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ABSTRACT

Multi-Objective Reinforcement Learning (MORL) extends standard RL by opti-
mizing policies over multiple and often conflicting objectives. Although max-min
scalarization has emerged as a powerful approach to promote fairness in MORL,
it has limited applicability, especially when handling heterogeneous objectives
or incorporating constraints. In this paper, we propose a unified framework for
constrained MORL that combines the max-min criterion with constraint satisfac-
tion and generalizes prior formulations such as unconstrained max-min MORL
and constrained weighted-sum MORL. We establish a theoretical foundation for
our framework and validate our algorithm through a formal convergence analy-
sis and experiments in tabular environments. We further extend it to practical
applications, including simulated edge computing resource allocation and loco-
motion control, demonstrating our framework’s capability to address fairness and
constraint handling in multi-objective decision-making.

1 INTRODUCTION

Reinforcement Learning (RL) is a powerful machine learning framework that enables an agent to
learn optimal decision-making strategies through interaction with an environment. In recent years,
Multi-Objective Reinforcement Learning (MORL) has gained significant interest because many
real-world control problems inherently involve multiple, often conflicting objectives (Roijers et al.,
2013; Yang et al., 2019; Hayes et al., 2022; Basaklar et al., 2023; Park et al., 2024; Park & Sung,
2025). MORL extends standard RL to handle simultaneous optimization of multiple objectives.

A common strategy in MORL involves optimizing a scalarized function defined over multiple
objective returns (Roijers et al., 2013; Hayes et al., 2022). This framework seeks to identify a policy
π that maximizes a scalarized value f(J1(π), . . . , JK(π)), where each Jk(π) represents the expected
discounted return for the k-th objective among K(≥ 2) objectives, and f : RK → R is a non-
decreasing scalarization function such that Jk(π) ≥ Jk(π

′), 1 ≤ k ≤ K ⇒ f(J(π)) ≥ f(J(π′)).
Thus, f plays a key role in imposing the designer’s preference among multiple objectives.

Although much of the MORL literature employs a linear f (that is, the weighted sum:
maxπ

∑K
k=1 wkJk(π)) due to its simplicity, the weighted sum does not always accurately rep-

resent the preference of a designer, especially regarding fairness among objectives (Hayes et al.,
2022; Park et al., 2024). For instance, imagine a traffic light system managing an intersection where
several roads converge with asymmetric arrival rates. Instead of simply aiming to reduce the total sum
waiting time for all vehicles across the roads, the designer could prioritize fairness by minimizing the
longest individual waiting time among the roads. This helps reduce localized congestion (Raeis &
Leon-Garcia, 2021) and avoid severe delays for individual drivers.

Fairness-driven objectives frequently arise in real-world scenarios and are addressed using scalariza-
tion methods beyond the standard weighted sum, such as max-min optimization or proportionally
fair optimization (Khan et al., 2016) in MORL. While proportionally fair optimization, expressed
as maxπ

∑K
k=1 wk log Jk(π), is relatively straightforward to solve due to the smoothness and dif-

ferentiability of the log function, max-min optimization presents greater challenges because of its
non-differentiability and non-linearity. Recently, Park et al. (2024) proposed an algorithm to explicitly
address the max-min objective in MORL using Gaussian smoothing (Nesterov & Spokoiny, 2017).
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Although max-min optimization in MORL is a powerful tool with broad applicability (Regan &
Boutilier, 2010; Zehavi et al., 2013; Saifullah et al., 2014; Wang et al., 2019; Chakraborty et al., 2024),
the standard framework lacks flexibility for diverse problem types. First, it is primarily designed
to ensure fairness across homogeneous objectives, but applying max-min fairness to heterogeneous
objectives, such as velocity and energy consumption in locomotion, is inappropriate due to their
differing units and nature. In our context, two physical quantities are considered heterogeneous if they
have different units. In such cases, one may maximize the minimum of homogeneous objectives while
requiring other objectives to remain above certain thresholds. Second, many real-world problems
inherently involve constraints that must be satisfied from the outset. For example, in resource
allocation, a MORL-based scheduler may aim to maximize throughput and fairness across task
queues under a strict power consumption constraint. Incorporating constraints into the max-min
MORL framework thus significantly broadens its practical applicability.

In this paper, we propose a novel framework for constrained MORL that incorporates max-min
fairness. Our approach is capable of satisfying constraints while simultaneously maximizing the
max-min objective. We present a detailed theoretical basis for our algorithmic design. Moreover,
our framework generalizes previous frameworks in MORL, including the original max-min MORL
formulation (Park et al., 2024) and constrained weighted-sum MORL (Huang et al., 2021). Our main
contributions are summarized as follows:

•We introduce a unified framework for constrained MORL that integrates the max-min criterion
and establishes its theoretical foundations, including differentiability, twice-differentiability, and
smoothness of our objective function.

• We propose an iterative algorithm for constrained max-min MORL, accompanied by a formal
convergence analysis. We empirically assess its convergence in tabular environments.

•We further establish the practical relevance of our method by applying it to edge computing resource
allocation and locomotion control, demonstrating its effectiveness in real-world inspired scenarios.

2 BACKGROUND

A multi-objective Markov decision process (MOMDP) is represented as ⟨S,A, T, µ0, r, γ⟩, where
S and A are the sets of states and actions, respectively, T represents the transition probability
distribution, µ0 specifies the initial state distribution, and γ ∈ [0, 1) is the discount factor. The reward
function r : S × A → RK+L, K ≥ 1, L ≥ 0 is vector-valued with its k-th element denoted by
r(k) (1 ≤ k ≤ K + L) such that |r(k)| ≤ r

(k)
max, where K + L is the total number of objectives. At

each timestep, the agent selects an action a in the current state s according to its (stationary) policy
π : S → P(A), where P(A) represents the set of probability distributions in the action space A.
The occupancy measure is defined as ρ(s, a) :=

∑
s′ µ0(s

′)
∑∞

t=0 γ
tPr(st = s, at = a|s0 = s′, πρ)

where πρ is the corresponding stationary policy induced by ρ, expressed as πρ(a|s) = ρ(s,a)∑
a′ ρ(s,a′)

(Puterman, 1994). Then, the vector return evaluated by πρ is given by

J(πρ) := [J1(π
ρ), · · · , JK+L(π

ρ)]⊤ = Eπρ

[ ∞∑
t=0

γtrt

]
=
∑
(s,a)

r(s, a)ρ(s, a) ∈ RK+L. (1)

3 CONSTRAINED MAX-MIN MORL FRAMEWORK

3.1 THEORETICAL FOUNDATION

We consider constrained MORL, where the last L of the total K +L objectives should satisfy certain
constraints. For theoretical development in this section, we assume that S and A are finite. The
problem is formulated as follows:

max
πρ

f(J1(π
ρ), · · · , JK(πρ)) + β

∑
s

Hρ(s)ρ(s) (2)

s.t. JK+l(π
ρ) ≥ C(l), l = 1, · · · , L (3)

where Hρ(s) := −
∑

a π
ρ(a|s) log πρ(a|s) is the entropy of πρ(·|s), ρ(s) :=

∑
a ρ(s, a) is the

stationary state distribution in S , β > 0 is a balancing coefficient, and {C(l)}Ll=1 is a set of threshold
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values. We assume a mild condition that the set {C(l)}Ll=1 is chosen by the designer such that
the optimization in equation 2 and equation 3 is feasible, an assumption commonly made in the
constrained MDP literature (Tessler et al., 2018; Ha et al., 2020).

In this paper, we set f the minimum function, i.e., f(J1(π
ρ), · · · , JK(πρ)) =

min(J1(π
ρ), · · · , JK(πρ)). We note that the entropy term is included in equation 2 to pro-

mote exploration and eliminate the indeterminacy of the max-min solution without the entropy
term (Park et al., 2024). The problem reduces to the unregularized formulation as β → 0, with the
optimality gap decreasing linearly:

Proposition 3.1. The gap between the optimal max-min value of the unregularized problem and that
of the regularized problem in equation 2 and equation 3 with f = min is upper bounded by β log |A|

1−γ .
(Proof: See Appendix A.)

Proposition 3.1 shows that the regularized problem is a valid approximation of the unregularized
criterion. Since directly optimizing equation 2 and equation 3 with f = min and Jk(π

ρ) =

Eπρ [
∑∞

t=0 γ
tr

(k)
t ] is non-trivial due to its non-differentiable and non-linear structure, we address this

challenge using the occupancy measure (i.e., stationary distribution (Puterman, 1994)) formulation.
The above optimization problem with f = min can be rewritten as

max
ρ≥0

min
1≤k≤K

(∑
(s,a)

r(k)(s, a)ρ(s, a)

)
+ β

∑
s

Hρ(s)ρ(s) (4)

∑
a′

ρ(s′, a′) = µ0(s
′) + γ

∑
(s,a)

T (s′|s, a)ρ(s, a), ∀s′ (5)

∑
(s,a)

c(l)(s, a)ρ(s, a) ≥ C(l), l = 1, · · · , L (6)

where equation 5 is the Bellman flow equation for the occupancy measure (Puterman, 1994). Here,
we use the notation c(l)(s, a) := r(K+l)(s, a), l = 1, · · · , L to explicitly represent the dimensions
associated with the constraint. These quantities can be true rewards or negative of costs. Then the
formulation in equation 4, equation 5, and equation 6 constitutes a convex optimization problem.
Now we derive a convex optimization equivalent to the dual problem of equation 4, equation 5, and
equation 6, which serves as the foundation for our subsequent model-free applications (Section 5.2),
as stated in the following proposition.

Proposition 3.2. The dual problem of equation 4, equation 5, and equation 6 is equivalent to the
following convex optimization problem:

min
u∈RL

+,w∈∆K
L(u,w) =

∑
s

µ0(s)v
∗
u,w(s)−

L∑
l=1

ulC
(l) (7)

where RL
+ := {u ∈ RL|ul ≥ 0, 1 ≤ l ≤ L}, ∆K := {w ∈ RK |

∑K
k=1 wk = 1; wk ≥ 0, 1 ≤ k ≤

K}, i.e., the (K − 1)-dimensional simplex, and v∗u,w is the fixed point of the operator Tu,w:

[Tu,wv](s) = β log
∑
a

exp[
1

β
{

L∑
l=1

ulc
(l)(s, a)+

K∑
k=1

wkr
(k)(s, a)+γ

∑
s′

T (s′|s, a)v(s′)}], ∀s. (8)

(Proof: See Appendix B.)

Strong duality holds if there exists an occupancy measure ρ such that ρ(s, a) > 0, ∀(s, a) and the
constraints in equation 6 are satisfied with strict inequalities, assumptions commonly used in RL (Lee
et al., 2021) and constrained RL settings (Tessler et al., 2018; Ha et al., 2020).

Proposition 3.2 hints that v∗u,w can be obtained via soft value iteration in equation 8 and the weights
u and w can be obtained by minimizing the loss L(u,w) in equation 7 by some method. In addition,
in equation 8, we observe that the constrained reward c(l), l = 1, · · · , L can be handled without
distinction from the unconstrained reward r(k), k = 1, · · · ,K. Note that both rewards appear as a
weighted sum in equation 8, enabling a unified framework for constrained and unconstrained MORL.
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However, solving the optimization problem equation 7 directly is non-trivial because the fixed point
v∗u,w in equation 8 does not have a closed-form expression in terms of (u,w). To address this issue,
we derive the key properties of v∗u,w. For given (u,w), we define

Q∗
u,w(s, a) :=

L∑
l=1

ulc
(l)(s, a) +

K∑
k=1

wkr
(k)(s, a) + γ

∑
s′

T (s′|s, a)v∗u,w(s′), (9)

and define a policy π∗
u,w as

π∗
u,w(a|s) =

exp( 1βQ
∗
u,w(s, a))∑

a′ exp( 1βQ
∗
u,w(s, a

′))
. (10)

Then, π∗
u,w is an optimal policy for the entropy-regularized RL (Haarnoja et al., 2017) with a scalar

reward function
∑L

l=1 ulc
(l)(s, a) +

∑K
k=1 wkr

(k)(s, a). Furthermore, regarding the relationship
between π∗

u,w and the gradient of v∗u,w, we have the following theorem:

Theorem 3.3. For each s, v∗u,w(s) is differentiable w.r.t. (u,w) ∈ RL+K , and its gradient
∇v∗u,w(s) = [∇uv

∗
u,w(s)

⊤,∇wv
∗
u,w(s)

⊤]⊤ has the form of

∇uv
∗
u,w(s) = v

π∗
u,w

c (s) and ∇wv
∗
u,w(s) = v

π∗
u,w

r (s), (11)

where v
π∗
u,w

c (s) ∈ RL and v
π∗
u,w

r (s) ∈ RK are the value functions evaluated with the policy π∗
u,w for

the constrained reward c(l) and the unconstrained reward r(k), respectively. (Proof: See Appendix
C.)

Theorem 3.3 implies that the objective function L(u,w) in equation 7 is differentiable with respect to
(w.r.t.) (u,w), and enables us to apply gradient descent to solve the optimization with the gradient
(∇vv

∗
u,w(s),∇wv

∗
u,w(s)) combined with value iteration.

It is surprising but makes sense that the gradient∇v∗u,w(s) is expressed as the value function (which is
a vector quantity) evaluated with the policy π∗

u,w. First, consider the constrained part. Due to Theorem

3.3, the derivative of L(u,w) in equation 7 is given by
∑

s µ0(s)v
π∗
u,w

c (s) − [C(1), · · · , C(L)]⊤.
Hence, if the value of the l-th constrained dimension is larger than C(l), then the l-th component of
the gradient is positive, gradient descent will decrease the weight ul, and hence c(l) is less weighted
in the value iteration in equation 8. Otherwise, the opposite happens. In this way, the constraints on
the constrained dimensions are satisfied with gradient descent.

Regarding the unconstrained reward part, the gradient is given by
∑

s µ0(s)v
π∗
u,w

r (s). Hence, for
the dimension of a smaller value, we have a smaller reduction in wk by gradient descent to yield a
larger wk. Therefore, the dimensions with smaller values are weighted more in the value iteration in
equation 8 to realize the max-min principle.

We now establish the twice-differentiability of v∗u,w to derive its Hessian. This step is crucial for
establishing the smoothness of the objective function, which in turn is critical for analyzing the
convergence of our algorithm in Section 3.2.
Theorem 3.4. For each s, v∗u,w(s) is twice-differentiable w.r.t. (u,w) ∈ RL+K . Let |S| = p, and
suppose the states are enumerated as {s1, · · · , sp}. Then, the (L+K)× (L+K) Hessian matrix
H[v∗u,w(sk)], 1 ≤ k ≤ p, has the form of

H[v∗u,w(sk)] =
1

β

p∑
l=1

[(Ip − γTπ∗
u,w)−1]klB

π∗
u,w(sl). (12)

Here, Ip is the p×p identity matrix; Tπ∗
u,w is a p×p matrix of which i-th row and j-th column element

is given by [Tπ∗
u,w ]ij = Ea∼π∗

u,w(·|si)[T (sj |si, a)] (1 ≤ i, j ≤ p); [(Ip − γTπ∗
u,w)−1]kl denotes the

k-th row and l-th column element of (Ip − γTπ∗
u,w)−1; Bπ∗

u,w(s) = Ea∼π∗
u,w(·|s)

[
(Qπ∗

u,w(s, a) −

Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′)])(Qπ∗

u,w(s, a)− Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′)])⊤

]
∈ R(L+K)×(L+K); and

Qπ∗
u,w(s, a) ∈ RL+K is the value function evaluated with the policy π∗

u,w. (Proof: See Appendix D.)
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Due to Theorem 3.4, the objective function L(u,w) in equation 7 is twice-differentiable w.r.t. (u,w).
Note that Qπ∗

u,w(s, a) in Theorem 3.4 is different from Q∗
u,w(s, a) in equation 9. By definition in

the entropy-regularized RL, Q∗
u,w(s, a) ∈ R is the cumulative scalarized return plus the cumulative

entropy sum from π∗
u,w. On the other hand, Qπ∗

u,w(s, a) ∈ RL+K is a vector-valued cumulative sum
of unconstrained rewards and constrained rewards from π∗

u,w without the entropy sum. Therefore,
[u;w]⊤Qπ∗

u,w(s, a) equals to Q∗
u,w(s, a) minus the cumulative entropy sum of π∗

u,w.

A natural approach to solving the convex optimization problem in equation 7 is projected gradient
descent, since the variables (u,w) lie in the convex set RL

+ ×∆K . The convergence of projected
gradient descent depends on the smoothness of the objective function (Boyd & Vandenberghe, 2004;
Bubeck, 2015). In our case, L(u,w) satisfies the following smoothness property:

Theorem 3.5. For each s, v∗u,w(s) is smooth w.r.t. (u,w) on RL+K . In other words, ∇v∗u,w(s)
is Lipschitz continuous in ∥ · ∥2. Furthermore, L(u,w) is α-smooth w.r.t. (u,w) on RL+K with

α := 1
β(1−γ)

∑L+K
m=1

(
r(m)

max
1−γ

)2
. (Proof: See Appendix E.)

3.2 ALGORITHM AND CONVERGENCE ANALYSIS

Based on the foundation built in the previous section, we propose an algorithm for constrained MORL
with max-min fairness. Note that we need to jointly update the weights (u,w) and the value function,
which approximates v∗u,w. We adopt the following update method alternating between update of the
value function and the weights (u,w).

First, given a weight (u,w), we update the value function to realize equation 8. For this, we use an
action value function Q, which approximates Q∗

u,w. Using the soft Bellman equation (Haarnoja et al.,
2017), the action value function Q∗

u,w in equation 9 is written as Q∗
u,w(s, a) =

∑L
l=1 ulc

(l)(s, a) +∑K
k=1 wkr

(k)(s, a) + γ
∑

s′T (s
′|s, a)v∗u,w(s′), ∀(s, a). If we plug this equation into the right-hand

side of equation 8, we have v∗u,w(s) = [Tu,wv∗u,w](s) = β log
∑

a exp
(

Q∗
u,w(s,a)

β

)
for each s. Using

this form of v∗u,w(s), we implement applying Tu,w as updating the Q-function with the following:

Q(s, a)← [u;w]⊤[c; r] + γ
∑
s′

T (s′|s, a)β log
∑
a′

exp

(
Q(s′, a′)

β

)
, ∀(s, a). (13)

We have shown that ∇uv
∗
u,w(s) = v

π∗
u,w

c (s), ∇wv
∗
u,w(s) = v

π∗
u,w

r (s) for each s, where we denote

v
π∗
u,w

c (s) ∈ RL, v
π∗
u,w

r (s) ∈ RK as the value functions evaluated with the policy π∗
u,w for con-

strained reward c and unconstrained reward r, respectively. We compute an estimated gradient of
∇(u,w)L(u,w) at the current weight (u,w) = (um, wm) where m = 1, 2, · · · is the iteration index.
Note that the policy is extracted from the Q-function based on the form equation 10. We then update
(u,w) using projected gradient descent:

(um+1, wm+1) = PK,L[(u
m, wm)− lw∇(u,w)L(um, wm)] (14)

where lw is a learning rate for (u,w) and PK,L[·] is the projection onto the RL
+ ×∆K . We use the

convex optimization method from Wang & Carreira-Perpiñán (2013) to project onto the simplex
∆K , and apply non-negativity clipping for projection onto RL

+. Note that the projection onto ∆K

is numerically stable as it is fully deterministic and avoids randomized procedures. In addition,
its complexity is O(K logK) (Wang & Carreira-Perpiñán, 2013) which is relatively lightweight
compared to other components, due to the sublinear growth of the logarithmic term.

We iterate this process for each m, and the pseudocode of our algorithm is shown in Algorithm 1. We
now provide our convergence analysis of Algorithm 1 under the following assumption.

Assumption There exists at least one state s ∈ S such that the centered action-value vectors in the set
Scenter(s) :=

{
Qπ∗

u,w(s, a)− Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′) ] : a ∈ A

}
span RK+L.

This condition fails only in degenerate multi-objective settings when for every state s ∈ S, the set
Scenter(s) lies entirely within an affine subspace of dimension less than K+L. Under this assumption,

5
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Algorithm 1 Constrained Max-Min MORL Algorithm

1: Q0 ∈ R|S||A|: initialized Q-function, ITER: total iteration number, lw: learning rate for the
update of weights (u,w)

2: Initialize weights u0 ∈ RL
+ and w0 ∈ ∆K .

3: for m = 1, 2, · · · , ITER do
4: Q = Qm−1

5: while not terminated do
6: Update Q in equation 13 with [u;w] = [um;wm].
7: end while
8: Qm = Q
9: Compute ∇̃(u,w)L(um, vm), an estimated gradient of ∇(u,w)L(um, wm) using πm(·|s) =

softmax{Qm(s, ·)/β} based on equation 11.
10: (um+1, wm+1) = PK,L[(u

m, wm)− lw∇̃(u,w)L(um, wm)].
11: end for
12: Return π(·|s) = softmax{QITER(s, ·)/β}, ∀s.

the Hessian H[L(u,w)] is positive definite. (See Appendix F.1 for more details.) Let λ denote
the minimum eigenvalue of H[L(u,w)], which satisfies 0 < λ ≤ α (Bubeck, 2015). Theorem 3.6
provides a formal guarantee of convergence for Algorithm 1 under approximate Q-updates.

Theorem 3.6. Let (u∗, w∗) denote the optimal solution to equation 7. For each outer-loop index
m ≥ 1 in Algorithm 1, let Q∗

um,wm denote the fixed point of equation 13 with [u;w] = [um;wm],
and let Qm denote the Q-function after completing the m-th inner-loop update. For each m, assume
∥Qm −Q∗

um,wm∥∞ < ϵ for some ϵ > 0. Then for m ≥ 1,

∥[um;wm]−[u∗;w∗]∥2 ≤ (1− λ

α
)m∥[u0;w0]−[u∗;w∗]∥2+

√
|S|
λ

√√√√K+L∑
i=1

{r(i)max}2
1 + γ

(1− γ)2
ϵ. (15)

(Proof: See Appendix F.2.)

Theorem 3.6 establishes that the error decreases geometrically at rate O
(
(1− λ

α )
m
)
, up to O(ϵ).

(For completeness, Appendix F.3 provides the analysis of the degenerate case without Assumption.)

3.3 DISCUSSION

w fixed w learned
L = 0 Unconst. weight-sum (Yang et al., 2019) Unconst. max-min (Park et al., 2024)
L ≥ 1 Const. weight-sum (Huang et al., 2021) Const. max-min

Table 1: Generalizability of our framework to previous MORL settings

Our new framework is general enough to unify many existing MORL formulations. Note that we have
two major design choices: (i) scalarization strategy: whether the preference vector w on K objectives
used in the scalarization function is fixed or learned/adaptive, and (ii) whether constraints are present.
Table 1 shows four different setups of our framework. Our framework covers unconstrained weight-
sum MORL with L = 0 and fixed w, constrained weighted-sum MORL with L ≥ 1 and fixed w,
unconstrained max-min MORL with L = 0 and w learning, and finally constrained max-min MORL
with L ≥ 1 and w learning.

4 RELATED WORK

The dominant approach in MORL is utility-based (Roijers et al., 2013; Hayes et al., 2022), where the
goal is to determine an optimal policy π∗ = argmaxπ f(J(π)) given a non-decreasing scalarization
function f : RK → R. For a linear scalarization function, each non-negative weight vector induces
a scalarized MDP (Boutilier et al., 1999), leading to research efforts focused on learning a single
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network capable of generating multiple optimal policies across the weight space (Abels et al., 2019;
Yang et al., 2019; Basaklar et al., 2023; Hung et al., 2023; Lu et al., 2023; Park & Sung, 2025).
For non-linear scalarization functions, formulating Bellman optimality equations becomes more
complex due to the loss of linearity (Roijers et al., 2013; Hayes et al., 2022). The most relevant work
to this paper is Park et al. (2024), which proposed a tractable approach to max-min MORL using
Gaussian smoothing for gradient estimation. However, this method requires multiple network copies,
which leads to an increased computational cost. Moreover, this method produces inexact gradients
since Gaussian smoothing of a convex function yields a convex upper bound (Nesterov & Spokoiny,
2017). In contrast, our method provides direct, theoretically grounded gradient estimates and extends
naturally to constrained MORL.

Many approaches to constrained MDPs reformulate the problem with a scalar reward (i.e., a special
case of equation 2 and equation 3 with K = 1 and without f ) into an unconstrained one by augmenting
the objective with a weighted sum of constraint violations, typically via a Lagrangian formulation
(Achiam et al., 2017; Tessler et al., 2018; Paternain et al., 2019; Ha et al., 2020; Vaswani et al.,
2022; Calvo-Fullana et al., 2023; Müller et al., 2024). The motivation for this line of work is that
the Lagrangian relaxation exhibits no duality gap, even when the original problem is non-convex
with respect to the policy (Paternain et al., 2019). Most methods in this category, therefore, rely on
alternating updates between the policy and the Lagrange multipliers. However, these approaches do
not consider the multi-objective reward setting in equation 2 and equation 3 with K ≥ 2. Moreover,
applying them directly to our setting is non-trivial, since f = min introduces non-differentiability
in equation 2. To resolve this, we reformulate our problem as a convex program using occupancy
measures and then derive another convex program equivalent to the dual problem, which serves as
the basis for our MORL algorithm. In particular, we show that both the max-min criterion and the
constraints can be satisfied by jointly updating the weights u and w, a simple yet effective approach
that to our knowledge has not been explored in the constrained MDP literature.

Several recent works have incorporated constraints into MORL (Huang et al., 2021; Lin et al., 2024;
Liu et al., 2025), but under settings different from our framework, which explicitly integrates max-min
optimization. See Appendix G for details of these works.

5 EXPERIMENTS

In this section, we present experimental validations of our theoretical analysis and algorithm. Section
5.1 examines the convergence properties of our method in tabular settings. In Section 5.2, we further
demonstrate the practical relevance of our approach through applications to edge computing resource
allocation and multi-objective locomotion control.

5.1 TABULAR SETTINGS

We conducted experiments in tabular settings to evaluate the convergence of our algorithm. Con-
strained MOMDPs were randomly generated, after a feasibility check, within two widely used classes
of structured MDPs. (See Appendix H.1 for details on the feasibility check.) First, bipartite state
graphs partition the state space into two disjoint subsets, enforcing transitions between them at
alternating time steps. This structure captures temporal dynamics in systems with role alternation
or interleaving phases (Littman, 1994). Second, hierarchical MDPs organize the state space into
multiple levels or stages, where transitions flow sequentially from one level to the next. This reflects
tasks with subgoals or temporal abstraction (Dietterich, 2000).

The optimal value for each MOMDP was computed by solving equation 4, equation 5, and equation 6
with β = 0 via linear programming (LP), and performance was evaluated as the error relative to
these LP-optimal values. We compared our method, which computes ∇uv

∗
u,w(s) and ∇wv

∗
u,w(s)

using Theorem 3.3, against a modified version of the Gaussian smoothing method from Park et al.
(2024). We adapted this baseline to incorporate both max-min weights (w) and constraint weights
(u). Importantly, we selected this baseline because Park et al. (2024) is, to our knowledge, the only
prior work that explicitly tackles max-min MORL. Both methods follow the same alternating update
scheme: (i) updating the policy using equation 13 and (ii) updating the weight vectors using projected
gradient descent, until convergence with respect to (u,w). (See Appendix H.2 for further details on
the baseline and experimental setup.)
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Bipartite Hierarchical
Gaussian Smoothing 0.125± 0.003 0.101± 0.008

Ours 0.005± 0.003 0.003± 0.001

Table 2: Comparison of optimal value errors between algorithms

β 1.0 0.3 0.1 0.03 0.01 0.003 0.001
Bipartite 3.187 0.650 0.086 0.005 0.015 0.027 0.030

Hierarchical 1.559 0.295 0.037 0.004 0.003 0.013 0.013

Table 3: Optimal value errors of our algorithm across different values of β

Table 2 shows that our method consistently outperforms Gaussian smoothing, achieving substantially
smaller errors across both structured MOMDPs. This improvement stems from the fact that Gaussian
smoothing of a convex function produces another convex function that serves as an upper bound
to the original. As discussed in Appendix H.3, the Gaussian smoothing baseline also incurs about
N + 1 times higher computational cost per weight update compared to our method, where N is the
number of perturbed Q-tables used for smoothing. We further analyzed the effect of β on convergence.
Table 3 shows that values of β < 0.1 produce stable convergence with relatively low sensitivity. In
summary, our method is superior in accuracy and computation for constrained max-min optimization
compared to Gaussian smoothing in tabular settings.

5.2 EXTENSION TO APPLICATIONS

In this section, we extend our algorithm to practical applications, specifically simulated edge comput-
ing resource allocation and locomotion control. To ensure stable gradient estimation of our algorithm
in continuous state spaces, we parameterize a gradient network gθ(s) ∈ RL+K to estimate∇uv

∗
u,w(s)

and∇wv
∗
u,w(s), following Theorem 3.3. Implementation details, including gradient estimation and

our constrained max-min algorithm for applications, are provided in Appendix I.1.

5.2.1 EDGE COMPUTING RESOURCE ALLOCATION

We consider a simulated edge computing resource allocation environment (Bae et al., 2020). The
system includes Ntype distinct user application types, and multiple mobile devices generate tasks
according to these types and send them to an edge computing node. The edge computing node
is equipped with multi-core CPUs and maintains Ntype separate task queues, each associated with
a specific application type. Incoming tasks from the mobile devices are sorted into these queues
accordingly. Once tasks arrive, the edge computing node either processes them locally or offloads a
portion to a cloud computing node through a dedicated communication link.

The unconstrained reward is an Ntype-dimensional vector, where each entry corresponds to the negative
value of the current queue length for a given application type to encourage queue minimization.
Minimizing the delay of the worst-performing user group is crucial for maintaining smooth system
operation (Zehavi et al., 2013; Saifullah et al., 2014; Wang et al., 2019). The cost is the total power
consumption of the system, normalized by the environment. The goal is to control the system to
minimize the maximum cumulative discounted sum of queue length across application types within
each episode, while satisfying the system’s power consumption constraint with its designed threshold
value Cth = 5.6. (Additional details of the environment are given in Appendix I.2.)

We compare our algorithm against four baselines: (i) randomly selects one queue for allocation at
each timestep (Random), (ii) unconstrained max-average SAC (MA-SAC) (Haarnoja et al., 2018), (iii)
max-average SAC with a Lagrangian relaxation (MA-SAC-L) (Ha et al., 2020; Yang et al., 2021), and
(iv) unconstrained max-min MORL algorithm adapted from Park et al. (2024) (Max-min). Notably,
each of the baselines lacks either max-min fairness ((iii)), constraint handling ((iv)), or both ((i), (ii)).
We report the mean performance computed across twelve random seeds. (See Appendices I.3 and I.4
for the implementation of the Max-min baseline and hyperparameter settings, respectively.)

Table 4 presents the cumulative cost sum and the total maximum queue length with Ntype = 3.
Compared to the Random baseline, MA-SAC reduces the total maximum queue length but still fails

8
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Algorithm Cost sum Maximum
(Cth = 5.6) queue length (↓)

Random 5.9 72.4
MA-SAC 5.8 46.5
MA-SAC-L 5.6 52.9
Ours 5.6 37.9
Max-min 5.8 23.7

Table 4: Cumulative cost sum and total max-
imum queue length with Ntype = 3: top two
underlined

Figure 1: Comparison of queue length sums
across queues for each algorithm

to satisfy the power consumption constraint, with its cost sum exceeding the threshold Cth = 5.6.
While MA-SAC-L satisfies the power constraint, it does so at the cost of a higher total maximum
queue length compared to MA-SAC. As shown in Figure 1, our method substantially reduces the
total maximum queue length relative to MA-SAC-L, while still adhering to the power constraint. We
note that the Max-min algorithm violates the power constraint.

Algorithm Cost sum Maximum
(Cth = 5.6) queue length (↓)

Ours 5.6 37.9
w/o u update 5.8 33.7
w/o w update 5.5 52.7
w/o (u,w) upd. 5.8 44.7

Table 5: Ablation study with Ntype = 3

Table 5 shows that ablating the constraint-
related u update causes constraint violations,
while removing the max-min-related w update
substantially increases the total maximum queue
length. These results confirm that our method
effectively balances max-min performance with
constraint satisfaction.

In Appendix I.5, we scale the resource alloca-
tion environment to Ntype = 8 task queues and
demonstrate that our method consistently balances max-min performance with constraint satisfaction.

5.2.2 MULTI-OBJECTIVE LOCOMOTION CONTROL

Algorithm Cost sum Minimum
(Cth = 50) return (↑)

Random 146.5 48.2
MA-SAC 275.3 98.8
MA-SAC-L 47.8 83.0
Ours 28.3 92.2
Max-min 111.7 92.7

Table 6: MoAnt-v5 results over five seeds
with the two constraint-satisfying

algorithms highlighted in bold

We include MoAnt-v5 environment (Felten et al.,
2023), where the agent learns locomotion to maximize
x and y velocities while keeping energy consumption
under a threshold. We consider an asymmetric case
where movement in the x direction is attenuated by
friction at rate 0.3. The velocities (vx, vy), combined
with bonus terms, constitute a 2-D reward, while the
control cost is treated as a constraint. (See Appendix
I.6 for details on hyperparameters.)

Table 6 shows that both our method and MA-SAC-L
satisfy the constraints, but our method achieves supe-
rior max-min performance. In contrast, the other three
algorithms severely violate the constraints, as they do not explicitly account for constraint satisfaction.
Overall, our algorithm balances constraint satisfaction and max-min fairness.

6 CONCLUSION

We have proposed a unified framework for constrained MORL that integrates max-min fairness with
constraint satisfaction. Our approach offers flexibility in modeling problems that satisfy fairness
and operational constraints. We established a theoretical foundation and developed an algorithm
that demonstrates strong performance in both tabular settings and practical applications. By jointly
addressing fairness and resource constraints, our work contributes to advancing sustainable AI,
offering a compelling alternative to conventional approaches that focus solely on performance, often
at the expense of equity and resource constraints. A broader impact of our work is discussed in
Appendix J, and a discussion of limitations and future directions is provided in Appendix K.
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REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our algorithm in Section 3.2 and Appendix I.1. Appendices H and
I contain the experimental setup, fine-tuned hyperparameters, and infrastructure details. To ensure
accessibility and reproducibility, we provide the source code for the resource allocation environment
in the supplementary material. Furthermore, all theorems are presented in a self-contained manner,
making it straightforward to verify the theoretical results.
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A PROOF ON OPTIMALITY GAP

Proof. With a slight abuse of notation, let J(π) := [J1(π), · · · , JK(π)]⊤ ∈ RK and letH(π) denote
the expected cumulative entropy of π. We express the optimization of equation 2 and equation 3 with
f = min as follows:

max
π∈Πfeas

min
1≤k≤K

Jk(π) + βH(π) (16)

where Πfeas :=
{
π
∣∣∣Eµ0,π

[∑∞
t=0 γ

tc
(l)
t

]
≥ C(l), ∀l = 1, . . . , L

}
and it is assumed to be non-

empty under the typical assumption in constrained RL (Tessler et al., 2018; Ha et al., 2020).

Let the optimal solution to the regularized problem in equation 16 be π∗
r :=

argmaxπ∈Πfeas min1≤k≤K Jk(π) + βH(π) = argmaxπ∈Πfeas minw⟨w, J(π)⟩ + βH(π) where
minw∈∆K is abbreviated as minw for brevity. Let w∗(π) := argminw⟨w, J(π)⟩ and w∗

r := w∗(π∗
r ).

Let the optimal solution to the unregularized problem be π∗ := argmaxπ∈Πfeas minw⟨w, J(π)⟩ and
w∗ = w∗(π∗). Let the optimal max-min value of the unregularized problem be V π∗

w∗ := ⟨w∗, J(π∗)⟩.
Similarly, let the optimal value of the regularized problem be V

π∗
r

w∗
r
:= ⟨w∗

r , J(π
∗
r )⟩. For simplicity,

we abbreviate maxπ∈Πfeas as maxπ below.

First, a lower bound is derived as follows:

V
π∗
r

w∗
r
+ βH(π∗

r )

= maxπ minw⟨w, J(π)⟩+ βH(π)
≥ minw⟨w, J(π∗)⟩+ βH(π∗)

= ⟨w∗, J(π∗)⟩+ βH(π∗).

Since 0 ≤ H(π) ≤ log |A|
1−γ for any π, we obtain V

π∗
r

w∗
r
− V π∗

w∗ ≥ −β log |A|
1−γ .

Next, an upper bound is derived as follows:

V π∗

w∗

= maxπ minw⟨w, J(π)⟩
≥ minw⟨w, J(π∗

r )⟩
= ⟨w∗

r , J(π
∗
r )⟩.

Thus, V π∗
r

w∗
r
− V π∗

w∗ ≤ 0.

Combining these two bounds, we obtain the optimality value gap ranges as 0 ≤ V π∗

w∗ − V
π∗
r

w∗
r
≤

β log |A|
1−γ .
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B PROOF ON EQUIVALENT OPTIMIZATION

Proof. The dual problem of equation 4, equation 5, and equation 6 is rewritten as follows:

min
u≥0

min
w≥0,v

min
ξ≥0

max
ρ,b

[
b(1−

K∑
k=1

wk)−β
∑
s,a

ρ(s, a)log
ρ(s, a)∑
a′ ρ(s, a′)

+
∑
s

µ0(s)v(s) +
∑
s,a

ξ(s, a)ρ(s, a)−
L∑

l=1

ulC
(l)

+
∑
s,a

ρ(s, a)[

K∑
k=1

wkr
(k)(s, a)+

L∑
l=1

ulc
(l)(s, a) +γ

∑
s′

T (s′|s, a)v(s′)−v(s)]

]
. (17)

Here b is an auxiliary variable satisfying
∑

s,a r
(k)(s, a)ρ(s, a) ≥ b, 1 ≤ k ≤ K. Let ηu,v,w(s, a) :=∑K

k=1 wkr
(k)(s, a) +

∑L
l=1 ulc

(l)(s, a) + γ
∑

s′ T (s
′|s, a)v(s′)− v(s). We apply KKT conditions.

1. Stationarity condition gives

∀(s, a), −β log
ρ(s, a)∑
a′ ρ(s, a′)

+ ξ(s, a) + ηu,v,w(s, a) = 0 (18)

and

1−
K∑

k=1

wk = 0. (19)

2. Complementary slackness condition gives
∀(s, a), ξ(s, a)ρ(s, a) = 0. (20)

From equation 18, we derive

∀(s, a), ρ(s, a)∑
a′ ρ(s, a′)

= exp

(
ξ(s, a) + ηu,v,w(s, a)

β

)
(21)

so ρ(s, a) > 0 and ξ(s, a) = 0 from equation 20. Therefore,

∀(s, a), ρ(s, a)∑
a′ ρ(s, a′)

= exp

(
ηu,v,w(s, a)

β

)
. (22)

Inserting equation 19 and equation 22, we obtain:

min
u∈RL

+

min
v,w

∑
s

µ0(s)v(s)−
L∑

l=1

ulC
(l) (23)

∀s, v(s)=β log
∑
a

exp[
1

β
{

K∑
k=1

wkr
(k)(s, a)+

L∑
l=1

ulc
(l)(s, a)+γ

∑
s′

T (s′|s, a)v(s′)}] := [Tu,wv](s)

(24)
K∑

k=1

wk = 1; wk ≥ 0 ∀1 ≤ k ≤ K. (25)

where equation 24 is derived from
∑

a exp
(

ηu,v,w(s,a)
β

)
= 1, ∀s, and strong duality holds under

Slater condition (Boyd & Vandenberghe, 2004). Since Tu,w is a contraction mapping (Haarnoja et al.,
2017; Fox et al., 2016), it has the unique fixed point v∗u,w. Therefore, v = v∗u,w is the only feasible
solution that satisfies equation 24 and we have the following:

min
u∈RL

+,w∈∆K
L(u,w) =

∑
s

µ0(s)v
∗
u,w(s)−

L∑
l=1

ulC
(l). (26)

Under Slater condition, this optimization attains the same optimal value as in the original convex
optimization. Lastly, the convexity of this optimization is directly obtained from Theorem 4.1. in
Park et al. (2024).
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C PROOF OF DIFFERENTIABILITY

Proof. We first note that for the simplicity of notation, it is enough to show the theorem for the
case of L = 0 (i.e., with no constraints). This holds because, given (u,w) ∈ RL+K , the map-
ping Tu,w is defined by [Tu,wv](s) = β log

∑
a exp[

1
β {
∑L

l=1 ulc
(l)(s, a) +

∑K
k=1 wkr

(k)(s, a) +

γ
∑

s′T (s
′|s, a)v(s′)}], ∀s, and we can regard the concatenation of c(s, a) and r(s, a) as a new vector

reward of size L+K with its weight (u,w). Therefore, we use the notation of the following mapping
[Twv](s) = β log

∑
a exp[

1
β {
∑K

k=1 wkr
(k)(s, a) + γ

∑
s′T (s

′|s, a)v(s′)}], ∀s.

Let |S| = p. We define F (w, v) := v − Twv, F : RK × Rp → Rp. Let v∗w be the unique fixed point
of Tw. Then F (w, v∗w) = v∗w − Twv∗w = 0. Here v∗w is implicitly expressed w.r.t. w, and we aim to
analyze v∗w using implicit function theorem.

First of all, F : RK × Rp → Rp is a continuously differentiable function. For each s, F (w, v)(s) =

v(s)− [Twv](s) = v(s)− β log
∑

a exp[
1
β {
∑K

k=1 wkr
(k)(s, a) + γ

∑
s′T (s

′|s, a)v(s′)}] which is a
composition of linear, logarithm, summation, exponential, and linear functions.

Now we fix w and check whether the Jacobian matrix ∂vF (w, v)|v=v∗
w
∈ Rp×p is invertible where

[∂vF (w, v)|v=v∗
w
]ij =

∂F (w,v)(si)
∂v(sj)

|v=v∗
w

. We have ∂vF (w, v) = Ip − ∂v[Twv] where Ip is the p× p

identity matrix. Then
∂[Twv](si)
∂v(sj)

|v=v∗
w
= γEa∼π∗

w(·|si)[T (sj |si, a)] (27)

where

π∗
w(a|s) =

exp[ 1β {
∑K

k=1 wkr
(k)(s, a) + γ

∑
s′T (s

′|s, a)v∗w(s′)}]∑
a′ exp[ 1β {

∑K
k=1 wkr(k)(s, a′) + γ

∑
s′T (s

′|s, a′)v∗w(s′)}]
. (28)

If we denote T (·|s, a) := [T (s1|s, a) · · ·T (sp|s, a)], we have

∂vF (w, v)|v=v∗
w
= Ip − γ

Ea∼π∗
w(·|s1)[T (·|s1, a)]

...
Ea∼π∗

w(·|sp)[T (·|sp, a)]

 =: Ip − γ

T
π∗
w(·|s1)

...
Tπ∗

w(·|sp)

 (29)

where Tπ∗
w(sj |si) = Ea∼π∗

w(·|si)[T (sj |si, a)] =: [Tπ∗
w ]ij . Then Ip − γTπ∗

w is invertible since Tπ∗
w

is a row-stochastic square matrix (Horn & Johnson, 2012).

Therefore, ∂vF (w, v)|v=v∗
w

is invertible. By implicit function theorem, there exists an open set U ⊂
RK containing w such that there exists a unique continuously differentiable function h : U → Rp

such that h(w) = v∗w and F (w′, h(w′)) = 0, i.e., h(w′) = Tw′h(w′) for all w′ ∈ U . Since h(w′) is
the unique fixed point of Tw′ , h(w′) = v∗w′ , ∀w′ ∈ U . If we use the implicit function theorem for all
w ∈ RK , we can conclude that v = v∗w is a unique continuously differentiable function in w ∈ RK

that satisfies v = Twv.

Moreover, for 1 ≤ k ≤ K,

∂[Twv](si)
∂wk

|v=v∗
w
= Ea∼π∗

w(·|si)[r
(k)(si, a)]. (30)

With a slight abuse of notation, if we denote r(s, a) := [r(1)(s, a) · · · r(K)(s, a)], we have

∂wF (w, v)|v=v∗
w
= −

Ea∼π∗
w(·|s1)[r(s1, a)]

...
Ea∼π∗

w(·|sp)[r(sp, a)]

 =: −

r
π∗
w(s1)

...
rπ

∗
w(sp)

 (31)

where rπ
∗
w(s) = Ea∼π∗

w(·|s)[r(s, a)] ∈ R1×K . By implicit function theorem, we have∇wv
∗
w(s1)

⊤

...
∇wv

∗
w(sp)

⊤

 = −[∂vF (w, v)|v=v∗
w
]−1∂wF (w, v)|v=v∗

w
= (Ip − γTπ∗

w)−1rπ
∗
w . (32)
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Note that the k-th (1 ≤ k ≤ K) column of equation 32 is equivalent to the policy evaluation of π∗
w

considering a scalar reward function r(k) (Silver, 2015; Sutton & Barto, 2018). We denote the value
function as vπ

∗
w

k ∈ Rp. Then
∂v∗w(s)

∂wk
= v

π∗
w

k (s), ∀s. (33)

If we denote vπ
∗
w(s) = [v

π∗
w

1 (s), · · · , vπ
∗
w

K (s)]⊤ ∈ RK for all s, then vπ
∗
w(s) is the value function

evaluated with the policy π∗
w in a given MOMDP. We have

∇wv
∗
w(s) = vπ

∗
w(s), ∀s. (34)

For the case of L > 0, the only difference is that π∗
w is changed to

π∗
u,w(a|s) =

exp[ 1β {
∑L

l=1 ulc
(l)(s, a) +

∑K
k=1 wkr

(k)(s, a) + γ
∑

s′T (s
′|s, a)v∗u,w(s′)}]∑

a′ exp[ 1β {
∑L

l=1 ulc(l)(s, a′) +
∑K

k=1 wkr(k)(s, a′) + γ
∑

s′T (s
′|s, a′)v∗u,w(s′)}]

(35)
where v∗u,w is the fixed point of the operator Tu,w:

∀s, [Tu,wv](s) = β log
∑
a

exp[
1

β
{

L∑
l=1

ulc
(l)(s, a)+

K∑
k=1

wkr
(k)(s, a)+γ

∑
s′

T (s′|s, a)v(s′)}] (36)

and the column size of rπ
∗
u,w is L +K, not K. We denote v

π∗
u,w

c (s) ∈ RL, v
π∗
u,w

r (s) ∈ RK as the
value functions evaluated with the policy π∗

u,w for constrained reward c and unconstrained reward r,
respectively. Finally, we have

∇uv
∗
u,w(s) = v

π∗
u,w

c (s), ∇wv
∗
u,w(s) = v

π∗
u,w

r (s), ∀s. (37)
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D PROOF OF TWICE-DIFFERENTIABILITY

Proof. Here we also use the implicit function theorem and follow a similar logic in the proof of
differentiability in Appendix C. Let |S| = p. We show the theorem for the case of L = 0 to guarantee
notational simplicity. For each 1 ≤ i ≤ K, we want to show that ∂v∗

w

∂wi
:= [

∂v∗
w(s1)
∂wi

, · · · , ∂v∗
w(sp)
∂wi

]⊤ ∈
Rp is differentiable in w ∈ RK . From the result in Appendix C, we have

∂v∗w
∂wi

= v
π∗
w

i (38)

where v
π∗
w

i ∈ Rp is the value function evaluated with the policy π∗
w in equation 28 with the i-th

reward r(i). Let rπ
∗
w

i (s) = Ea∼π∗
w(·|s)[r

(i)(s, a)] ∈ R. From equation 32, we have

v
π∗
w

i = (Ip − γTπ∗
w)−1r

π∗
w

i (39)

or equivalently,
v
π∗
w

i = r
π∗
w

i + γTπ∗
wv

π∗
w

i =: T ∗
wv

π∗
w

i . (40)

We define F (w, v) := v − T ∗
wv, F : RK × Rp → Rp. Then F (w, v

π∗
w

i ) = v
π∗
w

i − Twv
π∗
w

i = 0. Here
v
π∗
w

i is the unique fixed point of T ∗
w and is implicitly expressed w.r.t. w, and we aim to analyze v

π∗
w

i
using implicit function theorem.

First of all, F : RK × Rp → Rp is a continuously differentiable function. For each s, F (w, v)(s) =

v(s) − [T ∗
wv](s) = v(s) − [r

π∗
w

i (s) + γ
∑

s′ T
π∗
w(s′|s)v(s′)] = v(s) −

∑
a π

∗
w(a|s)[r(i)(s, a) +

γ
∑

s′ T (s
′|s, a)v(s′)]. As seen in equation 28, π∗

w contains v∗w which is continuously differentiable
in w (as a result of the proof in Appendix C), and π∗

w is a composition of quotient, exponential,
summation and linear functions of w and v∗w.

Now we fix w and check whether the Jacobian matrix ∂vF (w, v)|
v=v

π∗
w

i

∈ Rp×p is invertible where

[∂vF (w, v)|
v=v

π∗
w

i

]ij = ∂F (w,v)(si)
∂v(sj)

|
v=v

π∗
w

i

. We have ∂vF (w, v) = Ip − ∂v[T ∗
wv] where Ip is the

p× p identity matrix. Then

∂[T ∗
wv](si)

∂v(sj)
|
v=v

π∗
w

i

= γEa∼π∗
w(·|si)[T (sj |si, a)]. (41)

If we denote T (·|s, a) := [T (s1|s, a) · · ·T (sp|s, a)], we have

∂vF (w, v)|
v=v

π∗
w

i

= Ip − γ

Ea∼π∗
w(·|s1)[T (·|s1, a)]

...
Ea∼π∗

w(·|sp)[T (·|sp, a)]

 =: Ip − γ

T
π∗
w(·|s1)

...
Tπ∗

w(·|sp)

 (42)

where Tπ∗
w(sj |si) = Ea∼π∗

w(·|si)[T (sj |si, a)] =: [Tπ∗
w ]ij . Then Ip − γTπ∗

w is invertible since Tπ∗
w

is a row-stochastic square matrix (Horn & Johnson, 2012).

Therefore, ∂vF (w, v)|
v=v

π∗
w

i

is invertible. By implicit function theorem, there exists an open set U ⊂
RK containing w such that there exists a unique continuously differentiable function h : U → Rp

such that h(w) = v
π∗
w

i and F (w′, h(w′)) = 0, i.e., h(w′) = T ∗
w′h(w′) for all w′ ∈ U . Since h(w′)

is the unique fixed point of T ∗
w′ , h(w′) = v

π∗
w′

i , ∀w′ ∈ U . If we use the implicit function theorem
for all w ∈ RK , we can conclude that v = v

π∗
w

i is a unique continuously differentiable function in
w ∈ RK that satisfies v = T ∗

wv.

Now, for 1 ≤ j ≤ K, we aim to calculate ∂[T ∗
wv](s)
∂wj

|
v=v

π∗
w

i

. For notational simplicity, let Q∗
w(s, a) :=∑K

k=1 wkr
(k)(s, a) + γ

∑
s′T (s

′|s, a)v∗w(s′). Then we express π∗
w as follows:

π∗
w(a|s) =

exp[ 1β {Q
∗
w(s, a)}]∑

a′ exp[ 1β {Q∗
w(s, a

′)}]
. (43)
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We also have

∂Q∗
w(s, a)

∂wj
= r(j)(s, a) + γ

∑
s′

T (s′|s, a)∂v
∗
w(s

′)

∂wj
= r(j)(s, a) + γ

∑
s′

T (s′|s, a)vπ
∗
w

j (s′) := Q
π∗
w

j (s, a).

(44)

In other words, we denote Q
π∗
w

j as the action-value function evaluated with π∗
w for a scalar reward

function r(j). Then
∂[T ∗

wv](s)

∂wj
|
v=v

π∗
w

i

=
∑
a

Q
π∗
w

i (s, a)
∂π∗

w(a|s)
∂wj

(45)

which is equivalent to

∂[T ∗
wv](s)

∂wj
|
v=v

π∗
w

i

=
1

β

∑
a

Q
π∗
w

i (s, a)

[
π∗
w(a|s)Q

π∗
w

j (s, a)− π∗
w(a|s)

∑
a′

{π∗
w(a

′|s)Qπ∗
w

j (s, a′)}
]

(46)
and we have

∂[T ∗
wv](s)

∂wj
|
v=v

π∗
w

i

=
1

β

[
Ea∼π∗

w(·|s)[Q
π∗
w

i (s, a)Q
π∗
w

j (s, a)]−Ea∼π∗
w(·|s)[Q

π∗
w

i (s, a)]Ea∼π∗
w(·|s)[Q

π∗
w

j (s, a)]}
]
.

(47)

By implicit function theorem, we have
∇w

∂v∗
w(s1)
∂wi

⊤

...

∇w
∂v∗

w(sp)
∂wi

⊤

 = −[∂vF (w, v)|
v=v

π∗
w

i

]−1∂wF (w, v)|
v=v

π∗
w

i

=
1

β
(Ip − γTπ∗

w)−1E
π∗
w

i (48)

where E
π∗
w

i is a p × K matrix where for each row corresponding to s, the j-th element is
Ea∼π∗

w(·|s)[Q
π∗
w

i (s, a)Q
π∗
w

j (s, a)]−Ea∼π∗
w(·|s)[Q

π∗
w

i (s, a)]Ea∼π∗
w(·|s)[Q

π∗
w

j (s, a)]}. This formulation
holds for each 1 ≤ i ≤ K.

Therefore, we construct a p×K ×K tensor, say Bπ∗
w , by stacking {Eπ∗

w
i }i along the new (third)

dimension. Then along the first dimension of size p, for each s, let Bπ∗
w(s) ∈ RK×K be the

corresponding slice of B. Let Qπ∗
w(s, a) = [Q

π∗
w

1 (s, a), · · · , Qπ∗
w

K (s, a)]⊤ ∈ RK be the action-value
function evaluated with π∗

w for vector reward r. Then we have

Bπ∗
w (s) = Ea∼π∗

w(·|s)

[
(Qπ∗

w (s, a)− Ea′∼π∗
w(·|s)[Q

π∗
w (s, a′)])(Qπ∗

w (s, a)− Ea′∼π∗
w(·|s)[Q

π∗
w (s, a′)])⊤

]
(49)

which is the covariance matrix of Qπ∗
w(s, ·) over the probability distribution π∗

w(·|s). Let sk corre-
spond to the k-th row of Tπ∗

w (1 ≤ k ≤ p). Then we have the following Hessian formulation for
sk:

H[v∗w(sk)] =
1

β

p∑
l=1

[(Ip − γTπ∗
w)−1]klB

π∗
w(sl). (50)

For the case of L > 0, the only difference is that π∗
w is changed to

π∗
u,w(a|s) =

exp[ 1β {
∑L

l=1 ulc
(l)(s, a) +

∑K
k=1 wkr

(k)(s, a) + γ
∑

s′T (s
′|s, a)v∗u,w(s′)}]∑

a′ exp[ 1β {
∑L

l=1 ulc(l)(s, a′) +
∑K

k=1 wkr(k)(s, a′) + γ
∑

s′T (s
′|s, a′)v∗u,w(s′)}]

(51)
where v∗u,w is the fixed point of the operator Tu,w:

∀s, [Tu,wv](s) = β log
∑
a

exp[
1

β
{

L∑
l=1

ulc
(l)(s, a)+

K∑
k=1

wkr
(k)(s, a)+γ

∑
s′

T (s′|s, a)v(s′)}] (52)
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and the size of Bπ∗
u,w(s) is (L+K)× (L+K), not K×K, defined by Qπ∗

u,w(s, a) ∈ RL+K which
is the action-value function evaluated with π∗

u,w for the concatenated vector function of constrained
reward c and unconstrained reward r. Finally, we have

H[v∗u,w(sk)] =
1

β

p∑
l=1

[(Ip − γTπ∗
u,w)−1]klB

π∗
u,w(sl). (53)

E PROOF OF SMOOTHNESS

Proof. Let a = (u′, w′) and b = (u′′, w′′) in RL+K . By the differentiability of ∇v∗u,w(s) proved in
Theorem 3.4, we use generalized mean value inequality in Banach spaces and have

∥∇v∗u,w(s)|(u,w)=b −∇v∗u,w(s)|(u,w)=a∥2 ≤ sup
t∈[0,1]

∥H[v∗u,w(s)]|(u,w)=a+t(b−a)∥2∥b− a∥2 (54)

Let λmax(A) be the maximum eigenvalue of a real symmetric matrix A. For each sk (1 ≤ k ≤ p),
the eigenvalues of H[v∗u,w(sk)] are nonnegative. Since trace operator is additive, we have

∥H[v∗u,w(sk)]∥2 = λmax(H[v∗u,w(sk)]) ≤ Tr(H[v∗u,w(sk)]) =
1

β

p∑
l=1

[(Ip−γTπ∗
u,w)−1]klTr(Bπ∗

u,w(sl)).

(55)
For each s, we also have

Tr(Bπ∗
u,w(s)) =

L+K∑
k=1

Var(Q
π∗
u,w

k (s, a)) ≤
L+K∑
k=1

E[|Qπ∗
u,w

k (s, ·)|2] ≤
L+K∑
k=1

(
r
(k)
max

1− γ

)2

. (56)

Since (Ip − γTπ∗
u,w)−1 =

∑∞
i=0(γT

π∗
u,w)i and each (Tπ∗

u,w)i is a probability transition matrix,

∥H[v∗u,w(sk)]∥2 ≤
1

β

L+K∑
m=1

(
r
(m)
max

1− γ

)2( ∞∑
i=0

γi

p∑
l=1

(Tπ∗
u,w)ikl

)
=

1

β(1− γ)

L+K∑
m=1

(
r
(m)
max

1− γ

)2

.

(57)
It should be noted that ∥H[v∗u,w(sk)]∥2 is uniformly bounded regardless of sk and (u,w). Therefore,
∇v∗u,w(s) is Lipschitz continuous in ∥ · ∥2 from equation 54.
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F CONVERGENCE ANALYSIS

F.1 ASSUMPTION FOR ACTION-VALUE NONDEGENERACY

Assumption There exists at least one state s ∈ S such that the centered action-value vectors{
Qπ∗

u,w(s, a)− Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′) ] : a ∈ A

}
span RK+L.

This condition fails only in degenerate multi-objective settings when for every state s ∈ S, the set{
Qπ∗

u,w(s, a) − Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′) ] : a ∈ A

}
lies entirely within an affine subspace of

dimension less than K + L (e.g., the size of an action set is smaller than the number of objectives).

Then Bπ∗
u,w(s) = Ea∼π∗

u,w(·|s)

[
(Qπ∗

u,w(s, a) − Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′)])(Qπ∗

u,w(s, a) −

Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′)])⊤

]
∈ R(L+K)×(L+K) is positive definite. This is because (i)

π∗
u,w(a|s) > 0 for all a (equation 10, which has this favorable property that facilitate analysis),

and (ii) for any y ∈ RK+L with y ̸= 0, y⊤Bπ∗
u,w(s)y =

∑
a π

∗
u,w(a|s)

(
y⊤(Qπ∗

u,w(s, a) −

Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′)])

)2

> 0 as at least one a should satisfy y⊤(Qπ∗
u,w(s, a) −

Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′)]) ̸= 0.

By Theorem 3.4, we have the Hessian of L(u,w) as H[L(u,w)] = 1
β

∑p
l=1[µ

⊤
0 (Ip −

γTπ∗
u,w)−1]lB

π∗
u,w(sl) =

1
β

∑
s ρ

π∗
u,w(s)Bπ∗

u,w(s) where p = |S| and ρπ
∗
u,w(s) =

∑∞
t=0 γ

tPr(st =

s|π∗
u,w, µ0), and ρπ

∗
u,w(s) > 0 by the reachability assumption (Lee et al., 2021). Therefore,

H[L(u,w)] is positive definite under the assumption.

F.2 PROOF OF CONVERGENCE ANALYSIS

Let λmin(A) be the minimum eigenvalue of a real symmetric matrix A. For simplicity, we denote
λ := λmin(H[L(u,w)]). Then 0 < λ ≤ α (Bubeck, 2015) and L(u,w) is λ-strongly convex.

Theorem 3.6 Let (u∗, w∗) denote the optimal solution to equation 7. For each outer-loop index
m ≥ 1 in Algorithm 1, let Q∗

um,wm denote the fixed point of equation 13 with [u;w] = [um;wm],
and let Qm denote the Q-function after completing the m-th inner-loop update. For each m, assume
∥Qm −Q∗

um,wm∥∞ < ϵ for some ϵ > 0. Then for m ≥ 1,

∥[um;wm]−[u∗;w∗]∥2 ≤ (1− λ

α
)m∥[u0;w0]−[u∗;w∗]∥2+

√
|S|
λ

√√√√K+L∑
i=1

{r(i)max}2
1 + γ

(1− γ)2
ϵ. (58)

Proof. By the definition in equation 10, we have the optimal policy π∗
um,wm(a|s) =

exp( 1
βQ∗

um,wm (s,a))∑
a′ exp( 1

βQ∗
um,wm (s,a′))

when (u,w) = (um, wm). According to Theorem 3.3, we have

∇(u,w)L(um, vm) = [
∑

s µ0(s)v
π∗
um,vm

c (s)− [C(1), · · · , C(L)]⊤;
∑

s µ0(s)v
π∗
um,vm

r (s)] ∈ RL+K .

We also have ∇̃(u,w)L(um, vm) := [
∑

s µ0(s)v
πm

c (s) − [C(1), · · · , C(L)]⊤;
∑

s µ0(s)v
πm

r (s)] ∈
RL+K , an estimated gradient of∇(u,w)L(um, wm) using πm where πm(a|s) = exp( 1

βQm(s,a))∑
a′ exp( 1

βQm(s,a′))
.

Let em := ∇̃(u,w)L(um, vm) − ∇(u,w)L(um, wm). For each s, let vπr,i(s) (1 ≤ i ≤ K) and
vπc,j(s) (1 ≤ j ≤ L) denote the elements of the i-th dimension of vπr (s) ∈ RK and the j-th
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dimension of vπc (s) ∈ RL, respectively. Then we have

∥em∥22 = ∥[
∑
s

µ0(s)(v
πm

c (s)− v
π∗
um,vm

c (s));
∑
s

µ0(s)(v
πm

r (s)− v
π∗
um,vm

r (s))]∥22

=

K∑
i=1

(∑
s

µ0(s)(v
πm

r,i (s)− v
π∗
um,wm

r,i (s))

)2

+

L∑
j=1

(∑
s

µ0(s)(v
πm

c,j (s)− v
π∗
um,wm

c,j (s))

)2

≤ ∥µ0∥22
∑
s

[ K∑
i=1

(vπ
m

r,i (s)− v
π∗
um,wm

r,i (s))2 +

L∑
j=1

(vπ
m

c,j (s)− v
π∗
um,wm

c,j (s))2
]

(59)

where ∥µ0∥22 =
∑

s(µ0(s))
2 and the inequality holds by Cauchy-Schwarz.

Since both πm and π∗
um,wm use softmax parameterization with Qm and Q∗

um,wm , respectively, we
have

∀s, |vπ
m

r,i (s)− v
π∗
um,wm

r,i (s)| ≤ (1 + γ)r
(i)
max

(1− γ)2
∥Qm −Q∗

um,wm∥∞ (1 ≤ i ≤ K) (60)

and

∀s, |vπ
m

c,j (s)− v
π∗
um,wm

c,j (s)| ≤ (1 + γ)r
(K+j)
max

(1− γ)2
∥Qm −Q∗

um,wm∥∞ (1 ≤ j ≤ L) (61)

according to the property of equation (261) in Yang et al. (2024). Combining equation 60, equation 61,
and ∥µ0∥2 ≤ 1 with equation 59 gives

∥em∥2 ≤
√
|S|

√√√√K+L∑
i=1

{r(i)max}2
1 + γ

(1− γ)2
∥Qm −Q∗

um,wm∥∞

<
√
|S|

√√√√K+L∑
i=1

{r(i)max}2
1 + γ

(1− γ)2
ϵ. (62)

Next, we view the projected gradient descent for each outer loop as a proximal gradient descent. We
reformulate the optimization in equation 7 of

min
u∈RL

+,w∈∆K
L(u,w) (63)

as follows:
min

(u,w)∈RL+K
L(u,w) + IRL

+×∆K (u,w) (64)

where IRL
+×∆K (u,w) is the indicator function with its value 0 if (u,w) ∈ RL

+ × ∆K and +∞
otherwise. IRL

+×∆K is convex because its epigraph {(u,w, te)|te ≥ 0, (u,w) ∈ RL
+ × ∆K} is

convex. We note that according to Theorem 3.5, the smoothness of L(u,w) is satisfied on RL+K ,
which makes equation 64 valid. We also note that we computed the smoothness coefficient α =

1
β(1−γ)

∑K+L
i=1

(
r(i)max
1−γ

)2
of L in Appendix E.

Applying the error bound in equation 62 to the analysis of inexact proximal gradient method (Schmidt
et al., 2011), we have

∥[um;wm]− [u∗;w∗]∥2 ≤ (1− λ

α
)m∥[u0;w0]− [u∗;w∗]∥2 +

1

α

m∑
i=1

(1− λ

α
)m−i∥ei∥2

≤ (1− λ

α
)m∥[u0;w0]− [u∗;w∗]∥2 +

√
|S|
λ

√√√√K+L∑
i=1

{r(i)max}2
1 + γ

(1− γ)2
ϵ.

(65)

This is achieved because we use the convex optimization method from Wang & Carreira-Perpiñán
(2013) for projection onto the simplex ∆K , and apply non-negativity clipping for projection onto RL

+,
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both of them induce zero error in each phase of proximal objective update as it is fully deterministic
and avoids randomized procedures.

It remains to check whether IRL
+×∆K in equation 64 is a lower semi-continuous proper convex

function (Schmidt et al., 2011). IRL
+×∆K is lower semi-continuous because RL

+ ×∆K is closed, and
it is also proper convex since IRL

+×∆K never attains −∞ and RL
+ ×∆K is non-empty.

F.3 CONVERGENCE ANALYSIS FOR DEGENERATE CASE

Theorem F.1. Let (u∗, w∗) denote an optimal solution to equation 7. For each outer-loop index
m ≥ 1 in Algorithm 1, let Q∗

um,wm denote the fixed point of equation 13 with [u;w] = [um;wm],
and let Qm denote the Q-function after completing the m-th inner-loop update. For each m, assume
∥Qm −Q∗

um,wm∥∞ < ϵm for some ϵm > 0. Then for m ≥ 1,

L( 1
m

m∑
i=1

(ui, wi))− L(u∗, w∗) ≤ α

2m
(∥[u0;w0]− [u∗;w∗]∥2 +

2M

α

m∑
i=1

ϵi)
2 (66)

where M =
√
|S|
√∑K+L

j=1 {r
(j)
max}2 1+γ

(1−γ)2 .

Proof. Using an analysis of inexact proximal gradient method (Schmidt et al., 2011) using the same
logic in the proof of Theorem 3.6 (Appendix F.2), we have

L( 1
m

m∑
i=1

(ui, wi))− L(u∗, w∗) ≤ α

2m
(∥[u0;w0]− [u∗;w∗]∥2 +

2

α

m∑
i=1

∥ei∥2)2 (67)

where ei := ∇̃(u,w)L(ui, wi)−∇(u,w)L(ui, wi) is the i-th gradient error and

∥ei∥2 <
√
|S|

√√√√K+L∑
j=1

{r(j)max}2
1 + γ

(1− γ)2
ϵi = Mϵi (68)

from equation 62.

We note that the error of L( 1
m

∑m
i=1(u

i, wi))− L(u∗, w∗) decreases at rate O( 1
m ) when {ϵi}∞i=1 is

summable (e.g., ϵm = O( 1
m1+δ ) with δ > 0).
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G ADDITIONAL RELATED WORK

Several recent works have introduced constraints into MORL, but under different settings from our
framework, which explicitly incorporates max-min optimization. For example, Huang et al. (2021)
reformulated constrained RL as a MOMDP by treating costs as an additional reward dimension,
generating policies that satisfy constraints while exploring preference trade-offs. However, their
framework is limited to weighted-sum scalarization, whereas ours covers both constrained and
unconstrained max-min MORL, offering broader generalization. More recently, Lin et al. (2024)
studied offline constrained MORL, where policies are trained on offline data and later adapted to
target preferences using additional demonstrations. In contrast, our work focuses on online learning
and does not assume access to additional demonstration data. Liu et al. (2025) train multiple policies
in parallel to approximate the Pareto front, improving coverage by solving constrained optimizations
in underexplored regions. Their method targets standard MORL with linear scalarization, enhancing
it via constrained optimization rather than directly tackling constrained MORL.

H EXPERIMENTAL DETAILS: TABULAR SETTINGS

H.1 FEASIBILITY CHECK

When generating structured MOMDPs randomly, we first verify whether the generated instances are
feasible. To do this, We first consider the following unregularized convex optimization:

max
ρ≥0

min
1≤k≤K

(∑
(s,a)

r(k)(s, a)ρ(s, a)

)
(69)

∑
a′

ρ(s′, a′) = µ0(s
′) + γ

∑
(s,a)

T (s′|s, a)ρ(s, a), ∀s′ (70)

∑
(s,a)

c(l)(s, a)ρ(s, a) ≥ C(l), l = 1, · · · , L (71)

which is equivalently expressed as the following LP by using additional scalar variable c̃ ∈ R:
max
ρ≥0,c̃

c̃ (72)∑
a′

ρ(s′, a′) = µ0(s
′) + γ

∑
(s,a)

T (s′|s, a)ρ(s, a), ∀s′ (73)

∑
(s,a)

r(k)(s, a)ρ(s, a) ≥ c̃, k = 1, · · · ,K, (74)

∑
(s,a)

c(l)(s, a)ρ(s, a) ≥ C(l), l = 1, · · · , L. (75)

We want to generate µ0, T, r, and c in structured MOMDPs to satisfy feasibility and Slater condition
by solving the following LP using the pywraplp function from the OR-Tools library:

max
ρ≥ϵlow

0 (76)∑
a′

ρ(s′, a′) = µ0(s
′) + γ

∑
(s,a)

T (s′|s, a)ρ(s, a), ∀s′ (77)

∑
(s,a)

r(k)(s, a)ρ(s, a) ≥ c̃+ ϵlow, k = 1, · · · ,K, (78)

∑
(s,a)

c(l)(s, a)ρ(s, a) ≥ C(l) + ϵlow, l = 1, · · · , L (79)

where ϵlow is used to guarantee the strict feasibility for Slater condition, and we set ϵlow = 10−4. If
the LP solver does not find a feasible solution, we regenerate the constrained MOMDP until a feasible
instance is found. Once any feasible solution is found, we solve the LP of equation 72, equation 73,
equation 74, and equation 75 by using LP solver to acquire the optimal max-min value c̃∗.
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H.2 EXPERIMENTAL SETUP

In the Gaussian smoothing method, we create N copies {Q̃i}Ni=1 of the current Q-function and update
each Q̃i using scalarization with N perturbed weights {(ũi, w̃i)}Ni=1, sampled from a Gaussian
distribution centered at the current weight vector (u,w). Specifically, we compute Q̃i(s, a) ←
[ũi; w̃i]

⊤[c; r] + γ
∑

s′ T (s
′|s, a)β log

∑
a′ exp

(
Q̃i(s

′,a′)
β

)
until convergence, given the perturbed

weights {(ũi, w̃i)}Ni=1. The gradient w.r.t. (u,w) is then estimated by computing the slope of a linear
regression over the pairs [{(ũi, w̃i)}Ni=1, {Q̃i}Ni=1].

The update of our algorithm is applied iteratively for each (u,w) pair until the maximum change in
the Q-function between successive iterations falls below 10−4. We use the following setting: γ = 0.8,
lw = 0.001, and ITER = 3000. u was initialized as all-one vector while w is initialized as the uniform
vector on the simplex. For Gaussian smoothing, we set N = 24 and use a Gaussian distribution with
a standard deviation 0.01. We tuned N to prevent unstable divergence in the Gaussian smoothing
method when N is too small, while also avoiding excessive computational overhead. Both algorithms
used β = 0.03 for the bipartite setting and β = 0.01 for the hierarchical setting, respectively. Each
algorithm was evaluated over three seeds, and all experiments were conducted on an Intel Core
i9-10900X CPU @ 3.70GHz.

H.3 COMPARISON OF ALGORITHMIC COMPLEXITY

We now include a comparison of the algorithmic complexity per weight update (u,w) in tabular
settings. Let S = |S|, A = |A|, and d = K + L. Although each update of equation 13 given weight
(u,w) theoretically requires infinitely many steps for convergence, we denote the practical number of
steps as Tsoft for our complexity analysis.

First, the per-iteration complexity of our method is given by O(TsoftS
2A+ SAd+ S3 + S2d). Here,

TsoftS
2A is the cost of update in equation 13, and the remaining part is the cost of computing the

gradient via dynamic programming based on Theorem 3.3. If Tsoft is large enough, the update of
equation 13 dominates the computation: O(TsoftS

2A+ SAd+ S3 + S2d) ≈ O(TsoftS
2A).

Regarding the Gaussian smoothing method, let N denote the number of perturbed Q-tables used
for smoothing. Then the complexity per iteration is O((N + 1)TsoftS

2A + d3 + Nd2) where
(N+1)TsoftS

2A is the computation of equation 13 for the current Q-table and its N copies. The other
terms are related to gradient estimation using linear regression (Park et al., 2024). Again, equation 13
dominates the computation and O((N + 1)TsoftS

2A+ d3 +Nd2) ≈ O((N + 1)TsoftS
2A) if Tsoft is

large enough.

In summary, the Gaussian smoothing baseline incurs approximately N +1 times more computational
cost per weight update compared to our method. Note that the complexity of the projection onto ∆K

is O(K logK) (Wang & Carreira-Perpiñán, 2013) which is relatively lightweight compared to other
components, due to the sublinear growth of the logarithmic term.
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I EXPERIMENTAL DETAILS: APPLICATIONS

I.1 IMPLEMENTATION OF OUR ALGORITHM FOR APPLICATIONS

We now leverage the usage of neural network for our algorithm. If we differentiate the both side of
v∗u,w(s) = [Tu,wv∗u,w](s) w.r.t. u and w for all s, then we have the following formula:

∀s, ∇wv
∗
u,w(s) =

∑
a

π∗
u,w(a|s)

(
r(s, a) + γ

∑
s′

T (s′|s, a)∇wv
∗
u,w(s

′)

)
. (80)

∀s, ∇uv
∗
u,w(s) =

∑
a

π∗
u,w(a|s)

(
c(s, a) + γ

∑
s′

T (s′|s, a)∇uv
∗
u,w(s

′)

)
. (81)

Here, π∗
u,w(a|s) is defined as in equation 10. To ensure stable gradient estimation in continuous

state spaces, we parameterize a gradient network to estimate ∇uv
∗
u,w(s) and∇wv

∗
u,w(s). Since each

action is also continuous, we employ an actor network πθ and implement Algorithm 2. To further
stabilize the estimation of the gradient, we add an additional linear layer after the penultimate layer
of the actor network πθ, and use its (L+K)-dimensional output as the gradient network gθ(s). We
use the notation gθ to indicate that the actor network and the gradient network share parameters and
jointly update their lower-layer weights.

Algorithm 2 Proposed Constrained Max-min Algorithm for Applications

1: πθ: actor, Qϕ: critic, Qϕ: target critic, gθ: gradient network, gθ: target gradient network, D:
replay buffer, Tinit: initial iteration number, τ : target update ratio, U : main iteration number, Us:
gradient step for critic update, lg: learning rate of the gradient network, l0: initial learning rate of
the weight (u,w), K: unconstrained reward dimension, L: the number of constraints, Cth ∈ RL:
threshold vector for the constraints

2: Initialize target critic ϕ← ϕ, target gradient network θ̄ ← θ, and weights u0 ∈ RL
+, w0 ∈ ∆K .

3: for j = 0, · · · , Tinit − 1 do
4: Rollout sample from πθ and save it in D. Sample a batch of data B ⊂ D.
5: Qϕ← Critic Update(Qϕ, Qϕ, πθ, (u0, w0), B) (Algorithm 3)
6: Update target critic parameter ϕ← τϕ+ (1− τ)ϕ.
7: πθ ← Actor Update(Qϕ, πθ,D) (Algorithm 4)
8: end for
9: for m = 0, 1, 2, · · · , U − 1 do

10: Rollout sample from πθ and save (s, a, r, c, s′, πθold(a|s)) in D where πθold(a|s) = πθ(a|s).
11: Update the gradient network gθ as follows:

θ ← θ − lg∇θE(s,a,r,c,s′,πθold (a|s))∼D

[∥∥∥πθm (a|s)
πθold (a|s)

([c; r] + γgθ(s
′))− gθ(s)

∥∥∥2]
where θm is a frozen copy of the current parameter θ.

12: Update target gradient network parameter θ ← τθ + (1− τ)θ.
13: Update (u,w) = (um, wm) using the projected gradient descent:

(um+1, wm+1) = PK,L [(um, wm)− lm(Es∼µ0
[gθ(s)]− [Cth;0K ])] .

14: Schedule current learning rate of the weight lm.
15: for j = 0, · · · , Us − 1 do
16: Sample a batch of data B ⊂ D.
17: Qϕ← Critic Update(Qϕ, Qϕ, πθ, (um+1, wm+1), B)
18: end for
19: Update target critic parameter ϕ← τϕ+ (1− τ)ϕ.
20: πθ ← Actor Update(Qϕ, πθ,D)
21: end for
22: Return πθ.
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Algorithm 3 Critic Update

Input: critic Qϕ, target critic Qϕ, actor πθ, weight (u,w), sample batch B
2: Update the critic parameter ϕ as follows:

ϕ← ϕ− lc∇ϕ
1

|B|
∑

(s,a,r,s′)∈B

( K∑
k=1

wkr
(k)(s, a) +

L∑
l=1

ulc
(l)(s, a)

+γβ logEa′∼πθ

exp
(
Qϕ(s

′, a′)/β
)

πθ(a′|s′)

−Qϕ(s, a)

)2
(82)

where lc is a critic learning rate.
Output: Updated critic Qϕ

Algorithm 4 Actor Update

Input: critic Qϕ, actor πθ, replay buffer D
Sample a batch of data B ⊂ D and find the actor satisfying the following:

θ ← argmin
θ

Es∼BEa∼πθ(·|s) [β log πθ(a|s)−Qϕ(s, a)] . (83)

3: Output: Updated actor πθ

I.2 ENVIRONMENTAL DETAILS: RESOURCE ALLOCATION

We modified the source code of the edge computing simulator (Bae et al., 2020) uploaded to https:
//github.com/sosam002/KAIST_MEC_simulator, implemented with Ntype = 3 and 8.
Here, K = Ntype and L = 1.

At each timestep, the system observes a state containing the current length of each task queue.
Based on this state, it selects a 2(Ntype + 1)-dimensional nonnegative continuous action at =

[a
(1)
e (t), · · · , a(Ntype+1)

e (t), a
(1)
c (t), · · · , a(Ntype+1)

c (t)]. Here, {a(i)e (t)}Ntype
i=1 denotes the CPU core al-

location ratios across task queues at the edge node, subject to the constraint
∑Ntype+1

i=1 a
(i)
e (t) = 1.

Similarly, {a(i)c (t)}Ntype
i=1 denotes the bandwidth allocation ratios at the cloud node, with the constraint∑Ntype+1

i=1 a
(i)
c (t) = 1.

Each state is represented by a 16-dimensional vector that captures both dynamic and static charac-
teristics. The edge device contributes 15 dimensions, derived from three application queues, each
described by five features: (1) average task arrivals over the most recent 10 timesteps, (2) task arrivals
at the current timestep, (3) current queue lengths, (4) CPU utilization ratios, and (5) fixed workload
values per application. The remaining dimension represents the current CPU utilization ratio of the
cloud server. Among these features, the workload values per application are static, defined as fixed
CPU cycles per bit, while all other dimensions vary dynamically over time.

Table 7: Parameters for Each Application Types (K = Ntype = 3)

Application Workload Popularity Min Bits Max Bits
SPEECH RECOGNITION 10435 0.5 40 KB 300 KB

NATURAL LANGUAGE PROCESSING 25346 0.8 4 KB 100 KB
VIRTUAL REALITY 40305 0.1 0.1 MB 3 MB

Table 7 and 8 summarize the key parameters for each application (Bae et al., 2020). The workload
(CPU cycles/bit) indicates the computational load per application. The popularity represents the
average arrival rate of incoming tasks modeled by a Poisson distribution. Each application’s input
data size follows a normal distribution, bounded between the specified minimum and maximum bits,
reflecting diverse and practical scenarios.
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Table 8: Parameters for Each Application Types (K = Ntype = 8, Appendix I.5)

Application Workload Popularity Min Bits Max Bits
SPEECH RECOGNITION 10435 0.5 40 KB 300 KB

NATURAL LANGUAGE PROCESSING 25346 0.8 4 KB 100 KB
VIRTUAL REALITY 40305 0.1 0.1 MB 3 MB
SEARCH REQUEST 8405 10 2 B 100 B

LANGUAGE TRANSLATION 34252 1 2 B 5000 B
3D GAME PROCESSING 54633 0.1 0.1 MB 3 MB

FACE RECOGNITION 45043 0.4 10 KB 100 KB
AUGMENTED REALITY 34532 0.1 0.1 MB 3 MB

Each episode consists of 1,000 timesteps. The total training spans 2 million timesteps, with evaluations
conducted at the end of every episode, resulting in 2,000 evaluation points. An episode is run during
each evaluation and the cumulative discounted sum of the (L +K)-dimensional vector reward is
computed. These experiments were conducted using an NVIDIA TITAN X GPU (12GB) across
twelve random seeds.
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I.3 UNCONSTRAINED MAX-MIN MORL ALGORITHM

Algorithm 5 Gaussian-smoothing-based Max-min Algorithm for Continuous Action (Our modifica-
tion from Park et al. (2024))

1: πθ: actor, Qϕ: critic, Qϕ: target critic, D: replay buffer, Tinit: initial iteration number, τ : target
update ratio, U : main iteration number, Us: gradient step for critic update, Ns: number of
perturbed samples, µ: perturbation parameter, l0: initial learning rate of the weight w, K: reward
dimension

2: Initialize target critic ϕ← ϕ and weight w0 ∈ ∆K .
3: for j = 0, · · · , Tinit − 1 do
4: Rollout sample from πθ and save it in D. Sample a batch of data B ⊂ D.
5: Qϕ← Critic Update(Qϕ, Qϕ, πθ, w0, B) (Algorithm 3 without the term of

∑L
l=1 ulc

(l)(s, a))

6: Update target critic parameter ϕ← τϕ+ (1− τ)ϕ.
7: πθ ← Actor Update(Qϕ, πθ,D) (Algorithm 4)
8: end for
9: for m = 0, 1, 2, · · · , U − 1 do

10: Rollout sample from πθ and save it in D.
11: Generate Ns perturbed weights {wm + µum

n }
Ns
n=1, um

n ∼ N (0, IK).
12: Make Ns copies of Qϕ : {Q̂ϕ,copy,n}Ns

n=1. Sample a common batch of data Bc ⊂ D.
13: for n = 1, · · · , Ns do
14: Q̂wm+µum

n ,copy,n← Critic Update(Q̂ϕ,copy,n, Qϕ, πθ, wm + µum
n , Bc)

15: end for
16: Calculate L̂(wm + µum

n ) = Es∼µ0

[
β logEa∼πθ

[
exp[Q̂wm+µum

n ,copy,n(s,a)/β]

πθ(a|s)

] ]
.

17: Conduct linear regression using {wm + µum
n , L̂(wm + µum

n )}Ns
n=1 and calculate the linear

weight am. Discard {Q̂wm+µum
n ,copy,n}Ns

n=1.
18: Update w = wm using the projected gradient descent:

wm+1 = proj∆K (wm − lmam) .

19: Schedule current learning rate of the weight lm.
20: for j = 0, · · · , Us − 1 do
21: Sample a batch of data B ⊂ D.
22: Qϕ← Critic Update(Qϕ, Qϕ, πθ, wm+1, B)
23: end for
24: Update target critic parameter ϕ← τϕ+ (1− τ)ϕ.
25: πθ ← Actor Update(Qϕ, πθ,D)
26: end for
27: Return πθ.
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I.4 HYPERPARAMETERS FOR RESOURCE ALLOCATION

Table 9: Hyperparameters for Algorithms (K = Ntype)

Parameter Value
Shared
optimizer Adam (Kingma & Ba, 2015)
discount (γ) 0.99
target update interval 1
target smoothing ratio (τ ) 0.001
gradient steps 1
reward dimension 3 or 8
max episode step 1000
replay buffer size 2× 106

hidden layers 2
hidden units per layer 64
minibatch size 32
activation function ReLU
entropy coefficient 0.05
weight learning rate 0.01
weight scheduling 1/

√
t

Constrained Max-min MORL (Ours)
constraint type maximize
constraint dimension 1
constraint epsilon 1.0
constraint threshold −5.6
main learning rate 7.5× 10−4

gradient steps for critic update 3
gradient estimation learning rate 1× 10−5(Ntype = 3), 1.25× 10−5(Ntype = 8)
gradient estimation steps 1
gradient target smoothing ratio 0.001

Unconstrained Max-min MORL

main learning rate 7.5× 10−4

perturbation q learning rate 0.073
perturbation gradient steps 1
gradient steps for critic update 3
perturbation q-copies 10
perturbation noise std-dev 0.01

Max-average SAC with a Lagrangian Relaxation
constraint type minimize
initial lambda 1.0
main learning rate (actor/critic) 3× 10−4

constraint threshold 5.6
entropy coefficient 0.05
lambda learning rate 0.001

Unconstrained Max-average SAC

main learning rate (actor/critic) 3× 10−4
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I.5 LARGE-SCALE EXTENSION IN RESOURCE ALLOCATION

Algorithm Cost sum Maximum
(Ntype = 8) (Cth = 5.6) queue length (↓)
Random 5.9 106.8
MA-SAC 5.9 105.3
MA-SAC-L 5.5 105.2
Ours 5.6 97.7
Max-min 5.9 99.9

Table 10: Cumulative cost sum and total
maximum queue length with Ntype = 8: top

two underlined

We further extend the resource allocation environment
to a larger scale with Ntype = 8 task queues. We
note that benchmark environments for MORL with
more than four objectives remain scarce (Hayes et al.,
2022; Felten et al., 2023). As shown in Table 10, both
our method and MA-SAC-L satisfy the constraints,
but our method achieves better performance in terms
of the total maximum queue length. These results
demonstrate that our algorithm effectively balances
constraint satisfaction with max-min fairness, even as
the number of objectives increases.
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I.6 HYPERPARAMETERS FOR LOCOMOTION CONTROL

Table 11: Hyperparameters for Algorithms

Parameter Value
Shared
optimizer Adam (Kingma & Ba, 2015)
discount (γ) 0.99
target update interval 1
target smoothing ratio (τ ) 0.001
gradient steps 1
reward dimension 2
max episode step 1000
replay buffer size 1× 106

hidden layers 2
hidden units per layer 64
minibatch size 32
activation function ReLU
entropy coefficient 0.05
weight learning rate 0.001
weight scheduling 1/

√
t

Constrained Max-min MORL (Ours)
constraint type maximize
constraint dimension 1
constraint epsilon 1.0
constraint threshold −50
main learning rate 7.5× 10−4

gradient steps for critic update 3
gradient estimation learning rate 2.5× 10−5

gradient estimation steps 1
gradient target smoothing ratio 0.001

Unconstrained Max-min MORL

main learning rate 7.5× 10−4

perturbation q learning rate 0.073
perturbation gradient steps 1
gradient steps for critic update 3
perturbation q-copies 10
perturbation noise std-dev 0.01

Max-average SAC with a Lagrangian Relaxation
constraint type minimize
initial lambda 1.0
main learning rate (actor/critic) 3× 10−4

constraint threshold 50
entropy coefficient 0.05
lambda learning rate 0.001

Unconstrained Max-average SAC

main learning rate (actor/critic) 3× 10−4
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J BROADER IMPACT

In this work, we propose an algorithm for constrained MORL based on the max-min criterion. First,
max-min MORL plays a critical role in promoting fairness across objectives in domains such as
traffic management and resource allocation. Unfair results can lead to user dissatisfaction and, in
turn, degrade overall system performance, for example, by contributing to traffic congestion (Raeis
& Leon-Garcia, 2021). Second, incorporating constraints into RL is essential for the responsible
development of AI systems, especially given real-world limitations on resources such as electricity,
power consumption, and fossil fuels.

Our work advances the goal of sustainable AI by simultaneously incorporating fairness and resource
constraints into decision-making. This contrasts to traditional methods that prioritize performance
alone, often overlooking concerns of equity and efficient resource use. We believe our framework
has the potential to make a meaningful and positive impact on the broader AI community, not only
in resource allocation but also in emerging areas such as fair and safe alignment of large language
models.

K LIMITATION AND FUTURE WORK

In this section, we discuss several limitations of our work and related future research avenues,
although our method offers a promising direction for developing constrained MORL algorithms.

First, there is a lack of well-established benchmarks for MORL compared to standard RL settings
(Hayes et al., 2022), and even fewer environments are specifically designed for constrained MORL.
Additionally, most existing MORL environments have low-dimensional reward spaces (typically
fewer than four dimensions) (Park & Sung, 2025), which limits the ability to evaluate our algorithm
in high-dimensional settings. Developing practical benchmarks for both MORL and constrained
MORL is therefore a critical research direction for the community.

Second, while it is common in the constrained MDP literature to assume that feasibility is ensured by
appropriately chosen thresholds (Tessler et al., 2018; Ha et al., 2020), determining such thresholds,
that is, setting the constraint set {C(l)}Ll=1, is non-trivial in practice outside of simple or tabular
domains. Unlike trial-and-error reward design, constraint threshold design is often infeasible or
unsafe due to the potential risks and costs involved. Leveraging external sources of information,
such as human demonstrations or natural language descriptions, offers a promising path for setting
constraint thresholds in constrained RL and MORL.

Third, while our resource allocation setting clearly distinguishes rewards from costs, this distinction
may be ambiguous in other domains. Determining which objectives should be treated as constraints
versus unconstrained rewards can be challenging. As with constraint threshold design, incorporating
external guidance could help better structure constrained MORL problems.

Fourth, several constrained RL studies have explored more conservative formulations than those based
on expected cumulative cost, for example, using outage probability or quantile-based constraints to
manage rare but critical failures in domains such as finance or insurance (Yang et al., 2021; Jung
et al., 2022). While our current framework and analysis rely on expected cumulative cost, extending
it to support such conservative constraint formulations presents a valuable direction for future work.

Lastly, although we assume the convergence of the (action) value function for each weight pair
(u,w), it is well known that the combination of function approximation, bootstrapped updates, and
off-policy learning can lead to instability and even divergence during training (Sutton & Barto, 2018;
Che et al., 2024). A theoretical investigation into this so-called deadly triad, along with additional
convergence guarantees, would further improve the robustness of our algorithm in the resource
allocation experiment and broaden its applicability to other domains.
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