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Abstract
Modern methods for fine-tuning Vision Trans-
formers, such as Low-Rank Adaptation (LoRA)
and its variants, demonstrate impressive perfor-
mance. However, these methods ignore the
high-dimensional nature of Multi-Head Attention
(MHA) weight tensors. To address this limitation,
we propose Canonical Rank Adaptation (CaRA).
CaRA leverages tensor mathematics, first by ten-
sorising the transformer into two different ten-
sors: one for projection layers in MHA and the
other for feed-forward layers. Second, the ten-
sorised formulation is fine-tuned using the low-
rank adaptation in the Canonical-Polyadic De-
composition (CPD) form. Employing CaRA effi-
ciently minimises the number of trainable parame-
ters. Experimentally, CaRA outperforms existing
Parameter-Efficient Fine-Tuning (PEFT) methods
in visual classification benchmarks such as the Vi-
sual Task Adaptation Benchmark (VTAB)-1k and
the Fine-Grained Visual Categorization (FGVC)
benchmark.

1. Introduction
While Vision Transformer (ViT) architectures demonstrate
remarkable performance on a wide set of tasks, from classi-
fication (Dosovitskiy et al., 2021) to semantic segmentation
(Xie et al., 2021), they are data-hungry (Raghu et al., 2021)
and pre-trained ViTs are required to employ them in gen-
eral downstream tasks with limited data. This is typically
done by full fine-tuning (FT), which is inefficient as net-
works increase in scale. To circumvent this issue, Parameter-
Efficient Fine-Tuning (PEFT) methods, first introduced by
Houlsby et al. (2019), fine-tune only a subset of additional
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Figure 1. Mean accuracy on the VTAB-1k benchmark versus the
number of trainable parameters (log-scaled) for fine-tuning a ViT-
B/16 pretrained on ImageNet-21k. CaRA demonstrates a per-
formance boost while utilizing only a small fraction of trainable
parameters.

parameters in the pre-trained network.

A prominent example of PEFT is Low-Rank Adaptation
(LoRA) (Hu et al., 2022), which additively fine-tunes the
low-rank intrinsic dimension of the pre-trained transformer.
It represents the three-dimensional MHA projection layer
in a two-dimensional space Rdmodel×hdk as illustrated in
Figure 2. Such fine-tuning in the reduced dimensional space
severely limits LoRA’s representation ability since, by def-
inition, a two-dimensional representation cannot capture
correlations beyond the second axis. While it facilitates
simple design and incurs no additional inference costs, a
performance gap exists compared to FT (Shuttleworth et al.,
2024; Liu et al., 2024).

Tensor calculus (Synge & Schild, 1978; De Lathauwer
et al., 2000; Kolda & Bader, 2009; Oseledets, 2011) of-
fers a powerful alternative to defining higher-dimensional
rank updates, and recent works in tensor-based low-rank
fine-tuning methods (Jie & Deng, 2023; Bershatsky et al.,
2024; Yang et al., 2024) have demonstrated significant im-
provements over LoRA, with fewer trainable parameters.
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Figure 2. Schematic illustration of fine-tuning only a single query
projection layer in one transformer block using LoRA on the left
and CaRA (ours) on the right. Contrary to LoRA, we represent the
low-rank update in CPD form.

For instance, Factor Tuning (FacT) (Jie & Deng, 2023) first
tensorise the ViT blocks by stacking all the projection lay-
ers into this format R12l×dmodel×hdk , where 12 represents
the number of projection layers in the transformer blocks
(WQ,WK ,W V ,WO,W up, and W down) and l denotes
the number of blocks in the ViT. Later, this work fine-tunes
the network using the Tensor-Train and Tucker decomposi-
tion format for the low-rank update. Though effective, this
formulation still does not account for the high-dimensional
nature of projection layers in MHA, as it does not explicitly
capture the low-rank update along the head dimension. To
this end, we propose a novel method, CaRA, which strate-
gically splits the large tensor into two sub-tensors: one for
high-dimensional projection layers in MHA (Wmha) and the
other for feed-forward layers (Wffn).

The tensor Wmha is prepared by stacking all
WQ,WK , and W V across l transformer blocks, re-
sulting in a four-dimensional tensor R3l×dmodel×h×dk .
Similarly, Wffn is created by stacking all other feed-
forward layers, particularly WO,W up, and W down, into
a three-dimensional tensor R9l×dmodel×dmodel . This process
of unique tensorisation is graphically represented in
Figure 3. The proposed split lets CaRA efficiently represent
the low-rank update of MHA layers to their maximum
capacity; particularly CaRA allows capturing relations
across heads. In addition to this tensorisation, we propose
using the CPD format for the low-rank update, as depicted
in Figure 2. This choice is motivated by the efficiency and
ease of fine-tuning (Lebedev et al., 2015; Phan et al., 2020)
provided by the CPD format. While tensor decompositions
suffer from the curse of dimensionality (Bershatsky et al.,
2024), we observe that CPD is less prone to this behaviour
than Tensor-Train and Tucker decompositions. These
advantages make CPD well-suited for the high-dimensional
structure of the proposed tensor.

We conduct extensive experimentation across diverse vision

classification datasets from two benchmarks. Firstly, we
evaluate our approach CaRA on the VTAB-1k benchmark
and observe that our approach achieves superior perfor-
mance with only a small fraction of trainable parameters.
Figure 1 demonstrates the performance-to-parameter ratio
of PEFT methods; it highlights CaRA’s efficiency. Sec-
ondly, we extend the evaluations to five FGVC benchmark
datasets. CaRA achieves competitive performance on these
datasets. Thirdly, we analyse the performance of CaRA
on a large-scale ViT architecture on various image classifi-
cation datasets. Finally, we investigate CaRA’s behaviour
through comprehensive ablations. The first ablation focuses
on exploring the effect of rank on CaRA. Notably, we found
that CaRA maintains robustness towards rank changes with
stable parameter growth. In the second ablation, we study
the effect of various tensorisation formulations for Wmha

and Wffn. Subsequently, through investigating a series of
saliency maps, we highlight the learning patterns of CaRA
despite its limited parameters. The source code is available
at https://github.com/BonnBytes/CaRA.

In summary, this paper makes the following contributions:

1. We propose Canonical Rank Adaptation (CaRA), a
novel and efficient PEFT method for fine-tuning
a Vision Transformer (ViT) that exploits the high-
dimensional nature of Multi-Head Attention (MHA).

2. CaRA proposes a novel way of tensorising the trans-
former into two individual tensors. One is for MHA
and the other is for the feed-forward layer. This ten-
sorisation is followed by a novel low-rank update using
the CPD form to fine-tune the ViT.

3. CaRA surpasses the performance of various tensor-
based methods and LoRA on image classification
benchmarks with a significantly smaller fraction of
parameters. Through a series of ablations, we demon-
strate the robustness of CaRA to varying ranks.

2. Related Work
2.1. Parameter-Efficient Fine-Tuning (PEFT)

Traditional finetuning involves training the complete ViT
network (Dosovitskiy et al., 2021). Recently, PEFT methods
have emerged as an attractive approach for fine-tuning large
transformer models (Hu et al., 2022; Jia et al., 2022). PEFT
provides a significant advantage as it requires only training
parts of the network. We broadly arrange the visual PEFT
methods into three categories. Firstly, the adapter-based
methods introduce additional parameters to the network and
fine-tune them. Early works such as Adapter (Houlsby et al.,
2019) and Visual Prompt Tuning (VPT) (Jia et al., 2022)
established the foundation. Another approach, SSF (Lian
et al., 2022), fine-tunes a transformer by learning to scale
and shift the individual transformer block features. Recent
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approaches such as (Chen et al., 2022; Luo et al., 2023) com-
bine multiple PEFT methods to demonstrate performance
improvements. While effective, adapter-based methods add
additional inference costs.

The second style uses Neural Architecture Search to opti-
mise the low-rank update. NOAH (Zhang et al., 2024) is
an example of performing a search over Adapter, LoRA
and VPT for each Transformer block. The final type of
PEFT methods is based on LoRA. It was first proposed by
Hu et al. (2022) for fine-tuning Large Langauge Models
(LLMs), and recently adopted for the vision domain (Zhang
et al., 2024; Jie & Deng, 2023). LoRA indirectly optimises
low-rank decomposition matrices of dense layers, providing
a computational advantage during inference as the low-rank
weights are merged into the pre-trained weights. Many vari-
ants of LoRA such as Vector-based Random Matrix Adapta-
tion (VeRA) (Kopiczko et al., 2024), NoLA (Koohpayegani
et al., 2024), PiSSA (Meng et al., 2024), and Weight De-
composed Low-Rank Adaptation (DoRA) (Liu et al., 2024)
are further proposed to reduce the performance gap to FT.
SPT-LoRA (He et al., 2023) improves LoRA by identify-
ing sensitive parameters in LoRA’s update. A matrix-based
representation for the low-rank updates, such as LoRA and
its variants, has demonstrated significant potential in fine-
tuning but is limited in expressive power by design. While
tensor-based representations can capture multi-dimensional
correlation, they remain under-explored mainly in the con-
text of PEFT methods. Bershatsky et al. (2024) and Yang
et al. (2024) proposed the use of tensor representations for
fine-tuning LLMs, and FacT (Jie & Deng, 2023) uses tensor-
based methods for vision classification tasks.

The above-mentioned previous works are focused on Tucker
and Tensor-Train representations of low-rank updates. An
alternative method to represent a tensor low-rank update
is the Canonical-Polyadic Decomposition (CPD) (Hitch-
cock, 1927; 1928). CPD has been demonstrated to be a
stable (Phan et al., 2020) and effective method for train-
ing convolutional neural networks (Lebedev et al., 2015;
Veeramacheneni et al., 2022). To the best of our knowl-
edge, CPD has not been explored as a PEFT method for
fine-tuning a ViT. This gap, combined with the limita-
tions of matrix-based representations for fine-tuning high-
dimensional MHA layers, motivates us to investigate an
effective and novel low-rank update mechanism using CPD.

3. Methodology
In this section, we start with a brief introduction to
Canonical-Polyadic Decomposition (CPD) (Kolda & Bader,
2009) and LoRA (Hu et al., 2022). Then, we introduce
CaRA, particularly the process of tensorisation followed
by the low-rank update format. Additionally, we derive
gradients for our CaRA formulation.

3.1. Preliminaries

3.1.1. CANONICAL-POLYADIC DECOMPOSITION (CPD)

Canonical-Polyadic Decomposition (CPD) was first pro-
posed by Hitchcock (1927; 1928) as an idea of decomposing
a tensor as a finite sum of rank-one tensors. Historically,
it was rediscovered with names such as CANDECOMP-
PARAFAC, PARAFAC, CAND or Polyadic tensor form
(Kolda & Bader, 2009). Following the notation from
(Kolda & Bader, 2009), the CPD of a fourth-order tensor
T ∈ RI×J×K×L is mathematically expressed as an outer
product of rank-1 vectors

T ≈ {λS ;S(1), S(2), S(3), S(4)}

≈
R∑

r=1

λS
r s

(1)
r ◦ s(2)r ◦ s(3)r ◦ s(4)r , (1)

where ◦ denotes the outer product, R is a positive integer
defining the tensor rank, λS ∈ RR, S(1) ∈ RI×R,S(2) ∈
RJ×R,S(3) ∈ RK×R,S(4) ∈ RL×R are the CP-Factor ma-
trices with s

(1)
r ∈ RI×1, s(2)r ∈ RJ×1, s(3)r ∈ RK×1, and

s
(4)
r ∈ RL×1 being the corresponding rth rank one vector

in the respective factor matrices. We use this formulation
in our proposed approach to represent the low-rank update
without normalisation, as this would let us freely scale the
λS
r from the factors. CPD represents a tensor T of IJKL

elements with only R+R(I + J +K +L) elements. This
low parameter count is one of the reasons that CPD is a
suitable candidate for the PEFT method.

3.1.2. LOW-RANK ADAPTATION (LORA)

LoRA (Hu et al., 2022) proposed an efficient fine-tuning of
large networks. Contrary to traditional fine-tuning, LoRA
updates the weight additively in the low intrinsic dimension.
Consider a linear layer with weight W ∈ Rn×m, the LoRA
weight update is then expressed as

y = Wx+ δWx

= Wx+ αBATx, (2)

where W is a frozen weight matrix during training, B ∈
Rn×R and A ∈ Rm×R are trainable low-rank matrices,
and α is the scaling hyper-parameter. Hu et al. (2022) ini-
tialised matrix A with random Gaussian initialisation and
matrix B to zeros so that the weight update δW in Equa-
tion 2 is zero at the beginning of the training. This formula-
tion is graphically represented in Figure 2. Typically, rank
R ≪ min(n,m), and this low-rank representation requires
only training (n+m)R parameters as opposed to nm param-
eters in the case of full fine-tuning (FT). Interestingly, δW
is added to W during inference, promoting no additional
latency and inference costs compared to FT.
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Figure 3. Illustration of CaRA’s tensorisation process. The figure on the left illustrates the vision transformer with l blocks next to each
other. To make a four-dimensional tensor (bottom), we stack all three-dimensional query, key and value projection tensors across l blocks.
Similarly, we stack the remaining feed-forward layers to create another tensor (top).

3.2. Canonical Rank Adaptation (CaRA)

While LoRA exhibits significant advantages compared to
fine-tuning, previous work (Bershatsky et al., 2024; Jie &
Deng, 2023) demonstrated that tensor methods for low-
rank representation are highly efficient. Given the high-
dimensional nature of Multi-Head Attention (MHA), it is
evident that utilising tensor representations, especially the
Canonical-Polyadic Decomposition (CPD) form, for low-
rank updates provides a compact and expressive approach,
all while offering a smaller parameter count. This section,
presents our novel network-tensorisation approach, followed
by our CaRA representation of low-rank updates.

3.2.1. TENSORISATION

We propose a novel formulation of tensorising the ViT. It
involves creating two tensors: one for MHA’s projection
layers and a second for the feed-forward layers. This ten-
sorisation will allow us to represent the low-rank update
for MHA’s projection layers at higher dimensions. Con-
trary to the existing works, this formulation will particu-
larly allow us to capture any relations across heads in the
transformer blocks while being parameter efficient. For
the MHA, we stack the query, key and value projection

matrices, i.e., WQ ∈ Rdmodel×dk , WK ∈ Rdmodel×dk , and
W V ∈ Rdmodel×dv for an individual head i in a layer result-
ing in

Ei = [WQ
i ,WK

i ,W V
i ] ∈ R3×dmodel×dh (3)

where dh represents the individual head dimension. In the
case of ViT, dh = dv = dk and the enclosing square brack-
ets denote the stacking operation. Furthermore, we stack
the resulting tensor Ei in Equation 3 across all h heads in a
specific transformer block j

Lj = [E1,E2, ..,Ei, ..,Eh−1,Eh] ∈ R3×dmodel×h×dh . (4)

Finally, we collect all the corresponding Lj from the l
blocks of the transformer and stack them to result in a five-
dimensional tensor

Wmha = [L1,L2, ..,Lj , ..,Ll−1,Ll] ∈ R3×l×dmodel×h×dh .
(5)

Empirically, we observe that a combined representation of
the first two dimensions, 3 and l, in Equation 5 performs
better compared to the five-dimensional representation (see
Section 5.2). Following this result, we represent the tensor
Wmha as a four-dimensional tensor R3l×dmodel×h×dh .
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Table 1. Comparison of low-rank updates for various methods such
as FacT-TT, FacT-TK, LoRA and CaRA (ours).

Method Low-rank update

LoRA (Hu et al., 2022) BAT

FacT-TK (Jie & Deng, 2023)
r1∑

t1=1

r2∑
t2=1

r3∑
t3=1

Gt1,t2,t3Pt1Ut2Vt3

FacT-TT (Jie & Deng, 2023)
r1∑

t1=1

r2∑
t2=1

St1,t2Ut1Vt2

CaRA (ours)
∑R

r=1 λ
A
r a

(1)
r ◦ a(2)

r ◦ a(3)
r ◦ a(4)

r

For the second tensor, we consider the linear layers WO ∈
Rdmodel×dmodel and layers from the position-wise feed-forward
network, i.e., W up ∈ Rdmodel×dff and W down ∈ Rdff×dmodel .
Typically, we observe dff = 4dmodel in the case of ViT, and
subsequently, W up and W down are represented as three-
dimensional tensors with shape R4×dmodel×dmodel . Analogous
to the previous tensor, we create a tensor per transformer
block j by stacking WO, Wup, and Wdown, resulting in

Fj = [WO,Wup,Wdown] ∈ R9×dmodel×dmodel , (6)

where WO ∈ R1×dmodel×dmodel is the tensorised version of
linear layer WO by adding an additional dimension. Finally,
we concatenate Fj from Equation 6 across l blocks of the
transformer, resulting in

Wffn = [F1,F2, ..,Fj , ..,Fl−1,Fl] ∈ R9l×dmodel×dmodel . (7)

This final step completes the tensorisation of the transformer
architecture, and this process is graphically presented in Fig-
ure 3. Unlike prior work, where all the blocks are aggregated
into one single tensor, we decouple the MHA and feed-
forward networks into separate tensors. This split particu-
larly enables CaRA to represent MHA as a four-dimensional
tensor, allowing a richer representation compared to tradi-
tional three-dimensional representations (Bershatsky et al.,
2024; Jie & Deng, 2023). Additionally, this allows us to rep-
resent the low-rank updates along the head basis separately,
as depicted in Figure 2. Empirically, we demonstrate in
Section 5.2 that this split in an MHA tensor and FFN tensor
increases the accuracy compared to a single tensorisation.

3.2.2. CARA LOW-RANK REPRESENTATION

With the tensorised network in place, we propose a novel
low-rank update representation leveraging the CPD format
for fine-tuning the ViT. Using the CPD format for low-rank
updates, as depicted in Figure 1, notably offers benefits
in terms of parameter efficiency. To represent a low-rank
update for the tensor Wmha, we define the update in CPD
format to be δWmha as

δWmha = {λA;A(1),A(2),A(3),A(4)}

=

R∑
r=1

λA
r a

(1)
r ◦ a(2)

r ◦ a(3)
r ◦ a(4)

r , (8)

where {} represent the set of CPD factors in matrix form,
A(1) ∈ R3l×R, A(2) ∈ Rdmodel×R, A(3) ∈ Rh×R, and
A(4) ∈ Rdh×R are the four-factor matrices, λA ∈ RR is the
learned scaling factor, a(n)r represent the rth rank column
vector in nth factor, and ◦ represents the outer product. The
fine-tuned weight update in Equation 8, not to be confused
with the gradient descent update, is expressed as

Wmha+αδWmha = Wmha+α

R∑
r=1

λA
r a

(1)
r ◦a(2)

r ◦a(3)
r ◦a(4)

r .

(9)

Similarly, for the three-dimensional tensor Wffn, we get only
three factors in CPD format

δWffn = {λB ;B(1),B(2),B(3)}

=

R∑
r=1

λB
r b

(1)
r ◦ b(2)r ◦ b(3)r , (10)

where B(1) ∈ R9l×R, B(2) ∈ Rdmodel×R, B(3) ∈ Rdmodel×R

are the factor matrices, λB ∈ RR is the learned scaling
factor. Finally, we write the fine-tuned weight update for
Wffn as

Wffn + αδWffn = Wffn + α

R∑
r=1

λB
r b

(1)
r ◦ b(2)r ◦ b(3)r .

(11)

Figure 2 graphically illustrates our weight update for one of
the query projections in a specific transformer block. Table 1
presents a comparative summary of various tensor-based
low-rank updates.

3.3. CaRA Gradients

We fine-tune the proposed formulation using PyTorch auto-
grad (Paszke et al., 2017) and the gradient descent technique.
This section provides the gradient for our low-rank update
concerning individual rank vectors in δWmha and δWffn as
in Equations 9 and 11, respectively. Consider a loss function
L; the gradients for the MHA update are defined as

∇λA
r
L = a(1)

r ◦ a(2)
r ◦ a(3)

r ◦ a(4)
r , (12)

∇
a

(1)
r
L = IA1 ◦ a(2)

r ◦ a(3)
r ◦ a(4)

r , (13)

∇
a

(2)
r
L = IA2 ◦ a(1)

r ◦ a(3)
r ◦ a(4)

r , (14)

∇
a

(3)
r
L = IA3 ◦ a(1)

r ◦ a(2)
r ◦ a(4)

r , (15)

∇
a

(4)
r
L = IA4 ◦ a(1)

r ◦ a(2)
r ◦ a(3)

r , (16)

where IA1 ∈ R3l×3l, IA2 ∈ Rdmodel×dmodel , IA3 ∈ Rh×h,
and IA4 ∈ Rdh×dh are identity matrices. Similarly, gradi-
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Table 2. VTAB-1k evaluation results with VIT-B/16 backbone on a wide range of 19 datasets. Our method results are highlighted in
grey. The number of parameters is averaged over group-wise mean values. We indicate both group-wise and overall mean accuracy. We
present the best result in bold and the second best as underlined. Standard deviation per dataset over 10 runs is presented in Table 8 of the
Appendix.

Natural Specialized Structured

#p
ar

am
(M

)

C
ifa

r1
00

C
al

te
ch

10
1

D
T

D

Fl
ow

er
10

2

Pe
ts

SV
H

N

Su
n3

97

C
am

el
yo

n

E
ur

oS
A

T

R
es

is
c4

5

R
et

in
op

at
hy

C
le

vr
-C

ou
nt

C
le

vr
-D

is
t

D
M

L
ab

K
IT

T
I-

D
is

t

dS
pr

-L
oc

dS
pr

-O
ri

sN
O

R
B

-A
zi

m

sN
O

R
B

-E
le

G
ro

up
M

ea
n

O
ve

ra
ll

M
ea

n

Traditional Fine-Tuning

Linear - 63.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.6 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 57.64 52.94
FT 85.8 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 68.96 65.57

PEFT methods
Adapter based

Adapter-256 0.27 74.1 86.1 63.2 97.7 87.0 34.6 50.8 76.3 88.0 73.1 70.5 45.7 37.4 31.2 53.2 30.3 25.4 13.8 22.1 59.95 55.82
VPT-Shallow 0.06 77.7 86.9 62.6 97.5 87.3 74.5 51.2 78.2 92.0 75.6 72.9 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1 67.82 64.85
VPT-Deep 0.53 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 71.96 69.43
AdaptFormer 0.16 70.8 91.2 70.5 99.1 90.9 86.6 54.8 83.0 95.8 84.4 76.3 81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1 74.75 72.32
SSF 0.24 69.0 92.6 75.1 99.4 91.8 90.2 52.9 87.4 95.9 87.4 75.5 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9 75.69 73.10
RepAdapter 0.22 72.4 91.6 71.0 99.2 91.4 90.7 55.1 85.3 95.9 84.6 75.9 82.3 68.0 50.4 79.9 80.4 49.2 38.6 41.0 76.09 73.84

NAS based

NOAH 0.361 69.6 92.7 70.2 99.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2 75.5 73.25

LoRA based

LoRA 0.29 67.1 91.4 69.4 98.8 90.4 85.3 54.0 84.9 95.3 84.4 73.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 74.60 72.25
FacT-TT 0.04 71.3 89.6 70.7 98.9 91.0 87.8 54.6 85.2 95.5 83.4 75.7 82.0 69.0 49.8 80.0 79.2 48.4 34.2 41.4 75.34 73.04
FacT-TK 0.07 70.6 90.6 70.8 99.1 90.7 88.6 54.1 84.8 96.2 84.5 75.7 82.6 68.2 49.8 80.7 80.8 47.4 33.2 43.0 75.56 73.23
SPT-LoRA 0.54 73.5 93.3 72.5 99.3 91.5 87.9 55.5 85.7 96.2 85.9 75.9 84.4 67.6 52.5 82.0 81.0 51.1 30.2 41.3 76.37 74.07
CaRA (ours) 0.06 71.3 91.9 71.8 99.3 91.4 90.5 54.7 86.2 96.4 86.0 75.4 83.8 69.4 51.4 81.7 80.8 47.4 35.3 44.0 76.46 74.14

ents for the feed-forward low-rank updates are given by

∇λB
r
L = b(1)r ◦ b(2)r ◦ b(3)r , (17)

∇
b
(1)
r
L = IB1 ◦ b(2)r ◦ b(3)r , (18)

∇
b
(2)
r
L = IB2 ◦ b(1)r ◦ b(3)r , (19)

∇
b
(3)
r
L = IB3 ◦ b(1)r ◦ b(2)r , (20)

where IB1 ∈ R9l×9l, IB2 ∈ Rdmodel×dmodel , and IB3 ∈
Rdmodel×dmodel are also identity matrices. The proof for the
gradients is provided in Appendix A.
Considering a projection layer in MHA, LoRA needs gra-
dients for (dmodel + h · dh)R parameters, whereas CaRA
needs to update only (dmodel + h+ dh)R parameters. Math-
ematically, CaRA’s low-rank update has fewer degrees of
freedom, that is, fewer parameters. This constraint forces
the network to learn distinct features, and for this purpose,
we study the saliency maps of CaRA in Section 5.3.

3.4. CaRA Initialisation

To initialise the above-mentioned factor matrices, we exper-
imented with various initialisations presented in Appendix
Section B to determine the most effective initialisation. For
matrices A(1) and B(1), we use random normal initiali-
sation (Glorot & Bengio, 2010). Matrices A(2) and B(2)

are initialised to zeros to ensure the corresponding δW is
initially zero. The remaining factor matrices A(3), A(4),
and B(3) are initialised as orthogonal matrices (Saxe et al.,
2014). More information about λ’s initialisation is given in

Appendix B. Similar to LoRA, the weight updates δWmha

and δWffn are added to pretrained weights Wmha and Wffn

during inference. This design choice incurs no additional
latency and inference costs.

4. Experiments
We evaluate the performance of CaRA on various vision
classification datasets and further perform extensive abla-
tions to demonstrate its effectiveness and explain our design.

4.1. Visual Task Adaptation Benchmark (VTAB)

To evaluate the performance of CaRA, we fol-
low the experimental setup from (Jia et al., 2022)
and benchmark on all VTAB-1k datasets (Zhai
et al., 2019). We use the ImageNet-21k pretrained
ViT-B/16 (Dosovitskiy et al., 2021) backbone.
Datasets, Metrics and Hyperparameters. We use
VTAB-1k, a transfer learning benchmark consisting of
19 diverse vision datasets, arranged into three groups:
Natural, Structured and Specialized. The datasets in this
benchmark, for example, include CIFAR-100, Resisc45
and KITTI. CaRA is trained on a subset of 1000 samples
with an 80-20 split for training and validation, while the
original test set is used for evaluation. We report Top-1
accuracy for each dataset in the benchmark for evaluation.
We present the hyperparameters, such as rank, in Table 8 of
the Appendix, and additional information on the datasets is
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Figure 4. Group wise average results on VTAB-1k. While CaRA performs well in Structured and Specialized domains, its performance in
Natural datasets is competitive with SPT-LoRA, which requires 6.75 times more trainable parameters than CaRA.

further provided in Section C.2 of the Appendix.
Results. Table 2 presents the results of fine-tuning the
ViT-B on 19 VTAB-1k datasets. Fine-tuning with CaRA
requires only 0.06M parameters, which are averaged across
all the datasets. CaRA is comparable in parameters to
VPT-shallow and marginally higher than the Tensor-Train
representation. This marginal parameter increase relative to
FacT-TT arises from using a slightly lower rank in the case
of FacT-TT. Figure 5 explores the performance of CaRA
across varying ranks, demonstrating similar or higher
performance compared to FacT-TT at lower ranks.

Table 2 establishes that CaRA outperforms existing visual
PEFT methods with only a portion of their trainable param-
eters. In particular, CaRA achieves state-of-the-art (SOTA)
performance on two datasets. Numbers are presented in
bold. Interestingly, we observe that CaRA significantly
narrows the gap to SOTA methods on eight datasets. We
underlined these numbers in the table. Figure 4 depicts the
group-wise average accuracy of VTAB-1k datasets. CaRA
demonstrates a significant improvement in comparison to ex-
isting methods in the case of Special and Structured datasets,
whereas for the Natural group, CaRA performs similarly to
SPT-LoRA but surpasses LoRA and traditional tensor-based
methods.

Overall, in terms of mean accuracy, CaRA outperforms
traditional LoRA by 2% and demonstrates higher perfor-
mance than existing tensor methods by 1%. Compared to
SPT-LoRA, which additionally identifies and trains sensi-
tive parameters in the LoRA formulation, it achieves similar
performance to CaRA at the expense of requiring many
more trainable parameters. This result highlights that CaRA
further improves the fine-tuning capability of the ViT-B
with a significantly smaller fraction of trainable parameters.
Moreover, as depicted in Figure 4, CaRA performs best on
the challenging datasets of the Special and Structured group,
which mainly cover domains that are highly dissimilar to
ImageNet.

Table 3. Evaluation results on the FGVC benchmark with ViT-B/16
backbone pretrained on ImageNet-21k. We present the best result
in bold and second best as underlined. Our method is highlighted
in grey.

#Params
(M)

CUB-
200-
2011

NABirds Flowers Stanford
Dogs

Stanford
Cars

Mean

Traditional Fine-Tuning

Linear - 85.3 75.9 97.9 86.2 51.3 79.32
FT 85.8 87.3 82.7 98.8 89.4 84.5 88.54

PEFT methods

VPT-Shallow 0.06 86.7 78.8 98.4 90.7 68.7 84.66
LoRA 0.29 85.6 79.8 98.9 87.6 72.0 84.78
AdaptFormer 0.16 84.7 75.2 97.9 84.7 83.1 85.12
Adapter 0.16 87.2 84.3 98.5 89.6 68.4 85.60
VPT-Deep 0.53 88.5 84.2 99.0 90.2 83.6 89.10
SPT-LoRA 0.54 88.6 83.4 99.5 91.4 87.3 90.04
CaRA (ours) 0.08 88.6 86.5 99.4 91.5 86.2 90.46

4.2. Fine-Grained Visual Categorization (FGVC)

Having shown CaRA performance in fine-tuning VTAB-1k,
we further assess the performance on FGVC datasets, using
the same ImageNet-21k pretrained ViT-B/16 backbone.
Datasets, Metrics and Hyperparameters. FGVC is a col-
lection of five large datasets: CUB-200-2011, NABirds,
Oxford Flowers, Stanford Dogs and Stanford Cats. More
about the dataset statistics, including the training and vali-
dation set sizes, are given in Section C.3 of the Appendix.
Unlike VTAB-1k, FGVC utilises the whole training set. We
report Top-1 accuracy for evaluation. CaRA is trained with
rank 32 across all the datasets. Section C.3 of the Appendix
provides more details about hyperparameters.
Results. Table 3 shows the performance of CaRA on FGVC.
As observed earlier, CaRA achieves competitive perfor-
mance with only a small fraction of trainable parameters:
0.08M . Compared to LoRA, VPT-Shallow and other meth-
ods, we showcase a significant improvement and reach per-
formance levels comparable to those of SPT-LoRA. CaRA
achieves SOTA performance on three out of five datasets,
such as CUB-200-2011, NABirds, and Stanford Dogs. In
the case of the other datasets, Stanford Cars and Oxford-
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Table 4. Evaluation results on the ViT-Large backbone pretrained
on ImageNet-21k. We present the best result in bold and the second
best as underlined. Our method is highlighted in grey.

#Params (M) CIFAR100 Food101 Flowers102 Resisc45 Mean

Traditional Fine-Tuning

Linear - 79.4 76.5 98.9 67.8 80.65
Full 303.3 86.8 78.7 98.8 79.0 85.83

PEFT methods

LoRA 0.786 87.0 79.5 99.1 78.3 85.98
VeRA 0.061 87.5 79.2 99.2 78.6 86.13
PiSSA 0.786 87.1 79.6 99.7 78.6 86.24
DoRA 0.860 87.9 81.2 99.6 80.3 87.60
CaRA (ours) 0.076 89.4 83.7 99.6 82.4 88.77

Flowers, CaRA performs on par with SPT-LoRA and VPT-
Deep. Overall, these results, combined with the previous
experiments, demonstrate that our proposed tensor-based
CaRA significantly outperforms traditional LoRA, adapter
and other tensor-based methods in vision classification tasks
while utilising only a small fraction of trainable parameters.

4.3. Fine-tuning ViT-L

To evaluate the performance of CaRA on a larger vi-
sion transformer, we fine-tune ViT-Large pretrained on
ImageNet-21k across four datasets.
Datasets, Metrics and Hyperparameters. Following
Kopiczko et al. (2024), we fine-tune on CIFAR100,
Food101, Flowers102, and Resisc45 using 10 randomly
sampled training examples per class. Evaluation is per-
formed on the CIFAR100, Food101, and Flowers102 test
sets, and on the remaining samples for Resisc45. Further
implementation and hyperparameter details are provided in
Section C.4.
Results. Table 4 reports the performance of CaRA across
all four datasets. As observed in other experiments, CaRA
achieves SOTA results using only ≈ 10% of the trainable
parameters compared to LoRA. Regarding parameter count,
CaRA is comparable to VeRA, yet it outperforms VeRA by
a margin of 2%. Despite the significantly smaller fraction of
trainable parameters, these results showcase CaRA’s scaling
capability and effectiveness in a few-shot learning regime.

5. Ablation Study
For a better understanding of our proposed CaRA, we per-
form comprehensive ablations. We study CaRA’s robust-
ness to rank, followed by the effect of dimensionality in
tensorisation. Subsequently, we investigate the saliency
maps and analyse CaRA’s computational complexity. All
ablations are performed on VTAB-1k’s Special group.

5.1. Robustness to Rank

In this subsection, we explore the effect of rank on the per-
formance of CaRA. Accordingly, we trained CaRA with
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Figure 5. CaRA’s robustness to rank. The left figure depicts the
parameter growth in various tensor formulations with varying rank.
The figure on the right illustrates the mean accuracy of various
tensor formulations evaluated on the Special group in VTAB-1k
with varying ranks. Best viewed in colour.

varying ranks to the powers of two. For comparison, we
trained the Tucker and Tensor-Train low-rank representa-
tions proposed in FacT (Jie & Deng, 2023). Figure 5 on
the left depicts the parameter growth with rank increase.
We observe that the number of parameters for FacT-TT
and FacT-TK grow faster than CaRA. This phenomenon
is due to tensors in Tensor-Train and Tucker formulations
for low-rank updates. In contrast, the CaRA representation
only contains matrices, as presented in Table 1. Figure 5 on
the right demonstrates the evaluation of FacT-TT, FacT-TK,
and CaRA with varying ranks. The effect of exponential
parameter growth negatively impacts the performance of
the Tensor-Train and Tucker methods, whereas CaRA’s per-
formance slightly increases with an increase in rank. This
result demonstrates the robustness of CaRA to rank and its
efficient use of parameters.

5.2. Dimension Ablation

As discussed in Section 3.2.1, our formulation allows the
low-rank update of Wmha to be represented at a maximum
of five dimensions. In this subsection, we investigate the
effect of dimensionality on the performance of various low-
rank update dimensions with the Special group of datasets
in VTAB-1k. Table 5 demonstrates the effect of dimen-
sionality. Despite slightly smaller trainable parameters in a
five-dimensional representation, it is less effective than the
four-dimensional format. We hypothesise this effect to the
merged QKV projection implementation in the pretrained
backbone (Dosovitskiy et al., 2021), contrary to the indi-
vidual Q, K, and V projections as described in (Vaswani
et al., 2017). While the three-dimensional representation
achieves a similar accuracy as the proposed presentation,
this improvement comes at the cost of a rise in trainable
parameters. Moreover, we trained our model with a com-
bined tensor of Wmha and Wffn, as shown in the last row
of Table 5. We observe that the two separate factorisa-
tions achieve higher accuracy than the combined represen-
tation. Altogether, from this ablation, we learn that the
four-dimensional representation yields better performance
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Table 5. Dimension ablation experiment evaluated on Special
group of VTAB-1k. All experiments are conducted with the rank
of 32. Dimensions for Wffn is 9l × dmodel × dmodel except last line
where it is merged into the MHA tensor.

Tensors MHA-Dimension #Params (M) Accuracy

Wmha-5D, Wffn 3× l × dmodel × h× dh 0.08476 84.682
Wmha-3D, Wffn 3l × dmodel × hdh 0.10758 85.061
Wmha-4D, Wffn (CaRA) 3l × dmodel × h× dh 0.08544 85.134

Wmha-3D + Wffn 12l × dmodel × dmodel 0.05840 83.914

Table 6. CaRA’s computational complexity with walltime mea-
sured in seconds and VRAM occupied in gigabytes.

Method LoRA DoRA FacT-TT FacT-TK CaRA (ours)

Walltime (↓) 165.756 204.076 178.283 180.578 206.554
VRAM (↓) 20.108 28.065 20.246 20.244 21.374

and lower trainable parameters. Additionally, the disentan-
gled low-rank update for MHA and FFN demonstrates a
significant improvement in accuracy.

5.3. Interpretability

This subsection attempts to understand CaRA’s fine-tuning
capability. Subsequently, we examine the saliency maps
generated from Integrated Gradients (Sundararajan et al.,
2017).
Dataset and Model. We use the FGVC-Aircraft
dataset (Maji et al., 2013), which specialises in identify-
ing the various aircraft families. This dataset is ideal for
saliency studies because aircraft are part of the ImageNet
dataset, but the ImageNet pre-trained model cannot differ-
entiate between aircraft families. Thus, FGVC-Aircraft
constitutes an ideal dataset for fine-tuning. The Appendix
Section E presents more details on the dataset.
Figure 6 in the Appendix depicts the saliency maps of a
ViT-B fine-tuned with ranks 32 and 16 for various aircraft.
Saliency maps from rank 32 show a concentrated gradient
over specific aircraft parts, while for rank 16, they are more
spread out. This difference is likely attributed to signif-
icantly lower parameters in the rank-16 model, resulting
in a broader focus. Additionally, as humans, we rely on
distinct aircraft features to identify them, like the cockpit
bump on the B-747 or the third aft engine on the L-1011.
The network also focuses on these features. This highlights
CaRA’s ability to learn distinct and discriminative features,
providing effective fine-tuning with a limited set of trainable
parameters.

5.4. Computational Analysis

In Table 6, we report the training time and GPU memory
usage during training for various PEFT methods for fine-
tuning ViT-L on CIFAR100. Note that these methods do
not incur additional overhead during inference, as the low-

rank weights are merged into the corresponding pre-trained
weights. We observe that LoRA is most efficient in terms
of both training time and memory. We attribute the effi-
cient training time of LoRA to Compute Unified Device
Architecture (CUDA)-optimised matrix multiplications in
PyTorch. In contrast, CaRA’s code is not optimised, as
underlying packages are primarily written in Python. More-
over, CaRA’s multi-dimensional nature results in slightly
higher CUDA memory. In general, the memory consump-
tion of the methods is very similar. Only DoRA requires
much more memory due to the additional weight normal-
isation. Despite the slightly higher walltime and memory
consumption compared to LoRA and FacT, CaRA demon-
strates performance improvements in both ViT base and
large architectures.

6. Discussion
In this work, we have introduced a novel and effective
tensorisation of a vision transformer, explicitly address-
ing the high-dimensional nature of Multi-Head Attention
(MHA) during fine-tuning. Our proposed Canonical Rank
Adaptation (CaRA) exploits this tensorisation alongside
the efficiency of the Canonical-Polyadic Decomposition
(CPD) form. CaRA consistently outperforms tensor-based
and matrix-based low-rank update methods across a di-
verse range of vision datasets, demonstrating its robustness.
Notably, CaRA achieves these results with a significantly
smaller number of parameters, fully establishing its place in
the visual Parameter-Efficient Fine-Tuning (PEFT) family.
Furthermore, the CaRA factors can be merged after fine-
tuning into the pre-trained weights, ensuring no additional
overhead for inference.

Despite its promising results, our approach has some limita-
tions. The training time of our tensor-based implementation
is higher compared to the matrix-based approach LoRA. A
hardware-optimised tensor decomposition, such as (Yang
et al., 2022; Kao et al., 2022), might provide a more ef-
ficient implementation. As part of future work, a weight-
normalised form of CaRA could be investigated. The benefit
of adding weight normalisation to LoRA has been shown
in DoRA (Liu et al., 2024) and a similar form exists for
CPD (Kolda & Bader, 2009).

Impact Statement
Parameter-Efficient Fine-Tuning (PEFT) methods such as
Canonical Rank Adaptation (CaRA) reduce the computa-
tional cost, and thus the environmental footprint, for fine-
tuning very large transformer architectures, including vision,
language and multi-modal models.
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Acronyms
CaRA Canonical Rank Adaptation

CPD Canonical-Polyadic Decomposition

CUDA Compute Unified Device Architecture

DoRA Weight Decomposed Low-Rank Adaptation

FacT Factor Tuning

FGVC Fine-Grained Visual Categorization

FT full fine-tuning

GLUE General Language Understanding Evaluation

LLMs Large Langauge Models

LoRA Low-Rank Adaptation

MHA Multi-Head Attention

NLU Natural Language Understanding

PEFT Parameter-Efficient Fine-Tuning

RoBERTa Robustly Optimised BERT Approach

SOTA state-of-the-art

VeRA Vector-based Random Matrix Adaptation

ViT Vision Transformer

VTAB Visual Task Adaptation Benchmark

A. Gradient Derivation
We derive the gradient for a 3 dimensional (RI×J×K) low-rank CPD update. This can be further generalised to an
n-dimensional update. Consider a 3D low-rank update

F = δW =

R∑
r=1

λS
r s

(1)
r ◦ s(2)r ◦ s(3)r , (21)

where ◦ represents the outer product. In case of an individual rank z, we can omit the summation

Fz = λS
z s

(1)
z ◦ s(2)z ◦ s(3)z . (22)

The gradient for λS
z is the outer product of rank-one vectors without λS

z .

∇λS
z
Fz = s(1)z ◦ s(2)z ◦ s(3)z . (23)

From here on, we absorb the λS
z into the first factor s(1)z for ease of derivation. To derive the gradients for other factors, we

use the tensor representation from (Kolda & Bader, 2009). The elements of the tensor Fr can be written as

Fr = s
(1)
ir s

(2)
jr s

(3)
kr ∀i = 1...I, j = i...J, k = 1...K. (24)

Gradient of tth element in s
(1)
r is given as

∇
s
(1)
tr
Fr =

{
s
(2)
jr s

(3)
kr , if i = t,

0, if i ̸= t.
(25)
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The above form is analogous to the Kronecker delta. Equation 25 is in element form of the tensor, converting it to CPD form
results in

∇
s
(1)
r
Fr = IS1 ◦ s(2)r ◦ s(3)r , (26)

where IS1 ∈ RI×I is an identity matrix resulting from vectorisation of the Kronecker delta. Similarly, for the other two
factors, the gradient can be represented as

∇
s
(2)
r
Fr = IS2 ◦ s(1)r ◦ s(3)r , (27)

∇
s
(3)
r
Fr = IS3 ◦ s(1)r ◦ s(2)r , (28)

where IS2 ∈ RJ×J and IS3 ∈ RK×K are also identity matrices. Since the gradient for the factors is computed from the
element-wise formulation of tensors, this is generalisable to an n-dimensional low-rank update. For an n-dimensional
low-rank update, the gradient of the specific factor is replaced by its identity matrix.

B. Effect of Initialisations
In this section, we provide an additional ablation on the effect of various initialisations of CPD factors. Table 7 presents the
results of various initialisations such as random normal (Glorot & Bengio, 2010) and orthogonal (Saxe et al., 2014). As
discussed earlier, we initialise the second factor as zero and evaluate on the SVHN dataset from the VTAB-1k benchmark.
We observe that initialising the last two factors in MHA with orthogonal and the first factor by sampling from a normal
distribution results in the best performance. We hypothesise that the initialisation of the first factor by sampling from a
Gaussian distribution is crucial because A(1) ∈ R3l×R is the only factor containing information for each transformer block’s
low-rank update. Following this result, we initialise the factors for the feed-forward tensor similarly, with the bias term set
to zero.

Table 7. Effect of various factor initialisations. Z represents zero initialisation, O denotes orthogonal initialisation (Saxe et al., 2014), and
N represent random normal initialisation (Glorot & Bengio, 2010). We used the SVHN dataset for our evaluation.

A(1) A(2) A(3) A(4) Accuracy

O Z O O 89.79
O Z N N 89.81
N Z N N 89.95
N Z O O 90.50

C. Implementation Details
In this section, we provide details about the VTAB-1k and FGVC benchmarks, as well as the benchmark (Kopiczko et al.,
2024) for fine-tuning ViT-L. For each benchmark, we provide the used hyperparameters.

C.1. Software and Hardware Details

We use PyTorch (Paszke et al., 2017), Tensorly (Kossaifi et al., 2019) and PyTorch Image Models (Wightman, 2019) for
model fine-tuning and evaluation. The pre-trained ViT-B checkpoint is available here1. We fine-tuned the ViT on one Nvidia
GA100 GPU for the VTAB-1k benchmark and one Nvidia H100 GPU for the FGVC benchmark. For evaluation, we use an
Nvidia RTX A5000. In the case of language experiments, we use a maximum of 8 Nvidia GA100 GPUs for fine-tuning and
evaluation.

C.2. VTAB-1K

The Visual Task Adaptation Benchmark (VTAB)-1k consists of 19 diverse datasets categorised into Natural, Specialised,
and Structured groups. Firstly, the natural group consist of datasets from classical vision problems such as CIFAR-
100 (Krizhevsky & Hinton, 2009), Caltech-101 (Fei-Fei et al., 2004), DTD (Cimpoi et al., 2014), Flowers102 (Nilsback
& Zisserman, 2008), Pets (Parkhi et al., 2012), SVHN (Netzer et al., 2011), and Sun397 (Xiao et al., 2010). Secondly,

1https://storage.googleapis.com/vit_models/imagenet21k/ViT-B_16.npz
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the Specialised group contains images from special sensors like satellites and microscopes. The datasets in this group
are Resisc45 (Cheng et al., 2017), EuroSAT (Helber et al., 2019), Patch Camelyon (Veeling et al., 2018), and Diabetic
Retinopathy (Kaggle & EyePAcs, 2015). Finally, the third group includes Clevr (Johnson et al., 2017) (location and
orientation), SmallNorb (LeCun et al., 2004) (azimuth and elevation), DMLab (Beattie et al., 2016), and KITTI (Geiger
et al., 2013). The Natural group of datasets contains images of domains similar to those in ImageNet. Meanwhile, the
Structured and Specialised groups contain images from domains dissimilar to ImageNet (Zhai et al., 2019). This diverse
mix of domains makes this benchmark suitable for evaluating the fine-tuning characteristics. We initialise λA and λB by
sampling from a normal distribution with mean λµ and standard deviation λσ . Table 8 presents the detailed hyperparameters.

Table 8. Hyperparameter details for the VTAB-1k benchmark using the ViT-Base model. The standard deviation (std) is computed over
10 runs.
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α 0.1 100 0.1 10 1 100 1 10 10 10 0.1 5 2.5 10 5 50 1 100 10
λµ 1.5 0.9 1.0 1.0 1.2 1.0 1.35 1.0 1.08 1.16 1.0 1.0 1.0 1.0 1.0 1.0 1.3 1.0 1.0
λσ 0.1 0.01 0.1 0.02 0.06 0.05 0.06 0.0 0.028 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.0 0.0

rank 32 32 16 32 16 32 16 32 32 32 16 32 16 32 32 32 16 32 16

std 0.15 0.31 0.16 0.06 0.18 0.18 0.04 0.31 0.10 0.19 0.11 0.12 0.10 0.26 0.37 0.73 0.42 0.37 0.58

In Table 2, the results of Linear, FT, VPT-Shallow, VPT-Deep, and Adapter-256 are from (Jia et al., 2022). The results for
Adaptformer and RepAdapter are from (Luo et al., 2023), and the results for LoRA are from (Jie & Deng, 2023). The other
results are from their corresponding papers.

C.3. FGVC

The Fine-Grained Visual Categorization (FGVC) benchmark is a collection of five large datasets: CUB-200-2011 (Wah
et al., 2011), NABirds (Van Horn et al., 2015), Oxford Flowers (Nilsback & Zisserman, 2008), Stanford Dogs (Khosla et al.,
2011), and Stanford Cats (Gebru et al., 2017). These five datasets are purely domain-specific and focus on fine-grained
categories. We use the whole training set, unlike the VTAB-1k benchmark. The validation split is done with statistics
from (Jia et al., 2022) with seed 0. The class information is as follows: CUB-200-2011 contains 200 classes, NABirds 555
categories, Oxford Flowers 102 classes, Stanford Dogs 120 classes, and Stanford Cars 196 classes. The hyperparameters for
the FGVC benchmark are presented in Table 9.

Table 9. Hyperparameter details for the FGVC benchmark using the ViT-Base model.

Hyperparameter CUB-200-2011 NABirds Oxford Flowers Stanford Dogs Stanford Cars

α 0.01 0.01 10 0.001 100
λµ 1.0 1.0 1.0 0.9 1.0
λσ 0.0 0.0 0.02 0.02 0.0

rank 32 32 32 32 32

C.4. Fine-tuning ViT-L

Following experiments from Kopiczko et al. (2024), we fine-tune ViT-L on the CIFAR100 (Krizhevsky & Hinton, 2009),
Food101 (Bossard et al., 2014), Oxford Flowers (Nilsback & Zisserman, 2008), and Resisc45 (Cheng et al., 2017) datasets.
The experimental setup uses 10 training samples per class from the training set and evaluates on the test set. We use the
numpy random choice with seed 6 for sampling to ensure reproducibility. Table 10 presents the CaRA hyperparameters for
the individual datasets. Regarding this experiment, we also fine-tune other PEFT methods such as DoRA (Liu et al., 2024)
and PiSSA (Meng et al., 2024). We use the implementations of these methods from (Mangrulkar et al., 2022). For DoRA
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and PiSSA, we use a rank of 8 and an α value of 8, and fine-tune for 100 iterations.

Table 10. Hyperparameter details for four image classification datasets using the ViT-Large model. The standard deviation (std) is
computed over five runs.

Hyperparameter CIFAR100 Food101 Flowers102 Resisc45

α 0.01 0.01 0.01 0.01
λµ 1.0 1.0 1.0 1.0
λσ 0.01 0.01 0.0 0.01

rank 32 32 32 32

std 0.16 0.33 0.03 0.19

D. Additional fine-tuning results
We provide additional experiments for fine-tuning Swin Transformer (Liu et al., 2021) and the Robustly Optimised BERT
Approach (RoBERTa) (Liu et al., 2023).

D.1. Fine-tuning Swin-B

Swin Transformer (Liu et al., 2021) adds hierarchical structures to ViT and we demonstrate that CaRA works with
hierarchical architectures, which use different embedding dimensions and number of heads for different layers, as well. For
the experiments, we use the Swin-Base model pre-trained on ImageNet-21k. The pre-trained model checkpoint is available
here2. The Swin-B layers are arranged into four stages, each with varying embedding dimensions dmodel and number of
heads h. The proposed tensorisation in Section 3.2.1 must thus be adapted for each stage individually. Table 11 details each
stage with corresponding tensors Wmha and Wffn shapes.

Table 11. Tensorising Swin Transformer: Tensor shapes for Wmha and Wffn across four stages of Swin-B. For each stage, the number of
layers, embedding dimension (dmodel), and number of attention heads (h) are also reported.

Stage #Layers dmodel h Wmha Wffn

1 2 128 4 6× 128× 4× 32 18× 128× 128
2 2 256 8 6× 256× 8× 32 20× 256× 256
3 18 512 16 54× 512× 16× 32 162× 512× 512
4 2 1024 32 6× 1024× 32× 32 22× 1024× 1024

Results. We fine-tuned the Swin Transformer with CaRA on the VTAB-1k datasets. The results in Table 12 show that
CaRA outperforms existing PEFT methods in terms of accuracy, despite using less trainable parameters than most of the
other methods. While SPT-LoRA and FacT-TT perform slightly better on the Natural datasets, CaRA outperforms them on
the Special and Structured datasets.

D.2. Natural Language Understanding (NLU)

To evaluate CaRA’s capabilities for the language domain, we evaluate it on the General Language Understanding Evaluation
(GLUE) benchmark using the RoBERTa model. Our experimental setup closely aligns with (Hu et al., 2022). In particular,
we apply CaRA only to query and value projection matrices in the MHA module. CaRA is trained with rank 64, α is set to
100, and all the λ’s are initialised as ones. The results for FT and non-tensor based PEFT methods are from (Hu et al., 2022).
For the other methods, we use the results from their corresponding publications.
Results. Table 13 demonstrates the performance of CaRA on the GLUE benchmark when fine-tuned with the RoBERTa-
Base model. We observe that CaRA outperforms existing tensor-based fine-tuning methods such as LoTR (Bershatsky et al.,
2024) and LoRETTAadapter (Yang et al., 2024). We observe that tensor-based methods like LoTR and LORETTA lag in

2https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_
window7_224_22k.pth
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Table 12. VTAB-1k evaluation results with the Swin-Base model. Our method results are highlighted in grey. Mean accuracy and
parameters are averaged over group-wise mean values. We present the best result in bold and the second-best is underlined.

#Params(M) Natural Special Structured Group Mean

FT 86.7 79.1 86.2 59.7 75.00
Linear - 73.5 80.8 33.5 62.60
BitFit 0.201 74.2 80.1 42.4 65.57

VPT-Shallow 0.003 79.9 82.5 37.8 66.73
VPT-Deep 0.162 76.8 84.5 53.4 71.57

LoRA 1.023 81.7 87.2 60.1 76.33
SPT-LoRA 0.424 83.1 87.4 60.4 76.97
FacT-TT 0.135 83.1 86.9 62.1 77.37

CaRA (ours) 0.134 82.9 87.7 63.0 77.89

performance compared to LoRA, FT, and Adapter methods. CaRA further closes this performance gap to LoRA and full
fine-tuning (FT), with only 0.04% of FT parameters.

Table 13. GLUE benchmark evaluation results with the RoBERTa-Base model. Following (Hu et al., 2022), we report Matthew’s
correlation for CoLA, Pearson correlation for STS-B, and accuracy for other tasks.

#Params (M) MNLI QQP MRPC SST-2 CoLA QNLI RTE STS-B Mean

FT 125 87.6 91.9 90.2 94.8 63.6 92.8 78.7 91.2 86.4

Non-Tensor based

Adapter 0.30 87.1 90.2 88.5 94.2 60.8 93.1 71.5 89.7 84.4
BitFit 0.10 84.7 84.0 92.7 93.7 62.0 91.8 81.5 90.8 85.2

LoRA (r=8) 0.30 87.5 90.8 89.7 95.1 63.4 93.3 86.6 91.5 87.2

Tensor based

LoTR (r=32) 0.074 85.2 87.4 85.9 93.0 60.5 90.0 66.0 88.8 77.2
LoTR (r=88) 0.321 84.7 86.9 88.0 93.3 61.3 92.0 67.0 91.0 79.0

LoRETTAadapter 0.10 85.6 87.2 91.1 94.4 62.7 92.1 78.7 90.3 85.2
CaRA (r=64)(ours) 0.055 86.5 89.7 90.4 94.6 66.1 92.7 77.3 89.7 85.9

E. Saliency Maps
This section provides the saliency maps using Integrated Gradients, as discussed in Section 5.3. Figure 6 shows the saliency
maps for CaRA using ranks 32 and 16 for a few images of the FGVC-Aircraft dataset. This dataset contains aircraft from 70
families, such as Boeing 747, LockheedMartin TriStar L-1011, and Airbus A380. This dataset is ideal because aircraft are a
class in ImageNet. A pretrained backbone is thus able to differentiate an aircraft from other real-world objects, but it cannot
classify various aircraft families.
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Original Rank 32 Rank 16

Figure 6. Saliency maps depicting the gradient attributions of CaRA fine-tuning ViT-B/16 for aircraft family classification, especially for
ranks of 32 and 16.
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