Remember, this test is a fun brain exercise, not a definitive measure of intelligence. There is no penalty
for guessing. So, find a quiet spot, relax, and enjoy the challenge. Good luck! Instructions: There
are five types of question formats in this test. Sequence, Two-row, Matrix, Group, and Reassembling.

Sequence: The question part on the top is a set of visual patterns arranged in a sequence. Find the
pattern and add the missing pattern in the sequence from the choice below.

Two-row: The question part on the top contains two rows of images. Find the pattern in the first row
and adapt the pattern on the second row.

Matrix: The question part is a set of visual patterns arranged in a 3 by 3 matrix, with the bottom
right piece missing. The pattern can be found either along rows or columns.

Group: The question part on the top contains two images; one of the answers in the bottom shares the
same pattern in the question images while other choices in the bottom part share a different pattern.

Reassembling: The question part on the top is an unfolded diagram. The answer part on the bottom
contains 4 options that represent the correct three-dimensional assembly.

Fine-grained Perception Question. We provide each human annotator with the same instructions
shown in Table 13 on fine-grained perception question evaluation:

Participant Demographics. Our 30 human annotators range in age from 10 to 50 years. The group
includes one elementary school student, three individuals with a bachelor’s degree, 19 with a master’s
degree, and six PhD students. We released our human evaluation as a competition with current
SOTA MLLMs. Participants in our human evaluation expressed enthusiasm for the test and provided
valuable feedback. Most individuals adopted a strategy known as forward chaining [18], constructing
evidence from the images and connecting it to the most likely candidate answer. One participant
described their approach: “I identified some patterns to base my choice on. While they didn’t always
explain the full picture initially, they helped clarify certain aspects. I then iteratively identified more
patterns to guide my final answer.” Participants generally began by hypothesizing several possible
patterns from the puzzle, then mapped these assumptions onto the available choices to determine the
answer.

Dataset Documentation and Intended Use

Motivation As multi-modal large language models (MLLMs) show promising progress in the visual
reasoning domain, to what extent these models have abstract visual reasoning (AVR)abilities is still
unknown. Also, the lack of a holistic AVR benchmark limited the current evaluation of these models,
which motivates us to propose MARVEL, the first comprehensive multidimensional AVR benchmark.
The dataset is created intentionally with the task in mind, aiming to evaluate MLLMs’ abstract visual
reasoning ability across different patterns, shapes and task configurations. The dataset was created by
Yifan Jiang, Jiarui Zhang, Kexuan Sun, Zhivar Sourati, Kian Ahrabian, Kaixin Ma, Filip Ilievski and
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Table 7: Performance of different models on pattern classification.
Input Open-sourced MLLMs Closed-sourced MLLMs

Qwen-VL Fuyu Blip-2 InstructBLIP LLaVA-1.5 GPT-4o GPT-4V Gemini Claude3 (Sonnet) Claude3 (Opus)

AVR 19.22 15.58 16.10 17.14 17.01 27.53 21.56 18.96 22.60 25.84

Table 8: Few-shot COT accuracy
Model zero-shot one-shot two-shot

Gemini 25.06 28.7 26.75
GPT-4o 27.79 30.78 28.05
GPT-4V 22.34 26.1 28.31
Claude3 (sonnet) 26.49 25.97 26.23
Claude3 (Opus) 28.83 27.79 23.64

Jay Pujara from Information Sciences Institute, University of Southern California, Tencent AI Lab
and Vrije Universiteit Amsterdam This research was sponsored by the Defense Advanced Research
Projects Agency via Contract HR00112390061.

Composition The instances are abstract visual reasoning puzzle images, together with a set of AVR
reasoning questions and perception questions to enable a hierarchical evaluation framework. There
are 770 puzzles in total in the dataset. The puzzle is a sample of all possible instances. We root our
dataset in human cognitive science to ensure the generality and applicability of our dataset. Each
instance consists of a puzzle, an AVR reasoning question, a fine-grained perception question, as well
as three coarse-grain questions. Each instance consists of a reasoning label representing the correct
answer for AVR questions and a text answer for all perception questions. The whole dataset should
be considered as an evaluation benchmark rather than a dataset supporting training, validation and
testing. The dataset is entirely self-contained.

Does the dataset contain data that might be considered confidential (e.g., data that is protected by
legal privilege or by doctor-patient confidentiality, data that includes the content of individuals’
non-public communications)? No.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or
might otherwise cause anxiety? No.

Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how these
subpopulations are identified and provide a description of their respective distributions within the
dataset No.

Is it possible to identify individuals (i.e., one or more natural persons), either directly or indirectly
(i.e., in combination with other data) from the dataset? If so, please describe how. No.

Does the dataset contain data that might be considered sensitive in any way (e.g., data that reveals
race or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships,
or locations; financial or health data; biometric or genetic data; forms of government identification,
such as social security numbers; criminal history)? No

Collection Process The dataset is collected from public available website using crawlers (mentioned
in the main paper). All authors are involved in the data collection process. The instance is collected
before Jan 2024.

Did the individuals in question consent to the collection and use of their data? No.

If consent was obtained, were the consenting individuals provided with a mechanism to revoke their
consent in the future or for certain uses? I N/A.

Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data
protection impact analysis) been conducted? N/A.

Preprocessing/cleaning/labeling We filter the raw data after collecting data by removing duplicate,
low-quality data manually. Three human annotators then choose the puzzle containing proper input
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Table 9: Few-shot COT ablation with out-of-distribution (OOD) demonstration
Model one-shot one-shot (OOD)

Gemini 23.85 24.62
GPT-4o 28.08 23.08
GPT-4V 27.31 23.85
Claude3 (sonnet) 25.00 26.92
Claude3 (Opus) 29.62 25.00

Table 10: Few-shot COT ablation with mix distribution demonstration
Model two-shot two-shot (mix)

Gemini 30.48 24.29
GPT-4o 27.62 27.14
GPT-4V 29.52 28.10
Claude3 (sonnet) 28.57 23.81
Claude3 (Opus) 21.90 22.86

shapes and patterns in our predefined settings, which can further be re-organized in different task
configurations.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)? Yes.

Is the software that was used to preprocess/clean/label the data available? If Yes, the python package
Pillow is used.

Use Has the dataset been used for any tasks already? No.

What (other) tasks could the dataset be used for? The task regarding analysing MLLMs’ abstract
visual reasoning abilities or visual perception abilities.

Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? No.

Are there tasks for which the dataset should not be used? No.

Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created? Yes. The dataset is available on the
internet (https://github.com/1171-jpg/MARVEL_AVR).

How will the dataset be distributed (e.g., tarball on website, API, GitHub)? Yes. The link is presented
in the last questions.

When will the dataset be distributed? The dataset was first released in April 2024.

Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or
under applicable terms of use (ToU)?

Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? No.

Do any export controls or other regulatory restrictions apply to the dataset or to individual instances?
I The dataset is intended for research use only and should not be used to make critical decisions about
individuals’ capabilities. Such misuse could cause undue pressure and anxiety for participants and
may not accurately reflect their true potential or abilities in real-world scenarios.

Maintenance

Who will be supporting/hosting/maintaining the dataset? All the authors: Yifan Jiang, Jiarui Zhang,
Kexuan Sun, Zhivar Sourati, Kian Ahrabian, Kaixin Ma, Filip Ilievski and Jay Pujara
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Table 11: Compare zero-shot prompting with one-by-one prompting
Model zero-shot one-by-one

Gemini 20.00 13.33
GPT-4V 20.00 17.78

Table 12: Few-shot performance on different patterns
one -shot two -shot

Gemini GPT-4o GPT-4V Claude3 (Sonnet) Claude3 (Opus) Gemini GPT-4V Claude3 (Sonnet) Claude3 (Opus)

Temporal Movement 24.76 28.57 27.62 17.14 29.52 33.33 17.14 28.57 24.76 18.10
Spatial Relationship 30.00 30.83 33.33 24.17 26.67 25.83 32.5 22.50 30.83 19.17
Quantities 21.21 25.42 27.88 27.88 26.67 25.45 24.17 31.52 25.45 27.27
Mathematical 27.92 30.3 28.75 25.42 26.67 25.83 30.91 27.50 22.92 22.08
2D-Geometry 26.67 45.0 25.00 30.83 30.83 26.67 38.33 30.00 28.33 31.67
3D-Geometry 25.00 25.0 35.00 45.00 30.00 20.00 20.00 35.00 40.00 20.00

How can the owner/curator/manager of the dataset be contacted (e.g., email address)? The contact
emails are yjiang44@usc.edu, jzhang37@usc.edu, kexuansu@usc.edu

Is there an erratum? N/A.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances) The
update will be posted on the GitHub link (https://github.com/1171-jpg/MARVEL_AVR) and
website (https://marvel770.github.io/).

Will older versions of the dataset continue to be supported/hosted/maintained? Yes, the update will
be released using a different version number.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them to
do so? Others may do so and should contact the original authors about incorporating fixes/extensions.

Author Statement We bear all responsibility in case of violation of rights, and we maintain the
dataset for the long term to ensure it is accessible and organized.

Croissant metadata and Licenese The data is also released in hugging face (https://
huggingface.co/datasets/kianasun/MARVEL) under apache-2.0 licenes. The Croissant meta-
data can be viewed and downloaded via https://github.com/1171-jpg/MARVEL_AVR/blob/
main/MARVEL_Croissant.json

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] In Appendix.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] In

Appendix.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] URL Link
provided in the abstract and appendix.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]
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Table 13: Prompt examples for our experiments.

Experiment Prompt Example

AVR Question (Reassembling) [IMG] You are given a puzzle. The puzzle consists of a context part on the top and the choices in
the bottom. The context part on the top is an unfolded diagram of the 3D shape. The choices part
on the bottom contains 4 options (marked by 1, 2, 3, or 4) represents the correct three-dimensional
assembly. Which option (either 1, 2, 3, or 4) is the most appropriate answer?

AVR Question (Group) [IMG] You are given a puzzle. The puzzle consists of a context part on the top and the choices
at the bottom. The context part on the top is a set of visual patterns arranged in a three-by-one
sequence, with the last piece missing. The choices part on the bottom contains four options
(marked by 1, 2, 3, or 4). Which option (1, 2, 3, or 4) is the most appropriate answer to fill the
missing part?

AVR Question (Matrix) [IMG] You are given a puzzle. The puzzle consists of a context part on the top and the choices
at the bottom. The context part on the top is a set of visual patterns arranged in a three by three
matrix, with the bottom right piece missing. The choices part on the bottom contains four options
(marked by 1, 2, 3, or 4). Which option (1, 2, 3, or 4) is the most appropriate answer to fill the
missing part?

AVR Question (Sequence) [IMG] You are given a puzzle. The puzzle consists of a context part on the top and the choices
part on the bottom. The context part on the top is a set of visual patterns arranged sequentially,
with the last piece missing. The choices part on the bottom contains four options (marked by 1, 2,
3, or 4). Which option (1, 2, 3, or 4) is the most appropriate answer to fill the missing part?

AVR Question (Two-row) [IMG] You are given a puzzle. The puzzle consists of a context part on the top and the choices part
on the bottom. The context part on the top is a set of visual patterns arranged in a two-by-three
matrix, with the bottom right piece missing. The choices part on the bottom contains four options
(marked by 1, 2, 3, or 4). Which option (1, 2, 3, or 4) is the most appropriate answer to fill the
missing part?

Perception Question (fine-grained) [IMG] You are given a puzzle. The puzzle consists of a context part on the top and the choices part
on the bottom. The context part on the top is a set of visual grids arranged in a m by n sequence,
with the last piece missing. The choices part on the bottom contains four choices (marked by 1, 2,
3, or 4). [question]

Perception Question (coarse-grained) [IMG] You are given a puzzle. The puzzle consists of a context part on the top and the choices
part on the bottom. The context part on the top contains some grids, with the last missing blank
grid to be completed. The choices part on the bottom contains a sequence of grids representing
the possible choices. How many grids, including the blank grid, are in the context part?

Perception Question (coarse-grained) [IMG] You are given a puzzle. The puzzle consists of a question part on the top and the choices
part on the bottom. The question part on the top contains some grids, with the last missing blank
grid to be completed. The choices part on the bottom contains a sequence of grids representing
the possible choices. How many grids are there in the choices part?

Perception Question (coarse-grained) [IMG] You are given a puzzle. The puzzle consists of a question part on the top and the choices
part on the bottom. The question part on the top contains some grids, with the last missing blank
grid to be completed. The choices part on the bottom contains a sequence of grids representing
the possible choices. How many grids, including the blank grid, are there in the whole puzzle?

Pattern Classification You are given a puzzle. The puzzle consists of a question part on the top and the choices part in
the bottom. The question part on the top is a set of visual panels arranged in a 1 by 5 sequence,
with the last piece missing. Choices part on the bottom contains 4 choices (marked by 1, 2, 3, or
4). The puzzle contains one of the following patterns:

Temporal Movement patterns focus on the related position change or movement.
Spatial Relationship patterns focus on the objects’ relative positional relationship.
Quantity patterns focus on the accuracy of number comprehension.
Mathematical patterns focus on elementary mathematical operations.
2D-Geometry patterns focus on the 2D-geometric shape and its properties.
3D-Geometry patterns focus on the 3D-geometric shape and its properties.

Please answer which pattern the puzzle is mostly related to. Output your final answer with the
pattern name strictly.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [Yes] In Appendix.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

The new asset can be found via URL in the abstract and appendix.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] Public available data.

25



(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] In Appendix.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [Yes] In Appendix.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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