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Abstract

Sampling efficiently from a target unnormalized probability density remains a core
challenge, with relevance across countless high-impact scientific applications. A
promising approach towards this challenge is the design of amortized samplers that
borrow key ideas, such as probability path design, from state-of-the-art generative
diffusion models. However, all existing diffusion-based samplers remain unable
to draw samples from distributions at the scale of even simple molecular systems.
In this paper, we propose PROGRESSIVE INFERENCE-TIME ANNEALING (PITA)
a novel framework to learn diffusion-based samplers that combines two comple-
mentary interpolation techniques: 1.) Annealing of the Boltzmann distribution and
I1.) Diffusion smoothing. PITA trains a sequence of diffusion models from high
to low temperatures by sequentially training each model at progressively lower
temperatures, leveraging engineered easy access to samples of the temperature-
annealed target density. In the subsequent step, PITA enables simulating the
trained diffusion model to procure training samples at a lower temperature for the
next diffusion model through inference-time annealing using a novel Feynman-Kac
PDE combined with Sequential Monte Carlo. Empirically, PITA enables, for the
first time, equilibrium sampling of N-body particle systems, Alanine Dipeptide,
and Tripeptide in Cartesian coordinates with dramatically fewer energy function
evaluations. Code available at: https://github.com/taraak/pita.

1 Introduction

The problem of sampling from an unnormalized target probability distribution arises in numerous
areas of natural sciences, including computational biology, chemistry, physics, and materials science
(Frenkel and Smit, 2023; Liu, 2001; Ohno et al., 2018; Stoltz et al., 2010; Noé et al., 2019). In many
of these high-impact scientific settings, the problem’s complexity stems from operating in molecular
systems where the unnormalized target (Boltzmann) distribution at a low temperature of interest is
governed by a highly non-convex and non-smooth energy function, under which there is limited to no
available data (Hénin et al., 2022). As a result, the sampling problem necessitates solving an equally
hard exploration problem: finding the modes—in correct proportion—of the target distribution.

To address the general sampling problem, extensive research has been dedicated to Markov chain
Monte Carlo methods (MCMC), Sequential Monte Carlo (SMC), and, particularly in physical
systems, Molecular Dynamics (MD) (Leimkuhler and Matthews, 2015). To enhance scalability,
Monte Carlo approaches often employ an interpolating sequence of probability distributions that
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Figure 1: Illustration of the proposed PITA framework combining two complementary processes: temperature
annealing of the target Boltzmann density and the diffusion process applied to the collected samples. Annealed
inference allows for decreasing the temperature (increasing ) of a trained diffusion model, thus generating
samples from the annealed target. These samples can be reused for training a lower-temperature diffusion model.

transitions from an easily sampled reference distribution to the desired target distribution via
annealing/tempering strategies. This powerful concept underlies methods such as parallel tempering
(Swendsen and Wang, 1986), Annealed Importance Sampling (Jarzynski, 1997; Neal, 2001), and
SMC samplers (Del Moral et al., 2006). MD, conversely, involves integrating equations of motion
using finely discretized time steps. Despite their effectiveness, both classes of methods possess
inherent limitations that complicate their application to practical systems of interest: annealing
modifies the masses of distribution modes depending on their widths (a phenomenon often referred
to as mass teleportation (Woodard et al., 2009)), while MD requires computationally expensive time
discretization on the order of femtoseconds to simulate millisecond-scale phenomena.

Diffusion-based samplers are an alternative and emergent class of sampling techniques (Zhang
and Chen, 2022; Vargas et al., 2023; Akhound-Sadegh et al., 2024; Berner et al., 2024; Blessing
et al., 2024; Havens et al., 2025) exploiting modern developments in generative modeling. They
sample complex multi-modal distributions by leveraging a prescribed interpolating probability
path. However, instead of relying on annealing, these samplers utilize a noising mechanism which
theoretically enjoys favorable mixing properties compared to annealing (Chen et al., 2023).

Diffusion-based samplers, despite their appeal, have not yet proven effective for even small molecular
systems in Cartesian coordinates. This is primarily because of the absence of training data to
accurately approximate the logarithmic gradients of the marginal densities, i.e. the Stein scores — a
challenge distinct from generative modeling settings. Additionally, standard training objectives, such
as reverse Kullback—Leibler, are mode dropping and often yield too high-variance score estimates
for stable training (Blessing et al., 2024). Crucially, current diffusion-based samplers require too
many energy function evaluations for training. Indeed, when normalized by the number of energy
evaluations, carefully tuned MCMC methods with parallel tempering are empirically competitive
with, if not superior to, state-of-the-art diffusion-based samplers (He et al., 2025).

Main Contributions. In this paper, we introduce PROGRESSIVE INFERENCE-TIME ANNEALING
(PITA), a novel framework for training diffusion models to sample from Boltzmann distributions.
PITA leverages two complementary interpolation techniques to significantly enhance training
scalability: temperature annealing (increasing the system’s temperature) and interpolation along
a conventional diffusion model’s probability path. This combination is motivated by a learning
framework designed to exploit their distinct advantages: temperature annealing mixes modes by
lowering high-energy barriers, while diffusion paths avoid mass teleportation.



Annealing the target distribution transforms the challenging sampling problem into an easier one by
removing high-energy barriers and flattening it. This crucial step enables the cheap collection of an
initial high-temperature dataset via classical MCMC, which in turn facilitates the efficient training of
an initial diffusion model. Subsequently, we define a novel Feynman-Kac PDE that, when combined
with SMC-based resampling, allows us to simulate the trained diffusion model’s inference process
to produce asymptotically unbiased samples at a lower temperature. This effectively allows us to
train the next diffusion model, enabling the progressive and stable training of a sequence of diffusion
models until the target distribution is reached, as illustrated in Fig. 1.

We test the empirical performance of PITA on standard /N-body particle systems and short peptides in
Alanine Dipeptide and tripeptides. Empirically PITA not only achieves state-of-the-art performance
in all these benchmarks but is the first diffusion-based sampler that scales to our considered peptides
in their native Cartesian coordinates. More importantly, we demonstrate that progressing down our
designed ladder of diffusion models leads to significantly lower energy evaluations compared to MD,
which is a step towards realizing the promise of amortized samplers for accelerating equilibrium
sampling.

2 Background

2.1 Diffusion models

A diffusion process defines an interpolating path between an easy-to-sample reference density, such
as a multi-variate Normal, and a desired target distribution 7(2). When samples from the target
distribution are available, it is possible to generate samples from intermediate marginals of the
diffusion process p; () through the following Gaussian convolution:
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As a result, this means that samples from p,(z) can be generated as z, = «,y + o,&, where
y ~7(y) and e ~ N (0, 1). Selecting specific schedules for c; and o, one can ensure the following
boundary conditions. For 7 = 0, a; = 1,0, = 0 and p,—o(z) = (), i.e. the marginal matches the
target distribution. For 7 = 1, &, = 0,0, = 1 and p,—1(z) = N(0, 1), i.e. the marginal matches
the standard multivariate normal distribution.

Importantly, despite the simplicity of sample generation, the evaluation of density p,(x) is not
straightforward, and one has to use deep learning models to approximate either scores V log p, ()
or marginal densities p,(x). Furthermore, the model density p.(x) or scores V logp,(z) can be
used to generate new samples from 7 () using the reverse-time SDE. In particular, the marginals
introduced in Eq. (1) describe the marginal densities of the forward-time (Ornstein—Uhlenbeck) SDE
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where W is the standard Wiener process, and marginals follow the Fokker-Planck PDE. After
inverting the time variable in this PDE, i.e. t = 1 — 7, the time-evolution of marginals p;(z) is

Op(x)
ot
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which shows that one can sample from the marginals {p;(z)}+c[0,1) via simulating the following SDE

2
dl‘t = (—ata: + %(1 + &)Vlogpt(xt)> dt + Ct \/5th . (4)

While the marginals are correct for any & > 0, there are two important special cases: for {; = 1, the
equation becomes the reverse-SDE with the same path-measure as Eq. (2), and, for £&; = 0, the SDE
becomes an ODE. In practice, this SDE is simulated using either the density model exp(—U;(x; 7))
pt(x) (Du et al., 2023) or the score model s;(x; 6) = V log p;(x) (Song et al., 2021).



2.2 Annealing

Annealing defines a family of “simpler” problems when we have access to the unnormalized density
by interpolating or scaling the target log-density (negative energy). Formally speaking, given the
unnormalized density 7(z), the annealed density is defined as
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where (3 is the inverse temperature parameter (i.e., 5 = 1/7") controlling the smoothness of the target
density. Thus, for high temperature 7" > 1 (hence, 8 < 1), the target density becomes smoother and
easier to explore via MCMC algorithms. Importantly, getting the unnormalized density for 77 (z)
can be simply achieved by raising the unnormalized density 7(x) to the power [3.

2.3 Feynman-Kac Formula

The Feynman-Kac Partial Differential Equation (PDE) is a generalization of the Fokker-Planck PDE
and is defined as follows

Ope(x)
ot

where the first term corresponds to the probability mass transport along the vector field v;(x), the
second term corresponds to the stochastic moves of samples according to the Wiener process W7,
and the last term is responsible for reweighting the samples according to a coordinate dependent
weighting function g;(z). For any test-function ¢(x), the Feynman-Kac formula relates its expected
value to the expectation over the SDE trajectories x, i.e.
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and Zp is a normalization constant independent of x. In practice, the exponential term is computed
as a “weight” w; of the corresponding sample x; and can be integrated in parallel with the simulation,
dxy = ve(xy)dt + GdWy, dlogw; = gi(a¢)dt, initialized as xg ~ po(z), logwy =0. (8)

Finally, one can estimate the normalization constant Z7 by considering ¢(z) = 1 in Eq. (7) and get
the biased but consistent Self-Normalized Importance Sampling (SNIS) estimator (Liu, 2001), i.e.
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where (xgw, wép) are the samples from the simulation of the SDE in Eq. (8).

3 Progressive Inference-Time Annealing

In this section, we combine diffusion and annealing processes into an efficient learning algorithm
for sampling from the target density 7 (x). To design this method, we build on the fact that diffusion
and annealing are complementary ways to simplify or “smoothen” the target distribution (see Fig. 1).
Namely, for the high-temperature version of the target distribution 7% (z), we assume having samples
from 77 (x) and learn the density model of the marginals defined by the diffusion process (see
Section 3.2). For instance, this can be done by running MCMC chains that face little challenge mixing
in high temperatures. For the given density model of the diffusion process, we perform annealing
of all the marginals and generate samples from the lower temperature target 77+ (x) , 3,41 < B;
(see Section 3.1). We detail every step of our method in the following subsections.

3.1 Inference-Time Annealing

In this section, we discuss the inference-time annealing process, which allows us to modify the trained
diffusion model to generate samples from the lower temperature target density. Namely, for a diffusion
process with marginals p; () and the end-point p;— (z) = 7% (z), we assume having two models:
a score model s;(z;6) ~ Vlogp:(z) and an energy-based model U;(z;n) =~ — log p:(z) + const



with parameters 6 and 7 respectively. Given the score and the energy models trained to sample from
a higher temperature density 7% (), we define a new sequence of marginals that correspond to the
Boltzmann density of the energy model but with a lower temperature

ge(x) o< exp(—Bi1/BiUs(x31)) , qimr (@) o exp(—User (237)) /P x (m(2)P)P+1/0: - (10)

The following proposition derives the Feynman-Kac PDE that describes the time-evolution of the
marginals ¢;(x) and allows for importance sampling via the Feynman-Kac formula.

Proposition 1. [Inference-time Annealing] Annealed density of the energy-based model q;(x)
exp(—yUi(x; 1)) matches the marginal densities of the following SDE
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where si(x) is any vector field, a;,(;, & are analogous to parameters from Eq. (4), and the
sample weights w; correspond to the SNIS estimator of the Feynman-Kac formula in Eq. (9).

See Appendix A.1 for the proof. Intuitively, this result defines an importance sampling scheme,
where Eq. (11) generates samples from the proposal distribution and Eq. (12) integrates the density
ratio between the sampled proposal and the target density ¢;(x). Different choices of the vector field
s¢(x) and the noise schedule &; yield different proposal distributions. Theoretically, one can choose
different parameters a;, (; as well, but below we argue for setting them according to Eq. (2).

The dynamics in Proposition 1 are not unique, and there exists a continuous family of PDEs that
follow the marginals ¢;(z) o exp(—vU;(x;n)). We motivate this dynamics as minimizing the
variance of the weights for the case when there is no annealing (v = 1). Indeed, if the trained EBMs
and score models approximate the diffusion process perfectly, then, for v = 1, the weights become
constant, so SNIS equally weights all the samples; thus, eliminating the need to resample at all. We
formalize this result in the following proposition (see Appendix A.1 for the proof).

Proposition 2. [Convergence to Diffusion] For v = 1 and perfect models si(x) =
—VUi(z;n) = Vogpi(x), the variance of the weights in Proposition 1 becomes zero.

In the case of unbounded support of the target distribution, e.g. supp(w(z)) = R?, increasing
the temperature might cause numerical instabilities. Indeed, 7(x)?=% o Uniform(R?) is not
normalizable. To avoid this potential issue, in Appendix A.2, we consider geometric averaging
between some simple prior and the target densities, e.g. N'(0, 1)1~ 7 (z)8.

Integrating the dynamics from Propositions 1 and 3 we generate a set of weighted samples
{(zf_1,wi_;)}E | that converge to the samples from ¢;—;(z) when K — oo. In practice,
this density is defined as the Boltzmann distribution of the corresponding energy model, i.e.
qi=1(z) o exp(—Bit1/Pi - Ur=1(w;n)), which approximates 7%+1(z), but does not necessarily
match it exactly. We discuss several possible ways to bridge this gap between the density model
and the target density in Appendix B.

3.2 Training using PITA

The proposed algorithm consists of interleaving the inference-time annealing (described in the
previous two subsections) and model training on the newly generated data from the annealed target
distribution, which we describe here. Throughout this stage we assume availability of samples from
7Pi+1, which were previously generated at the sampling stage?.

For the target distribution %+1 (z), we define the diffusion process with the marginals p; () obtained
as a convolution of the samples from the target = ~ 7%+ (z) with the Gaussian N (., x, 021). To

?For the very first iteration of our algorithm, we assume that there exist such 3 that samples from 7 can be
simply collected by conventional Monte Carlo algorithms.



Algorithm 1 Training for single temperature 1/3;11

Require: samples 2 from 7%:+1.
for training iterations do

sample In(o1—¢) ~ N (Ppean, P2y)
add noise x; ~ N (z; |4z, 03_,1)
Denoising Score Matching(0) = Vg By, »A(t) ||z — Dy (24 0)|)°
Target Score Matching(0) = Vg E; , » {Hafvm log7(x) + & — De(xy; 9)”2 It > t[hresh)]
EBM Distillation() = V) By .., wA(t)||02(=Va, Ui (43 m)) + ¢ — Dy(a; )|
Energy Pinning(n) = V, Eq||(=Us=1(x; 7)) — Bi+1 log w(@) |
0 + FirstOrderOptimizer(6, Score Matching(f), Target Score(f))
1 < FirstOrderOptimizer(7n, Energy Matching(n), Energy Pinning(n))

end for
return trained parameters 6%, n*

learn the score function s;(x;0) ~ V log p;(z), we follow the standard practice and parameterize
the denoising model Dy(x;6) = 0?s,(x; ) + x4, which we learn via the denoising score matching
(DSM) objective (Ho et al., 2020), i.e.

Denoising Score Matching(6) = E, ,, . A(t)||z — Dy (z4;6) 12, (13)

where the expectation is taken w.r.t. samples from the annealed target x ~ ©%+2P(z), noised
samples z; ~ N (24 | a1 _4x,0%_,), and time parameter sampled with log(1 —t) ~ N (Prcan, Pstd)
largely following Karras et al. (2022).

However, the DSM objective is not sufficient for training a good score model close to the target
distribution (7 = 1 — t = 0) due to the high variance of the estimator. Indeed, for7 =1 —¢ =0,
it has no information about the target distribution. Target Score Matching (De Bortoli et al., 2024)
overcomes this issue by explicitly incorporating the score of the target unnormalized density into
the objective, which is as follows

Target Score Matching(0) = E; 4, » {Hafvx logm(x) + x — Dy(xy;0) ||2 It > tthresh)} (14)

where the expectation is taken w.r.t. the same random variables as in Eq. (13), but the time variable
is restricted to the interval [tresh, 1] because the variance of the objective estimator grows with the
noise scale (De Bortoli et al., 2024). Notably, for larger noise scales, the Denoising Score Matching
objective results in a stable training dynamics; thus, these objectives complement each other and
result in a stable training dynamics across the entire time interval.

To train the energy model U, (x; 1), which plays the central role in the inference-time annealing (see
Section 3.1), we follow Thornton et al. (2025) and distill the learned score model to the parametric
energy model via the following regression loss (w.r.t. ), i.e.

EBM Distillation(n) = Et,xhwz\(t)||at2(—V,,tUt(xt; n)) + xy — Dy(xy; 9)‘ 2 , (15)
where, the expectation is taken w.r.t. the same random variables as in Eq. (13). Note that, in contrast
to the denoising score matching loss in Eq. (13), the “target” in Eq. (15) does not depend on x, which
means that its variance for the same x; is zero, stabilizing the training of the energy based model
Ui(w;n).

Finally, to use all the supervision signal available in the problem, we use the target unnormalized
density m(z)%+! as the regression target for the end-point energy-based model U;—; (z;7), and
introduce the following loss

Energy Pinning(n) = E_ 5.1, ) [(=Us=1(2; 7)) — Biz1log w(x)|?. (16)
Notably, this loss allows for fixing the gauge present due to the shift invariance of the energy-based
model (V,(Ui(z;n)) = V4 (U(z;m) 4 const)). In practice, we observe that this loss significantly
stabilizes the training and improves the final performance. We present the pseudo-code for the
training loop in Algorithm 1, where we simultaneously optimize all the introduced loss functions to
train a diffusion model at temperature 1/43;, 1. In practice, we find that sequential training of models
demonstrates the best performance. Furthermore, we initialize the model for the next temperature
1/B;+1 with the parameters of the trained model for the temperature 1/;.




4 Related work

Diffusion-based Sampling. A variety of amortized samplers that use properties of diffusion models
have recently been proposed in the literature. Simulation-based approaches that also exploit the fast
mode-mixing of diffusion models include Berner et al. (2024); Vargas et al. (2023); Zhang and Chen
(2022); Richter et al. (2024); Vargas et al. (2024), which exploit diffusion processes for fast mode
mixing. Conversely, simulation-free methods like iDEM (Akhound-Sadegh et al., 2024), SB with
Follmer drift (Huang et al., 2025), and TSM (De Bortoli et al., 2024) offer more scalable approaches
to learning the score but suffer from inefficient and high variance score estimates far from the data.
Finally, new diffusion bridges have also risen to prominence with underdamped dynamics (Blessing
et al., 2024), known modes (Noble et al., 2025), and bridges with SMC (Chen et al., 2025).

Inference-time Resampling. The inference-time annealing scheme proposed in Proposition 1
connects several recently proposed methods. Namely, for £; = 0, it closely matches the importance
sampling of the continuous normalizing flows proposed in (Kohler et al., 2020). Indeed, Eq. (11)
becomes a probability flow ODE, and Eq. (12) becomes an integration of the log-density-ratio, where
the target density can be defined either as a linear interpolation of log-densities or only in the final
point as the target density. Furthermore, Proposition 1 is an application of the Feynman-Kac formula
to annealing and non-equilibrium dynamics simultaneously. Indeed, for v = 1, this proposition
becomes the result proposed in Vaikuntanathan and Jarzynski (2008); Albergo and Vanden-Eijnden
(2025); whereas, for s;(x) = —VU(xz;n) = Vlog ps(x), this proposition becomes the result from
(Skreta et al., 2025). In practice, however, these equalities are not satisfied because we use learned
models for the vector field s;(x) = s:(z;0) and the energy-based model U;(x; 7). In concurrent
work, Rissanen et al. (2025) also propose an annealed sampling scheme using diffusion models. They
use a different inference-time annealing procedure which restricts importance re-sampling to the final
timestep, whereas in this work, we benefit from annealed importance sampling over diffusion time.

Boltzmann Generators. Noé et al. (2019) proposed training a probabilistic model and resampling
the generated samples according to the target Boltzmann density via importance sampling. Various
probabilistic models have been used, e.g. continuous normalizing flows (Chen et al., 2018) and the
flow matching objective (Lipman et al., 2023) also allow for efficient training and resampling under
the Boltzmann generators framework (Kohler et al., 2020; Klein et al., 2023). Boltzmann Generators
can also be combined with Annealed Importance Sampling, which enhances their scalability (Tan
et al., 2025a). However, as we demonstrate empirically, the straightforward resampling with a target
density of a different temperature (Schopmans and Friederich, 2025) results in high variance of
importance weights. Thus, one has to deviate from the Boltzmann Generators framework to perform
the inference-time annealing.

S Experiments

We evaluate PITA on molecular conformation sampling tasks including a toy Lennard-Jones system of
13 particles (LJ-13) and Alanine peptide systems of varying sizes (Alanine Dipeptide and Tripeptide)
in Cartesian coordinate space. Throughout, we assume access to a short MCMC chain run at high
temperature. Note that we do not require these chains to be well mixed, but only require them
to cover the modes, a much less stringent requirement (See Appendix D). For metrics, we use
sample-based metrics such as 2-Wasserstein distance on Ramachandran coordinates (T-Ws) and
energy distribution (£-W;, £-Wy), to assess mode coverage and precision, respectively. We also
compare the KL divergence between the Ramachandran plots of the ground-truth MD samples and the
generated samples (RAM-KL), as well as Wasserstein distances on the first two TICA (Time-lagged
Independent Component Analysis) coordinates of ground-truth and generated samples. Finally, we
report the computational expense of all methods using the total number of energy evaluation calls.

Baselines. We compare PITA with three different baselines: Temperature Annealed Boltzmann
Generators (TA-BG, Schopmans and Friederich (2025)), normalizing flow model trained on molecular
simulation (MD) data collected at the target temperature (MD-NF), diffusion model trained on
molecular simulation (MD) data collected at the target temperature (MD-Diff), and importance
sampling using continuous normalizing flows (Kohler et al., 2020). For the LJ-13 dataset, we
additionally compare the performance of the model with two state-of-the-art diffusion-based sampling
algorithms: namely, iDEM (Akhound-Sadegh et al., 2024) and adjoint sampling (Havens et al.,
2025); however, as none of the current diffusion-based approaches are able to achieve competitive
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Figure 2: LJ-13 sampling task. We compare the distribution of the interatomic distances and energy of the
particles in the MCMC dataset (ground-truth), samples generated using a PITA model, and TA-BG progressively
trained from high temperature to sample from the target distribution.

performance on the small protein tasks, we only compare to the TA-BG baseline for those datasets.
Additionally, for the ALDP experiment, we compare against two other annealing strategies for the
diffusion-only approach: FKC and Score Scaling. FKC refers to the annealing scheme in Skreta et al.
(2025), and score scaling is essentially scaling the score with the corresponding temperature factor
~. Further experimental details of the baselines, as well as additional baselines, are provided in the
Appendices E and 1.

Architecture. In training PITA, we use EGNN (Satorras et al., 2021) as the model backbone for
LJ-13, and DiT (Peebles and Xie, 2023) for Alanine Dipeptide and Alanine Tripeptide. Our training
follows a sequential temperature schedule, proceeding from high to low temperatures. After training at
a given temperature for a fixed number of epochs, we generate samples at the next lower temperature
and continue training at that temperature. For LJ-13, we train a single diffusion model conditioning
it on 8 and using the data across all previously seen temperatures. For molecular conformation
sampling tasks, we adopt a fine-tuning approach, where at each temperature step, the model is trained
only on the newly generated samples corresponding to the current temperature without revisiting
earlier ones. For the TA-BG baseline, we train TarFlow (Zhai et al., 2025) with adaptations suited to
molecular data for all three systems, and for MD-Diff, we use the same DiT architecture we used in
PITA. We parameterize the energy network using the parameterization in Thornton et al. (2025) and
use the preconditioning (cs, Cout, Cin, ¢t) of Karras et al. (2022) for both energy and score networks.
Further training details and hyperparameters are provided in Appendix I.

Hyperparameters. Proposition 1 allows for many choices of the vector field s;(x). In practice,
we set it proportional to the score model s;(z) o s;(x;8) and try several scaling coefficients (see
Appendix G). Finally, one can easily add the time-dependent schedule 7; by adding the extra term to
the weights, i.e. dlogw; = Eq. (12) — Uy(x; )07/ Otdt, which we study in Appendix G. We use
the noise schedule from Karras et al. (2022), where, for all experiments, we set o, = 80 and p = 7.
For LJ-13 and molecular conformation sampling tasks, we use o, = 0.05,0.01, respectively.

5.1 Main results

LJ-13. We first consider a Lennard- Table 1: LJ-13 sampling task. The starting temperature is 77, = 4,

Jones (LJ) system of 13 particles to annealed to Ts = 1.
demonstrate the effectiveness of train-

ing a sampler at a high temperature Algorithm Distance-W, | Energy-W, |  Geometric-W; |

_ : iDEM 0.127  30.78 £24.46 1.61 % 0.01
(TIL = 4), followed bﬁangealhng [io Adjoint Sampling - 240+125 1.67 + 0.01
a lower temperature (T's = 1). AS  TAIBG (TarFlow) 121 €002  61.47+0.12 4.16 +0.01
shown in Table 1, we compare the per- PITA (Ours) 0.04 £0.00 226 +0.21 1.65 + 0.00

formance of PITA with existing base-
lines. A visual comparison to TA-BG is provided in Fig. 2. We evaluate each method using the
2-Wasserstein distance computed over interatomic distance distributions, energy distributions, and 3D
geometric coordinates. We omit the Distance-V, metric for Adjoint Sampling, as its results could
not be reproduced and no code is available at this time; the reported Energy- and Geometric-Ws
values are taken directly from the original paper (Havens et al., 2025). To ensure consistency, we
exclude samples with energy above 1000 across all methods; this notably impacts TA-BG, removing
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Figure 3: Molecular conformation sampling tasks. We compare the energy distribution of the ground-truth MD
dataset and the samples generated using different models at 300K. We use 30k samples for the plots.

Table 2: Performance of methods for the ALDP sampling task. The starting temperature is 77, = 1200 K,
annealed to target T's = 300 K. Metrics are calculated over 10k samples and standard deviations over 3 seeds.

Rama-KL Tica-W; | Tica-Ws | Energy-W; | Energy-W, | T-W,  #Energy Evals
PITA 4.773 £0.460 0.112 £+ 0.006 0.379 £ 0.028 1.530 £ 0.068 1.615 £ 0.053  0.270 + 0.023 5 x 107
MD-Diff 1.308 +£ 0.072 0.113 +0.001 0.579 +£0.004  3.627 £0.023  3.704 £ 0.026 0.310 £+ 0.001 5 x 107
MD-NF 13.533 £0.024 0.138 £0.003 0.586 +0.003  0.551 +0.062  1.198 + 0.069 0.403 £ 0.045 5 x 107
TA-BG 14.993 £0.002 0.219 £0.013 0.685 + 0.034 83.457 +0.070  86.176 + 0.104 0.979 + 0.012 5 x 107
FKC 14.392 £0.909 0.217 £0.000 0.649 +0.001 11.281 +0.025 11.466 £+ 0.027 2.120 + 0.024 5x 107
Score Scaling ~ 4.588 +0.467 0.183 +£0.002 0.608 + 0.008 10.282 4+ 0.020 10.460 £ 0.019  0.550 + 0.036 5x 107

Table 3: Performance of methods for the AL3 sampling task. The starting temperature is 77, = 1200 K, annealed
to target T's = 300K. Metrics are calculated over 10k samples and standard deviations over 3 seeds.

Rama-KL Tica-W, | Tica-W, | Energy-W, | Energy-W, | T-W,  #Energy Evals
PITA 1.209 +0.144 0272 £0.017 0.952 &+ 0.055 2.567 + 0.108 2.592 +£0.107  0.521 + 0.006 8 x 107
PITA (w/o relaxation) 8.5354+0.254 0.405+0.014 0.999 +0.043  86.270 £0.294  87.695 4+ 0.294 0.651 +0.013 5 x 107
MD-Diff 9.662 + 0.085  0.059 + 0.006 0.426 + 0.010 7.416 £ 0.130 7.599 +£0.137  0.424 £ 0.011 8 x 107
TA-BG 2.078 £2.088 0.082 +0.001 0.454 + 0.001 4.782 +0.076 4.863 £0.082 0.347 £ 0.014 8 x 107
TA-BG (w/o relaxation)  14.988 4+ 0.009  0.321 +0.001  0.648 +0.000 173.042 £0.717 178.558 £0.732  1.310 £ 0.004 5 x 107

approximately 60% of its samples. Even under this filtering, PITA consistently outperforms TA-BG
and other baselines trained directly at the target temperature.

Alanine Dipeptide. We apply PITA to the task of sampling Alanine Dipeptide at a target temperature
of T's = 300 K, given initial samples at a higher temperature of 77, = 1200 K. We use annealing
steps of 1200 K, 755.95 K, 555.52 K, 300 K. These temperatures correspond to a subset of the
temperatures from Schopmans and Friederich (2025), as PITA does not require as many annealing
steps to achieve competitive performance. We also analyze the performance of the model, taking
larger annealing steps in Appendix G. As shown in Table 2, PITA consistently outperforms both
the diffusion-based baseline and TA-BG across all evaluation metrics, achieving a particularly large
margin in energy-related metrics. We further present TICA plots of the generated samples at the target
temperature in Fig. 4. PITA successfully recovers the essential slow collective dynamical modes of
the system, which baseline methods fail to capture. Additionally, we find that while TA-BG performs
reasonably well at earlier stages of training at higher temperatures, its performance deteriorates
as temperature decreases. Such a decline is likely due to the increasing difficulty in generating
high-quality proposals as the temperature decreases, which is crucial in the importance sampling
used for subsequent training stages, as well as the difficulty in importance sampling between large
temperature gaps (Appendix D.2). Additional details on training dynamics across all temperatures
for PITA and TA-BG can be found in Appendix H.

Alanine Tripeptide. We further evaluate the performance of PITA on a larger molecular system,
Alanine Tripeptide (AL3). We employ a temperature annealing schedule with intermediate steps
at 1200 K, 755.95 K, 555.52 K, 408.24 K, 300 K. As shown in Fig. 5, PITA again successfully
recovers the essential dynamical modes of the system, indicating its capability of generating samples
that align with the dominant kinetic features of the underlying dynamics. In practice, we also observe
that performing a short additional MD refinement at the target temperature (300 K) after generation
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Figure 4: TICA plots for Alanine Dipeptide (ALDP) at 300K obtained from different methods using 30k samples.
Each panel shows the free energy landscape along the top two TICA components which capture the dominant
slow transitions in the system.
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Figure 5: TICA plots for Alanine Tripeptide (AL3) at 300K obtained from different methods using 30k samples.

further improves the physical plausibility and smoothness of the trajectories. This leads to more
accurate estimates of the free energy landscape, for both PITA and TA-. In Table 3, we provide
quantitative analysis of the performance of the models. Notably, despite resulting in a better mode
coverage, PITA performs worse than baselines according to Tica—)V; and Tica—WW,, which suggest
that it does not fully recover the correct relative weights of the modes.

6 Conclusion

In this paper, we propose PITA a new framework to train diffusion-based samplers by introducing
two mechanisms of interpolating a target Boltzmann density by changing the temperature and
defining a diffusion noising process. We demonstrated that PITA allows the progressive training
of a sequence of diffusion models that go from high temperature, where ground truth data is simple
to collect, to the lower temperature target temperature. Using PITA we demonstrated equilibrium
sampling of N-body particle systems, and, for the first time, equilibrium sampling of alanine
dipeptide and tripeptide in Cartesian coordinates. Importantly, we demonstrate PITA requires
drastically fewer energy evaluations than existing diffusion samplers.

We believe that PITA represents a step forward in the scalability of diffusion-based samplers and
opens up ripe avenues for future work including improved training strategies and regimes for energy-
based models that are in service of the PITA framework. Natural directions for future work include
automatically determining the optimal temperature jump when instantiating our Feynman-Kac PDE
to generate asymptotically unbiased samples at lower temperatures or transferable sampling (Klein
and Noé, 2024; Tan et al., 2025b).

Limitations. To obtain a consistent estimator or an importance sampling scheme, one has to define a
density model of the generated samples. For this, PITA relies on training an additional energy-based
model, which is a notoriously challenging task. Furthermore, simultaneous training and inference of
both the score model and the energy-based model introduces additional computational and memory
requirements.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes], ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " " itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide a new theory for training diffusion-based samplers as demonstrated
in our propositions. The experiments are done on d N-body particle systems and short
peptides in Cartesian coordinates as claimed. We also provide the number of energy
evaluations highlighting the efficiency of PITA.

Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The conclusion includes a dedicated paragraph on limitations. These include
the challenges of training an Energy based model and determining the temperature jumps
during inference annealing, among other things.

Guidelines:
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper includes a full set of assumptions and completed proofs for each
theoretical result in the appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper includes experiments on public datasets. Moreover, we include
anonymized code with runnable commands in the supplementary to aid in reproducing our
results. We also outline exact experimental setup and hyperparameters in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All of our experiments are on public datasets and energies. We provide scripts
to reproduce our experimental findings.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We include a precise experimental setup for all settings in our appendix. We
also provide hyperparameters and how they were chosen in these details along with scripts
to run the code. which is provided in the supplement.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include error quantification in all of our reported metrics. More precisely,
we report error bars within one standard deviation of the mean.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We run our experiments on H100 GPUs and the exact run time, energy function
query cost, and overall run time are outlined in the experimental setup.

Guidelines:
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* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: All authors are aware of the code of ethics and abide by it.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: The paper makes a fundamental advance in sampling from a methodological
perspective. While the future potential for accelerating equilibrium sampling poses great
excitement, the current scale of experiments are too far removed to have any significant
real-world impact on application domains like drug discovery.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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13.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: This paper introduces a new diffusion-based sampler for which we believe
there is no current risk of being misused and as a result no safe guards are needed.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: We only use public assets and only rely on self created code.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper only uses public assets which are freely available.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not conduct crowdsourcing research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)

approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve any crowdsourcing research or research with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This paper does not involve LLMs as any important component, original, or
non-standard component for this project.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs
A.1 Inference-Time Annealing

Proposition 1. [Inference-time Annealing] Annealed density of the energy-based model q;(x) o
exp(—yUy(x;n)) matches the marginal densities of the following SDE

2
dxy = (atﬂﬂt + %(St(l’t) — & VU (245 U)))dt + GV €AW, xo ~ gi=o(z) (11)

2 2 .
leg we = [%(V, St(l't)> — ’Y<VUt(I’t, 7]), — QT + Cztst(xt)> — ,}/aU’t(axtt’n):| dt7 (12)

where si(x) is any vector field, a;,(;, & are analogous to parameters from Eq. (4), and the
sample weights wy correspond to the SNIS estimator of the Feynman-Kac formula in Eq. (9).

Proof. For the Energy-Based Model Uy (x; 1), we denote the corresponding Boltzmann density as

qi(x) oc exp(=U(z; 1)) , (17)
where - is the target inverse temperature. Taking the time-derivative of ¢;(x) we get the following

equation
Iqi(x) _ _ OU(z;m) OU(z;m)

which can be simulated by reweighting the samples from ¢;—o(z) =~ AN(0,1) according to the
following weights

+]eq(w)’}/ (18)

exp(—y fol dt OUy(w;m)/0t)

Eqgo (z0) €XP(—Y fol dt OU(zy;m)/0t)
Although this reasoning is theoretically justified, in practice, the variance of this importance-weighted
estimate (or resampled distribution) is prohibitively large. That is why one has to introduce additional
terms that move samples around tracing the original diffusion process. Namely, we consider the
following PDE

W 2 (Vo + L)) + o) (25 1 gy 2 )

19)

w(zy) =

ot 2 ot ot
= (V)=o) + ) (00) - By (). 20
1(2) = AV U 3 1), 002) = (VUL 1) 2(0)) — (V) + e
+ %W, si(z)) — 7% : (22)

where the term (V, a;z) does not depend on x and cancels out when in the reweighting term. Fur-
thermore, we can introduce the noise term by adding and subtracting the score &;(¢?/2)V log g;(z),

W) — (Vo + L)~ @SV @) ) + 6 Edaer @)
+au() (9:(7) = Eq,2)9:()) , (24
) = — (VUi e+ (o)) + LT -1 2D )
which can be simulated as
dy = (Mt + %Q(St(xt) — Y& VUi (21 n))) dt + o/ &dWy (26)

2

2 OUy (xy;
dlogw; = [’Y<VUt($t§TI)a —agry + C;St(xt)> + %<Va8t($t)> - ’Y% dat. (27

O
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Proposition 2. [Convergence to Diffusion] For v = 1 and perfect models s;(x) =
—VUi(z;n) = Vogpi(x), the variance of the weights in Proposition 1 becomes zero.

Proof. Indeed, for v = 1, Eq. (25) becomes

Uy (x;

gi(z) = — <VUt(x;77) —ax + Cztst(x)> Ct (V,s¢(x)) — w (28)

2 2 .

= ( VU(x;n),ax — C—tst(:v) —(V,aqxy — gh—tst(ac) + day — Uy (;n) ,

2 2 ot

where d is the dimensionality of the state-space. For s;(x) = —VU;(x;n) = V log p:(z), we have
1 2 ol dlog Z,
o) = = <V pelx )(atxt - %v1ogpt(w))> + °%;§t<m> + S ey (29)
B ¢ Op:(x)| Olog Z;

[ <V pe(x (atiﬂ EVIngt(CE) + ot + ot +day , (30)

=0 dueto Eq. 3)

where Z; = [ dx pi(z). The term in the brackets equals zero due to Eq. (3) since the ground true
marginals p; () are defined as the marginals of the diffusion process. Hence, we have

dlog Z
gi(z) = c(;i !+ da, = constant of z, 31)
which becomes zero after the normalization g;(x) — Eq, (5)g:(2), which concludes the proof. O

A.2 Inference-Time Geometric Averaging

For the diffusion process with marginals p;(x) and the target distribution p;—1(z)
N (2]0,1)3=F)r(x)5, we assume having the energy model U (2; 1) and the score model s; (; ).
Then, for the following density

() o oxp (_ fis fuat

we have ¢;—; (x) ~ N (x]0,1)1=Bi+)x(x)B+1, To sample from this density, we derive another
SDE that performs inference-time geometric averaging. Analogously to Proposition 1, for v = 1 and
perfectly trained models, the weights become constant, and this SDE yields the reverse-time diffusion
SDE.

Ur(asn) — log N(z [0, (02, + 07 »11))7 32)

Proposition 3. [Inference-time Geometric Averaging]| For the geometric averaging of the
energy-based model q;(z) o exp((1 —)(=Uys(z,n)) + vlogN (|0, 07)), the weighted
samples from q;(x) can be collected by running the following SDE

2
de; = —awre + (1 — 7)%(&(%) — &V Ui(w45m)) — -2 (1 + & 5 )It + G/ EdW,
t
1 2 1
dlogw; = <—(1 —7)VUi(x;n) — Vo3 T 0T +(1— 7)%%(%) - 702$t>+ (33)
7 7
2 QU (x¢; 0
+ (1= )T nlo) + (1 =) D Sl P 649

where si(x) is any vector field. Finally, unweighted samples from q;(x) can be sampled using
SNIS from Eq. (9).

Proof. For the Energy-Based Model U;(x;7n), we denote the corresponding geometric averaged

density as
a(z) x exp((1 = ) (=Us(z;n)) + vlog N (2 ]0,07)) (35)
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where + is the target inverse temperature. Taking the time-derivative of ¢;(x) we get the following
equation

0q:() = q:(2)(9:(x) — Eg, () 9:(7)) , (0

ot
o) = (1= 22 4

Assuming that the change of the density is close to the trained diffusion process, we introduce the
drift-term corresponding to the score of the marginals

28Ut

]| : 37

0 1
Q(;il‘) — :E<V,qt(a:)(—atx +(1- )C—tst(x) — 70233)> +q:(x) (gt(x) - ]eq(w)gt(x)) ,
t
fictitious term
Uy (x; 0
() = (1 =) T P G8)

Moving the positive term to the weights and interpreting the negative term as the continuity equation,
we get

0 2 1
Qéix) _ _ <V,qt(x)(—atx +(1— fy)%st(x) — fy02x)> + q¢(2) (9:(@) — Eg, () 9:(2))
t
1 7 1
) = {~(1 =) VUi ai0) = 7y a4 (=) o) = 7z )+ (9)
o; 2 o;
2 U (x; 0
(=)o) + (1= )T el (@0)
Finally, we introduce the noise term by adding the drift
2 2 1
§t< Vloggi(z) = ft%(‘(l—’Y)VUt(l";ﬁ)—’Yng) : 41)
t
Thus, we get
2 1 2
205 — (Vo) (o + (1= o) = 6 Uain) 15 (1465 ) ) )+
Ot
2
+ &%A(Jt(@ +q1(2) (9¢(2) — Eqg () 9:(2)) , (42)
1 2 1
o) = (== ) VUi ==+ (1= ) Foe) 1 o )+ @)
O Ot
U (x; 0
(=)@ + (0= D L. (@)
The corresponding SDE is

2
dry = —are + (1 — 7)%(&(%) = &VU(ze5m)) — iQ (1 + ftg )xt + GV/EdWy
gt

1 2 1
dlogw; = <—(1 —7)VU(2;n) = V=584, =z + (1 — )% () — ’yzxt>+ (45)
Oi Oi
2 U (xs;m 1 0
+ (=) (Tl + (=) T 25 (@6)
[

B Bridging the Gap at the End-Point

Integrating the dynamics from Propositions 1 and 3 we generate a set of weighted samples
{(zF_1,wi_;)}E | that converge to the samples from ¢;—1(z) when K — oo. In Section 3.1
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we assume that this density is defined as the Boltzmann distribution of the corresponding energy
model, i.e. g;—1(x) o< exp(—Bit1/Bi - Us=1(w;n)), which approximates 771, but does not neces-
sarily match it exactly. Here we describe two possible ways to bridge the gap between the density
model and the target density.

The first way to sample from 7(z)?+1 is via Self-Normalized Importance Sampling (SNIS). The
integrated weights wf_, = elo dt gi(@0) represent the density ratio between the distribution of the
samples xf_; and the density of the integrated PDE (see discussion in Section 2.3). Correspondingly,
to sample from 7(z)%+1, we have to take into account the density ratio 7(z)%+1 /g;—; () and obtain
a new estimator, i.e.

7(x)Pit 1 m(xy )P
E_, 8 2) X By (o) ————o(z) x E|efo dt o) 22U p , 47)
o (x)? +1§0( ) a1 (x) q1<x) QD( ) (J1(361) 90( 1)
K =k
w - 1 - :
Eﬂ(m)ﬁi“w(m) ~ Z ﬁsﬁ(ﬂﬂlf) , w’f = eJo dt 9e( )W(ﬂjlf)ﬁ +1/q1(x’f) , (48)
k=1 Zvj=1"1

where the new weights 1" are obtained from the old ones w# by multiplication with the corresponding
density ratio. Note, that the following empirical distribution approximates the target density 7 (x)%+1

K ~k

wa)fior =5 — 5w — k). (49)
; Zj:l wy '

The alternative to importance sampling with the density model proposal is the gradual interpolation
between the density model and the target during the integration. In particular, one can satisfy
the boundary conditions by defining a smooth interpolant between the boundary densities p;—o =
N(0,1), pt=1 = 7P+ and the annealed density model as follows

qt() o< exp [ — fy(l — tt) log V'(0,1) — (1 — H) Bi+1logm(z)— (50)

L/ + 1=t/

— — _i H_ _ 1—t\" 5i+1 .
(1 <1 t1>+ (1 1_t2>+> 3, Ut(:v,n)}, (51)

where () = max{0,z},0 < t; <ty < 1 are the hyperparameters that define switch times between
models, and « is the smoothness parameter. Thus, we guarantee that g;—1 (x) o w(m)ﬂm. However,
in practice, we found that this interpolation technique results in a high variance of importance weights.

C Network Parameterization and Preconditioning

We condition our score network s and our energy network U, based on findings in EDM (Karras et al.,
2022), use an energy parameterization based on Neklyudov et al. (2023) and Thornton et al. (2025),
and include a new pre-conditioning on 3. All of our networks are based on a backbone Fy(zy,t, ) :
(R4 x [0,00) x [1,00)) — R? is a flexible network architecture based on a diffusion transformer
(DiT) backbone (Peebles and Xie, 2023). Specifically, we parameterize our denoiser network Dy as:

D0 (l‘t, t7 ﬂ) = (1 + B(Cskip(t) - 1)$t + Bcout (t)FG (Cin (t)xh Cnoise (t)) (52)
which allows us to define our score network sy as

so(axe,t,B) = Mf)_xt (53)

0%

We pre-condition the energy as

1- atcskip(t) 2 gtcout(t)
U, t = - _ rroutA (e L R
77(1:757 ) 6) 6( 2O_t2 ||x75|| Cin(t)o—? (mt n

(cm(w:ct,cm»se(t)))) (54)
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D Molecular Dynamics Analysis

D.1 MD mode mixing across temperatures

In Fig. 6 and Fig. 7, we analyze the mixing behaviour of MD simulations for ALDP and AL3
across various annealing temperatures. Specifically, we examine simulations consisting of 50 million
steps—matching the quantity of MD data used for training PITA at 1200K. As the temperature
decreases, the sampling quality deteriorates: the chains exhibit poorer mixing and fail to explore
significant regions of the configuration space, missing major modes of the distribution. This is shown
both in Ramachandran and TICA plots, as well as the trace plots of the internal angle ¢ and the
second TICA axis. More specifically, for ALDP, we see that the chain switches out of the main
mode 5.8%, 3.0%, 1.0% and 0% of the time at temperatures 1200K, 755.95K, 555.52K and 300K,
respectively. For AL3, this happens at a rate of 12.7%, 9.2%, 5.8% and 0%.

This motivates training at a higher temperature then annealing to a lower temperature as is done in
PITA. As we are able to take advantage of relatively quick mode mixing at higher temperatures and
the ability of inference time annealing to recover samples from a lower temperature.

1200K ~ 755.95K 555. 52K _ 300K

(a) Visualization of the Ramachandran plots of the MD chain over time, the lines are colored from purple to
yellow over 50 million MD steps. The gray plot shows the Ramachandran plot of a chain with 1 billion MD
steps.
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(b) Trace plot for the internal angle ¢. The blue lines show the value of ¢ across the 50-million-step MD chain.
The orange line indicates when the chain switches out of the main modes.

Figure 6: Analysis of the mixing of the MD chains for ALDP, for a 50 million-step MD simulation, across the
annealing temperatures.

D.2 Temperature Annealing ESS

To show the difficulty of directly performing importance sampling directly across large temperature
jumps in coordinate space using methods similar to Schopmans and Friederich (2025); Rissanen et al.
(2025) we calculate the ESS assuming these models could learn the source temperature perfectly.
To perform this experiment we take 33k samples from the test chain and calculate the (normalized)
effective sample size of these points when importance sampled to a lower target energy. The results
of this experiment are presented in Fig. 8 for ALDP and Fig. 9 for AL3. Here we report the Log
normalized effective sample size for each temperature jump considered in this paper. We compute
the log normalized ESS using Kish’s formula normalized by the number of samples as:

log ESS ({w;}1L,) = log (55)

Where w; is the importance weight of the ith sample. We note that a log ESS of —5 would mean that
direct importance sampling would require 100 000 times as many points at the higher temperature as
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(a) AL3 TICA plots of ground-truth MD samples across different temperatures, using MD chains of 50 million
steps. For all temperatures, the TICA axes are matched to those of 300K.
1200K 755.95K 555.52K 300K
o IRBMBMRBEE — bR LRl — © i kidolaiadis) — © 0
.

0 EI o 40 EI i

2 o 2 o 2 o 2 o
Time (ns) Time (ns) Time (ns) Time (ns)

(b) Trace plot for the second TICA axis of ground-truth MD samples. The blue lines show the value of the
second TICA axis across the 50-million-step MD chain. The orange line indicates when the chain switches out
of the main mode.

Figure 7: Analysis of the mixing of the MD chains for AL3, for a 50 million-step MD simulation, across the
annealing temperatures.
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Figure 8: Log effective sample size (ESS) values for importance sampling from different source and target
temperatures for ALDP. The ESS values are computed on 33000 samples from the MD chain. The low values
indicate that purely relying on importance sampling is not sufficient to sample from lower temperature targets.

are needed at the lower temperature. This makes importance sampling computationally infeasible for
these temperature jumps, even with perfectly learned models.

This motivates the guided approach taken in PITA, where we are able to guide the samples preferen-
tially towards the target temperature, avoiding the problem of low ESS between these temperature
jumps.

E Additional Baselines

For the ALDP experiment, we compare against two additional baselines of annealed MCMC with
sequential Monte Carlo (SMC) and parallel tempering (PT) strategies. For SMC, we take 10 annealing
temperatures between 1200 K and 300 K using a geometric schedule, taking 166 steps per temperature
with 30k particles. For PT, we use the same 4 annealing temperatures as PITA, running 25 MD steps
between particle exchanges for a total of 50k iterations. As it can be seen in Table 4, PITA performs
better overall in capturing the distribution given the same budget of energy evaluation. In Table 5, we
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Figure 9: Log effective sample size (ESS) values for importance sampling from different source and target
temperatures for AL3. The ESS values are computed on 33000 samples from the MD chain. The low values
indicate that purely relying on importance sampling is not sufficient to sample from lower temperature targets.

Table 4: Performance of the SMC and PT baselines on ALDP
Rama-KL Tica-W; | Tica-Ws | Energy-W; | Energy-W» | T-W, #Energy Evals

PITA 4.773+£0.460 0.1124+0.006 0.37940.028 1.530 % 0.068 1.615 £ 0.053 0.270 £ 0.023 5 x 107
PT 7.306 £1.077 0.625+£0.010 0.895+0.016 4.652+0.015 4.689+0.014 0.911 £ 0.004 5 x 107
SMC  5.935+0.228 0.372£0.006 0.425+0.003 0.969+0.078 1.002+0.072 0.874+0.016 5 x 107

also compare the wall-clock time for inference on 30K samples for a trained PITA model as well as
classical baselines, SMC and PT. The training time for PITA on ALDP is 564.3 minutes. We note
that PITA is roughly an order of magnitude faster than PT and two orders of magnitude faster than
SMC after amortization. Therefore, the wall time breakeven point is around 120k samples vs. SMC
and 300k samples vs PT for PITA.

Table 5: Inference time for 30k samples on ALDP

Time (min)
PITA 4.7
SMC 139.2
PT 59.5

F Additional Results

In Table 6, we report the Effective Sample Size (ESS) during PITA inference when importance
weights are accumulated without SMC-based resampling on the ALDP dataset. The values are
computed using 30000 samples for each of the temperature annealing steps. Note that these results
correspond to a purely importance sampling-based setting (AIS) and thus differ from the full SMC
formulation employed in PITA. The relatively low ESS values with AIS underscore the necessity
of resampling for maintaining particle diversity and numerical stability. Additionally, we visualize
the ESS as a function of the integration time during inference in Fig. 10. The results indicate that
most of the ESS variation occurs at the early stages ¢ < 0.5 (i.e., at higher noise levels), after which
the ESS stabilizes. These findings suggest possible avenues for future work, such as exploring drift
modifications aimed at reducing the variance of the importance weights.

G Ablation Studies

To evaluate the impact of our design choices, we perform a series of ablation studies examining:
(1) the effect of annealing to 300K using different temperature jump sizes, (2) the choice of the
v¢ schedule, and (3) the role of resampling and different loss components, as well as comparing
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Table 6: Log effective sample size (ESS) values without resampling for each temperature annealing step
calculated across 30k samples on ALDP

Ty to Ts ESS (x10~%)
200K to 755.95K 277
755.95K to 555.52K 8.66
555.52K to 300K 3.79

810

E% 1077

E 1078

S e

0.2 ©.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Integration time

Figure 10: Log effective sample size (ESS) over integration time during inference.

out method with a simple classifier-free guidance approach. The temperature jump size ablation is
performed for both ALDP and AL3, while the remaining studies are conducted on ALDP.

Temperature Jump Sizes in Annealing. To evaluate the effectiveness of the progressive annealing
schedule, we compare the performance of models where the system is annealed from different starting
temperatures to 300K. For ALDP, skipping intermediate temperatures has the most pronounced
impact on energy distribution metrics, as shown in Table 7a and Fig. 12a. In the case of AL3, we
find that sequential training is essential for reliably capturing all modes at the lower temperature,
as illustrated in Fig. 11b. However, energy metrics degrade, likely due to small deviations in the
sampled buffers at each annealing step, which accumulate over time. Accurately capturing the energy
distribution in the sampled buffers at each intermediate temperature appears to be more difficult for
ALS3, which may contribute to the observed degradation. Nonetheless, capturing the correct modes
remains a key priority, as modes lost during training are difficult to recover later. In contrast, mild
deviations in the energy distribution can often be corrected through short MD relaxation steps, as
demonstrated in Section 5.1.

v¢ schedule. We analyze the effects of using different schedules for time-dependent 7, during
inference. In particular, we annneal from 555.52K to 300.0K using a constant schedule, a linear
schedule which linearly increases from v = 1 to v = 1.85, and a sigmoid schedule again, increasing
from v = 1 to v = 1.85. Table 8 shows that the linear schedule generally performs best across
the different evaluation metrics. It achieves the lowest values on the TICA metrics, while showing
comparable performance to the sigmoid schedule on the energy-based metrics.

Resampling, Energy Pinning Loss, and Classifier Free Guidance. To evaluate the impact of
resampling on sample quality, we perform inference from 556K to 300K without applying resampling.
Across all metrics, we observe that resampling consistently improves performance. To assess the
roles of the energy pinning loss and classifier-free guidance, we retrain a model for the 556K to
300K transition with each component removed. Omitting the energy pinning loss results in a slight
improvement in TICA metrics but leads to a noticeable decline in energy metrics, indicating that the
loss plays an important role in maintaining accurate energy distributions. Finally, we train a diffusion
model on the data generated from PITA at 555.52K, and anneal to 300K simply by scaling the score
by ~ (similar to classifier-free guidance approaches). This approach shows mixed results, offering no
consistent improvement over MD-Diff (which is directly trained on samples at 300K) and performing
below the level of PITA in all metrics.
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Table 7: Effect of different starting temperatures on annealing performance for ALDP and AL3, evaluated at the
final temperature of 300K.

(a) ALDP.

Tica-W; | Tica-Ws | Energy-W; |  Energy-Wo |  T-Ws |
TrtoTs
1200K to 300K 0.100 £+ 0.004 0.297 + 0.019 6.438 +0.024 6.531 +0.021 0.301 4 0.023
755.95K to 300K 0.180 £ 0.002 0.611 £0.003 5.639 £0.072 5.683 £0.070 0.358 £ 0.018
555.52K to 300K 0.121 +£0.004 0.404 +0.019 1.541 £+ 0.009 1.619 £+ 0.010 0.270 + 0.023

(b) AL3.

Tica-W | Tica-Ws | Energy-W; | Energy-Ws | T-Ws |
TrtoTs
1200K to 300K 0.291 +0.005 0.558 +£0.003 0.521 +0.122  0.597 £ 0.110  1.351 +0.014
755.95K to 300K 0.234 +0.009 0.663 £0.019 17.147 £0.105 17.429 +£0.107 0.751 £ 0.006
555.52K to 300K 0.158 + 0.004  0.329 + 0.025 40.222 +0.198 40.978 4+ 0.208  0.621 + 0.038

1200K to 300K 756K to 300K 555K to 360K

MD Samples
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Figure 11: TICA plot of ALDP and AL3 samples obtained via annealing from various starting temperatures to
300K.

Table 8: +: schedule ablation on ALDP.

Tica-Ws | Tica-Ws | Energy-W; | Energy-W, | T-W, |

7 Schedule

Constant 0.115£0.005 0.389 +0.014 1.485+0.100 1.584 4+0.095 0.258 + 0.030
Linear 0.095 £ 0.009 0.243 +0.048 1.453 £0.099 1.5554+0.099 0.275 + 0.058
Sigmoid 0.113 £0.009 0.339 +0.046 1.443 + 0.087 1.550 + 0.087 0.345 + 0.027

Table 9: Additional Ablation Results on ALDP.
Tica-W; | Tica-Ws | Energy-W; | Energy-W, | T-Wh |

PITA 0.121 £0.004 0.404 £0.019 1.541 £ 0.009 1.619 £+ 0.010 0.270 £ 0.023
w/o resampling 0.140 £ 0.007  0.452 +£0.027 1.606 £+ 0.094 1.676 £ 0.075 0.363 £ 0.023
w/o energy pinning loss  0.098 £ 0.012  0.291 £ 0.065 4.709 £ 0.091 4.722 +0.090 0.219 + 0.021
MD-Diff + CFG 0.137 £0.007 0.446 +0.029 8.106 +0.025 8.190 £ 0.026 0.383 £ 0.042
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Figure 12: Energy distributions of ALDP and AL3 samples obtained via annealing from various starting
temperatures to 300K. The model is trained on ground-truth MD samples at 1200K, and on annealed intermediate
samples at 755.95K and 555.52K — the latter being our default training setting.

Table 10: Metrics across temperatures

Temperature  Model Tica-W; | Tica-Ws | Energy-W; | Energy-W, | T-Ws |
755.95K PITA 0.024 +0.004 0.125 £ 0.021 2.855+0.083  2.886 £0.079  0.134 + 0.013
: TA-BG 0.040 +£0.002 0.178 £0.008  2.065 £ 0.044  2.140 £ 0.042  0.355 £ 0.007
555 50K PITA 0.141 + 0.001 0.836 + 0.004  1.420 +0.030  1.430 £ 0.027  0.219 + 0.015
’ TA-BG 0.337 £0.009 0.967 £ 0.013 48.486 +0.042 56.897 +0.059 1.135 + 0.004
300K PITA  0.112 £ 0.006 0.379 +0.028 1.530 + 0.068  1.615 + 0.053  0.270 + 0.023
TA-BG 0.219+£0.013 0.685+0.034 83.457 £0.070 86.176 +0.104 0.979 +0.012

H Training Dynamics Across Temperatures

In this section, we analyze the performance of the models (PITA and TA-BG) across different
temperatures during annealing toward the target temperature on ALDP. Table 10 presents quantitative
metrics, demonstrating that PITA consistently achieves lower discrepancies across all temperatures.
Additionally, Figure 13 shows the Ramachandran plots at temperatures, further illustrating the
ability of the model to generate physically realistic samples that capture the temperature-dependent
conformational landscape at each step of the annealing process. TA-BG demonstrates reasonable
performance at 755.95K when initialized with ground-truth samples, reflecting its ability to model
high-temperature distributions under ideal conditions. Howeyver, its performance deteriorates when
transitioning to lower temperatures using recursively generated samples for importance sampling,
indicated by the mode collapse in the Ramachandran plots, where the conformational diversity sharply
diminishes.

I Additional Experimental Details

I.1 Parameterization Details

PITA. For LJ-13, we use equal loss weights for energy pinning, denoising score matching, and EBM
distillation. We use the noise schedule of Karras et al. (2022), with the following parameters: o i, =
0.05, omax = 80 and p = 7. The model uses EGNN (Satorras et al., 2021) with approximately
90k parameters, consisting of three layers and a hidden dimension of 32. For ALDP and ALS3, the
energy pinning, denoising score matching, and EBM distillation components of the loss are weighted
equally at 1.0, with an additional target score matching loss weighted at 0.01. We use the same noise
schedule as the LJ-13 experiment, using a smaller o,;,, of 0.01. We use DiT (Peebles and Xie, 2023)
comprising six layers and six attention heads, with a hidden size of 192 and a total of roughly 12
million parameters. All models are trained with a learning rate of 1 x 10~3 without any weight
decay. For ALDP and AL3, we use Exponential Moving Average (EMA) with a decay rate of 0.999,
updating every gradient step.
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samples. We compare the samples from PITA and TA-BG with the ground-truth MD samples.
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MD-Diff. We train the diffusion model on the MD trajectories generated at the target temperature.
This serves as a strong baseline, since we have direct access to the ground-truth samples, unlike PITA
and TA-BG. To ensure a controlled comparison, the length of the MD chain used to train the diffusion
model is chosen such that the total number of energy evaluations matches the computational budget
used to train PITA over all annealing steps. We provide further analysis on the mixing properties of
different lengths of MD chains at low and high temperatures in Appendix D. We use a oy, value of
0.005, while keeping the rest of the model hyperparameters the same as PITA.

TA-BG. In Schopmans and Friederich (2025), TA-BG trains a normalizing flow by minimizing the
reverse Kullback—Leibler (KL) divergence at high temperature and progressively refining the model
via importance sampling as the temperature is annealed toward the target distribution. We carefully
adapt their training pipeline to ensure a consistent and fair comparison. Specifically, we initialize the
training with ground-truth MD data rather than learned high-temperature samples, represent molecular
configurations in Cartesian rather than internal coordinates, and use the same temperature annealing
schedule as PITA. We use TarFlow (Zhai et al., 2025), configured with four meta blocks, each
containing four attention layers and a hidden size of 256, resulting in approximately 12 million param-
eters. We use a learning rate of 1 x 10~* and employ 60,000 samples at the end of training for each
temperature to compute the importance weights used in generating the buffer for the next temperature.

MD-NF. Similarly to MD-Diff, we train the normalizing flow model on the MD trajectories generated
at the target temperature. We use TarFlow with the same model hyperparameters that we used for
training TA-BG.

Score Scaling. We use a Score Scaling baseline which is a simple (but biased) modification to the
score to attempt to sample from a different temperature. Specifically, given a score function s;(z;)
where we would normally sample with the SDE

1+
dry = (atft +¢7 2 & St(xt)) dt + G/ &dWr, 20 ~ qi—o() (56)
we instead sample with
21+ &
dy = —agwe + G su(m) ) dt + GV/&dWa, w0 ~ qi=o (%) (57)

1.2 Metrics

We evaluate model performance using both sample-based metrics and metrics that assess energy
distributions. To compare energy distributions between generated samples and ground-truth molecular
dynamics (MD) samples, we compute the 1D 1-Wasserstein and 2-Wasserstein distances on the
energy histograms. For sample-based evaluation, we measure the 2D wrapped 2-Wasserstein distance
of the internal dihedral angles, ¢ and v (denoted as T-),). Additionally, we calculate the 2D
1-Wasserstein and 2-Wasserstein distances between the first two TICA axes of the ground-truth and
generated samples.

1.3 MD Parameters

LJ-13 Parameters. The Lennard-Jones (LJ) potential is an intermolecular potential that models inter-
actions of non-bonding particles. The energy is a function of the interatomic distance of the particles:

6 12
g T T
ELJ = — _m —_ om 58
=5 ;((dij) (dij> > o
where the distance between two particles ¢ and j is d;; = lx; — xjl|2 and 7, ¢, € and coq are

physical constants. As in Kohler et al. (2020), we also add a harmonic potential to the energy so
that EL7=system — LI (1) + ¢,,.£°%¢ () This harmonic potential is given by:

1
£7(x) = 5 > e — zcoml|? (59)

where zcow 1s the center of mass of the system. We use r,, = 1, ¢ =1, ¢ = 2.0 and ¢ = 1.0. For
the LJ-13 dataset, we draw MCMC chains using the No-U-Turn-Sampler (NUTS) (Hoffman and
Gelman, 2014)
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Alanine Parameters. For MD data on ALDP and AL,3, we run two chains one for training and one
for test. We use the same simulation parameters for both. For training data we sample shorter chains
more frequently (every 100 md steps). To conserve disk space for long test chains, we save every 10k
steps. Further parameters can be found in Table 11 and Table 12.

Table 11: OpenMM simulation parameters.

Force field amber-14

Integration time step 1 fs

Friction coefficient ~ 0.3ps™!

Temperature 300K

Nonbonded method  CutoffNonPeriodic
Nonbonded cutoff 2nm

Integrator LangevinMiddleIntegrator

Table 12: Training and evaluation dataset parameters.

Train  Test

Burn-in period 50ps  50ps
Sampling interval 0.1ps 10ps
Simulation time 50ns  lpus

J Pseudocode

In this section we provide Python pseudocode for easy of understanding and reimplementation.

def resampled_inference(x0O, T, score_model, energy_model, gamma, a,
zeta, xi):
xt = x0
dt =1/ T
for t in linspace(0,1,T+1) [:-1]:
# Define variables
st = score_model (xt, t)
ut = energy_model(xt, t)
grad_Ut = grad(ut, xt)
dUt_dt = grad(ut, t)
# Equation (11)
drift = (-a(t) * xt) + zeta(t)**2 / 2 * (st - gamma * xi(t) =*
grad_Ut)
diffusion = zeta(t) * sqrt(xi(t)) * randn_like(xt)
xt += drift * dt + diffusion * sqrt(dt)
# Equation (12)
dA = div(xt) * zeta(t) ** 2/ 2 - gamma * grad_Ut *x ((-a(t) *
xt) + zeta(t) **x 2 / 2 % st) - gamma * dU_dt
At = dA * dt
# Resample xt proportional to At with quasi monte carlo
xt = resample(xt, At)
return xt

Listing 1: Python implementation of resampled inference.

K Extended Related Work

Annealed Importance Sampling. In the context of AIS (Jarzynski, 1997; Neal, 2001), SMC
samplers (Del Moral et al., 2006) and parallel tempering (Swendsen and Wang, 1986), our method
reduces the number of energy evaluations by learning the models of intermediate marginals. Indeed,
when the buffer of samples from the current temperature is sampled, training of the diffusion model
does not require new energy evaluations (note that the gradients for target score matching can be
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cached). Thus, the only time we need to evaluate the energies is for the importance sampling at the
final step of the inference-time annealing and for the collection of samples via MCMC at a high
temperature. Obviously, for sampling from the target density 7(x), the trained diffusion model, unlike
AIS, allows producing uncorrelated samples without restarting the chain from the prior distribution.
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