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ABSTRACT

Vision-language models (VLMs) have demonstrated impressive zero-shot ca-
pabilities across various image classification tasks. Their performance can be
further enhanced through prompt learning methods. To evaluate the effective-
ness of prompt learning, it is important to assess its robustness to new classes
and distributional shifts. However, current studies typically assume single data
distribution shifts and pre-known new class space, which still have gaps with
real-world open environments where data distributions and classes are often un-
certain and subject to continuous change. To better analyze the robustness of
prompt learning methods in more realistic scenarios, we propose a novel eval-
uation benchmark called OpenPL from the following perspectives: 1) We re-
construct multiple scenarios of open environments, encompassing dynamic class
changes, dynamic distribution shifts, and dynamic co-evolution of both distribu-
tion and classes; 2) We propose a series of new performance metrics for prompt
learning methods based on the Dynamic Robustness Curve (DRC) to better un-
derstand their robustness in open environments; 3) We re-implement diverse
prompt learning methods and evaluate their performance on the proposed OpenPL
benchmark. The results show that no current prompt learning method is ro-
bust to open environments and no meaningful performance improvement
is achieved compared to the zero-shot performance, designing robust prompt
learning methods remains a difficult task. All re-implementations are available at
https://anonymous.4open.science/r/OpenPL-565El

1 INTRODUCTIONS

Vision-language models (VLMs) have garnered significant attention recently(Radford et al.
(2021)3Yao et al.| (2021)Jia et al.| (2021)) because of its zero-shot prediction capabilities across
a wide range of visual recognition tasks. Pre-trained VLMs, such as CLIP(Radford et al.| (2021)),
ALIGN(Jia et al.[(2021)), and BLIP(L:1 et al.| (2022)), acquire extensive vision-language knowledge
from a near-infinite number of text-image pairs available on the web. These models can be utilized
directly for downstream tasks without the need for fine-tuning.

A large part of the research for VLM recently is the adaptation of pre-trained VLMs on downstream
tasks(Zhang et al.|(2021);Zhou et al.|(2022b);Zhou et al.| (2022a);Gao et al.| (2024)), and prompt
learning(Zhou et al.| (2022b);Zhou et al.| (2022a)) is a newcomer to these works, with notable
improvements in VLM performance on downstream tasks and its simplicity and efficiency in design.
Unlike other transfer methods in VLM, prompt learning does not rely on adding additional network
layers or modifying complex network structures but rather achieves parameter-efficient VLM transfer
by modifying the input text or image with some learnable text or vision prompts.

Although many prompt learning methods, such as MaPLe (Khattak et al.|(2023a)) and PromptSRC
(Khattak et al.|(2023b))), claim to achieve strong generalization performance on downstream tasks,
their evaluations often overlook more practical scenarios. Currently, most prompt learning methods
depend on benchmarks established by CoCoOp (Zhou et al.|(2022a))), where classes are divided into
fixed base and new groups. These methods are trained solely on the base classes and tested on new
classes separately. Similarly, MaPLe (Khattak et al.|(2023a)) proposes benchmarks for Cross-dataset
Evaluation and Domain Generalization by training on ImageNet and altering the test data distribution
to assess performance across various ImageNet variants and other datasets. In open environments,
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algorithms do encounter the emergence of new classes and shifts in data distributions (Zhou| (2022)),
but such changes are not fixed and cannot be pre-known, and sometimes both distribution and class
shifts could occur simultaneously. There is still a huge gap between existing evaluation settings and
realistic open environments.

Contributions: In this paper, we propose a novel evaluation benchmark to address the existing
problems above and achieve a comprehensive evaluation for prompt learning in VLM. Firstly, we
focus on the dynamic class changes and propose two scenarios based on class variations. The first
scenario increases classification difficulty by continuously introducing new classes during testing.
The second scenario reduces the proportion of base classes while increasing the ratio of new classes,
keeping the overall label space size constant. This setup aims to measure the algorithm’s robustness
in an unknown and evolving label space. Secondly, we focus on dynamic distribution shifts and
propose a scenario in which the testing distribution continues to change, becoming increasingly
distant from the training data distribution. Thirdly, we focus on the dynamic co-evolution of both
distribution and classes and propose a scenario in which both class changes and distribution shifts
occur simultaneously. Moreover, we quantify the performance under these paradigms based on the
Dynamic Robustness Curve (DRC), and several new performance metrics based on the DRC are
proposed to help better analyze the robustness of prompt learning methods. We also re-implement
different types of prompt learning methods under a unified standard and evaluate their robustness.
We believe this has a positive impact on researchers in this field.

Observations: By researching the results of experimental evaluations on the openPL, our insights
can be outlined as follows:

1. No single prompt learning method outperforms others in scenarios with dynamic classes
changing, i.e., each method has its better case when new classes emerging.

2. No prompt learning methods currently show robustness to data distribution shifts, i.e., all
methods suffer severe performance degradation with distribution shifts.

3. No prompt learning methods exhibit meaningful performance gains relative to the zero-shot
performance with compound shifts of both distribution and label space.

4. Enhancing the model’s capability for text feature extraction and class discriminability may
improve robustness since the available text and image information in downstream tasks is
highly imbalanced.

2 RELATED WORKS

Vision-language model Recently, researchers have demonstrated VLM (Alayrac et al.| (2022);Rad;
ford et al.|(2021)), which consists of visual and textual modalities trained on large-scale image-text
pairs, with strong generalization and discrimination capabilities. These VLMs like CLIP (Radford
et al.[(2021))), ALIGN (Jia et al.|(2021)), BLIP (L1 et al.| (2022)), FILIP (Yao et al.|(2021)), LiT (Zhai
et al.|(2022))) and Flamingo (Alayrac et al.| (2022)) show exceptional performance across numerous
visual tasks, including few-shot and zero-shot visual recognition. For example, CLIP (Radford et al.
(2021)) designs objective that allows matched text representations and image representations close to
each other, and learns a generalized vision-language representation on about 400M text-image pairs.
Recent researches have focused on how such VLMs can be better adapted to downstream tasks by
means of transfer learning (Zhou et al.| (2022b);Zhou et al.| (2022a);Zhang et al. (2021);Gao et al.
(2024)) and knowledge distillation (Ding et al.| (2022));Du et al.| (2022)iGu et al.|(2021)).

Prompt learning The idea of prompt learning first originated in NLP(L1u et al.[{(2023)), a method
of instructing language models to generate specific outputs by providing prompts without having to
tune the pre-trained model’s own parameters. Because of its parsimony and efficiency, this technique
has attracted a lot of attention in the exploration of fine-tuning VLM pre-trained models to specific
visual tasks downstream. For example, at the earliest time, CoOp (Zhou et al.|(2022b))) explored the
application of prompts to the text branch of CLIP, which was used to optimize the text embedding
space of the text branch so that specific categories of the downstream task could be better adapted to
the pre-trained model, while VPT (Jia et al.|(2022)) later provided a solution for introducing prompts
into the visual encoder. After that CoCoOp (Zhou et al.|(2022a)) explores the introduction of image
information into text prompts to make the unified context into an instance-adaptive context. Moreover
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MaPLe (Khattak et al.| (2023a))) experiment with the co-optimization of prompts for both the textual
and visual sides of the prompts. The aforementioned methods are all dedicated to improving the form
of prompts and enhancing the model’s ability to extract image features. Different from the above
methods, ProGrad (Zhu et al.| (2023))) and KgCoOp (Yao et al.| (2023b))) explore how to improve
the generalization ability of pre-trained models by better preserving their knowledge. ProGrad only
updates prompts whose gradients do not conflict with the knowledge of the pre-trained model to
prevent general knowledge from being forgotten; KgCoOp uses the gap from the fine-tuned prompts
to general knowledge as a regularization term for constrained models. Similarly, RPO (Lee et al.
(2023))) leverages masked attention to prevent the internal representation shift in the pre-trained model
to reduce the decline in the generalization ability of the pre-trained model. Moreover, TCP (Yao et al.
(2023a))) and ProDA (Lu et al.|(2022)) choose to enhance the textual side of the representation, with
TCP incorporating prior knowledge about classes to enhance the discriminability of classes; ProDA
learns output embeddings of textual prompts rather than input embeddings. PromptSRC (Khattak
et al. (2023b))) achieves notable performance by simultaneously improving prompt learning from
three aspects: preventing pre-trained knowledge forgetting; prompt ensemble; and increasing text
diversity to mitigate sample diversity.

In the following, we will introduce the evaluation paradigms, performance metrics, the robustness
definitions of prompt learning, benchmark results, and conclusions.

3 EVALUATION PARADIGMS

In previous experiments on prompt learning, changes in classes and data distributions during testing
were fixed, lacking dynamism. To address this, our benchmark introduces dynamic scenarios where
new classes emerge, data distributions shift, and both distributions and classes co-evolve. This enables
a more comprehensive analysis of the robustness of existing prompt learning algorithms in such
dynamic environments.

3.1 DyNAMIC CLASSES CHANGES

In this paradigm, we introduce two scenarios in open environments where new classes continuously
emerge. For each experiment, we randomly select half of the classes from a single dataset to serve
as base classes, while the remaining half are designated as new classes. The algorithms are trained
exclusively on samples from the base classes. During testing, they encounter a dynamic situation in
which both base and new classes co-exist, with their quantities continuously changing.

Emerging New Classes In this scenario, during testing, the base classes remain consistently present,
while new classes continuously emerge. As new classes are introduced, the algorithm faces a larger
class space, making the classification task more challenging. We define the class changing level ¢ as
the ratio of new classes in the test set relative to the base classes, where a higher ¢ signifies a more
complex classification task. We ensure that as ¢ increases, the new classes from the previous level are
subsets of the corresponding groups for the next level.

Varying Ratio of New Classes In this scenario, during testing, the base classes do not remain
constant; instead, they decrease as the number of new classes increases. The size of the class space
remains unchanged, while the quantities of new and base classes vary synchronously. To achieve this,
we define the class changing level ¢ to represent the proportion of new classes in the test set relative
to all classes. As t increases, new classes continually emerge while base classes diminish. To ensure
comparability of performance across different levels of inconsistency, we ensure that as ¢ increases,
the new classes from the previous level are subsets of the corresponding groups for the next level,
and the removed base classes are subsets of their respective groups from the previous level.

3.2 DYNAMIC DISTRIBUTION SHIFTS

Under this paradigm, we train on all classes of ImageNet and test on a mixture of ImageNet and its
variants with continuously changing proportions. We define a distribution change level ¢ to represent
the proportion of samples from the ImageNet variants within the entire test set. As the value of ¢
increases, the proportion of data from ImageNet decreases, while the proportion of data from the
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variants gradually increases. At the same time, we ensure that the class space of the training set
remains consistent with the variants. As ¢ increases, the samples from the ImageNet variants at
the previous level are subsets of those at the subsequent level, with the reduced ImageNet samples
coming from the previous level.

3.3 DyNAMIC CO-EVOLUTION OF DISTRIBUTION AND CLASS VARIATION

In this paradigm, we train on ImageNet and test on a mixed dataset that combines ImageNet and
other datasets. The number of classes and samples belonging to ImageNet in the test set is kept equal
to those from other datasets, with classes and samples randomly selected. We define a class and
distribution change level ¢ to represent the proportion of cross-dataset samples among all test samples.
As t increases, the proportion of samples from the other datasets also increases. As the value of ¢
increases, the samples and classes from the cross-dataset continuously increase, while the samples
and classes from ImageNet steadily decrease. We ensure that as ¢ increases, the samples from other
datasets at the previous level are subsets of those at the subsequent level, with the reduced ImageNet
samples coming from the previous level.

4 PERFORMANCE METRICS

To achieve a fair and comprehensive evaluation, for the four evaluation paradigms designed above we
introduce a comprehensive set of evaluation metrics to analyze the robustness of prompt learning
in VLM. We first define the model accuracy at inconsistency ¢ as Acc(t). Zero-shot pre-trained
CLIP also has Acc,(t) at any ¢, which represents only the accuracy obtained from the same test
set at ¢, for comparing the performance improvements from other prompt learning methods on the
pre-trained model. The accuracy of the model in changing environments is mapped to a function
of inconsistency t of different scenarios. In this way we construct the Dynamic Robustness Curve
(DRC) and propose several metrics based on it including 1) Area Under the Curve (AUC) which
analyzes the overall robustness of the model; 2) Worst-Case Accuracy (WA) which represents the
worst performance in open environments; 3) Expected Variation Magnitude (EVM) measuring the
overall magnitude of the change in accuracy; 4) Variation Stability (VS) quantifying the stability
of variation magnitude; 5) Positive Area (PA) measuring the performance gain in parts where the
algorithm surpasses zero-shot performance; 6) Negative Area (NA) measuring the performance
degradation in parts where the algorithm underperforms compared to the zero-shot performance.
Table[T]provides a detailed formulation of these metrics.

Table 1: The Definition of Performance Metrics

Metrics Formulation
Area Under the Curve (AUC) J: 01 Acc(t)dt
Worst-Case Accuracy (WA) mingep1Acc(t)
Expected Variation Magnitude (EVM) /i 01 |Acc! (t)|dt
Variation Stability (VS) [1(Ac (t) — [ Acc (t)dt)?dt
Positive Area (PA) Joep Acc(t) — Aceos(t)dt D = {x|Acc(t) > Acc.s(t)}
Negative Area (NA) Joep Acces — Ace(t)(t)dt D = {x|Acc(t) < Acc.s(t)}

Moreover, in order to fairly compare the performance of different methods in scenarios with changing
classes, we use Friedman rank (Friedman| (1937); [Friedman| (1940)) to get the average ranks of these
methods across different scenarios and different datasets.

m

1
kp = — ks
rankp - ; ran

We count the average ranks at the 6 ¢-values settings for each scenario, where m = 6, and the overall
average ranks across n datasets where m = 6 X n. rank; is the rank of a prompt learning method in
the ¢-th setting. Additionally, we will re-rank the methods to determine the final rank based on the
results of the Friedman ranking.
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Based on the proposed performance metrics, we further define robust prompt learning in open
environments to enhance our understanding of the robustness gain of prompt learning methods
compared to zero-shot performance. This includes the concepts of performance-gain robustness and
decay-gain-ratio robustness.

Definition (Performance-Gain Robustness) We define the AUC obtained from the VLM’s zero-
shot prediction as AUC',s. A prompt learning method A in VLM returns a model that can be tested
with any class and distribution change level ¢. If there exists § 4;7¢ such that AUC — AUC,s > dayc
holds for all ¢, we say A achieves d 4;7¢-performance-gain robustness.

Definition (Decay-Gain-Ratio Robustness) A prompt learning method A in VLM returns a model
that can be tested with any class and distribution change level ¢. If there exists dpy such that
PA — NA < Jpy holds for all £, we say A exhibits § py-decay-gain-ratio robustness.

5 BENCHMARK RESULTS

5.1 EXPERIMENT SETUP

Methods In our experiments, we evaluate 11 prompt learning methods based on the pre-trained
CLIP using a Vision Transformer (ViT). The methods are as follows: text-based prompt learning
methods CoOp, CoCoOp, ProGrad, KgCoOp, TCP, ProDA, RPO; the visual prompt learning VPT;
the text-vision prompt learning methods MaPLe and PromptSRC. We also evaluated the zero-shot
prediction capability of the pre-trained model CLIP as a baseline in order to compare the performance
of these prompt learning methods.

Datasets Following CoOp and CoCoOp, we evaluate the performance of these prompt learning
methods on 11 diverse image classification datasets that cover a variety of recognition tasks. These
datasets include: two generic object datasets, ImageNet (Deng et al.|(2009)) and Caltech101 (Fei-Fei
et al.| (2004)); one texture dataset DTD (Cimpoi et al.|(2014))); a satellite image dataset EuroSAT (Hel-
ber et al.[(2019)); five fine-gained dataset FGVCAircraft (Maji et al.|(2013)), Food101 (Bossard et al.
(2014)), Flowers102 (Nilsback & Zisserman| (2008))), OxfordPets (Parkhi et al.| (2012))), StanfordCars
(Krause et al.| (2013)); one scene recognition dataset SUN397 (Xiao et al.|(2010)), and an action
recognition dataset UCF101 (Soomro et al.|(2012))). In the Dynamic Distribution shifts paradigm,
we utilize four variants of ImageNet including ImageNetV2 (Recht et al.[(2019)), ImageNetSketch
(Wang et al.| (2019)), ImageNet-A (Hendrycks et al.|(2021b)), ImageNet-R (Hendrycks et al.|(2021a)).

Implementation Details For all experiments, we adopted a unified parameter setting to ensure
a fair comparison. In the two scenarios of Dynamic Classes Changes, we set the learning rate n
as 2 x 1073, and the total number of epochs is 50 for each dataset. And for mixed proportions of
ImageNet variants and the Dynamic Co-evolution of Distribution and Class Variation paradigms,
the training on ImageNet is set to run for 10 epochs. Additionally, to ensure a balanced mixture
of different datasets, we cap the maximum number of classes and the sample size for all datasets
during testing to maintain equivalence. We set the length of text or vision prompts in all methods
as 4. We sample 16 samples per class from the training dataset and test all methods on the full
test dataset, following the commonly used few-shot evaluation protocol as that in CLIP. We adopt
ViT-Base/16 as the backbone network for all experiments. The initial setting for text prompts is
fixed to “X X X X” the initialization of vision prompts follows a zero-mean Gaussian distribution
with a standard deviation of 0.02. For a fair comparison, the final results were averaged over three
rounds of experiments. To plot the curve DAC, we sampled six points for t as 0, 0.2, 0.4, 0.6, 0.8,
1.0. To ensure reliability, the label space is randomized for each round of training and testing, and
we conduct experiments three times with seed values of 1, 2, and 3. The results for each sampling
point were averaged over three experiments, and linear interpolation was used for the other points.
Our experiments are conducted on NVIDIA A800 GPUs. The complete experimental results are
presented in the Appendix
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Figure 1: Results of prompt learning methods under emerging new classes on 11 datasets. As the
value of ¢ increases, the number of base classes remains constant, while the number of new classes
gradually increases until it equals the number of base classes.

5.2 PROMPT LEARNING UNDER DYNAMIC CLASSES CHANGES

Observation

For dynamic class changes, it is challenging for any prompt learning method to consis-
tently achieve optimal performance across different datasets.

Prompt Learning under Emerging New Classes In Figure[I] we present a comparison of different
prompt learning methods under emerging new classes, along with their corresponding outcomes.
It can be observed that as more new classes are introduced during testing, the performance of
various prompt learning methods generally shows a gradually declining trend. However, the speed
of this decline varies between different methods, leading to changes in the relative performance of
these methods as new classes continue to emerge. For example, in the FGVCAircraft dataset, the
performance of PromptSRC initially falls significantly behind that of MaPLe and VPT. However, as
the classification pressure increases, the performance of PromptSRC begins to surpass these methods
and maintains the lead among all the methods. This indicates that, it is challenging for any single
method to consistently maintain optimal performance across different open environments.

In Table[2] we present the evaluation results of the metrics on DTD under emerging new classes. We
can see that, under these evaluation paradigms, metrics like Acc(0), AUC, EVM, and VS are often
not necessarily related. A method with a higher Acc(0) may even perform worse than CLIP in other
metrics. And it’s worth noting that CLIP often surpasses most methods in terms of EVM.

Prompt Learning under Varying Ratio of New Classes In Figure[2] we compare various prompts
learning methods under varying ratio of new classes and get the results. We can find that the
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Figure 2: Results of prompt learning methods under varying ratio of new classes on 11 datasets. As
the value of ¢ increases, the number of base classes gradually decreases while the number of new
classes gradually increases. Always keep the total number of classes constant.

Table 2: Evaluation on DTD under Emerging New Classes. In the table, higher values for the metrics
Acc(0), AUC, WA, and PA are better, while lower values for EVM, VS, and NA are preferable.

Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.568  0.489 0441 0.127 0.003 / /
CoOp 0.767 0469 0410 0357 0.333 0.015 0.032
CoCoOp 0.762  0.597 0.488 0.274 0.011 0.108 0.000
VPT 0.799  0.618 0.522 0.277 0.023 0.129 0.000
MaPLe 0.789  0.633 0.532 0.257 0.011 0.144 0.000
DTD ProGrad 0.779  0.629 0.537 0.242 0.012 0.140 0.000
KgCoOp 0.777  0.637 0.547 0.230 0.010 0.147 0.000
RPO 0.812 0.655 0.561 0.251 0.013 0.166 0.000
PromptSRC 0.807 0.661 0.576 0.231 0.013 0.172 0.000
ProDA 0.779  0.657 0.577 0.202 0.007 0.168 0.000
TCP 0.779  0.642 0.556 0.223 0.012 0.152 0.000

accuracy of the model is not always monotonically declining as new classes increases and base
classes decreases, but instead varying performance changes occur under different ratios of new
classes to base classes. For example, in the EuroSAT dataset, the performance of VPT and TCP does
not always decrease with the increasing ratio of new classes to base classes; There are instances
where the performance actually improves with more new classes and fewer base classes. In real-world
scenarios where the label space is unknown, it’s not always the case that having fewer new classes
and more base classes will lead to better performance. Unknown mixed class proportions can
sometimes actually be more detrimental to the performance than having more new classes.
Moreover, on each dataset, there does not exist a certain method that can be optimal under
various ratios of new classes, e.g., on the Stanford-cars dataset, the best in terms of accuracy goes
from MaPLe to PromptSRC to ProDA as the value of t increases.
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Table 3: Evaluation on FGVCAircraft under Varying Ratio of New Classes

Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.338  0.362 0.338 0.034 0.003 / /
CoOp 0.534  0.286 0.240 0.332 0.303 0.013 0.081
CoCoOp 0.505  0.347 0226 0279 0.008 0.031 0.034
VPT 0.587 0459 0376 0210 0.012 0.097 0.000
MaPLe 0.599 0440 0311 0.288 0.005 0.085 0.006
FGVCAircraft ProGrad 0.520 0423 0350 0.170 0.003 0.062 0.001
KgCoOp 0492 0413 0356 0.136 0.005 0.051 0.000
RPO 0.536 0447 0392 0.155 0.009 0.085 0.000
PromptSRC 0.564  0.478 0.426 0.139 0.006 0.116 0.000
ProDA 0495 0439 0411 0.088 0.007 0.077 0.000
TCP 0.526 0445 0394 0.132 0.006 0.084 0.000

As shown in Table [3] the performance variability and stability of the algorithms under the Varying
Ratio of New Classes paradigm on FGVCAircraft are worse than that of CLIP’s zero-shot predictions.
Additionally, no algorithm has managed to maintain excellent performance on base classes while also
demonstrating a slower and more stable decline in performance.

5.3 PROMPT LEARNING UNDER DYNAMIC DISTRIBUTION SHIFTS

Observation

There is no significant improvement across algorithms when addressing the issue of
dynamic data distribution shifts.

As shown in Figure[3] we can clearly observe that for different ImageNet variants, the performance
decline of various prompt learning methods, as the proportion of variant data increases, almost
mirrors the zero-shot predictions of CLIP. As indicated in Table [} the metrics representing the degree
of change and stability, such as EVM and VS, show minimal differences. Prompt learning does
not demonstrate strong performance when confronted with changes in data distribution. The slight
performance gains on varying data distributions are primarily attributed to improved fine-tuning on
ImageNet, but they do little to mitigate the performance degradation trend in the Dynamic Distribution
shifts paradigm.

ImageNetR ImageNetA ImageNetV2 ImageNetSketch

Accuracy
o
=

Accuracy

2

2

3

Figure 3: Results of prompt learning methods under Dynamic Distribution shifts.

Table 4: Evaluation on ImageNet-R under Dynamic Distribution shifts

Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0915  0.797 0.740 0.175 0.014 / /
CoOp 0.927 0.815 0.761 0.166 0.013 0.017 0.000
CoCoOp 0.928 0.818 0.764 0.164 0.013 0.020 0.000
VPT 0920 0.809 0.755 0.166 0.012 0.012 0.000
MaPLe 0930 0.816 0.762 0.168 0.013 0.019 0.000
ImageNet-R ProGrad 0.925 0.818 0.766 0.159 0.011 0.021 0.000
KgCoOp 0.929 0.821 0.768 0.160 0.012 0.024 0.000
RPO 0928 0.818 0.763 0.165 0.012 0.020 0.000
PromptSR 0928 0.826 0.776 0.152 0.010 0.029 0.000
ProDA 0929 0.827 0.779 0.150 0.011 0.030 0.000
TCP 0.927 0.819 0.766 0.160 0.011 0.022 0.000
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Figure 4: Results of prompt learning methods cross various datasets.

Table 5: Evaluation Metrics under Dynamic Co-evolution of Distribution and Class Variation

Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.986  0.629 0.400 0.586 0.100 / /
CoOp 0.995  0.650 0451 0544 0.104 0.021 0.000
CoCoOp 0.992  0.649 0445 0547 0.151 0.022 0.001
VPT 0.991 0.581 0.407 0.584 0.275 0.000 0.023
MaPLe 0994  0.629 0458 0537 0.225 0.012 0.001
EuroSAT ProGrad 0992  0.643 0417 0575 0.114 0.015 0.000
KgCoOp 0.992  0.657 0437 0555 0.094 0.028 0.000
RPO 0.994  0.640 0431 0563 0.124 0.012 0.000
PromptSRC 0.994  0.658 0.449 0545 0.094 0.029 0.000
ProDA 1.000 0.644 0.494 0.534 0257 0.025 0.003
TCP 0.994  0.630 0.429 0.564 0.163 0.007 0.001

5.4 PROMPT LEARNING UNDER DYNAMIC CO-EVOLUTION OF DISTRIBUTION AND CLASS
VARIATION

Observation

Prompt learning exhibits performance nearly on par with the zero-shot prediction
capabilities of CLIP, showing little to no improvement in scenarios characterized by the
coupling of dynamic distribution and class changes.

As shown in Figure d] for relatively simple classification datasets like Caltech101 and OxfordPets,
the performance variations under different cross-dataset ratios are minimal. However, for datasets
where CLIP already exhibits significant performance degradation across datasets, the various
algorithms face similar challenges, as observed in the Dynamic Distribution Shifts paradigm,
showing no notable performance improvements compared to CLIP’s zero-shot predictions.
Furthermore, as illustrated in Figure E], the differences in metrics such as AUC and EVM between
the algorithms and zero-shot predictions under EuroSAT are minor, while the stability of algorithm
performance, as reflected in the VS metric, generally shows varying degrees of decline.

5.5 ROBUSTNESS ANALYSIS OF PROMPT LEARNING METHODS

In Tables[6] O] we compare the robustness of different algorithms across various dynamic scenarios.
Tables [6]and [7|reveal that CoOp exhibits the poorest robustness when facing various class changes, as
it lacks any robustness handling mechanisms as an initial prompt learning method. Similarly, CoCoOp,
VPT, and MaPLe demonstrate comparable poor performance. While these methods continuously
improve prompt formulation and somewhat enhance the model’s ability to extract image features,
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Table 6: Average Robustness and Ranks under Table 7: Average Robustness and Ranks under

Emerging New Classes. Varying Ratio of New Classes.

Methods davuc 0py  Friedman rank Final rank Methods davc O0pn  Friedman rank  Final rank
CLIP(Zero-shot) / / 9.788 10 CLIP(Zero-shot) / / 8.152 9
CoOp -0.013  -0.012 9.939 11 CoOp -0.014 -0.012 8.970 11
CoCoOp 0.053  0.053 8.212 9 CoCoOp 0.013  0.016 8.742 10
VPT 0.071  0.071 6.636 8 VPT 0.037  0.039 7.288 8
MaPLe 0.081  0.081 6.136 7 MaPLe 0.045  0.046 6.879 7
ProGrad 0.072  0.072 5.742 5 ProGrad 0.040  0.041 6.379 6
KgCoOp 0.072  0.072 5.909 6 KgCoOp 0.045 0.046 5.758 5
RPO 0.083  0.083 4.227 4 RPO 0.053  0.054 4.455 4
PromptSRC 0.102  0.102 1.955 1 PromptSRC 0.074 0.074 2212 1
ProDA 0.081  0.081 3.500 2 ProDA 0.059  0.059 3.273 2
TCP 0.083  0.083 3.955 3 TCP 0.057  0.057 3.894 3

Table 9: Average Robustness and Ranks under

Table 8: Average Robustness and Ranks under Dynamic Co-evolution of Distribution and Class

Dynamic Distribution shifts.

- - Variation.
Methods davc  Opn  Friedmanrank Final rank Methods davc Opn  Friedmanrank  Final rank
CLIP(Zero-shot) / / 10.875 11 CLIP(Zeroshot) / / 3.400 0
CoOp 0.031 0.031 4.625 5
CoOp 0.012  0.013 4.400 4
CoCoOp 0.030  0.030 5.208 6
CoCoOp 0.012  0.013 4267 2
VPT 0.011  0.011 10.125 10
VPT -0.004  0.000 9.450 11
MaPLe 0.031 0.031 4.583 4
MaPLe 0.007  0.009 5.833 6
ProGrad 0.026  0.026 7917 9
ProGrad 0.007  0.008 7.450 9
KgCoOp 0.032  0.032 3.375 2
KgCoOp 0.013  0.013 4.467 5
RPO 0.028 0.028 7.250 8
RPO 0.008  0.008 6.667 8
PromptSRC 0.033  0.033 3917 3
PromptSRC 0.013 0.014 4.200 1
ProDA 0.035  0.035 1.958 1
TCP 0029 0029 6.167 7 ProDA 0.011  0.013 4.383 3
TCP 0.008  0.009 6.483 7

they fail to consider generalization to new classes and do not specifically address robustness in
downstream tasks. In contrast, methods such as RPO, ProDA, TCP, and PromptSRC, which aim
to enhance the model’s ability to extract and differentiate text features, achieve better robustness in
these scenarios and consistently rank highly in overall performance. We contend that improving
the model’s capability to extract text features and distinguish between classes contributes to
generalization in real-world scenarios with unknown label spaces.

In Table we observe that under the Dynamic Distribution Shifts scenario, the robustness of most
methods shows little variation, except for VPT, which significantly underperforms compared to the
others. In this paradigm, algorithms like TCP and RPO, which perform well under class changes,
do not guarantee similarly strong performance; conversely, the earlier methods CoOp and CoCoOp
actually perform better than these newer approaches.

In Table[9] under the Dynamic Co-evolution of Distribution and Class Variation paradigm, ProDA
and PromptSRC continue to demonstrate good robustness and high rankings. Aside from VPT, the
earlier algorithms CoOp and CoCoOp increasingly outperform other methods. This indicates that
most algorithms fundamentally lack the capability to effectively address the challenges posed by
cross-dataset variation.

6 CONCLUSION

Research on robust prompt learning is an important step toward more practical tasks of VLM. This
paper provides a new benchmark to evaluate the robustness of prompt learning in open environments,
which includes dynamic class changes, dynamic distribution shifts, and dynamic co-evolution of
both distributions and classes. We present several new performance metrics to help analyze the
robustness and conduct experiments on commonly adopted prompt learning methods. The results
reveal that current prompt learning methods in VLMs are not robust to class and data distribution
changes. On the contrary, they highly rely on the zero-shot ability of CLIP and show no significant
robust improvement compared to baseline zero-shot performance. Of course, the issues models face
in real-world environments may be more complex than the paradigms we have proposed. We hope
that our work can help promote the study of prompt learning in real-world scenarios.

10
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A APPENDIX

The complete detailed experimental results are presented as follow, including the evaluation under
those paradigms; and the robustness and ranks of prompt learning methods on 11 datasets under those
paradigms.

Table 10: Evaluation on ImageNet under Emerging New Classes

Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.754  0.706 0.667 0.087 0.000 / /
CoOp 0.796  0.726 0.686 0.111 0.004 0.019 0.000
CoCoOp 0.795 0.741 0.696 0.100 0.000 0.035 0.000
VPT 0.785 0.720 0.667 0.118 0.001 0.013 0.000
MaPLe 0.792  0.719 0.661 0.131 0.001 0.013 0.001
ImageNet ProGrad 0.792  0.740 0.697 0.095 0.000 0.034 0.000
KgCoOp 0.788  0.737 0.696 0.092 0.000 0.031 0.000
RPO 0.801 0.748 0.703 0.098 0.000 0.041 0.000
PromptSRC 0.807 0.753 0.709 0.098 0.000 0.047 0.000
ProDA 0.800 0.751 0.711 0.089 0.000 0.045 0.000
TCP 0.799  0.745 0.701 0.098 0.000 0.039 0.000

Table 11: Evaluation on Caltech101 under Emerging New Classes

Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.968 0.946 0.933 0.035 0.001 / /
CoOp 0.982 0.934 0917 0.065 0.005 0.001 0.011
CoCoOp 0.984 0.952 0929 0.055 0.001 0.006 0.000
VPT 0.988 0.957 0.936 0.052 0.000 0.011 0.000
MaPLe 0.984 0.956 0.935 0.050 0.000 0.010 0.000
Caltech101 ProGrad 0.986 0963 0.938 0.048 0.000 0.017 0.000
KgCoOp 0.983 0.962 0.943 0.040 0.000 0.016 0.000
RPO 0.985 0.961 0943 0.043 0.000 0.015 0.000
PromptSRC 0.984 0962 0944 0.041 0.000 0.016 0.000
ProDA 0.987 0.965 0.948 0.039 0.000 0.019 0.000
TCP 0.985 0.962 0944 0.041 0.000 0.016 0.000

Table 12: Evaluation on DTD under Emerging New Classes

Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.568 0.489 0.441 0.127 0.003 / /
CoOp 0.767 0.469 0410 0.357 0.333 0.015 0.032
CoCoOp 0.762 0.597 0488 0.274 0.011 0.108 0.000
VPT 0.799 0.618 0.522 0.277 0.023 0.129 0.000
MaPLe 0.789 0.633 0.532 0.257 0.011 0.144 0.000
DTD ProGrad 0.779 0.629 0.537 0.242 0.012 0.140 0.000
KgCoOp 0.777 0.637 0.547 0.230 0.010 0.147 0.000
RPO 0.812 0.655 0.561 0.251 0.013 0.166 0.000
PromptSRC 0.807 0.661 0.576 0.231 0.013 0.172 0.000
ProDA 0.779 0.657 0.577 0.202 0.007 0.168 0.000
TCP 0.779 0.642 0.556 0.223 0.012 0.152  0.000
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Table 13: Evaluation on EuroSAT under Emerging New Classes

Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.581 0.555 0484 0.139 0.011 / /
CoOp 0.882  0.567 0459 0423 0.182 0.035 0.022
CoCoOp 0.863  0.660 0477 0.386 0.012 0.106 0.000
VPT 0.950 0.759 0.618 0.332 0.008 0.204 0.000
MaPLe 0.951 0.820 0.690 0.262 0.009 0.265 0.000
EuroSAT ProGrad 0.887  0.709 0.567 0.320 0.012 0.154 0.000
KgCoOp 0.854 0.704 0575 0.279 0.007 0.149 0.000
RPO 0.928  0.749 0.609 0.319 0.011 0.194 0.000
PromptSRC 0919 0830 0.721 0.198 0.004 0.275 0.000
ProDA 0.842  0.710 0.582 0.260 0.007 0.155 0.000
TCP 0.882  0.721 0599 0.283 0.009 0.166 0.000
Table 14: Evaluation on FGVCAircraft under Emerging New Classes
Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.338  0.292 0.247 0.091 0.000 / /
CoOp 0.534 0.233 0.170 0.363 0.349 0.013 0.067
CoCoOp 0.505 0.352 0.252 0.253 0.010 0.060 0.000
VPT 0.587 0426 0322 0.265 0.011 0.133 0.000
MaPLe 0.599 0430 0311 0.288 0.008 0.137 0.000
FGVCAircraft ProGrad 0.520 0.392 0303 0.217 0.005 0.099 0.000
KgCoOp 0492 0377 0.295 0.197 0.005 0.085 0.000
RPO 0.536 0410 0322 0.214 0.006 0.118 0.000
PromptSRC 0.564  0.437 0352 0.213 0.008 0.145 0.000
ProDA 0.495 0.387 0310 0.185 0.005 0.095 0.000
TCP 0.526 0407 0322 0.204 0.005 0.114 0.000
Table 15: Evaluation on Food101 under Emerging New Classes
Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.902  0.878 0.859 0.043 0.000 / /
CoOp 0.899 0.862 0.839 0.061 0.001 0.000 0.016
CoCoOp 0.906 0.874 0.845 0.061 0.000 0.002 0.004
VPT 0.896 0.856 0.820 0.076 0.000 0.000 0.022
MaPLe 0.892  0.859 0.829 0.063 0.000 0.000 0.019
Food101 ProGrad 0912 0.884 0.858 0.054 0.000 0.006 0.000
KgCoOp 0914  0.888 0.865 0.049 0.000 0.010 0.000
RPO 0.911 0.881 0.855 0.055 0.000 0.005 0.001
PromptSRC 0914  0.889 0.865 0.048 0.000 0.012 0.000
ProDA 0917 0.890 0.867 0.050 0.000 0.013 0.000
TCP 0913  0.888 0.865 0.048 0.000 0.010 0.000
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Table 16: Evaluation on Flowers102 under Emerging New Classes

Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.736  0.729 0.707 0.049 0.002 / /

CoOp 0975 0.707 0.656 0.325 0.299 0.020 0.040

CoCoOp 0.969 0.826 0.729 0.240 0.009 0.097 0.000

VPT 0980 0.844 0.739 0.241 0.004 0.115 0.000

MaPLe 0981 0.855 0.770 0.211 0.006 0.125 0.000

Flowers102 ProGrad 0.968 0.854 0.771 0.197 0.004 0.125 0.000
KgCoOp 0958 0.859 0.792 0.166 0.003 0.129 0.000

RPO 0977 0.860 0.788 0.189 0.006 0.131 0.000

PromptSRC 0978 0.881 0.809 0.169 0.002 0.152 0.000

ProDA 0974 0.882 0.814 0.160 0.002 0.153 0.000

TCP 0.968 0.869 0.804 0.163 0.004 0.140 0.000

Table 17: Evaluation on OxfordPets under Emerging New Classes
Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.948 0918 0.891 0.058 0.001 / /

CoOp 0954 0.897 0.872 0.082 0.003 0.000 0.018

CoCoOp 0953 0926 0.892 0.063 0.004 0.009 0.001

VPT 0956 0932 0904 0.054 0.003 0.013 0.000

MaPLe 0.947  0.927 0903 0.044 0.003 0.010 0.001

OxfordPets ProGrad 0957 0935 0.904 0.056 0.003 0.017 0.000
KgCoOp 0953 0940 0916 0.040 0.004 0.022 0.000

RPO 0.950 0.928 0.901 0.056 0.003 0.011 0.001

PromptSRC 0954 0940 0917 0.043 0.003 0.022 0.000

ProDA 0959 0945 0.922 0.041 0.002 0.027 0.000

TCP 0954 0939 0916 0.040 0.003 0.021 0.000

Table 18: Evaluation on StanfordCars under Emerging New Classes
Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.757  0.706 0.655 0.102 0.001 / /

CoOp 0.858  0.685 0.618 0.240 0.066 0.008 0.027
CoCoOp 0.845 0.753 0.682 0.163 0.002 0.046 0.000
VPT 0.859 0.754 0.677 0.182 0.003 0.047 0.000
MaPLe 0894 0.775 0.688 0.206 0.004 0.069 0.000
StanfordCars ProGrad 0.842  0.755 0.693 0.149 0.003 0.048 0.000
KgCoOp 0.827  0.750 0.692 0.135 0.002 0.044 0.000
RPO 0.851 0.772 0.712 0.139 0.002 0.065 0.000
PromptSRC 0.866  0.783 0.722 0.144 0.002 0.077 0.000
ProDA 0.822 0.755 0.704 0.118 0.001 0.048 0.000
TCP 0.855 0.772 0.708 0.147 0.002 0.066 0.000
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Table 19: Evaluation on SUN397 under Emerging New Classes

Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.732  0.672 0.626 0.107 0.001 / /
CoOp 0.835 0.677 0.621 0.214 0.064 0.010 0.004
CoCoOp 0.830 0.740 0.670 0.160 0.001 0.069 0.000
VPT 0.830 0.737 0.668 0.162 0.002 0.065 0.000
MaPLe 0.833  0.740 0.669 0.163 0.002 0.068 0.000
SUN397 ProGrad 0.831 0.753 0.691 0.141 0.001 0.081 0.000
KgCoOp 0.825 0.752 0.696 0.129 0.001 0.080 0.000
RPO 0.845 0.761 0.701 0.145 0.002 0.090 0.000
PromptSRC 0.848 0.776 0.722 0.126 0.001 0.105 0.000
ProDA 0.837 0.770 0.717 0.120 0.001 0.098 0.000
TCP 0.841 0.766 0.709 0.132 0.001 0.095 0.000
Table 20: Evaluation on UCF101 under Emerging New Classes
Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.748  0.708 0.675 0.073 0.000 / /
CoOp 0.895 0.696 0.641 0254 0.137 0.012 0.023
CoCoOp 0.880  0.760 0.683 0.196 0.009 0.052 0.000
VPT 0.897 0.777 0.704 0.193 0.009 0.069 0.000
MaPLe 0.896 0.782 0.713 0.183 0.008 0.075 0.000
UCF101 ProGrad 0.891 0.782 0.718 0.173 0.009 0.075 0.000
KgCoOp 0.882  0.788 0.734 0.148 0.006 0.080 0.000
RPO 0909 0.792 0.730 0.179 0.012 0.084 0.000
PromptSRC 0904 0.812 0.755 0.149 0.005 0.104 0.000
ProDA 0.884  0.782 0.725 0.160 0.008 0.074 0.000
TCP 0.890 0.801 0.748 0.143 0.005 0.093 0.000
Table 21: Evaluation on ImageNet under Varying Ratio of New Classes
Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.754  0.754 0.748 0.018 0.001 / /
CoOp 0.796  0.773 0.765 0.043 0.003 0.019 0.000
CoCoOp 0.795 0.783 0.770 0.026 0.000 0.028 0.000
VPT 0.785 0.759 0.738 0.048 0.000 0.010 0.004
MaPLe 0.792  0.753 0.717 0.075 0.000 0.010 0.010
ImageNet ProGrad 0.792 0.783 0.774 0.018 0.000 0.028 0.000
KgCoOp 0.788 0.781 0.775 0.015 0.000 0.027 0.000
RPO 0.801 0.789 0.778 0.023 0.000 0.035 0.000
PromptSRC 0.807 0.794 0.782 0.025 0.000 0.040 0.000
ProDA 0.800 0.795 0.791 0.009 0.000 0.041 0.000
TCP 0.799  0.785 0.775 0.024 0.000 0.031 0.000
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Table 22: Evaluation on Caltech101 under Varying Ratio of New Classes

Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.968  0.954 0.944 0.045 0.002 / /
CoOp 0982 0947 0936 0.072 0.007 0.001 0.007
CoCoOp 0984 0954 0928 0.056 0.001 0.006 0.004
VPT 0988 0.962 0.939 0.049 0.000 0.011 0.003
MaPLe 0984 0961 0940 0.044 0.000 0.011 0.003
Caltech101 ProGrad 0986  0.964 0.933 0.053 0.000 0.013 0.003
KgCoOp 0983 0968 0947 0.036 0.000 0.015 0.001
RPO 0985 0969 0951 0.035 0.000 0.016 0.001
PromptSRC 0984 0967 0948 0.036 0.000 0.015 0.001
ProDA 0987 0968 0.948 0.038 0.000 0.016 0.001
TCP 0985 0968 0950 0.034 0.000 0.015 0.001
Table 23: Evaluation on DTD under Varying Ratio of New Classes
Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.568  0.536 0.508 0.084 0.008 / /
CoOp 0.767 0507 0464 0.337 0.333 0.014 0.038
CoCoOp 0.762  0.557 0362 0400 0.021 0.062 0.040
VPT 0.799  0.606 0471 0.328 0.022 0.081 0.007
MaPLe 0.789  0.623 0473 0.316 0.013 0.093 0.006
DTD ProGrad 0.779  0.638 0.523 0.256 0.020 0.103 0.000
KgCoOp 0.777  0.638 0.516 0.261 0.018 0.103 0.001
RPO 0.812 0.656 0.538 0.273 0.016 0.120 0.000
PromptSRC 0.807 0.663 0552 0.255 0.015 0.127 0.000
ProDA 0.779  0.670 0.575 0.204 0.013 0.135 0.000
TCP 0.779  0.649 0544 0.235 0.018 0.113 0.000
Table 24: Evaluation on EuroSAT under Varying Ratio of New Classes
Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.581 0.663 0.581 0.243 0.058 / /
CoOp 0.882  0.669 0.612 0.288 0.125 0.043 0.035
CoCoOp 0.863  0.697 0.469 0.394 0.076 0.090 0.048
VPT 0.950 0.805 0.672 0412 0.126 0.143 0.000
MaPLe 0951 0.857 0.685 0.266 0.036 0.194 0.000
EuroSAT ProGrad 0.887  0.730 0.554 0.333 0.021 0.097 0.027
KgCoOp 0.854 0.744 0593 0.262 0.037 0.092 0.009
RPO 0928 0.780 0.591 0.337 0.074 0.120 0.003
PromptSRC 0919 0874 0.752 0.195 0.027 0.211 0.000
ProDA 0.842  0.769 0.609 0.256 0.047 0.110 0.003
TCP 0.882  0.777 0.647 0.271 0.053 0.115 0.000
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Table 25: Evaluation on FGVCAircraft under Varying Ratio of New Classes

Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.338  0.362 0.338 0.034 0.003 / /
CoOp 0.534 0.286 0.240 0.332 0.303 0.013 0.081
CoCoOp 0.505 0.347 0.226 0.279 0.008 0.031 0.034
VPT 0.587 0459 0376 0.210 0.012 0.097 0.000
MaPLe 0.599 0440 0311 0.288 0.005 0.085 0.006
FGVCAircraft ProGrad 0.520 0423 0350 0.170 0.003 0.062 0.001
KgCoOp 0492 0413 0356 0.136 0.005 0.051 0.000
RPO 0.536 0447 0392 0.155 0.009 0.085 0.000
PromptSRC 0.564 0478 0426 0.139 0.006 0.116 0.000
ProDA 0495 0439 0411 0.088 0.007 0.077 0.000
TCP 0.526 0445 0394 0.132 0.006 0.084 0.000
Table 26: Evaluation on Food101 under Varying Ratio of New Classes
Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.902 0903 0.898 0.026 0.001 / /
CoOp 0.899 0.889 0.884 0.027 0.001 0.000 0.014
CoCoOp 0906 0.892 0.879 0.028 0.001 0.000 0.009
VPT 0.896 0.872 0.849 0.047 0.000 0.000 0.031
MaPLe 0.892  0.881 0.873 0.019 0.000 0.000 0.022
Food101 ProGrad 0912 0901 0.892 0.020 0.000 0.004 0.005
KgCoOp 0914 0907 0902 0.015 0.000 0.005 0.000
RPO 0911 0.899 0.890 0.021 0.000 0.002 0.006
PromptSRC 0914 0909 0.903 0.012 0.000 0.006 0.001
ProDA 0917 0910 0.904 0.015 0.000 0.007 0.000
TCP 0913 0908 0904 0.010 0.000 0.006 0.000
Table 27: Evaluation on Flowers102 under Varying Ratio of New Classes
Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.736  0.780 0.736  0.093 0.009 / /
CoOp 0975 0.771 0.734 0.302 0.249 0.021 0.029
CoCoOp 0.969 0.790 0.631 0.338 0.009 0.057 0.041
VPT 0980 0.810 0.649 0.331 0.004 0.066 0.034
MaPLe 0981 0.826 0.672 0.309 0.001 0.071 0.024
Flowers102 ProGrad 0.968 0.829 0.696 0.272 0.004 0.069 0.019
KgCoOp 0958 0.842 0.741 0.217 0.003 0.071 0.006
RPO 0977  0.835 0.720 0.257 0.004 0.070 0.015
PromptSRC 0978 0.861 0.750 0.228 0.001 0.085 0.004
ProDA 0974 0.861 0.750 0.224 0.000 0.085 0.004
TCP 0968  0.849 0.751 0.217 0.003 0.075 0.005
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Table 28: Evaluation on OxfordPets under Varying Ratio of New Classes

Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.948  0.945 0.924 0.043 0.002 / /
CoOp 0954 0923 0908 0.046 0.002 0.000 0.020
CoCoOp 0953 0945 0913 0.061 0.007 0.003 0.001
VPT 0956 0953 0.931 0.045 0.005 0.008 0.000
MaPLe 0.947 0953 0.935 0.059 0.007 0.009 0.000
OxfordPets ProGrad 0.957 0951 0922 0.054 0.005 0.007 0.001
KgCoOp 0953 0962 0945 0.058 0.005 0.017 0.000
RPO 0950 0954 0941 0.043 0.004 0.009 0.001
PromptSRC 0.954 0961 0947 0.055 0.005 0.016 0.000
ProDA 0959 0967 0959 0.035 0.002 0.022 0.000
TCP 0954 0963 0951 0.048 0.003 0.018 0.000
Table 29: Evaluation on StanfordCars under Varying Ratio of New Classes
Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.757  0.766 0.756 0.041 0.002 / /
CoOp 0.858 0.751 0.725 0.160 0.061 0.008 0.021
CoCoOp 0.845 0.789 0.750 0.094 0.002 0.024 0.001
VPT 0.859 0.781 0.731 0.128 0.003 0.023 0.006
MaPLe 0.894 0.790 0.711 0.183 0.002 0.035 0.010
StanfordCars ProGrad 0.842  0.794 0.769 0.073 0.003 0.028 0.000
KgCoOp 0.827 0.795 0.779 0.048 0.001 0.029 0.000
RPO 0.851 0.815 0.793 0.058 0.001 0.049 0.000
PromptSRC 0.866  0.819 0.793 0.073 0.002 0.054 0.000
ProDA 0.822  0.805 0.798 0.028 0.001 0.039 0.000
TCP 0.855 0.809 0.778 0.077 0.001 0.044 0.000
Table 30: Evaluation on SUN397 under Varying Ratio of New Classes
Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.732  0.725 0.723 0.019 0.001 / /
CoOp 0.835 0.728 0.714 0.133 0.059 0.010 0.006
CoCoOp 0.830 0.768 0.700 0.130 0.001 0.046 0.002
VPT 0.830 0.765 0.709 0.121 0.000 0.041 0.001
MaPLe 0.833  0.765 0.698 0.135 0.000 0.043 0.003
SUN397 ProGrad 0.831 0.783 0.732 0.099 0.000 0.058 0.000
KgCoOp 0.825 0.788 0.754 0.071 0.000 0.063 0.000
RPO 0.845 0.790 0.745 0.100 0.001 0.065 0.000
PromptSRC 0.848 0.808 0.772 0.075 0.000 0.084 0.000
ProDA 0.837 0.805 0.776 0.061 0.000 0.080 0.000
TCP 0.841 0.798 0.760 0.081 0.000 0.073 0.000
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Table 31: Evaluation on UCF101 under Varying Ratio of New Classes

Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.748  0.756 0.730 0.125 0.021 / /
CoOp 0.895 0.749 0.700 0.288 0.181 0.012 0.019
CoCoOp 0.880  0.766 0.669 0.211 0.004 0.039 0.029
VPT 0.897  0.777 0.675 0.222 0.005 0.046 0.010
MaPLe 0.896  0.786 0.697 0.199 0.004 0.049 0.008
UCF101 ProGrad 0.891 0.789 0.704 0.187 0.004 0.050 0.008
KgCoOp 0.882  0.804 0.739 0.143 0.004 0.054 0.005
RPO 0909 0.793 0.710 0.199 0.009 0.053 0.008
PromptSRC 0904 0.823 0.753 0.151 0.004 0.070 0.003
ProDA 0.884  0.801 0.736 0.148 0.005 0.053 0.005
TCP 0.890  0.821 0.761 0.129 0.004 0.066 0.002
Table 32: Evaluation on ImageNet-A under Dynamic Distribution shifts
Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.904  0.708 0.477 0.427 0.004 / /
CoOp 0925 0.733 0505 0.420 0.004 0.025 0.000
CoCoOp 0923 0.734 0509 0415 0.004 0.026 0.000
VPT 0911  0.710 0475 0436 0.004 0.002 0.001
MaPLe 0924  0.725 0.490 0435 0.004 0.017 0.000
ImageNet-A ProGrad 0920 0.729 0504 0.416 0.004 0.020 0.000
KgCoOp 0924 0.733 0507 0.417 0.004 0.025 0.000
RPO 0922  0.730 0.502 0.420 0.004 0.021 0.000
PromptSRC 0922 0.732 0508 0.414 0.004 0.024 0.000
ProDA 0926 0.740 0.520 0.406 0.004 0.032 0.000
TCP 0.921 0.730 0.506 0.415 0.004 0.022 0.000
Table 33: Evaluation on ImageNet-R under Dynamic Distribution shifts
Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0915  0.797 0.740 0.175 0.014 / /
CoOp 0927 0.815 0.761 0.166 0.013 0.017 0.000
CoCoOp 0928 0.818 0.764 0.164 0.013 0.020 0.000
VPT 0920 0.809 0.755 0.166 0.012 0.012 0.000
MaPLe 0930 0.816 0.762 0.168 0.013 0.019 0.000
ImageNet-R ProGrad 0925 0.818 0.766 0.159 0.011 0.021 0.000
KgCoOp 0929 0.821 0.768 0.160 0.012 0.024 0.000
RPO 0928 0.818 0.763 0.165 0.012 0.020 0.000
PromptSRC 0928 0.826 0.776 0.152 0.010 0.029 0.000
ProDA 0929  0.827 0.779 0.150 0.011 0.030 0.000
TCP 0927 0.819 0.766 0.160 0.011 0.022 0.000

21



Under review as a conference paper at ICLR 2025

Table 34: Evaluation on ImageNet-Sketch under Dynamic Distribution shifts

Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.669  0.563 0.463 0.206 0.000 / /
CoOp 0.717  0.600 0.489 0.228 0.000 0.038 0.000
CoCoOp 0.711 0.597 0.490 0.221 0.000 0.034 0.000
VPT 0.685 0.578 0475 0.211 0.000 0.015 0.000
MaPLe 0.722  0.601 0.486 0.236 0.000 0.039 0.000
ImageNet-Sketch ProGrad 0.704  0.594 0.488 0.215 0.000 0.031 0.000
KgCoOp 0.712  0.601 0.495 0.217 0.000 0.038 0.000
RPO 0.708  0.596 0.488 0.220 0.000 0.033 0.000
PromptSRC 0.711 0.601 0.496 0.216 0.000 0.038 0.000
ProDA 0.712  0.601 0.497 0.215 0.000 0.038 0.000
TCP 0.711 0.597 0.489 0.222 0.000 0.034 0.000
Table 35: Evaluation on ImageNetV?2 under Dynamic Distribution shifts
Dataset Methods Acc(0) AUC WA EVM VS PA NA
CLIP(Zero-shot) 0.669  0.651 0.609 0.060 0.002 / /
CoOp 0.717  0.695 0.644 0.074 0.004 0.045 0.000
CoCoOp 0.711  0.691 0.643 0.068 0.003 0.040 0.000
VPT 0.685 0.665 0.616 0.070 0.003 0.014 0.000
MaPLe 0.722  0.701 0.649 0.073 0.004 0.050 0.000
ImageNetV?2 ProGrad 0.704  0.683 0.633 0.071 0.004 0.032 0.000
KgCoOp 0712  0.692 0.644 0.068 0.003 0.041 0.000
RPO 0.708  0.688 0.640 0.068 0.003 0.037 0.000
PromptSRC 0.711  0.691 0.644 0.067 0.003 0.041 0.000
ProDA 0712 0.692 0.646 0.066 0.003 0.041 0.000
TCP 0.711  0.690 0.640 0.071 0.004 0.040 0.000

Table 36: Robustness and Ranks of Prompt Learning Methods on ImageNet under Emerging New

Classes

Dataset Methods dauvc Opn  Friedmanrank Final rank
CLIP(Zero-shot) / 10.500 11
CoOp 0.019 0.019 8.167 8
CoCoOp 0.035 0.035 5.667 5
VPT 0.013 0.013 9.333 10
MaPLe 0.013 0.013 9.167 9
ImageNet ProGrad 0.034 0.034 6.000 6
KgCoOp 0.031 0.031 7.167 7
RPO 0.041 0.041 2.833 3
PromptSRC 0.047 0.047 1.500 1
ProDA 0.045 0.045 1.667 2
TCP 0.039 0.039 4.000 4
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Table 37: Robustness and Ranks of Prompt Learning Methods on Caltech101 under Emerging New
Classes

Dataset Methods Sauc 0pny  Friedmanrank Final rank

CLIP(Zero-shot) / / 10.000 10

CoOp -0.012 -0.010 10.833 11

CoCoOp 0.005  0.005 8.833 9

VPT 0.011 0.011 6.000 7

MaPLe 0.010 0.010 7.500 8

Caltech101 ProGrad 0.017  0.017 3.333 2
KgCoOp 0.016 0.016 4.500 5

RPO 0.015 0.015 5.000 6

PromptSRC 0.016  0.016 4.333 4

ProDA 0.019 0.019 1.500 1

TCP 0.016 0.016 4.167 3

Table 38: Robustness and Ranks of Prompt Learning Methods on DTD under Emerging New Classes

Dataset Methods dauc 0pn  Friedman rank Final rank
CLIP(Zero-shot) / / 10.167 10
CoOp -0.020 -0.017 10.667 11
CoCoOp 0.108 0.108 9.167 9
VPT 0.129  0.129 7.167 8
MaPLe 0.144 0.144 5.833 6
DTD ProGrad 0.140 0.140 6.500 7
KgCoOp 0.147 0.147 5.667 5
RPO 0.166 0.166 2.500 3
PromptSRC 0.172  0.172 1.833 1
ProDA 0.168 0.168 2.167 2
TCP 0.152 0.152 4.333 4

Table 39: Robustness and Ranks of Prompt Learning Methods on EuroSAT under Emerging New
Classes

Dataset Methods davc Opny  Friedmanrank Final rank

CLIP(Zero-shot) / / 10.167 11
CoOp 0.012 0.014 10.000 10

CoCoOp 0.106 0.106 9.000 9

VPT 0.204 0.204 3.167 3

MaPLe 0.265 0.265 1.667 1

EuroSAT ProGrad 0.154 0.154 6.833 7
KgCoOp 0.149 0.149 7.667 8

RPO 0.194 0.194 3.500 4

PromptSRC 0.275 0.275 1.667 2

ProDA 0.155 0.155 6.833 6

TCP 0.166 0.166 5.500 5
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Table 40: Robustness and Ranks of Prompt Learning Methods on FGVCAircraft under Emerging
New Classes

Dataset Methods daucC 0pny  Friedmanrank Final rank

CLIP(Zero-shot) / / 10.167 11
CoOp -0.060 -0.054 10.000 10

CoCoOp 0.060  0.060 8.833 9

VPT 0.133 0.133 2.667 2

MaPLe 0.137 0.137 2.667 3

FGVCAircraft ProGrad 0.099  0.099 6.667 6
KgCoOp 0.085 0.085 8.333 8

RPO 0.118 0.118 3.667 4

PromptSRC 0.145 0.145 1.667 1

ProDA 0.095 0.095 6.833 7

TCP 0.114 0.114 4.500 5

Table 41: Robustness and Ranks of Prompt Learning Methods on Food101 under Emerging New
Classes

Dataset Methods daucC 0pny  Friedman rank Final rank

CLIP(Zero-shot) / / 6.667 7

CoOp -0.016 -0.016 9.667 9

CoCoOp -0.004 -0.003 7.500 8

VPT -0.022 -0.022 10.500 11
MaPLe -0.019 -0.019 9.833 10

Food101 ProGrad 0.006  0.006 5.333 5
KgCoOp 0.010 0.010 3.500 4

RPO 0.003  0.003 6.500 6

PromptSRC 0.012 0.012 1.833 2

ProDA 0.013 0.013 1.333 1

TCP 0.010 0.010 3.333 3

Table 42: Robustness and Ranks of Prompt Learning Methods on Flowers102 under Emerging New
Classes

Dataset Methods dauc 6pny  Friedmanrank Final rank

CLIP(Zero-shot) / / 10.167 11
CoOp -0.022 -0.020 10.000 10

CoCoOp 0.097  0.097 8.667 9

VPT 0.115 0.115 6.333 8

MaPLe 0.125 0.125 5.500 5

Flowers102 ProGrad 0.125  0.125 6.167 7
KgCoOp 0.129  0.129 6.167 6

RPO 0.131  0.131 4.833 4

PromptSRC 0.152 0.152 1.833 1

ProDA 0.153 0.153 2.167 2

TCP 0.140  0.140 4.167 3
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Table 43: Robustness and Ranks of Prompt Learning Methods on OxfordPets under Emerging New
Classes

Dataset Methods Sauc 0pny  Friedmanrank Final rank

CLIP(Zero-shot) / / 9.333 10

CoOp -0.021 -0.018 10.167 11

CoCoOp 0.008  0.008 8.500 8

VPT 0.013 0.013 5.500 6

MaPLe 0.009 0.010 8.667 9

OxfordPets ProGrad 0.017  0.017 4.167 4
KgCoOp 0.022 0.022 3.333 2

RPO 0.010 0.010 7.667 7

PromptSRC 0.022  0.022 3.333 3

ProDA 0.027  0.027 1.000 1

TCP 0.021  0.021 4.333 5

Table 44: Robustness and Ranks of Prompt Learning Methods on StanfordCars under Emerging New
Classes

Dataset Methods dauC 0pny  Friedmanrank Final rank

CLIP(Zero-shot) / / 10.167 11
CoOp -0.021 -0.019 9.833 10

CoCoOp 0.046  0.046 7.500 8

VPT 0.047  0.047 6.667 7

MaPLe 0.069  0.069 3.333 4

StanfordCars ProGrad 0.048 0.048 6.500 6
KgCoOp 0.044 0.044 7.667 9

RPO 0.065 0.065 3.333 2

PromptSRC 0.077 0.077 1.333 1

ProDA 0.048  0.048 6.333 5

TCP 0.066 0.066 3.333 3

Table 45: Robustness and Ranks of Prompt Learning Methods on SUN397 under Emerging New
Classes

Dataset Methods davc Opny  Friedmanrank Final rank

CLIP(Zero-shot) / / 10.167 11
CoOp 0.005 0.005 10.000 10

CoCoOp 0.069 0.069 7.500 8

VPT 0.065 0.065 8.833 9

MaPLe 0.068 0.068 7.500 7

SUN397 ProGrad 0.081 0.081 5.667 5
KgCoOp 0.080 0.080 6.333 6

RPO 0.090 0.090 3.667 4

PromptSRC 0.105 0.105 1.000 1

ProDA 0.098 0.098 2.333 2

TCP 0.095 0.095 3.000 3
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Table 46: Robustness and Ranks of Prompt Learning Methods on UCF101 under Emerging New
Classes

Dataset Methods Savuc 0pny  Friedmanrank Final rank

CLIP(Zero-shot) / / 10.167 11
CoOp -0.012 -0.011 10.000 10

CoCoOp 0.052  0.052 9.167 9

VPT 0.069  0.069 6.833 8

MaPLe 0.075 0.075 5.833 5

UCF101 ProGrad 0.075 0.075 6.000 6
KgCoOp 0.080  0.080 4.667 4

RPO 0.084 0.084 3.000 3

PromptSRC 0.104 0.104 1.167 1

ProDA 0.074 0.074 6.333 7

TCP 0.093  0.093 2.833 2

Table 47: Robustness and Ranks of Prompt Learning Methods on ImageNet under Varying Ratio of
New Classes

Dataset Methods davc Opn  Friedmanrank Final rank

CLIP(Zero-shot) / / 10.000 11

CoOp 0.019 0.019 7.667 8

CoCoOp 0.028 0.028 6.167 6

VPT 0.005 0.005 9.667 9
MaPLe -0.001  0.000 9.667 10

ImageNet ProGrad 0.028  0.028 6.000 5
KgCoOp 0.027 0.027 6.667 7

RPO 0.035 0.035 2.833 3

PromptSRC 0.040 0.040 1.500 1

ProDA 0.041 0.041 1.667 2

TCP 0.031 0.031 4.167 4

Table 48: Robustness and Ranks of Prompt Learning Methods on Caltech101 under Varying Ratio of
New Classes

Dataset Methods dauc 6pny  Friedmanrank Final rank

CLIP(Zero-shot) / / 8.000 9

CoOp -0.007 -0.006 9.333 11
CoCoOp 0.000  0.002 9.167 10

VPT 0.008  0.009 6.833 7

MaPLe 0.008  0.008 7.833 8

Caltech101 ProGrad 0.010 0.010 5.500 6
KgCoOp 0.014 0.014 4.667 4

RPO 0.015 0.015 2.667 1

PromptSRC 0.013  0.013 4.667 5

ProDA 0.014 0.014 3.667 2

TCP 0.014 0.014 3.667 3
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Table 49: Robustness and Ranks of Prompt Learning Methods on DTD under Varying Ratio of New
Classes

Dataset Methods dauc 0pny  Friedmanrank Final rank

CLIP(Zero-shot) / / 8.667 9

CoOp -0.029 -0.024 10.000 11
CoCoOp 0.021  0.022 10.000 10

VPT 0.070 0.073 7.667 8

MaPLe 0.087 0.087 6.833 7

DTD ProGrad 0.102  0.102 5.667 5
KgCoOp 0.103  0.103 6.000 6

RPO 0.120 0.120 2.667 3

PromptSRC 0.127 0.127 2.000 1

ProDA 0.135 0.135 2.167 2

TCP 0.113 0.113 4.333 4

Table 50: Robustness and Ranks of Prompt Learning Methods on EuroSAT under Varying Ratio of
New Classes

Dataset Methods dauvc Opny  Friedmanrank Final rank

CLIP(Zero-shot) / / 8.167 8
CoOp 0.007 0.008 8.667 10

CoCoOp 0.035 0.042 9.333 11

VPT 0.143 0.143 3.500 3

MaPLe 0.194 0.194 1.833 2

EuroSAT ProGrad 0.068 0.070 8.167 9
KgCoOp 0.081 0.083 8.000 7

RPO 0.117 0.117 5.167 4

PromptSRC 0.211 0.211 1.667 1

ProDA 0.107 0.107 6.000 6

TCP 0.115 0.115 5.500 5

Table 51: Robustness and Ranks of Prompt Learning Methods on FGVCAircraft under Varying Ratio
of New Classes

Dataset Methods dauc 0pny  Friedmanrank Final rank

CLIP(Zero-shot) / / 9.000 9

CoOp -0.076  -0.068 9.833 11
CoCoOp -0.015 -0.003 9.500 10

VPT 0.097  0.097 3.500 2

MaPLe 0.078  0.079 5.000 6

FGVCAircraft ProGrad 0.061  0.061 6.667 7
KgCoOp 0.051 0.051 7.833 8

RPO 0.085 0.085 4.000 3

PromptSRC 0.116 0.116 1.667 1

ProDA 0.077  0.077 4.667 5

TCP 0.084 0.084 4.333 4
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Table 52: Robustness and Ranks of Prompt Learning Methods on Food101 under Varying Ratio of
New Classes

Dataset Methods Savuc 0pny  Friedmanrank Final rank

CLIP(Zero-shot) / / 5.000 5

CoOp -0.014 -0.014 8.333 9

CoCoOp -0.012 -0.008 8.167 8

VPT -0.031 -0.031 10.833 11
MaPLe -0.022 -0.022 10.167 10

Food101 ProGrad -0.002 -0.002 5.500 6
KgCoOp 0.004 0.005 3.667 4

RPO -0.005 -0.003 6.667 7

PromptSRC 0.005  0.006 2.667 2

ProDA 0.006 0.007 1.500 1

TCP 0.004  0.005 3.500 3

Table 53: Robustness and Ranks of Prompt Learning Methods on Flowers102 under Varying Ratio of
New Classes

Dataset Methods daucC 0py  Friedmanrank Final rank

CLIP(Zero-shot) / / 6.667 7

CoOp -0.009 -0.008 7.500 9

CoCoOp 0.010 0.016 9.667 11

VPT 0.030 0.032 8.000 10

MaPLe 0.046  0.046 6.000 6

Flowers102 ProGrad 0.049  0.050 7.167 8
KgCoOp 0.062  0.065 6.000 5

RPO 0.055 0.055 5.667 4

PromptSRC 0.081 0.081 2.333 1

ProDA 0.082 0.082 2.667 2

TCP 0.069 0.070 4.333 3

Table 54: Robustness and Ranks of Prompt Learning Methods on OxfordPets under Varying Ratio of
New Classes

Dataset Methods dauc 6pny  Friedmanrank Final rank

CLIP(Zero-shot) / / 8.833 9

CoOp -0.022 -0.020 10.167 11
CoCoOp 0.000  0.002 9.000 10

VPT 0.008  0.008 6.333 6

MaPLe 0.009  0.009 7.000 8

OxfordPets ProGrad 0.006  0.006 6.333 5
KgCoOp 0.017 0.017 3.667 4

RPO 0.009  0.009 6.833 7

PromptSRC 0.016 0.016 3.333 3

ProDA 0.022  0.022 1.333 1

TCP 0.018 0.018 3.167 2
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Table 55: Robustness and Ranks of Prompt Learning Methods on StanfordCars under Varying Ratio
of New Classes

Dataset Methods Savuc 0pny  Friedmanrank Final rank

CLIP(Zero-shot) / / 8.833 10

CoOp -0.015 -0.014 9.667 11

CoCoOp 0.023  0.023 7.167 8

VPT 0.016 0.017 7.667 9

MaPLe 0.025 0.025 6.167 6

StanfordCars ProGrad 0.028  0.028 6.667 7
KgCoOp 0.029  0.029 6.167 5

RPO 0.049  0.049 3.333 2

PromptSRC 0.054 0.054 1.500 1

ProDA 0.039 0.039 4.833 4

TCP 0.044  0.044 4.000 3

Table 56: Robustness and Ranks of Prompt Learning Methods on SUN397 under Varying Ratio of
New Classes

Dataset Methods davc Opn  Friedmanrank Final rank

CLIP(Zero-shot) / / 9.500 10

CoOp 0.003  0.003 9.500 11

CoCoOp 0.043  0.043 8.000 7

VPT 0.040 0.040 8.333 8

MaPLe 0.040 0.040 8.667 9

SUN397 ProGrad 0.058 0.058 6.000 6
KgCoOp 0.063 0.063 5.500 5

RPO 0.065 0.065 4.167 4

PromptSRC 0.084 0.084 1.167 1

ProDA 0.080 0.080 2.167 2

TCP 0.073 0.073 3.000 3

Table 57: Robustness and Ranks of Prompt Learning Methods on UCF101 under Varying Ratio of
New Classes

Dataset Methods dauc 0pny  Friedmanrank Final rank

CLIP(Zero-shot) / / 7.000 8
CoOp -0.007 -0.006 8.000 10

CoCoOp 0.010 0.010 10.000 11

VPT 0.021  0.036 7.833 9

MaPLe 0.030 0.041 6.500 6

UCF101 ProGrad 0.033  0.042 6.500 7
KgCoOp 0.047  0.050 5.167 4

RPO 0.037 0.045 5.000 3

PromptSRC 0.066 0.067 1.833 1

ProDA 0.045 0.048 5.333 5

TCP 0.065 0.065 2.833 2
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