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ABSTRACT

Multi-Objective Reinforcement Learning (MORL) extends standard RL by opti-
mizing policies over multiple and often conflicting objectives. Although max-min
scalarization has emerged as a powerful approach to promote fairness in MORL,
it has limited applicability, especially when incorporating constraints. In this pa-
per, we propose a unified framework for constrained MORL that combines the
max-min criterion with constraint satisfaction and generalizes prior formulations
such as unconstrained max-min MORL and constrained weighted-sum MORL. We
establish a theoretical foundation for our framework and validate our algorithm
through a formal convergence analysis and experiments in tabular environments.
We extend our framework to practical applications, including simulated edge com-
puting resource allocation and locomotion control. Across these domains, the
method demonstrates strong handling of fairness and constraint satisfaction in
multi-objective decision-making.

1 INTRODUCTION

Reinforcement Learning (RL) is a powerful machine learning framework that enables an agent to
learn optimal decision-making strategies through interaction with an environment. In recent years,
Multi-Objective Reinforcement Learning (MORL) has gained significant interest because many
real-world control problems inherently involve multiple, often conflicting objectives (Roijers et al.,
2013; Yang et al., 2019; Hayes et al., 2022; Basaklar et al., 2023; Park et al., 2024; Park & Sung,
2025). MORL extends standard RL to handle simultaneous optimization of multiple objectives.

A common strategy in MORL involves optimizing a scalarized function defined over multiple
objective returns (Roijers et al., 2013; Hayes et al., 2022). This framework seeks to identify a policy
π that maximizes a scalarized value f(J1(π), . . . , JK(π)), where each Jk(π) represents the expected
discounted return for the k-th objective among K(≥ 2) objectives, and f : RK → R is a non-
decreasing scalarization function such that Jk(π) ≥ Jk(π

′), 1 ≤ k ≤ K ⇒ f(J(π)) ≥ f(J(π′)).
Thus, f plays a key role in imposing the designer’s preference among multiple objectives.

Although much of the MORL literature employs a linear f (that is, the weighted sum:
maxπ

∑K
k=1 wkJk(π)) due to its simplicity, the weighted sum does not always accurately rep-

resent the preference of a designer, especially regarding fairness among objectives (Hayes et al.,
2022; Park et al., 2024). For instance, imagine a traffic light system managing an intersection where
several roads converge with asymmetric arrival rates. Instead of simply aiming to reduce the total sum
waiting time for all vehicles across the roads, the designer could prioritize fairness by minimizing the
longest individual waiting time among the roads. This helps reduce localized congestion (Raeis &
Leon-Garcia, 2021) and avoid severe delays for individual drivers.

Fairness-driven objectives frequently arise in real-world scenarios and are addressed using scalariza-
tion methods beyond the standard weighted sum, such as max-min optimization or proportionally
fair optimization (Khan et al., 2016) in MORL. While proportionally fair optimization, expressed
as maxπ

∑K
k=1 wk log Jk(π), is relatively straightforward to solve due to the smoothness and dif-

ferentiability of the log function, max-min optimization presents greater challenges because of its
non-differentiability and non-linearity. Recently, Park et al. (2024) proposed an algorithm to explicitly
address the max-min objective in MORL using Gaussian smoothing (Nesterov & Spokoiny, 2017).
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Although max-min optimization in MORL is a powerful tool with broad applicability (Regan &
Boutilier, 2010; Zehavi et al., 2013; Saifullah et al., 2014; Wang et al., 2019; Chakraborty et al.,
2024) such as mitigating bottlenecks in cloud and edge resource management systems (Saifullah
et al., 2014; Wang et al., 2019), the standard framework lacks flexibility for diverse problem types.
First, it is designed to ensure fairness across homogeneous objectives, but applying max-min fairness
to heterogeneous objectives, such as velocity and energy consumption in locomotion, is inappropriate
due to their differing units and nature. In our context, two physical quantities are considered
heterogeneous if they have different units. In such cases, one may maximize the minimum of
homogeneous objectives while requiring other objectives to remain above certain thresholds. Second,
many real-world problems involve constraints that must be satisfied. For example, in resource
allocation, a MORL-based scheduler may aim to maximize throughput and fairness across task queues
under a strict power consumption constraint (Chen et al., 2020; Jiang et al., 2020). Incorporating
constraints into the max-min MORL framework thus significantly broadens its practical applicability.

In this paper, we propose a novel framework for constrained MORL that incorporates max-min
fairness. Our approach is capable of maximizing the max-min fairness among homogeneous objectives
while simultaneously incorporating other heterogeneous quantities as constraints. We present a
detailed theoretical basis for our algorithmic design. Moreover, our framework generalizes previous
frameworks in MORL, including the original max-min MORL formulation (Park et al., 2024) and
constrained weighted-sum MORL (Huang et al., 2021). Our main contributions are as follows:

•We introduce a unified framework for constrained MORL that integrates the max-min criterion
and establishes its theoretical foundations, including differentiability, twice-differentiability, and
smoothness of our objective function.

• We propose an iterative algorithm for constrained max-min MORL, accompanied by a formal
convergence analysis. We empirically assess its convergence in tabular environments.

•We establish the practical relevance of our method by applying it to simulated edge computing
resource allocation and locomotion control. Across these scenarios, our method demonstrates its
ability to better balance max-min fairness and constraint satisfaction than the considered baselines.

2 BACKGROUND

A multi-objective Markov decision process (MOMDP) is represented as ⟨S,A, T, µ0, r, γ⟩, where
S and A are the sets of states and actions, respectively, T represents the transition probability
distribution, µ0 specifies the initial state distribution, and γ ∈ [0, 1) is the discount factor. The reward
function r : S × A → RK+L, K ≥ 1, L ≥ 0 is vector-valued with its k-th element denoted by
r(k) (1 ≤ k ≤ K + L) such that |r(k)| ≤ r

(k)
max, where K + L is the total number of objectives. At

each timestep, the agent selects an action a in the current state s according to its (stationary) policy
π : S → P(A), where P(A) represents the set of probability distributions in the action space A.
The occupancy measure is defined as ρ(s, a) :=

∑
s′ µ0(s

′)
∑∞

t=0 γ
tPr(st = s, at = a|s0 = s′, πρ)

where πρ is the corresponding stationary policy induced by ρ, expressed as πρ(a|s) = ρ(s,a)∑
a′ ρ(s,a′)

(Puterman, 1994). Then, the vector return evaluated by πρ is given by

J(πρ) := [J1(π
ρ), · · · , JK+L(π

ρ)]⊤ = Eπρ

[ ∞∑
t=0

γtrt

]
=
∑
(s,a)

r(s, a)ρ(s, a) ∈ RK+L. (1)

3 CONSTRAINED MAX-MIN MORL FRAMEWORK

3.1 THEORETICAL FOUNDATION

We consider constrained MORL, where the last L of the total K +L objectives should satisfy certain
constraints. For theoretical development in this section, we assume that S and A are finite. The
problem is formulated as follows:

max
πρ

f(J1(π
ρ), · · · , JK(πρ)) + β

∑
s

Hρ(s)ρ(s) (2)

s.t. JK+l(π
ρ) ≥ C(l), l = 1, · · · , L (3)
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where Hρ(s) := −
∑

a π
ρ(a|s) log πρ(a|s) is the entropy of πρ(·|s), ρ(s) :=

∑
a ρ(s, a) is the

stationary state distribution in S , β > 0 is a balancing coefficient, and {C(l)}Ll=1 is a set of threshold
values. We assume a mild condition that the set {C(l)}Ll=1 is chosen by the designer such that
the optimization in equation 2 and equation 3 is feasible, an assumption commonly made in the
constrained MDP literature (Tessler et al., 2018; Ha et al., 2020).

In this paper, we set f the minimum function, i.e., f(J1(π
ρ), · · · , JK(πρ)) =

min(J1(π
ρ), · · · , JK(πρ)). We note that the entropy term is included in equation 2 to pro-

mote exploration and eliminate the indeterminacy of the max-min solution without the entropy
term (Park et al., 2024). The problem reduces to the unregularized formulation as β → 0, with the
optimality gap decreasing linearly:
Proposition 3.1. The gap between the optimal max-min value of the unregularized problem and that
of the regularized problem in equation 2 and equation 3 with f = min is upper bounded by β log |A|

1−γ .
(Proof: See Appendix A.)

Proposition 3.1 shows that the regularized problem is a valid approximation of the unregularized
criterion. Since directly optimizing equation 2 and equation 3 with f = min and Jk(π

ρ) =

Eπρ [
∑∞

t=0 γ
tr

(k)
t ] is non-trivial due to its non-differentiable and non-linear structure, we address this

challenge using the occupancy measure (i.e., stationary distribution (Puterman, 1994)) formulation.
The above optimization problem with f = min can be rewritten as

max
ρ≥0

min
1≤k≤K

(∑
(s,a)

r(k)(s, a)ρ(s, a)

)
+ β

∑
s

Hρ(s)ρ(s) (4)

∑
a′

ρ(s′, a′) = µ0(s
′) + γ

∑
(s,a)

T (s′|s, a)ρ(s, a), ∀s′ (5)

∑
(s,a)

c(l)(s, a)ρ(s, a) ≥ C(l), l = 1, · · · , L (6)

where equation 5 is the Bellman flow equation for the occupancy measure (Puterman, 1994). Here,
we use the notation c(l)(s, a) := r(K+l)(s, a), l = 1, · · · , L to explicitly represent the dimensions
associated with the constraint. These quantities can be true rewards or negative of costs. Then the
formulation in equation 4, equation 5, and equation 6 constitutes a convex optimization problem.
Now we derive a convex optimization equivalent to the dual problem of equation 4, equation 5, and
equation 6, which serves as the foundation for our subsequent model-free applications (Section 5.2),
as stated in the following proposition.
Proposition 3.2. The dual problem of equation 4, equation 5, and equation 6 is equivalent to the
following convex optimization problem:

min
u∈RL

+,w∈∆K
L(u,w) =

∑
s

µ0(s)v
∗
u,w(s)−

L∑
l=1

ulC
(l) (7)

where RL
+ := {u ∈ RL|ul ≥ 0, 1 ≤ l ≤ L}, ∆K := {w ∈ RK |

∑K
k=1 wk = 1; wk ≥ 0, 1 ≤ k ≤

K}, i.e., the (K − 1)-dimensional simplex, and v∗u,w is the fixed point of the operator Tu,w:

[Tu,wv](s) = β log
∑
a

exp[
1

β
{

L∑
l=1

ulc
(l)(s, a)+

K∑
k=1

wkr
(k)(s, a)+γ

∑
s′

T (s′|s, a)v(s′)}], ∀s. (8)

(Proof: See Appendix B.)

Strong duality holds if there exists an occupancy measure ρ such that ρ(s, a) > 0, ∀(s, a) and the
constraints in equation 6 are satisfied with strict inequalities, assumptions commonly used in RL (Lee
et al., 2021) and constrained RL settings (Tessler et al., 2018; Ha et al., 2020).

Proposition 3.2 hints that v∗u,w can be obtained via soft value iteration in equation 8 and the weights
u and w can be obtained by minimizing the loss L(u,w) in equation 7 by some method. In addition,
in equation 8, we observe that the constrained reward c(l), l = 1, · · · , L can be handled without
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distinction from the unconstrained reward r(k), k = 1, · · · ,K. Note that both rewards appear as a
weighted sum in equation 8, enabling a unified framework for constrained and unconstrained MORL.

However, solving the optimization problem equation 7 directly is non-trivial because the fixed point
v∗u,w in equation 8 does not have a closed-form expression in terms of (u,w). To address this issue,
we derive the key properties of v∗u,w. For given (u,w), we define

Q∗
u,w(s, a) :=

L∑
l=1

ulc
(l)(s, a) +

K∑
k=1

wkr
(k)(s, a) + γ

∑
s′

T (s′|s, a)v∗u,w(s′), (9)

and define a policy π∗
u,w as

π∗
u,w(a|s) =

exp( 1βQ
∗
u,w(s, a))∑

a′ exp( 1βQ
∗
u,w(s, a

′))
. (10)

Then, π∗
u,w is an optimal policy for the entropy-regularized RL (Haarnoja et al., 2017) with a scalar

reward function
∑L

l=1 ulc
(l)(s, a) +

∑K
k=1 wkr

(k)(s, a). Furthermore, regarding the relationship
between π∗

u,w and the gradient of v∗u,w, we have the following theorem:

Theorem 3.3. For each s, v∗u,w(s) is differentiable w.r.t. (u,w) ∈ RL+K , and its gradient
∇v∗u,w(s) = [∇uv

∗
u,w(s)

⊤,∇wv
∗
u,w(s)

⊤]⊤ has the form of

∇uv
∗
u,w(s) = v

π∗
u,w

c (s) and ∇wv
∗
u,w(s) = v

π∗
u,w

r (s), (11)

where v
π∗
u,w

c (s) ∈ RL and v
π∗
u,w

r (s) ∈ RK are the value functions evaluated with the policy π∗
u,w for

the constrained reward c(l) and the unconstrained reward r(k), respectively. (Proof: See Appendix
C.)

Theorem 3.3 implies that the objective function L(u,w) in equation 7 is differentiable with respect to
(w.r.t.) (u,w), and enables us to apply gradient descent to solve the optimization with the gradient
(∇vv

∗
u,w(s),∇wv

∗
u,w(s)) combined with value iteration.

It is surprising but makes sense that the gradient∇v∗u,w(s) is expressed as the value function (which is
a vector quantity) evaluated with the policy π∗

u,w. First, consider the constrained part. Due to Theorem

3.3, the derivative of L(u,w) in equation 7 is given by
∑

s µ0(s)v
π∗
u,w

c (s) − [C(1), · · · , C(L)]⊤.
Hence, if the value of the l-th constrained dimension is larger than C(l), then the l-th component of
the gradient is positive, gradient descent will decrease the weight ul, and hence c(l) is less weighted
in the value iteration in equation 8. Otherwise, the opposite happens. In this way, the constraints on
the constrained dimensions are satisfied with gradient descent.

Regarding the unconstrained reward part, the gradient is given by
∑

s µ0(s)v
π∗
u,w

r (s). Hence, for
the dimension of a smaller value, we have a smaller reduction in wk by gradient descent to yield a
larger wk. Therefore, the dimensions with smaller values are weighted more in the value iteration in
equation 8 to realize the max-min principle.

We now establish the twice-differentiability of v∗u,w to derive its Hessian. This step is crucial for
establishing the smoothness of the objective function, which in turn is critical for analyzing the
convergence of our algorithm in Section 3.2.
Theorem 3.4. For each s, v∗u,w(s) is twice-differentiable w.r.t. (u,w) ∈ RL+K . Let |S| = p, and
suppose the states are enumerated as {s1, · · · , sp}. Then, the (L+K)× (L+K) Hessian matrix
H[v∗u,w(sk)], 1 ≤ k ≤ p, has the form of

H[v∗u,w(sk)] =
1

β

p∑
l=1

[(Ip − γTπ∗
u,w)−1]klB

π∗
u,w(sl). (12)

Here, Ip is the p×p identity matrix; Tπ∗
u,w is a p×p matrix of which i-th row and j-th column element

is given by [Tπ∗
u,w ]ij = Ea∼π∗

u,w(·|si)[T (sj |si, a)] (1 ≤ i, j ≤ p); [(Ip − γTπ∗
u,w)−1]kl denotes the

k-th row and l-th column element of (Ip − γTπ∗
u,w)−1; Bπ∗

u,w(s) = Ea∼π∗
u,w(·|s)

[
(Qπ∗

u,w(s, a) −

4
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Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′)])(Qπ∗

u,w(s, a)− Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′)])⊤

]
∈ R(L+K)×(L+K); and

Qπ∗
u,w(s, a) ∈ RL+K is the value function evaluated with the policy π∗

u,w. (Proof: See Appendix D.)

Due to Theorem 3.4, the objective function L(u,w) in equation 7 is twice-differentiable w.r.t. (u,w).
Note that Qπ∗

u,w(s, a) in Theorem 3.4 is different from Q∗
u,w(s, a) in equation 9. By definition in

the entropy-regularized RL, Q∗
u,w(s, a) ∈ R is the cumulative scalarized return plus the cumulative

entropy sum from π∗
u,w. On the other hand, Qπ∗

u,w(s, a) ∈ RL+K is a vector-valued cumulative sum
of unconstrained rewards and constrained rewards from π∗

u,w without the entropy sum. Therefore,
[u;w]⊤Qπ∗

u,w(s, a) equals to Q∗
u,w(s, a) minus the cumulative entropy sum of π∗

u,w.

A natural approach to solving the convex optimization problem in equation 7 is projected gradient
descent, since the variables (u,w) lie in the convex set RL

+ ×∆K . The convergence of projected
gradient descent depends on the smoothness of the objective function (Boyd & Vandenberghe, 2004;
Bubeck, 2015). In our case, L(u,w) satisfies the following smoothness property:
Theorem 3.5. For each s, v∗u,w(s) is smooth w.r.t. (u,w) on RL+K . In other words, ∇v∗u,w(s)
is Lipschitz continuous in ∥ · ∥2. Furthermore, L(u,w) is α-smooth w.r.t. (u,w) on RL+K with

α := 1
β(1−γ)

∑L+K
m=1

(
r(m)

max
1−γ

)2
. (Proof: See Appendix E.)

3.2 ALGORITHM AND CONVERGENCE ANALYSIS

Based on the foundation built in the previous section, we propose an algorithm for constrained MORL
with max-min fairness. Note that we need to jointly update the weights (u,w) and the value function,
which approximates v∗u,w. We adopt the following update method alternating between update of the
value function and the weights (u,w).

First, given a weight (u,w), we update the value function to realize equation 8. For this, we use an
action value function Q, which approximates Q∗

u,w. Using the soft Bellman equation (Haarnoja et al.,
2017), the action value function Q∗

u,w in equation 9 is written as Q∗
u,w(s, a) =

∑L
l=1 ulc

(l)(s, a) +∑K
k=1 wkr

(k)(s, a) + γ
∑

s′T (s
′|s, a)v∗u,w(s′), ∀(s, a). If we plug this equation into the right-hand

side of equation 8, we have v∗u,w(s) = [Tu,wv∗u,w](s) = β log
∑

a exp
(

Q∗
u,w(s,a)

β

)
for each s. Using

this form of v∗u,w(s), we implement applying Tu,w as updating the Q-function with the following:

Q(s, a)← [u;w]⊤[c; r] + γ
∑
s′

T (s′|s, a)β log
∑
a′

exp

(
Q(s′, a′)

β

)
, ∀(s, a). (13)

We have shown that ∇uv
∗
u,w(s) = v

π∗
u,w

c (s), ∇wv
∗
u,w(s) = v

π∗
u,w

r (s) for each s, where we denote

v
π∗
u,w

c (s) ∈ RL, v
π∗
u,w

r (s) ∈ RK as the value functions evaluated with the policy π∗
u,w for con-

strained reward c and unconstrained reward r, respectively. We compute an estimated gradient of
∇(u,w)L(u,w) at the current weight (u,w) = (um, wm) where m = 1, 2, · · · is the iteration index.
Note that the policy is extracted from the Q-function based on the form equation 10. We then update
(u,w) using projected gradient descent:

(um+1, wm+1) = PK,L[(u
m, wm)− lw∇(u,w)L(um, wm)] (14)

where lw is a learning rate for (u,w) and PK,L[·] is the projection onto the RL
+ ×∆K . We use the

convex optimization method from Wang & Carreira-Perpiñán (2013) to project onto the simplex
∆K , and apply non-negativity clipping for projection onto RL

+. Note that the projection onto ∆K

is numerically stable as it is fully deterministic and avoids randomized procedures. In addition,
its complexity is O(K logK) (Wang & Carreira-Perpiñán, 2013) which is relatively lightweight
compared to other components, due to the sublinear growth of the logarithmic term.

We iterate this process for each m, and the pseudocode of our algorithm is shown in Algorithm 1. We
now provide our convergence analysis of Algorithm 1 under the following assumption.

Assumption There exists at least one state s ∈ S such that the centered action-value vectors in the set
Scenter(s) :=

{
Qπ∗

u,w(s, a)− Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′) ] : a ∈ A

}
span RK+L.

5
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Algorithm 1 Constrained Max-Min MORL Algorithm

1: Q0 ∈ R|S||A|: initialized Q-function, ITER: total iteration number, lw: learning rate for the
update of weights (u,w)

2: Initialize weights u0 ∈ RL
+ and w0 ∈ ∆K .

3: for m = 1, 2, · · · , ITER do
4: Q = Qm−1

5: while not terminated do
6: Update Q in equation 13 with [u;w] = [um;wm].
7: end while
8: Qm = Q
9: Compute ∇̃(u,w)L(um, vm), an estimated gradient of ∇(u,w)L(um, wm) using πm(·|s) =

softmax{Qm(s, ·)/β} based on equation 11.
10: (um+1, wm+1) = PK,L[(u

m, wm)− lw∇̃(u,w)L(um, wm)].
11: end for
12: Return π(·|s) = softmax{QITER(s, ·)/β}, ∀s.

This condition fails only in degenerate multi-objective settings when for every state s ∈ S, the set
Scenter(s) lies entirely within an affine subspace of dimension less than K+L. Under this assumption,
the Hessian H[L(u,w)] is positive definite. (See Appendix F.1 for more details.) Let λ denote
the minimum eigenvalue of H[L(u,w)], which satisfies 0 < λ ≤ α (Bubeck, 2015). Theorem 3.6
provides a formal guarantee of convergence for Algorithm 1 under approximate Q-updates.

Theorem 3.6. Let (u∗, w∗) denote an optimal solution to equation 7. For each outer-loop index
m ≥ 1 in Algorithm 1, let Q∗

um,wm denote the fixed point of equation 13 with [u;w] = [um;wm],
and let Qm denote the Q-function after completing the m-th inner-loop update. For each m, assume
∥Qm −Q∗

um,wm∥∞ < ϵ for some ϵ > 0. Then for m ≥ 1,

∥[um;wm]−[u∗;w∗]∥2 ≤ (1− λ

α
)m∥[u0;w0]−[u∗;w∗]∥2+

√
|S|
λ

√√√√K+L∑
i=1

{r(i)max}2
1 + γ

(1− γ)2
ϵ. (15)

(Proof: See Appendix F.2.)

Theorem 3.6 establishes that the error decreases geometrically at rate O
(
(1− λ

α )
m
)
, up to O(ϵ).

(For completeness, Appendix F.3 provides the analysis of the degenerate case without Assumption.)

3.3 DISCUSSION

w fixed w learned
L = 0 Unconstr. weight-sum (Yang et al., 2019) Unconstr. max-min (Park et al., 2024)
L ≥ 1 Constr. weight-sum (Huang et al., 2021) Constr. max-min

Table 1: Generalizability of our framework to previous MORL settings

Our new framework is general enough to unify many existing MORL formulations. Note that we have
two major design choices: (i) scalarization strategy: whether the preference vector w on K objectives
used in the scalarization function is fixed or learned/adaptive, and (ii) whether constraints are present.
Table 1 shows four different setups of our framework. Our framework covers unconstrained weight-
sum MORL with L = 0 and fixed w, constrained weighted-sum MORL with L ≥ 1 and fixed w,
unconstrained max-min MORL with L = 0 and w learning, and finally constrained max-min MORL
with L ≥ 1 and w learning.

4 RELATED WORK

MORL The dominant approach in MORL is utility-based (Roijers et al., 2013; Hayes et al.,
2022), where the goal is to find an optimal policy π∗ = argmaxπ f(J(π)) given a non-decreasing
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scalarization function f : RK → R. When f is linear, each non-negative weight vector defines
a scalarized MDP (Boutilier et al., 1999), motivating work on learning a single model capable of
generating policies across a continuum of preferences (Abels et al., 2019; Yang et al., 2019; Basaklar
et al., 2023; Hung et al., 2023; Lu et al., 2023; Park & Sung, 2025; Li et al., 2025). This family of
approaches is known as multi-policy MORL (Roijers et al., 2013; Hayes et al., 2022). For non-linear
scalarization functions, however, Bellman optimality no longer holds in its standard form due to
the loss of linearity, making optimization substantially more difficult (Roijers et al., 2013; Hayes
et al., 2022). Algorithms that directly optimize the scalarized objective belong to the single-policy
MORL category (Roijers et al., 2013; Hayes et al., 2022). Most work in this category considers a
welfare function (Siddique et al., 2020; Cousins et al., 2024) as the nonlinear scalarization f . Note
that single-policy and multi-policy methods are complementary rather than interchangeable (Roijers
et al., 2013; Hayes et al., 2022).

Unconstrained Max-min MORL Max-min MORL studies the case where f = min, aiming
to enforce max-min fairness. This formulation is useful in many applications such as mitigating
bottlenecks in cloud and edge resource management systems (Saifullah et al., 2014; Wang et al.,
2019). Several studies optimize proxy objectives related to the unconstrained max-min formulation,
for example, maximizing a conservative lower bound of Eπ

[
min1≤k≤K(

∑∞
t=0 γ

tr
(k)
t )
]

(Fan et al.,
2023; Peng et al., 2025), or maximizing the total return while enforcing per-group performance
constraints (Eaton et al., 2025).

The work most closely related to ours is Park et al. (2024), which proposes a tractable approach for
exact unconstrained max-min MORL using Gaussian smoothing to estimate gradients. However,
this approach requires maintaining multiple network copies, increasing computational overhead.
Furthermore, the gradient estimates are inherently inexact, as Gaussian smoothing of a convex
function yields a convex upper bound rather than the true function (Nesterov & Spokoiny, 2017). In
contrast, our method produces direct, theoretically grounded gradient estimates and extends naturally
to constrained MORL. Concurrent with our work, Byeon et al. (2025) introduced an alternative
unconstrained max-min MORL formulation based on a two-player zero-sum game framework
(Daskalakis & Panageas, 2018; Miryoosefi et al., 2019). However, their method does not address the
incorporation of constraints.

Constrained RL Many approaches to constrained MDPs reformulate the problem with a scalar
reward (i.e., a special case of equation 2 and equation 3 with K = 1 and without f ) into an
unconstrained one by augmenting the objective with a weighted sum of constraint violations, typically
via a Lagrangian formulation (Achiam et al., 2017; Tessler et al., 2018; Paternain et al., 2019; Ha
et al., 2020; Vaswani et al., 2022; Calvo-Fullana et al., 2023; Müller et al., 2024). The motivation for
this line of work is that the Lagrangian relaxation exhibits no duality gap, even when the original
problem is non-convex with respect to the policy (Paternain et al., 2019). Most methods in this
category, therefore, rely on alternating updates between the policy and the Lagrange multipliers.
However, these approaches do not consider the multi-objective reward setting in equation 2 and
equation 3 with K ≥ 2. Moreover, applying them directly to our setting is non-trivial, since f = min
introduces non-differentiability in equation 2.

To resolve this, we reformulate our problem as a convex program using occupancy measures and
then derive another convex program equivalent to the dual problem, which serves as the basis for
our MORL algorithm. In particular, we show that both the max-min criterion and the constraints
can be satisfied by jointly updating the weights u and w, a simple yet effective approach that to our
knowledge has not been explored in the constrained MDP literature. Although Lee et al. (2022) also
leverages convex analysis with occupancy measures, its focus is on constrained single-objective RL
with a scalar reward (i.e., K = 1) in an offline setting. Unlike our work, it does not address fairness
across multiple objectives in MORL settings.

Several recent works have incorporated constraints into MORL (Huang et al., 2021; Lin et al., 2024;
Kim et al., 2025; Liu et al., 2025), but under settings different from our framework which integrates
max-min optimization. See Appendix G for details of these works.
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5 EXPERIMENTS

In this section, we present experimental validations of our theoretical analysis and algorithm. Section
5.1 examines the convergence properties of our method in tabular settings. In Section 5.2, we further
demonstrate the practical relevance of our approach through applications including edge computing
resource allocation and multi-objective locomotion control.

5.1 TABULAR SETTINGS

We conducted experiments in tabular settings to evaluate the convergence of our algorithm. Con-
strained MOMDPs were randomly generated, after a feasibility check, within two widely used classes
of structured MDPs. (See Appendix H.1 for details on the feasibility check.) First, bipartite state
graphs partition the state space into two disjoint subsets, enforcing transitions between them at
alternating time steps. This structure captures temporal dynamics in systems with role alternation
or interleaving phases (Littman, 1994). Second, hierarchical MDPs organize the state space into
multiple levels or stages, where transitions flow sequentially from one level to the next. This reflects
tasks with subgoals or temporal abstraction (Dietterich, 2000).

The optimal value for each MOMDP was computed by solving equation 4, equation 5, and equation 6
with β = 0 via linear programming (LP), and performance was evaluated as the error relative to these
LP-optimal values. We compared our method, which computes ∇uv

∗
u,w(s) and ∇wv

∗
u,w(s) using

Theorem 3.3, against a modified version of the Gaussian smoothing method from Park et al. (2024).
We adapted this baseline to incorporate both the max-min weights (w) and the constraint weights
(u). We selected this baseline because, to the best of our knowledge, no prior work has proposed
a constrained max-min MORL algorithm. However, Park et al. (2024) can be naturally extended
to this setting using its gradient estimation approach based on Gaussian smoothing. Both methods
follow the same alternating update scheme: (i) updating the policy using equation 13 and (ii) updating
the weight vectors using projected gradient descent, until convergence with respect to (u,w). (See
Appendix H.2 for further details on the baseline and experimental setup.)

Figure 1: Average optimality gap across gener-
ated MOMDPs

Algorithm Optimal value error (↓)
Ours 0.004
w/o u update 0.325
w/o w update 0.657
w/o (u,w) upd. 1.008

Table 2: Ablation study on the impact of weight
learning in our tabular setting

Figure 1 shows that our method converges reliably to the optimal value, whereas the Gaussian smooth-
ing baseline exhibits larger approximation errors and unstable learning behavior. This observation
can be explained by two factors: (i) Gaussian smoothing of a convex function yields another convex
function that forms an upper bound to the original objective, and (ii) its theoretical guarantee ensures
only average-iterate convergence rather than last-iterate convergence (Nesterov & Spokoiny, 2017).
The latter contributes to the oscillatory behavior observed during training.

As analyzed in Appendix H.3, the Gaussian smoothing baseline requires approximately N + 1 times
more computation per weight update than our method, where N is the number of perturbed Q-tables
used in Gaussian smoothing. In summary, our method is superior in accuracy and computation for
constrained max-min optimization compared to Gaussian smoothing in tabular settings.

To evaluate the effect of learning the weight vectors in our algorithm, we independently dis-
abled the learning of u, of w, and of both (u,w) while initializing u to a zero vector and
w = [1/K, · · · , 1/K] ∈ ∆K on the simplex. Table 2 demonstrates that removing the learning
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of either weight component noticeably increases the optimal value estimation error. (See Appendix
H.4 for the ablation study on the impact of the regularization coefficient β.)

5.2 EXTENSION TO APPLICATIONS

In this section, we extend our algorithm to practical applications. To ensure stable gradient estimation
of our algorithm in continuous state spaces, we parameterize a gradient network gθ(s) ∈ RL+K

to estimate ∇uv
∗
u,w(s) and ∇wv

∗
u,w(s), following Theorem 3.3. Implementation details, including

gradient estimation and our constrained max-min algorithm for applications, are provided in Appendix
I.1.

5.2.1 EDGE COMPUTING RESOURCE ALLOCATION

We consider a simulated edge computing resource allocation environment (Bae et al., 2020). The
system includes Ntype distinct user application types, and multiple mobile devices generate tasks
according to these types and send them to an edge computing node. The edge computing node
is equipped with multi-core CPUs and maintains Ntype separate task queues, each associated with
a specific application type. Incoming tasks from the mobile devices are sorted into these queues
accordingly. Once tasks arrive, the edge computing node either processes them locally or offloads a
portion to a cloud computing node through a dedicated communication link.

The unconstrained reward is an Ntype-dimensional vector, where each entry corresponds to the negative
value of the current queue length for a given application type to encourage queue minimization.
Minimizing the delay of the worst-performing user group is crucial for maintaining smooth system
operation (Zehavi et al., 2013; Saifullah et al., 2014; Wang et al., 2019). The cost is the total power
consumption of the system, normalized by the environment. The goal is to control the system to
minimize the maximum cumulative discounted sum of queue length across application types within
each episode, while satisfying the system’s power consumption constraint with its designed threshold
value Cth = 5.6 with Ntype = 3. (Additional details of the environment are given in Appendix I.2.)

We consider five baselines: (i) randomly selects one queue for allocation at each timestep (Random),
(ii) unconstrained max-average SAC (MA-SAC) (Haarnoja et al., 2018), (iii) max-average SAC with a
Lagrangian relaxation (MA-SAC-L) (Ha et al., 2020; Yang et al., 2021), (iv) unconstrained max-min
MORL algorithm with Gaussian smoothing Park et al. (2024) (Max-min GS), and (v) unconstrained
max-min MORL algorithm from a concurrent work (Byeon et al., 2025) (ARAM). Each of the
baselines lacks either max-min fairness ((iii)), constraint handling ((iv),(v)), or both ((i), (ii)). We
report the mean performance computed across twelve random seeds. (See Appendices I.3 and I.4 for
the implementation of the Max-min baseline GS and hyperparameter settings, respectively.)

Algorithm Cost sum
(Cth = 5.6)

Maximum
queue length (↓)

Random 5.9 72.4
MA-SAC 5.8 46.5
MA-SAC-L 5.6 52.9
Ours 5.6 37.9
Max-min GS 5.8 23.7
ARAM 6.1 14.8

Table 3: Cumulative cost sum and total max-
imum queue length with the two constraint-
satisfying algorithms highlighted in bold

Figure 2: Comparison of queue length sums
across queues for each algorithm

Table 3 presents the cumulative cost sum and the total maximum queue length. Compared to the
Random baseline, MA-SAC reduces the total maximum queue length but still fails to satisfy the power
consumption constraint, with its cost sum exceeding the threshold Cth = 5.6. While MA-SAC-L
satisfies the power constraint, it does so at the cost of a higher total maximum queue length compared
to MA-SAC. As shown in Figure 2, our method substantially reduces the total maximum queue length

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

relative to MA-SAC-L, while still adhering to the power constraint. We note that both Max-min GS
and ARAM violate the power constraint.

Algorithm Cost sum
(Cth = 5.6)

Maximum
queue length (↓)

Ours 5.6 37.9
w/o u update 5.8 33.7
w/o w update 5.5 52.7
w/o (u,w) upd. 5.8 44.7

Table 4: Ablation study in resource allocation

Table 4 shows that ablating the constraint-
related u update causes constraint violations,
while removing the max-min-related w update
substantially increases the total maximum queue
length. These results confirm that our method
effectively balances max-min performance with
constraint satisfaction.

5.2.2 MULTI-OBJECTIVE LOCOMOTION CONTROL

Algorithm Cost sum
(Cth = 50)

Minimum
return (↑)

Random 146.5 48.2
MA-SAC 275.3 98.8
MA-SAC-L 47.8 83.0
Ours 28.3 92.2
Max-min GS 111.7 92.7
ARAM 620.7 101.3

Table 5: MoAnt-v5 results over five seeds
with the two constraint-satisfying

algorithms highlighted in bold

We include MoAnt-v5 environment (Felten et al.,
2023), where the agent learns locomotion to maximize
x and y velocities while keeping energy consumption
under a threshold. We consider an asymmetric case
where movement in the x direction is attenuated by
friction at rate 0.3. The velocities (vx, vy), combined
with bonus terms, constitute a 2-D reward, while the
control cost is treated as a constraint. (See Appendix
I.5 for details on hyperparameters.)

Table 5 shows that both our method and MA-SAC-L
satisfy the constraints, but our method achieves su-
perior max-min performance. In contrast, the other
four algorithms severely violate the constraints, as
they do not explicitly account for constraint satisfaction. Overall, our algorithm balances constraint
satisfaction and max-min fairness.

In Appendix J, we further evaluate our method on a traffic signal control environment (Alegre, 2019)
featuring 16 objectives (Park & Sung, 2025; Byeon et al., 2025), allowing us to test its performance
in a higher-dimensional MORL setting.

6 CONCLUSION

We have proposed a unified framework for constrained MORL that integrates max-min fairness with
constraint satisfaction. Our approach offers flexibility in modeling problems that satisfy fairness and
operational constraints. We established a theoretical foundation and developed an algorithm that
shows strong performance in both tabular settings and practical applications. By jointly addressing
fairness and resource constraints, our work contributes to advancing sustainable AI, offering a
compelling alternative to conventional approaches that focus solely on performance, often at the
expense of equity and resource constraints. A broader impact of our work is discussed in Appendix
K, and a discussion of limitations and future directions is provided in Appendix L.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our algorithm in Section 3.2 and Appendix I.1. Appendices H and
I contain the experimental setup, fine-tuned hyperparameters, and infrastructure details. To ensure
accessibility and reproducibility, we provide the source code for the resource allocation environment
in the supplementary material. Furthermore, all theorems are presented in a self-contained manner,
making it straightforward to verify the theoretical results.
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Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_
files/paper/2019/file/873be0705c80679f2c71fbf4d872df59-Paper.pdf.

Adrian Müller, Pragnya Alatur, Volkan Cevher, Giorgia Ramponi, and Niao He. Truly no-regret
learning in constrained MDPs. In Forty-first International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=hrWte3nlzr.

Yurii E. Nesterov and Vladimir G. Spokoiny. Random gradient-free minimization of convex functions.
Found. Comput. Math., 17(2):527–566, 2017. doi: 10.1007/S10208-015-9296-2. URL https:
//doi.org/10.1007/s10208-015-9296-2.

Giseung Park and Youngchul Sung. Reward dimension reduction for scalable multi-objective
reinforcement learning. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=ssRdQimeUI.

Giseung Park, Woohyeon Byeon, Seongmin Kim, Elad Havakuk, Amir Leshem, and Youngchul
Sung. The max-min formulation of multi-objective reinforcement learning: From theory to a
model-free algorithm. In Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/
forum?id=cY9g0bwiZx.

Santiago Paternain, Luiz Chamon, Miguel Calvo-Fullana, and Alejandro Ribeiro. Constrained
reinforcement learning has zero duality gap. Advances in Neural Information Processing Systems,
32, 2019.

Nianli Peng, Muhang Tian, and Brandon Fain. Multi-objective reinforcement learning with nonlinear
preferences: Provable approximation for maximizing expected scalarized return, 2025. URL
https://arxiv.org/abs/2311.02544.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Statistics. Wiley, 1994. ISBN 978-0-47161977-2. doi: 10.1002/
9780470316887. URL https://doi.org/10.1002/9780470316887.

Majid Raeis and Alberto Leon-Garcia. A deep reinforcement learning approach for fair traffic signal
control. In 2021 IEEE international intelligent transportation systems conference (ITSC), pp.
2512–2518. IEEE, 2021.

Kevin Regan and Craig Boutilier. Robust policy computation in reward-uncertain mdps using
nondominated policies. In Maria Fox and David Poole (eds.), Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010,
pp. 1127–1133. AAAI Press, 2010. doi: 10.1609/AAAI.V24I1.7740. URL https://doi.
org/10.1609/aaai.v24i1.7740.

Diederik M. Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-
objective sequential decision-making. J. Artif. Intell. Res., 48:67–113, 2013. doi: 10.1613/JAIR.
3987. URL https://doi.org/10.1613/jair.3987.

Abusayeed Saifullah, David Ferry, Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher D. Gill.
Parallel real-time scheduling of dags. IEEE Trans. Parallel Distributed Syst., 25(12):3242–3252,
2014. doi: 10.1109/TPDS.2013.2297919.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Convergence rates of inexact proximal-gradient
methods for convex optimization. 2011. URL https://arxiv.org/abs/1109.2415.

Umer Siddique, Paul Weng, and Matthieu Zimmer. Learning fair policies in multi-objective (deep)
reinforcement learning with average and discounted rewards. In Proceedings of the 37th Inter-
national Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, vol-
ume 119 of Proceedings of Machine Learning Research, pp. 8905–8915. PMLR, 2020. URL
http://proceedings.mlr.press/v119/siddique20a.html.

14

https://proceedings.mlr.press/v139/malik21a.html
https://proceedings.mlr.press/v139/malik21a.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/873be0705c80679f2c71fbf4d872df59-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/873be0705c80679f2c71fbf4d872df59-Paper.pdf
https://openreview.net/forum?id=hrWte3nlzr
https://doi.org/10.1007/s10208-015-9296-2
https://doi.org/10.1007/s10208-015-9296-2
https://openreview.net/forum?id=ssRdQimeUI
https://openreview.net/forum?id=cY9g0bwiZx
https://openreview.net/forum?id=cY9g0bwiZx
https://arxiv.org/abs/2311.02544
https://doi.org/10.1002/9780470316887
https://doi.org/10.1609/aaai.v24i1.7740
https://doi.org/10.1609/aaai.v24i1.7740
https://doi.org/10.1613/jair.3987
https://arxiv.org/abs/1109.2415
http://proceedings.mlr.press/v119/siddique20a.html


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

David Silver. Lectures on reinforcement learning. URL: https://www.davidsilver.uk/
teaching/, 2015.

Sriram Ganapathi Subramanian, Guiliang Liu, Mohammed Elmahgiubi, Kasra Rezaee, and Pascal
Poupart. Confidence aware inverse constrained reinforcement learning. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
6TCeizkLJV.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. arXiv
preprint arXiv:1805.11074, 2018.

Sharan Vaswani, Lin Yang, and Csaba Szepesvari. Near-optimal sample complexity bounds for
constrained MDPs. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=ZJ7Lrtd12x_.

Kankan Wang, Xu Jiang, Nan Guan, Di Liu, Weichen Liu, and Qingxu Deng. Real-time scheduling
of DAG tasks with arbitrary deadlines. ACM Trans. Design Autom. Electr. Syst., 24(6):66:1–66:22,
2019. doi: 10.1145/3358603.
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A PROOF ON OPTIMALITY GAP

Proof. With a slight abuse of notation, let J(π) := [J1(π), · · · , JK(π)]⊤ ∈ RK and letH(π) denote
the expected cumulative entropy of π. We express the optimization of equation 2 and equation 3 with
f = min as follows:

max
π∈Πfeas

min
1≤k≤K

Jk(π) + βH(π) (16)

where Πfeas :=
{
π
∣∣∣Eµ0,π

[∑∞
t=0 γ

tc
(l)
t

]
≥ C(l), ∀l = 1, . . . , L

}
and it is assumed to be non-

empty under the typical assumption in constrained RL (Tessler et al., 2018; Ha et al., 2020).

Let the optimal solution to the regularized problem in equation 16 be π∗
r :=

argmaxπ∈Πfeas min1≤k≤K Jk(π) + βH(π) = argmaxπ∈Πfeas minw⟨w, J(π)⟩ + βH(π) where
minw∈∆K is abbreviated as minw for brevity. Let w∗(π) := argminw⟨w, J(π)⟩ and w∗

r := w∗(π∗
r ).

Let the optimal solution to the unregularized problem be π∗ := argmaxπ∈Πfeas minw⟨w, J(π)⟩ and
w∗ = w∗(π∗). Let the optimal max-min value of the unregularized problem be V π∗

w∗ := ⟨w∗, J(π∗)⟩.
Similarly, let the optimal value of the regularized problem be V

π∗
r

w∗
r
:= ⟨w∗

r , J(π
∗
r )⟩. For simplicity,

we abbreviate maxπ∈Πfeas as maxπ below.

First, a lower bound is derived as follows:

V
π∗
r

w∗
r
+ βH(π∗

r )

= maxπ minw⟨w, J(π)⟩+ βH(π)
≥ minw⟨w, J(π∗)⟩+ βH(π∗)

= ⟨w∗, J(π∗)⟩+ βH(π∗).

Since 0 ≤ H(π) ≤ log |A|
1−γ for any π, we obtain V

π∗
r

w∗
r
− V π∗

w∗ ≥ −β log |A|
1−γ .

Next, an upper bound is derived as follows:

V π∗

w∗

= maxπ minw⟨w, J(π)⟩
≥ minw⟨w, J(π∗

r )⟩
= ⟨w∗

r , J(π
∗
r )⟩.

Thus, V π∗
r

w∗
r
− V π∗

w∗ ≤ 0.

Combining these two bounds, we obtain the optimality value gap ranges as 0 ≤ V π∗

w∗ − V
π∗
r

w∗
r
≤

β log |A|
1−γ .
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B PROOF ON EQUIVALENT OPTIMIZATION

Proof. The dual problem of equation 4, equation 5, and equation 6 is rewritten as follows:

min
u≥0

min
w≥0,v

min
ξ≥0

max
ρ,b

[
b(1−

K∑
k=1

wk)−β
∑
s,a

ρ(s, a)log
ρ(s, a)∑
a′ ρ(s, a′)

+
∑
s

µ0(s)v(s) +
∑
s,a

ξ(s, a)ρ(s, a)−
L∑

l=1

ulC
(l)

+
∑
s,a

ρ(s, a)[

K∑
k=1

wkr
(k)(s, a)+

L∑
l=1

ulc
(l)(s, a) +γ

∑
s′

T (s′|s, a)v(s′)−v(s)]

]
. (17)

Here b is an auxiliary variable satisfying
∑

s,a r
(k)(s, a)ρ(s, a) ≥ b, 1 ≤ k ≤ K. Let ηu,v,w(s, a) :=∑K

k=1 wkr
(k)(s, a) +

∑L
l=1 ulc

(l)(s, a) + γ
∑

s′ T (s
′|s, a)v(s′)− v(s). We apply KKT conditions.

1. Stationarity condition gives

∀(s, a), −β log
ρ(s, a)∑
a′ ρ(s, a′)

+ ξ(s, a) + ηu,v,w(s, a) = 0 (18)

and

1−
K∑

k=1

wk = 0. (19)

2. Complementary slackness condition gives
∀(s, a), ξ(s, a)ρ(s, a) = 0. (20)

From equation 18, we derive

∀(s, a), ρ(s, a)∑
a′ ρ(s, a′)

= exp

(
ξ(s, a) + ηu,v,w(s, a)

β

)
(21)

so ρ(s, a) > 0 and ξ(s, a) = 0 from equation 20. Therefore,

∀(s, a), ρ(s, a)∑
a′ ρ(s, a′)

= exp

(
ηu,v,w(s, a)

β

)
. (22)

Inserting equation 19 and equation 22, we obtain:

min
u∈RL

+

min
v,w

∑
s

µ0(s)v(s)−
L∑

l=1

ulC
(l) (23)

∀s, v(s)=β log
∑
a

exp[
1

β
{

K∑
k=1

wkr
(k)(s, a)+

L∑
l=1

ulc
(l)(s, a)+γ

∑
s′

T (s′|s, a)v(s′)}] := [Tu,wv](s)

(24)
K∑

k=1

wk = 1; wk ≥ 0 ∀1 ≤ k ≤ K. (25)

where equation 24 is derived from
∑

a exp
(

ηu,v,w(s,a)
β

)
= 1, ∀s, and strong duality holds under

Slater condition (Boyd & Vandenberghe, 2004). Since Tu,w is a contraction mapping (Haarnoja et al.,
2017; Fox et al., 2016), it has the unique fixed point v∗u,w. Therefore, v = v∗u,w is the only feasible
solution that satisfies equation 24 and we have the following:

min
u∈RL

+,w∈∆K
L(u,w) =

∑
s

µ0(s)v
∗
u,w(s)−

L∑
l=1

ulC
(l). (26)

Under Slater condition, this optimization attains the same optimal value as in the original convex
optimization. Lastly, the convexity of this optimization is directly obtained from Theorem 4.1. in
Park et al. (2024).
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C PROOF OF DIFFERENTIABILITY

Proof. We first note that for the simplicity of notation, it is enough to show the theorem for the
case of L = 0 (i.e., with no constraints). This holds because, given (u,w) ∈ RL+K , the map-
ping Tu,w is defined by [Tu,wv](s) = β log

∑
a exp[

1
β {
∑L

l=1 ulc
(l)(s, a) +

∑K
k=1 wkr

(k)(s, a) +

γ
∑

s′T (s
′|s, a)v(s′)}], ∀s, and we can regard the concatenation of c(s, a) and r(s, a) as a new vector

reward of size L+K with its weight (u,w). Therefore, we use the notation of the following mapping
[Twv](s) = β log

∑
a exp[

1
β {
∑K

k=1 wkr
(k)(s, a) + γ

∑
s′T (s

′|s, a)v(s′)}], ∀s.

Let |S| = p. We define F (w, v) := v − Twv, F : RK × Rp → Rp. Let v∗w be the unique fixed point
of Tw. Then F (w, v∗w) = v∗w − Twv∗w = 0. Here v∗w is implicitly expressed w.r.t. w, and we aim to
analyze v∗w using implicit function theorem.

First of all, F : RK × Rp → Rp is a continuously differentiable function. For each s, F (w, v)(s) =

v(s)− [Twv](s) = v(s)− β log
∑

a exp[
1
β {
∑K

k=1 wkr
(k)(s, a) + γ

∑
s′T (s

′|s, a)v(s′)}] which is a
composition of linear, logarithm, summation, exponential, and linear functions.

Now we fix w and check whether the Jacobian matrix ∂vF (w, v)|v=v∗
w
∈ Rp×p is invertible where

[∂vF (w, v)|v=v∗
w
]ij =

∂F (w,v)(si)
∂v(sj)

|v=v∗
w

. We have ∂vF (w, v) = Ip − ∂v[Twv] where Ip is the p× p

identity matrix. Then
∂[Twv](si)
∂v(sj)

|v=v∗
w
= γEa∼π∗

w(·|si)[T (sj |si, a)] (27)

where

π∗
w(a|s) =

exp[ 1β {
∑K

k=1 wkr
(k)(s, a) + γ

∑
s′T (s

′|s, a)v∗w(s′)}]∑
a′ exp[ 1β {

∑K
k=1 wkr(k)(s, a′) + γ

∑
s′T (s

′|s, a′)v∗w(s′)}]
. (28)

If we denote T (·|s, a) := [T (s1|s, a) · · ·T (sp|s, a)], we have

∂vF (w, v)|v=v∗
w
= Ip − γ

Ea∼π∗
w(·|s1)[T (·|s1, a)]

...
Ea∼π∗

w(·|sp)[T (·|sp, a)]

 =: Ip − γ

T
π∗
w(·|s1)

...
Tπ∗

w(·|sp)

 (29)

where Tπ∗
w(sj |si) = Ea∼π∗

w(·|si)[T (sj |si, a)] =: [Tπ∗
w ]ij . Then Ip − γTπ∗

w is invertible since Tπ∗
w

is a row-stochastic square matrix (Horn & Johnson, 2012).

Therefore, ∂vF (w, v)|v=v∗
w

is invertible. By implicit function theorem, there exists an open set U ⊂
RK containing w such that there exists a unique continuously differentiable function h : U → Rp

such that h(w) = v∗w and F (w′, h(w′)) = 0, i.e., h(w′) = Tw′h(w′) for all w′ ∈ U . Since h(w′) is
the unique fixed point of Tw′ , h(w′) = v∗w′ , ∀w′ ∈ U . If we use the implicit function theorem for all
w ∈ RK , we can conclude that v = v∗w is a unique continuously differentiable function in w ∈ RK

that satisfies v = Twv.

Moreover, for 1 ≤ k ≤ K,

∂[Twv](si)
∂wk

|v=v∗
w
= Ea∼π∗

w(·|si)[r
(k)(si, a)]. (30)

With a slight abuse of notation, if we denote r(s, a) := [r(1)(s, a) · · · r(K)(s, a)], we have

∂wF (w, v)|v=v∗
w
= −

Ea∼π∗
w(·|s1)[r(s1, a)]

...
Ea∼π∗

w(·|sp)[r(sp, a)]

 =: −

r
π∗
w(s1)

...
rπ

∗
w(sp)

 (31)

where rπ
∗
w(s) = Ea∼π∗

w(·|s)[r(s, a)] ∈ R1×K . By implicit function theorem, we have∇wv
∗
w(s1)

⊤

...
∇wv

∗
w(sp)

⊤

 = −[∂vF (w, v)|v=v∗
w
]−1∂wF (w, v)|v=v∗

w
= (Ip − γTπ∗

w)−1rπ
∗
w . (32)
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Note that the k-th (1 ≤ k ≤ K) column of equation 32 is equivalent to the policy evaluation of π∗
w

considering a scalar reward function r(k) (Silver, 2015; Sutton & Barto, 2018). We denote the value
function as vπ

∗
w

k ∈ Rp. Then
∂v∗w(s)

∂wk
= v

π∗
w

k (s), ∀s. (33)

If we denote vπ
∗
w(s) = [v

π∗
w

1 (s), · · · , vπ
∗
w

K (s)]⊤ ∈ RK for all s, then vπ
∗
w(s) is the value function

evaluated with the policy π∗
w in a given MOMDP. We have

∇wv
∗
w(s) = vπ

∗
w(s), ∀s. (34)

For the case of L > 0, the only difference is that π∗
w is changed to

π∗
u,w(a|s) =

exp[ 1β {
∑L

l=1 ulc
(l)(s, a) +

∑K
k=1 wkr

(k)(s, a) + γ
∑

s′T (s
′|s, a)v∗u,w(s′)}]∑

a′ exp[ 1β {
∑L

l=1 ulc(l)(s, a′) +
∑K

k=1 wkr(k)(s, a′) + γ
∑

s′T (s
′|s, a′)v∗u,w(s′)}]

(35)
where v∗u,w is the fixed point of the operator Tu,w:

∀s, [Tu,wv](s) = β log
∑
a

exp[
1

β
{

L∑
l=1

ulc
(l)(s, a)+

K∑
k=1

wkr
(k)(s, a)+γ

∑
s′

T (s′|s, a)v(s′)}] (36)

and the column size of rπ
∗
u,w is L +K, not K. We denote v

π∗
u,w

c (s) ∈ RL, v
π∗
u,w

r (s) ∈ RK as the
value functions evaluated with the policy π∗

u,w for constrained reward c and unconstrained reward r,
respectively. Finally, we have

∇uv
∗
u,w(s) = v

π∗
u,w

c (s), ∇wv
∗
u,w(s) = v

π∗
u,w

r (s), ∀s. (37)
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D PROOF OF TWICE-DIFFERENTIABILITY

Proof. Here we also use the implicit function theorem and follow a similar logic in the proof of
differentiability in Appendix C. Let |S| = p. We show the theorem for the case of L = 0 to guarantee
notational simplicity. For each 1 ≤ i ≤ K, we want to show that ∂v∗

w

∂wi
:= [

∂v∗
w(s1)
∂wi

, · · · , ∂v∗
w(sp)
∂wi

]⊤ ∈
Rp is differentiable in w ∈ RK . From the result in Appendix C, we have

∂v∗w
∂wi

= v
π∗
w

i (38)

where v
π∗
w

i ∈ Rp is the value function evaluated with the policy π∗
w in equation 28 with the i-th

reward r(i). Let rπ
∗
w

i (s) = Ea∼π∗
w(·|s)[r

(i)(s, a)] ∈ R. From equation 32, we have

v
π∗
w

i = (Ip − γTπ∗
w)−1r

π∗
w

i (39)

or equivalently,
v
π∗
w

i = r
π∗
w

i + γTπ∗
wv

π∗
w

i =: T ∗
wv

π∗
w

i . (40)

We define F (w, v) := v − T ∗
wv, F : RK × Rp → Rp. Then F (w, v

π∗
w

i ) = v
π∗
w

i − Twv
π∗
w

i = 0. Here
v
π∗
w

i is the unique fixed point of T ∗
w and is implicitly expressed w.r.t. w, and we aim to analyze v

π∗
w

i
using implicit function theorem.

First of all, F : RK × Rp → Rp is a continuously differentiable function. For each s, F (w, v)(s) =

v(s) − [T ∗
wv](s) = v(s) − [r

π∗
w

i (s) + γ
∑

s′ T
π∗
w(s′|s)v(s′)] = v(s) −

∑
a π

∗
w(a|s)[r(i)(s, a) +

γ
∑

s′ T (s
′|s, a)v(s′)]. As seen in equation 28, π∗

w contains v∗w which is continuously differentiable
in w (as a result of the proof in Appendix C), and π∗

w is a composition of quotient, exponential,
summation and linear functions of w and v∗w.

Now we fix w and check whether the Jacobian matrix ∂vF (w, v)|
v=v

π∗
w

i

∈ Rp×p is invertible where

[∂vF (w, v)|
v=v

π∗
w

i

]ij = ∂F (w,v)(si)
∂v(sj)

|
v=v

π∗
w

i

. We have ∂vF (w, v) = Ip − ∂v[T ∗
wv] where Ip is the

p× p identity matrix. Then

∂[T ∗
wv](si)

∂v(sj)
|
v=v

π∗
w

i

= γEa∼π∗
w(·|si)[T (sj |si, a)]. (41)

If we denote T (·|s, a) := [T (s1|s, a) · · ·T (sp|s, a)], we have

∂vF (w, v)|
v=v

π∗
w

i

= Ip − γ

Ea∼π∗
w(·|s1)[T (·|s1, a)]

...
Ea∼π∗

w(·|sp)[T (·|sp, a)]

 =: Ip − γ

T
π∗
w(·|s1)

...
Tπ∗

w(·|sp)

 (42)

where Tπ∗
w(sj |si) = Ea∼π∗

w(·|si)[T (sj |si, a)] =: [Tπ∗
w ]ij . Then Ip − γTπ∗

w is invertible since Tπ∗
w

is a row-stochastic square matrix (Horn & Johnson, 2012).

Therefore, ∂vF (w, v)|
v=v

π∗
w

i

is invertible. By implicit function theorem, there exists an open set U ⊂
RK containing w such that there exists a unique continuously differentiable function h : U → Rp

such that h(w) = v
π∗
w

i and F (w′, h(w′)) = 0, i.e., h(w′) = T ∗
w′h(w′) for all w′ ∈ U . Since h(w′)

is the unique fixed point of T ∗
w′ , h(w′) = v

π∗
w′

i , ∀w′ ∈ U . If we use the implicit function theorem
for all w ∈ RK , we can conclude that v = v

π∗
w

i is a unique continuously differentiable function in
w ∈ RK that satisfies v = T ∗

wv.

Now, for 1 ≤ j ≤ K, we aim to calculate ∂[T ∗
wv](s)
∂wj

|
v=v

π∗
w

i

. For notational simplicity, let Q∗
w(s, a) :=∑K

k=1 wkr
(k)(s, a) + γ

∑
s′T (s

′|s, a)v∗w(s′). Then we express π∗
w as follows:

π∗
w(a|s) =

exp[ 1β {Q
∗
w(s, a)}]∑

a′ exp[ 1β {Q∗
w(s, a

′)}]
. (43)
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We also have

∂Q∗
w(s, a)

∂wj
= r(j)(s, a) + γ

∑
s′

T (s′|s, a)∂v
∗
w(s

′)

∂wj
= r(j)(s, a) + γ

∑
s′

T (s′|s, a)vπ
∗
w

j (s′) := Q
π∗
w

j (s, a).

(44)

In other words, we denote Q
π∗
w

j as the action-value function evaluated with π∗
w for a scalar reward

function r(j). Then
∂[T ∗

wv](s)

∂wj
|
v=v

π∗
w

i

=
∑
a

Q
π∗
w

i (s, a)
∂π∗

w(a|s)
∂wj

(45)

which is equivalent to

∂[T ∗
wv](s)

∂wj
|
v=v

π∗
w

i

=
1

β

∑
a

Q
π∗
w

i (s, a)

[
π∗
w(a|s)Q

π∗
w

j (s, a)− π∗
w(a|s)

∑
a′

{π∗
w(a

′|s)Qπ∗
w

j (s, a′)}
]

(46)
and we have

∂[T ∗
wv](s)

∂wj
|
v=v

π∗
w

i

=
1

β

[
Ea∼π∗

w(·|s)[Q
π∗
w

i (s, a)Q
π∗
w

j (s, a)]−Ea∼π∗
w(·|s)[Q

π∗
w

i (s, a)]Ea∼π∗
w(·|s)[Q

π∗
w

j (s, a)]}
]
.

(47)

By implicit function theorem, we have
∇w

∂v∗
w(s1)
∂wi

⊤

...

∇w
∂v∗

w(sp)
∂wi

⊤

 = −[∂vF (w, v)|
v=v

π∗
w

i

]−1∂wF (w, v)|
v=v

π∗
w

i

=
1

β
(Ip − γTπ∗

w)−1E
π∗
w

i (48)

where E
π∗
w

i is a p × K matrix where for each row corresponding to s, the j-th element is
Ea∼π∗

w(·|s)[Q
π∗
w

i (s, a)Q
π∗
w

j (s, a)]−Ea∼π∗
w(·|s)[Q

π∗
w

i (s, a)]Ea∼π∗
w(·|s)[Q

π∗
w

j (s, a)]}. This formulation
holds for each 1 ≤ i ≤ K.

Therefore, we construct a p×K ×K tensor, say Bπ∗
w , by stacking {Eπ∗

w
i }i along the new (third)

dimension. Then along the first dimension of size p, for each s, let Bπ∗
w(s) ∈ RK×K be the

corresponding slice of B. Let Qπ∗
w(s, a) = [Q

π∗
w

1 (s, a), · · · , Qπ∗
w

K (s, a)]⊤ ∈ RK be the action-value
function evaluated with π∗

w for vector reward r. Then we have

Bπ∗
w (s) = Ea∼π∗

w(·|s)

[
(Qπ∗

w (s, a)− Ea′∼π∗
w(·|s)[Q

π∗
w (s, a′)])(Qπ∗

w (s, a)− Ea′∼π∗
w(·|s)[Q

π∗
w (s, a′)])⊤

]
(49)

which is the covariance matrix of Qπ∗
w(s, ·) over the probability distribution π∗

w(·|s). Let sk corre-
spond to the k-th row of Tπ∗

w (1 ≤ k ≤ p). Then we have the following Hessian formulation for
sk:

H[v∗w(sk)] =
1

β

p∑
l=1

[(Ip − γTπ∗
w)−1]klB

π∗
w(sl). (50)

For the case of L > 0, the only difference is that π∗
w is changed to

π∗
u,w(a|s) =

exp[ 1β {
∑L

l=1 ulc
(l)(s, a) +

∑K
k=1 wkr

(k)(s, a) + γ
∑

s′T (s
′|s, a)v∗u,w(s′)}]∑

a′ exp[ 1β {
∑L

l=1 ulc(l)(s, a′) +
∑K

k=1 wkr(k)(s, a′) + γ
∑

s′T (s
′|s, a′)v∗u,w(s′)}]

(51)
where v∗u,w is the fixed point of the operator Tu,w:

∀s, [Tu,wv](s) = β log
∑
a

exp[
1

β
{

L∑
l=1

ulc
(l)(s, a)+

K∑
k=1

wkr
(k)(s, a)+γ

∑
s′

T (s′|s, a)v(s′)}] (52)
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and the size of Bπ∗
u,w(s) is (L+K)× (L+K), not K×K, defined by Qπ∗

u,w(s, a) ∈ RL+K which
is the action-value function evaluated with π∗

u,w for the concatenated vector function of constrained
reward c and unconstrained reward r. Finally, we have

H[v∗u,w(sk)] =
1

β

p∑
l=1

[(Ip − γTπ∗
u,w)−1]klB

π∗
u,w(sl). (53)

E PROOF OF SMOOTHNESS

Proof. Let a = (u′, w′) and b = (u′′, w′′) in RL+K . By the differentiability of ∇v∗u,w(s) proved in
Theorem 3.4, we use generalized mean value inequality in Banach spaces and have

∥∇v∗u,w(s)|(u,w)=b −∇v∗u,w(s)|(u,w)=a∥2 ≤ sup
t∈[0,1]

∥H[v∗u,w(s)]|(u,w)=a+t(b−a)∥2∥b− a∥2 (54)

Let λmax(A) be the maximum eigenvalue of a real symmetric matrix A. For each sk (1 ≤ k ≤ p),
the eigenvalues of H[v∗u,w(sk)] are nonnegative. Since trace operator is additive, we have

∥H[v∗u,w(sk)]∥2 = λmax(H[v∗u,w(sk)]) ≤ Tr(H[v∗u,w(sk)]) =
1

β

p∑
l=1

[(Ip−γTπ∗
u,w)−1]klTr(Bπ∗

u,w(sl)).

(55)
For each s, we also have

Tr(Bπ∗
u,w(s)) =

L+K∑
k=1

Var(Q
π∗
u,w

k (s, a)) ≤
L+K∑
k=1

E[|Qπ∗
u,w

k (s, ·)|2] ≤
L+K∑
k=1

(
r
(k)
max

1− γ

)2

. (56)

Since (Ip − γTπ∗
u,w)−1 =

∑∞
i=0(γT

π∗
u,w)i and each (Tπ∗

u,w)i is a probability transition matrix,

∥H[v∗u,w(sk)]∥2 ≤
1

β

L+K∑
m=1

(
r
(m)
max

1− γ

)2( ∞∑
i=0

γi

p∑
l=1

(Tπ∗
u,w)ikl

)
=

1

β(1− γ)

L+K∑
m=1

(
r
(m)
max

1− γ

)2

.

(57)
It should be noted that ∥H[v∗u,w(sk)]∥2 is uniformly bounded regardless of sk and (u,w). Therefore,
∇v∗u,w(s) is Lipschitz continuous in ∥ · ∥2 from equation 54.
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F CONVERGENCE ANALYSIS

F.1 ASSUMPTION FOR ACTION-VALUE NONDEGENERACY

Assumption There exists at least one state s ∈ S such that the centered action-value vectors{
Qπ∗

u,w(s, a)− Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′) ] : a ∈ A

}
span RK+L.

This condition fails only in degenerate multi-objective settings when for every state s ∈ S, the set{
Qπ∗

u,w(s, a) − Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′) ] : a ∈ A

}
lies entirely within an affine subspace of

dimension less than K + L (e.g., the size of an action set is smaller than the number of objectives).

Then Bπ∗
u,w(s) = Ea∼π∗

u,w(·|s)

[
(Qπ∗

u,w(s, a) − Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′)])(Qπ∗

u,w(s, a) −

Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′)])⊤

]
∈ R(L+K)×(L+K) is positive definite. This is because (i)

π∗
u,w(a|s) > 0 for all a (equation 10, which has this favorable property that facilitate analysis),

and (ii) for any y ∈ RK+L with y ̸= 0, y⊤Bπ∗
u,w(s)y =

∑
a π

∗
u,w(a|s)

(
y⊤(Qπ∗

u,w(s, a) −

Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′)])

)2

> 0 as at least one a should satisfy y⊤(Qπ∗
u,w(s, a) −

Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′)]) ̸= 0.

By Theorem 3.4, we have the Hessian of L(u,w) as H[L(u,w)] = 1
β

∑p
l=1[µ

⊤
0 (Ip −

γTπ∗
u,w)−1]lB

π∗
u,w(sl) =

1
β

∑
s ρ

π∗
u,w(s)Bπ∗

u,w(s) where p = |S| and ρπ
∗
u,w(s) =

∑∞
t=0 γ

tPr(st =

s|π∗
u,w, µ0), and ρπ

∗
u,w(s) > 0 by the reachability assumption (Lee et al., 2021). Therefore,

H[L(u,w)] is positive definite under the assumption.

F.2 PROOF OF CONVERGENCE ANALYSIS

Let λmin(A) be the minimum eigenvalue of a real symmetric matrix A. For simplicity, we denote
λ := λmin(H[L(u,w)]). Then 0 < λ ≤ α (Bubeck, 2015) and L(u,w) is λ-strongly convex.

Theorem 3.6 Let (u∗, w∗) denote the optimal solution to equation 7. For each outer-loop index
m ≥ 1 in Algorithm 1, let Q∗

um,wm denote the fixed point of equation 13 with [u;w] = [um;wm],
and let Qm denote the Q-function after completing the m-th inner-loop update. For each m, assume
∥Qm −Q∗

um,wm∥∞ < ϵ for some ϵ > 0. Then for m ≥ 1,

∥[um;wm]−[u∗;w∗]∥2 ≤ (1− λ

α
)m∥[u0;w0]−[u∗;w∗]∥2+

√
|S|
λ

√√√√K+L∑
i=1

{r(i)max}2
1 + γ

(1− γ)2
ϵ. (58)

Proof. By the definition in equation 10, we have the optimal policy π∗
um,wm(a|s) =

exp( 1
βQ∗

um,wm (s,a))∑
a′ exp( 1

βQ∗
um,wm (s,a′))

when (u,w) = (um, wm). According to Theorem 3.3, we have

∇(u,w)L(um, vm) = [
∑

s µ0(s)v
π∗
um,vm

c (s)− [C(1), · · · , C(L)]⊤;
∑

s µ0(s)v
π∗
um,vm

r (s)] ∈ RL+K .

We also have ∇̃(u,w)L(um, vm) := [
∑

s µ0(s)v
πm

c (s) − [C(1), · · · , C(L)]⊤;
∑

s µ0(s)v
πm

r (s)] ∈
RL+K , an estimated gradient of∇(u,w)L(um, wm) using πm where πm(a|s) = exp( 1

βQm(s,a))∑
a′ exp( 1

βQm(s,a′))
.

Let em := ∇̃(u,w)L(um, vm) − ∇(u,w)L(um, wm). For each s, let vπr,i(s) (1 ≤ i ≤ K) and
vπc,j(s) (1 ≤ j ≤ L) denote the elements of the i-th dimension of vπr (s) ∈ RK and the j-th
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dimension of vπc (s) ∈ RL, respectively. Then we have

∥em∥22 = ∥[
∑
s

µ0(s)(v
πm

c (s)− v
π∗
um,vm

c (s));
∑
s

µ0(s)(v
πm

r (s)− v
π∗
um,vm

r (s))]∥22

=

K∑
i=1

(∑
s

µ0(s)(v
πm

r,i (s)− v
π∗
um,wm

r,i (s))

)2

+

L∑
j=1

(∑
s

µ0(s)(v
πm

c,j (s)− v
π∗
um,wm

c,j (s))

)2

≤ ∥µ0∥22
∑
s

[ K∑
i=1

(vπ
m

r,i (s)− v
π∗
um,wm

r,i (s))2 +

L∑
j=1

(vπ
m

c,j (s)− v
π∗
um,wm

c,j (s))2
]

(59)

where ∥µ0∥22 =
∑

s(µ0(s))
2 and the inequality holds by Cauchy-Schwarz.

Since both πm and π∗
um,wm use softmax parameterization with Qm and Q∗

um,wm , respectively, we
have

∀s, |vπ
m

r,i (s)− v
π∗
um,wm

r,i (s)| ≤ (1 + γ)r
(i)
max

(1− γ)2
∥Qm −Q∗

um,wm∥∞ (1 ≤ i ≤ K) (60)

and

∀s, |vπ
m

c,j (s)− v
π∗
um,wm

c,j (s)| ≤ (1 + γ)r
(K+j)
max

(1− γ)2
∥Qm −Q∗

um,wm∥∞ (1 ≤ j ≤ L) (61)

according to the property of equation (261) in Yang et al. (2024). Combining equation 60, equation 61,
and ∥µ0∥2 ≤ 1 with equation 59 gives

∥em∥2 ≤
√
|S|

√√√√K+L∑
i=1

{r(i)max}2
1 + γ

(1− γ)2
∥Qm −Q∗

um,wm∥∞

<
√
|S|

√√√√K+L∑
i=1

{r(i)max}2
1 + γ

(1− γ)2
ϵ. (62)

Next, we view the projected gradient descent for each outer loop as a proximal gradient descent. We
reformulate the optimization in equation 7 of

min
u∈RL

+,w∈∆K
L(u,w) (63)

as follows:
min

(u,w)∈RL+K
L(u,w) + IRL

+×∆K (u,w) (64)

where IRL
+×∆K (u,w) is the indicator function with its value 0 if (u,w) ∈ RL

+ × ∆K and +∞
otherwise. IRL

+×∆K is convex because its epigraph {(u,w, te)|te ≥ 0, (u,w) ∈ RL
+ × ∆K} is

convex. We note that according to Theorem 3.5, the smoothness of L(u,w) is satisfied on RL+K ,
which makes equation 64 valid. We also note that we computed the smoothness coefficient α =

1
β(1−γ)

∑K+L
i=1

(
r(i)max
1−γ

)2
of L in Appendix E.

Applying the error bound in equation 62 to the analysis of inexact proximal gradient method (Schmidt
et al., 2011), we have

∥[um;wm]− [u∗;w∗]∥2 ≤ (1− λ

α
)m∥[u0;w0]− [u∗;w∗]∥2 +

1

α

m∑
i=1

(1− λ

α
)m−i∥ei∥2

≤ (1− λ

α
)m∥[u0;w0]− [u∗;w∗]∥2 +

√
|S|
λ

√√√√K+L∑
i=1

{r(i)max}2
1 + γ

(1− γ)2
ϵ.

(65)

This is achieved because we use the convex optimization method from Wang & Carreira-Perpiñán
(2013) for projection onto the simplex ∆K , and apply non-negativity clipping for projection onto RL

+,
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both of them induce zero error in each phase of proximal objective update as it is fully deterministic
and avoids randomized procedures.

It remains to check whether IRL
+×∆K in equation 64 is a lower semi-continuous proper convex

function (Schmidt et al., 2011). IRL
+×∆K is lower semi-continuous because RL

+ ×∆K is closed, and
it is also proper convex since IRL

+×∆K never attains −∞ and RL
+ ×∆K is non-empty.

F.3 CONVERGENCE ANALYSIS FOR DEGENERATE CASE

Theorem F.1. Let (u∗, w∗) denote an optimal solution to equation 7. For each outer-loop index
m ≥ 1 in Algorithm 1, let Q∗

um,wm denote the fixed point of equation 13 with [u;w] = [um;wm],
and let Qm denote the Q-function after completing the m-th inner-loop update. For each m, assume
∥Qm −Q∗

um,wm∥∞ < ϵm for some ϵm > 0. Then for m ≥ 1,

L( 1
m

m∑
i=1

(ui, wi))− L(u∗, w∗) ≤ α

2m
(∥[u0;w0]− [u∗;w∗]∥2 +

2M

α

m∑
i=1

ϵi)
2 (66)

where M =
√
|S|
√∑K+L

j=1 {r
(j)
max}2 1+γ

(1−γ)2 .

Proof. Using an analysis of inexact proximal gradient method (Schmidt et al., 2011) using the same
logic in the proof of Theorem 3.6 (Appendix F.2), we have

L( 1
m

m∑
i=1

(ui, wi))− L(u∗, w∗) ≤ α

2m
(∥[u0;w0]− [u∗;w∗]∥2 +

2

α

m∑
i=1

∥ei∥2)2 (67)

where ei := ∇̃(u,w)L(ui, wi)−∇(u,w)L(ui, wi) is the i-th gradient error and

∥ei∥2 <
√
|S|

√√√√K+L∑
j=1

{r(j)max}2
1 + γ

(1− γ)2
ϵi = Mϵi (68)

from equation 62.

We note that the error of L( 1
m

∑m
i=1(u

i, wi))− L(u∗, w∗) decreases at rate O( 1
m ) when {ϵi}∞i=1 is

summable (e.g., ϵm = O( 1
m1+δ ) with δ > 0).
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G ADDITIONAL RELATED WORK

Several recent works have explored constrained MORL, but under settings that differ from ours,
which explicitly incorporates the max-min objective.

For instance, Huang et al. (2021) reformulates constrained RL as a MOMDP by treating constraint
costs as an additional reward dimension, thereby enabling constraint satisfaction while exploring pref-
erence trade-offs. Similarly, Kim et al. (2025) learns preference-conditioned policies by reformulating
the agent update to mitigate objective-wise gradient conflicts. These approaches pursue complemen-
tary goals to ours. Both are based on a multi-policy framework, where policies are conditioned on
a preference vector. However, it remains unclear how to select a preference vector such that the
resulting policy exactly corresponds to the optimal solution under a nonlinear scalarization function,
such as the max-min criterion considered in our setting. In contrast, our method directly solves a
single-policy constrained max-min optimization problem. This conceptual distinction parallels the
complementary relationship between single-policy and multi-policy approaches in unconstrained
MORL (Roijers et al., 2013; Hayes et al., 2022).

Recently, Lin et al. (2024) studied offline constrained MORL, where policies are trained on offline
data and later adapted to target preferences using additional demonstrations. In contrast, our work
focuses on online learning and does not assume access to additional demonstration data. Liu et al.
(2025) train multiple policies in parallel to approximate the Pareto front, improving coverage by
solving constrained optimizations in underexplored regions. Their method targets standard MORL
with linear scalarization, enhancing it via constrained optimization rather than directly tackling
constrained MORL.

H EXPERIMENTAL DETAILS: TABULAR SETTINGS

H.1 FEASIBILITY CHECK

When generating structured MOMDPs randomly, we first verify whether the generated instances are
feasible. To do this, We first consider the following unregularized convex optimization:

max
ρ≥0

min
1≤k≤K

(∑
(s,a)

r(k)(s, a)ρ(s, a)

)
(69)

∑
a′

ρ(s′, a′) = µ0(s
′) + γ

∑
(s,a)

T (s′|s, a)ρ(s, a), ∀s′ (70)

∑
(s,a)

c(l)(s, a)ρ(s, a) ≥ C(l), l = 1, · · · , L (71)

which is equivalently expressed as the following LP by using additional scalar variable c̃ ∈ R:

max
ρ≥0,c̃

c̃ (72)

∑
a′

ρ(s′, a′) = µ0(s
′) + γ

∑
(s,a)

T (s′|s, a)ρ(s, a), ∀s′ (73)

∑
(s,a)

r(k)(s, a)ρ(s, a) ≥ c̃, k = 1, · · · ,K, (74)

∑
(s,a)

c(l)(s, a)ρ(s, a) ≥ C(l), l = 1, · · · , L. (75)

We want to generate µ0, T, r, and c in structured MOMDPs to satisfy feasibility and Slater condition
by solving the following LP using the pywraplp function from the OR-Tools library:

max
ρ≥ϵlow

0 (76)
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∑
a′

ρ(s′, a′) = µ0(s
′) + γ

∑
(s,a)

T (s′|s, a)ρ(s, a), ∀s′ (77)

∑
(s,a)

r(k)(s, a)ρ(s, a) ≥ c̃+ ϵlow, k = 1, · · · ,K, (78)

∑
(s,a)

c(l)(s, a)ρ(s, a) ≥ C(l) + ϵlow, l = 1, · · · , L (79)

where ϵlow is used to guarantee the strict feasibility for Slater condition, and we set ϵlow = 10−4. If
the LP solver does not find a feasible solution, we regenerate the constrained MOMDP until a feasible
instance is found. Once any feasible solution is found, we solve the LP of equation 72, equation 73,
equation 74, and equation 75 by using LP solver to acquire the optimal max-min value c̃∗.

H.2 EXPERIMENTAL SETUP

In the Gaussian smoothing method, we create N copies {Q̃i}Ni=1 of the current Q-function and update
each Q̃i using scalarization with N perturbed weights {(ũi, w̃i)}Ni=1, sampled from a Gaussian
distribution centered at the current weight vector (u,w). Specifically, we compute Q̃i(s, a) ←
[ũi; w̃i]

⊤[c; r] + γ
∑

s′ T (s
′|s, a)β log

∑
a′ exp

(
Q̃i(s

′,a′)
β

)
until convergence, given the perturbed

weights {(ũi, w̃i)}Ni=1. The gradient w.r.t. (u,w) is then estimated by computing the slope of a linear
regression over the pairs [{(ũi, w̃i)}Ni=1, {Q̃i}Ni=1].

The update of our algorithm is applied iteratively for each (u,w) pair until the maximum change
in the Q-function between successive iterations falls below 10−4. We use the following setting:
γ = 0.8, lw = 0.001, and ITER = 3000. u was initialized as all-one vector while w is initialized
as the uniform vector on the simplex. For Gaussian smoothing, we set N = 24 and use a Gaussian
distribution with a standard deviation 0.001. We tuned N to prevent unstable divergence in the
Gaussian smoothing method when N is too small, while also avoiding excessive computational
overhead. Both algorithms used β = 0.03 for the bipartite setting and β = 0.01 for the hierarchical
setting, respectively. Each algorithm was evaluated using three random seeds for each constrained
MOMDP setting, resulting in six runs when averaged across the MOMDP classes. All experiments
were conducted on an Intel Core i9-10900X CPU @ 3.70GHz.

H.3 COMPARISON OF ALGORITHMIC COMPLEXITY

We now include a comparison of the algorithmic complexity per weight update (u,w) in tabular
settings. Let S = |S|, A = |A|, and d = K + L. Although each update of equation 13 given weight
(u,w) theoretically requires infinitely many steps for convergence, we denote the practical number of
steps as Tsoft for our complexity analysis.

First, the per-iteration complexity of our method is given by O(TsoftS
2A+ SAd+ S3 + S2d). Here,

TsoftS
2A is the cost of update in equation 13, and the remaining part is the cost of computing the

gradient via dynamic programming based on Theorem 3.3. If Tsoft is large enough, the update of
equation 13 dominates the computation: O(TsoftS

2A+ SAd+ S3 + S2d) ≈ O(TsoftS
2A).

Regarding the Gaussian smoothing method, let N denote the number of perturbed Q-tables used
for smoothing. Then the complexity per iteration is O((N + 1)TsoftS

2A + d3 + Nd2) where
(N+1)TsoftS

2A is the computation of equation 13 for the current Q-table and its N copies. The other
terms are related to gradient estimation using linear regression (Park et al., 2024). Again, equation 13
dominates the computation and O((N + 1)TsoftS

2A+ d3 +Nd2) ≈ O((N + 1)TsoftS
2A) if Tsoft is

large enough.

In summary, the Gaussian smoothing baseline incurs approximately N +1 times more computational
cost per weight update compared to our method. Note that the complexity of the projection onto ∆K

is O(K logK) (Wang & Carreira-Perpiñán, 2013) which is relatively lightweight compared to other
components, due to the sublinear growth of the logarithmic term.
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H.4 IMPACT OF THE ENTROPY REGULARIZATION COEFFICIENT

We further analyzed the effect of β on convergence. As shown in Table 6, values of β < 0.1 yield
stable convergence with low sensitivity across both constrained MOMDP types. Based on this, we
recommend selecting β such that the ratio between (i) the entropy term (scaled by β) and (ii) the
objective value without entropy remains below 10−2, approximating the optimal value as β → 0.

β 0.1 0.03 0.01 0.003 0.001
Bipartite 0.086 0.005 0.016 0.029 0.026

Hierarchical 0.037 0.004 0.003 0.011 0.016

Table 6: Optimal value errors of our algorithm across different values of β
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I EXPERIMENTAL DETAILS: APPLICATIONS

I.1 IMPLEMENTATION OF OUR ALGORITHM FOR APPLICATIONS

We now leverage the usage of neural network for our algorithm. If we differentiate the both side of
v∗u,w(s) = [Tu,wv∗u,w](s) w.r.t. u and w for all s, then we have the following formula:

∀s, ∇wv
∗
u,w(s) =

∑
a

π∗
u,w(a|s)

(
r(s, a) + γ

∑
s′

T (s′|s, a)∇wv
∗
u,w(s

′)

)
. (80)

∀s, ∇uv
∗
u,w(s) =

∑
a

π∗
u,w(a|s)

(
c(s, a) + γ

∑
s′

T (s′|s, a)∇uv
∗
u,w(s

′)

)
. (81)

Here, π∗
u,w(a|s) is defined as in equation 10. To ensure stable gradient estimation in continuous

state spaces, we parameterize a gradient network to estimate ∇uv
∗
u,w(s) and∇wv

∗
u,w(s). Since each

action is also continuous, we employ an actor network πθ and implement Algorithm 2. To further
stabilize the estimation of the gradient, we add an additional linear layer after the penultimate layer
of the actor network πθ, and use its (L+K)-dimensional output as the gradient network gθ(s). We
use the notation gθ to indicate that the actor network and the gradient network share parameters and
jointly update their lower-layer weights.

Algorithm 2 Proposed Constrained Max-min Algorithm for Continuous Action

1: πθ: actor, Qϕ: critic, Qϕ: target critic, gθ: gradient network, gθ: target gradient network, D:
replay buffer, Tinit: initial iteration number, τ : target update ratio, U : main iteration number, Us:
gradient step for critic update, lg: learning rate of the gradient network, l0: initial learning rate of
the weight (u,w), K: unconstrained reward dimension, L: the number of constraints, Cth ∈ RL:
threshold vector for the constraints

2: Initialize target critic ϕ← ϕ, target gradient network θ̄ ← θ, and weights u0 ∈ RL
+, w0 ∈ ∆K .

3: for j = 0, · · · , Tinit − 1 do
4: Rollout sample from πθ and save it in D. Sample a batch of data B ⊂ D.
5: Qϕ← Critic Update(Qϕ, Qϕ, πθ, (u0, w0), B) (Algorithm 3)
6: Update target critic parameter ϕ← τϕ+ (1− τ)ϕ.
7: πθ ← Actor Update(Qϕ, πθ,D) (Algorithm 4)
8: end for
9: for m = 0, 1, 2, · · · , U − 1 do

10: Rollout sample from πθ and save (s, a, r, c, s′, πθold(a|s)) in D where πθold(a|s) = πθ(a|s).
11: Update the gradient network gθ as follows:

θ ← θ − lg∇θE(s,a,r,c,s′,πθold (a|s))∼D

[∥∥∥πθm (a|s)
πθold (a|s)

([c; r] + γgθ(s
′))− gθ(s)

∥∥∥2]
where θm is a frozen copy of the current parameter θ.

12: Update target gradient network parameter θ ← τθ + (1− τ)θ.
13: Update (u,w) = (um, wm) using the projected gradient descent:

(um+1, wm+1) = PK,L [(um, wm)− lm(Es∼µ0
[gθ(s)]− [Cth;0K ])] .

14: Schedule current learning rate of the weight lm.
15: for j = 0, · · · , Us − 1 do
16: Sample a batch of data B ⊂ D.
17: Qϕ← Critic Update(Qϕ, Qϕ, πθ, (um+1, wm+1), B)
18: end for
19: Update target critic parameter ϕ← τϕ+ (1− τ)ϕ.
20: πθ ← Actor Update(Qϕ, πθ,D)
21: end for
22: Return πθ.
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Algorithm 3 Critic Update

Input: critic Qϕ, target critic Qϕ, actor πθ, weight (u,w), sample batch B
2: Update the critic parameter ϕ as follows:

ϕ← ϕ− lc∇ϕ
1

|B|
∑

(s,a,r,s′)∈B

( K∑
k=1

wkr
(k)(s, a) +

L∑
l=1

ulc
(l)(s, a)

+γβ logEa′∼πθ

exp
(
Qϕ(s

′, a′)/β
)

πθ(a′|s′)

−Qϕ(s, a)

)2
(82)

where lc is a critic learning rate.
Output: Updated critic Qϕ

Algorithm 4 Actor Update

Input: critic Qϕ, actor πθ, replay buffer D
Sample a batch of data B ⊂ D and find the actor satisfying the following:

θ ← argmin
θ

Es∼BEa∼πθ(·|s) [β log πθ(a|s)−Qϕ(s, a)] . (83)

3: Output: Updated actor πθ

I.2 ENVIRONMENTAL DETAILS: RESOURCE ALLOCATION

We modified the source code of the edge computing simulator (Bae et al., 2020) uploaded to https:
//github.com/sosam002/KAIST_MEC_simulator, implemented with Ntype = 3. Here,
K = Ntype and L = 1.

At each timestep, the system observes a state containing the current length of each task queue.
Based on this state, it selects a 2(Ntype + 1)-dimensional nonnegative continuous action at =

[a
(1)
e (t), · · · , a(Ntype+1)

e (t), a
(1)
c (t), · · · , a(Ntype+1)

c (t)]. Here, {a(i)e (t)}Ntype
i=1 denotes the CPU core al-

location ratios across task queues at the edge node, subject to the constraint
∑Ntype+1

i=1 a
(i)
e (t) = 1.

Similarly, {a(i)c (t)}Ntype
i=1 denotes the bandwidth allocation ratios at the cloud node, with the constraint∑Ntype+1

i=1 a
(i)
c (t) = 1.

Each state is represented by a 16-dimensional vector that captures both dynamic and static charac-
teristics. The edge device contributes 15 dimensions, derived from three application queues, each
described by five features: (1) average task arrivals over the most recent 10 timesteps, (2) task arrivals
at the current timestep, (3) current queue lengths, (4) CPU utilization ratios, and (5) fixed workload
values per application. The remaining dimension represents the current CPU utilization ratio of the
cloud server. Among these features, the workload values per application are static, defined as fixed
CPU cycles per bit, while all other dimensions vary dynamically over time.

Table 7: Parameters for Each Application Types (K = Ntype = 3)

Application Workload Popularity Min Bits Max Bits
SPEECH RECOGNITION 10435 0.5 40 KB 300 KB

NATURAL LANGUAGE PROCESSING 25346 0.8 4 KB 100 KB
VIRTUAL REALITY 40305 0.1 0.1 MB 3 MB

Table 7 summarizes the key parameters for each application (Bae et al., 2020). The workload (CPU
cycles/bit) indicates the computational load per application. The popularity represents the average
arrival rate of incoming tasks modeled by a Poisson distribution. Each application’s input data size
follows a normal distribution, bounded between the specified minimum and maximum bits, reflecting
diverse and practical scenarios.
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Each episode consists of 1,000 timesteps. The total training spans 2 million timesteps, with evaluations
conducted at the end of every episode, resulting in 2,000 evaluation points. An episode is run during
each evaluation and the cumulative discounted sum of the (L +K)-dimensional vector reward is
computed. These experiments were conducted using an NVIDIA TITAN X GPU (12GB) across
twelve random seeds.

I.3 UNCONSTRAINED MAX-MIN MORL ALGORITHM

Algorithm 5 Gaussian-smoothing-based Max-min Algorithm for Continuous Action (Our modifica-
tion from Park et al. (2024))

1: πθ: actor, Qϕ: critic, Qϕ: target critic, D: replay buffer, Tinit: initial iteration number, τ : target
update ratio, U : main iteration number, Us: gradient step for critic update, Ns: number of
perturbed samples, µ: perturbation parameter, l0: initial learning rate of the weight w, K: reward
dimension

2: Initialize target critic ϕ← ϕ and weight w0 ∈ ∆K .
3: for j = 0, · · · , Tinit − 1 do
4: Rollout sample from πθ and save it in D. Sample a batch of data B ⊂ D.
5: Qϕ← Critic Update(Qϕ, Qϕ, πθ, w0, B) (Algorithm 3 without the term of

∑L
l=1 ulc

(l)(s, a))

6: Update target critic parameter ϕ← τϕ+ (1− τ)ϕ.
7: πθ ← Actor Update(Qϕ, πθ,D) (Algorithm 4)
8: end for
9: for m = 0, 1, 2, · · · , U − 1 do

10: Rollout sample from πθ and save it in D.
11: Generate Ns perturbed weights {wm + µum

n }
Ns
n=1, um

n ∼ N (0, IK).
12: Make Ns copies of Qϕ : {Q̂ϕ,copy,n}Ns

n=1. Sample a common batch of data Bc ⊂ D.
13: for n = 1, · · · , Ns do
14: Q̂wm+µum

n ,copy,n← Critic Update(Q̂ϕ,copy,n, Qϕ, πθ, wm + µum
n , Bc)

15: end for
16: Calculate L̂(wm + µum

n ) = Es∼µ0

[
β logEa∼πθ

[
exp[Q̂wm+µum

n ,copy,n(s,a)/β]

πθ(a|s)

] ]
.

17: Conduct linear regression using {wm + µum
n , L̂(wm + µum

n )}Ns
n=1 and calculate the linear

weight am. Discard {Q̂wm+µum
n ,copy,n}Ns

n=1.
18: Update w = wm using the projected gradient descent:

wm+1 = proj∆K (wm − lmam) .

19: Schedule current learning rate of the weight lm.
20: for j = 0, · · · , Us − 1 do
21: Sample a batch of data B ⊂ D.
22: Qϕ← Critic Update(Qϕ, Qϕ, πθ, wm+1, B)
23: end for
24: Update target critic parameter ϕ← τϕ+ (1− τ)ϕ.
25: πθ ← Actor Update(Qϕ, πθ,D)
26: end for
27: Return πθ.
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I.4 HYPERPARAMETERS FOR RESOURCE ALLOCATION

Table 8: Hyperparameters for Algorithms (K = Ntype)

Parameter Value
Shared
optimizer Adam (Kingma & Ba, 2015)
discount (γ) 0.99
target update interval 1
target smoothing ratio (τ ) 0.001
gradient steps 1
reward dimension 3 or 8
max episode step 1000
replay buffer size 2× 106

hidden layers 2
hidden units per layer 64
minibatch size 32
activation function ReLU
entropy coefficient 0.05
weight learning rate 0.01
weight scheduling 1/

√
t

Constrained Max-min MORL (Ours)
constraint type maximize
constraint dimension 1
constraint epsilon 1.0
constraint threshold −5.6
main learning rate 7.5× 10−4

gradient steps for critic update 3
gradient estimation learning rate 1× 10−5(Ntype = 3), 1.25× 10−5(Ntype = 8)
gradient estimation steps 1
gradient target smoothing ratio 0.001

Unconstrained Max-min MORL (Gaussian)

main learning rate 7.5× 10−4

perturbation q learning rate 0.073
perturbation gradient steps 1
gradient steps for critic update 3
perturbation q-copies 10
perturbation noise std-dev 0.01

Unconstrained Max-min MORL (ARAM)

main learning rate 7.5× 10−4

CI coefficient η 0.01
MD coefficient λ 0.03

Max-average SAC with a Lagrangian Relaxation
constraint type minimize
initial lambda 1.0
main learning rate (actor/critic) 3× 10−4

constraint threshold 5.6
entropy coefficient 0.05
lambda learning rate 0.001

Unconstrained Max-average SAC

main learning rate (actor/critic) 3× 10−4
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I.5 HYPERPARAMETERS FOR LOCOMOTION CONTROL

Table 9: Hyperparameters for Algorithms

Parameter Value
Shared
optimizer Adam (Kingma & Ba, 2015)
discount (γ) 0.99
target update interval 1
target smoothing ratio (τ ) 0.001
gradient steps 1
reward dimension 2
max episode step 1000
replay buffer size 1× 106

hidden layers 2
hidden units per layer 64
minibatch size 32
activation function ReLU
entropy coefficient 0.05
weight learning rate 0.001
weight scheduling 1/

√
t

Constrained Max-min MORL (Ours)
constraint type maximize
constraint dimension 1
constraint epsilon 1.0
constraint threshold −50
main learning rate 7.5× 10−4

gradient steps for critic update 3
gradient estimation learning rate 2.5× 10−5

gradient estimation steps 1
gradient target smoothing ratio 0.001

Unconstrained Max-min MORL (Gaussian)

main learning rate 7.5× 10−4

perturbation q learning rate 0.073
perturbation gradient steps 1
gradient steps for critic update 3
perturbation q-copies 10
perturbation noise std-dev 0.01

Unconstrained Max-min MORL (ARAM)

main learning rate 7.5× 10−4

CI coefficient η 0.2
MD coefficient λ 0.03

Max-average SAC with a Lagrangian Relaxation
constraint type minimize
initial lambda 1.0
main learning rate (actor/critic) 3× 10−4

constraint threshold 50
entropy coefficient 0.05
lambda learning rate 0.001

Unconstrained Max-average SAC

main learning rate (actor/critic) 3× 10−4
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J TRAFFIC SIGNAL CONTROL

Algorithm Cost sum
(Cth = 60,000)

Minimum
return (↑)

Random 57,702 −31,746
MA-PPO 77,757 −20,434
MA-CPPO 53,160 −26,410
Ours 48,230 −26,798
Max-min GS 72,234 −21,532
ARAM 88,748 −19,700

Table 10: Traffic signal control results over five
seeds with the constraint-satisfying algorithms

highlighted in bold

To further evaluate scalability, we extend our
method to an environment with a larger objec-
tive space. We note that MORL benchmark envi-
ronments, particularly those with more than four
objectives, are still limited (Hayes et al., 2022;
Park & Sung, 2025). To address this gap, we
include a traffic signal control environment (Ale-
gre, 2019) with a 16-dimensional objective vector
(Park & Sung, 2025; Byeon et al., 2025), which
to our knowledge represents the largest number of
objectives explored in MORL to date.

In a simulated 16-lane four-way intersection, the
agent manages the traffic lights using thirty-seven-
dimensional continuous traffic states. The feedback signal consists of a 16-dimensional reward vector,
where each component represents the negative waiting time of a corresponding lane. Following prior
work (Park & Sung, 2025; Byeon et al., 2025), we evaluate performance in an asymmetric traffic flow
scenario. Our goal is to achieve fair traffic flow across all lanes while enforcing a constraint on total
CO2 emissions, contributing to a more sustainable traffic control system. Since this environment
operates in a discrete action space, we replaced the MA-SAC and MA-SAC-L baselines with PPO-
based variants (MA-PPO and MA-CPPO). MA-CPPO denotes max-average constrained PPO, which
applies clipping only to the scalar reward while keeping the Lagrangian update unclipped, following
Liu et al. (2019) to improve constraint satisfaction. We ran each method for 100k timesteps per seed,
using five random seeds. As shown in Table 10, among the three algorithms that satisfy the constraint,
both our method and MA-CPPO outperform the Random baseline in terms of max-min performance.
However, our method requires less cost than MA-CPPO, demonstrating its ability to better balance
constraint satisfaction and max-min fairness.
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Table 11: Hyperparameters for traffic signal control environment

Parameter Value
Shared
optimizer Adam (Kingma & Ba, 2015)
discount (γ) 0.99
target update interval 1
target smoothing ratio (τ ) 0.001
gradient steps 1
reward dimension 16
total seconds per episode 9000
delta time (seconds) 30
total timesteps 1× 105

replay buffer size 1× 105

hidden layers 2
hidden units per layer 64
minibatch size 32
activation function ReLU
entropy coefficient 0.05
weight scheduling 1/

√
t

Constrained Max-min MORL (Ours)
constraint type minimize
constraint dimension 1
constraint epsilon -1.0
constraint threshold 6.0× 104

main learning rate 7.5× 10−4

weight learning rate 0.01
gradient steps for critic update 3
gradient estimation learning rate 1.0× 10−4

gradient estimation steps 1
gradient target smoothing ratio 0.001

Unconstrained Max-min MORL (Gaussian)

main learning rate 7.5× 10−4

weight learning rate 0.01
perturbation q learning rate 0.073
perturbation gradient steps 1
gradient steps for critic update 3
perturbation q-copies 20
perturbation noise std-dev 0.01

Unconstrained Max-min MORL (ARAM)
main learning rate 0.001
CI coefficient η 0.00202
MD coefficient λ 0.2

Constrained Max-average PPO
main learning rate 0.01
constraint type minimize
constraint threshold 6.0× 104

constraint learning rate 0.005

Unconstrained Max-average PPO
main learning rate 0.01
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K BROADER IMPACT

In this work, we propose an algorithm for constrained MORL based on the max-min criterion. First,
max-min MORL plays a critical role in promoting fairness across objectives in domains such as
traffic management and resource allocation. Unfair results can lead to user dissatisfaction and, in
turn, degrade overall system performance, for example, by contributing to traffic congestion (Raeis
& Leon-Garcia, 2021). Second, incorporating constraints into RL is essential for the responsible
development of AI systems, especially given real-world limitations on resources such as electricity,
power consumption, and fossil fuels.

Our work advances the goal of sustainable AI by simultaneously incorporating fairness and resource
constraints into decision-making. This contrasts to traditional methods that prioritize performance
alone, often overlooking concerns of equity and efficient resource use. We believe our framework
has the potential to make a meaningful and positive impact on the broader AI community, not only
in resource allocation but also in emerging areas such as fair and safe alignment of large language
models.

L LIMITATION, FUTURE WORK, AND DISCUSSION

In this section, we discuss several limitations of our work and related future research avenues,
although our method offers a promising direction for developing constrained MORL algorithms.

First, there is a lack of well-established benchmarks for MORL compared to standard RL settings
(Hayes et al., 2022), and even fewer environments are specifically designed for constrained MORL.
Additionally, most existing MORL environments have low-dimensional reward spaces (typically
fewer than four dimensions) (Park & Sung, 2025), which limits the ability to evaluate our algorithm
in high-dimensional settings. Developing practical benchmarks for both MORL and constrained
MORL is therefore a critical research direction for the community.

Second, while it is common in the constrained MDP literature to assume that feasibility is ensured by
appropriately chosen thresholds (Tessler et al., 2018; Ha et al., 2020), determining such thresholds,
that is, setting the constraint set {C(l)}Ll=1, is non-trivial in practice outside of simple or tabular
domains. Unlike trial-and-error reward design, constraint threshold design is often infeasible or unsafe
due to the potential risks and costs involved. Leveraging external sources of information, such as
human demonstrations or natural language descriptions, offers a promising path for setting constraint
thresholds in constrained RL and MORL. Another possible approach is to infer the constraint values
from expert demonstrations, commonly referred to as inverse constrained RL (Malik et al., 2021;
Subramanian et al., 2024).

Third, while our resource allocation setting clearly distinguishes rewards from costs, this distinction
may be ambiguous in other domains. Determining which objectives should be treated as constraints
versus unconstrained rewards can be challenging. As with constraint threshold design, incorporating
external guidance could help better structure constrained MORL problems.

Fourth, several constrained RL studies have explored more conservative formulations than those based
on expected cumulative cost, for example, using outage probability or quantile-based constraints to
manage rare but critical failures in domains such as finance or insurance (Yang et al., 2021; Jung
et al., 2022). While our current framework and analysis rely on expected cumulative cost, extending
it to support such conservative constraint formulations presents a valuable direction for future work.

Lastly, although we assume the convergence of the (action) value function for each weight pair
(u,w), it is well known that the combination of function approximation, bootstrapped updates, and
off-policy learning can lead to instability and even divergence during training (Sutton & Barto, 2018;
Che et al., 2024). A theoretical investigation into this so-called deadly triad, along with additional
convergence guarantees, would further improve the robustness of our algorithm in the resource
allocation experiment and broaden its applicability to other domains.

Scalarization-based methods are highly valuable, especially because of their interpretability and
flexibility in expressing designer preferences. In particular, when incorporating constraints, these
methods also make it straightforward to assess constraint satisfaction through the corresponding
dual variables. However, linear scalarization cannot recover nonlinear or concave regions of the
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Pareto frontier, potentially missing desirable trade-off solutions (Roijers et al., 2013; Hayes et al.,
2022). While mixtures of convex scalarization functions can help approximate concave regions, this
often requires careful tuning and may increase computational effort. Addressing the limitations of
scalarization-based approaches is indeed valuable.

We also agree that, in many real-world systems, verifying smoothness analytically or designing
theoretically optimal initialization is not straightforward. However, our method does not require users
to prove smoothness beforehand, nor does it rely on fragile initialization. Instead, smoothness is
used to (i) guarantee convergence behavior theoretically, and (ii) characterize how approximation
errors propagate during weight updates. In practice, we adopt standard strategies such as entropy
regularization and projection onto the simplex, which naturally stabilize learning without requiring
explicit verification of smoothness. Empirically, we observe convergence in our paper even without
tuning for smoothness-related parameters beyond the default hyperparameters. Regarding initializa-
tion, while local methods can be sensitive in general nonlinear optimization, we find that (i) uniform
initialization on the probability simplex consistently works across tasks, and (ii) the algorithm does
not require task-specific warm-starts. Finally, we note that the purpose of our theoretical results is not
to imply that all assumptions will be checked analytically in practice, but rather to provide predictable
behavior and guidance for practical usage of our algorithm.
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