

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONSTRINED MULTI-OBJECTIVE REINFORCEMENT LEARNING WITH MAX-MIN CRITERION

Anonymous authors

Paper under double-blind review

## ABSTRACT

Multi-Objective Reinforcement Learning (MORL) extends standard RL by optimizing policies over multiple and often conflicting objectives. Although max-min scalarization has emerged as a powerful approach to promote fairness in MORL, it has limited applicability, especially when incorporating constraints. In this paper, we propose a unified framework for constrained MORL that combines the max-min criterion with constraint satisfaction and generalizes prior formulations such as unconstrained max-min MORL and constrained weighted-sum MORL. We establish a theoretical foundation for our framework and validate our algorithm through a formal convergence analysis and experiments in tabular environments. We extend our framework to practical applications, including simulated edge computing resource allocation and locomotion control. Across these domains, the method demonstrates strong handling of fairness and constraint satisfaction in multi-objective decision-making.

## 1 INTRODUCTION

Reinforcement Learning (RL) is a powerful machine learning framework that enables an agent to learn optimal decision-making strategies through interaction with an environment. In recent years, Multi-Objective Reinforcement Learning (MORL) has gained significant interest because many real-world control problems inherently involve multiple, often conflicting objectives (Rojers et al., 2013; Yang et al., 2019; Hayes et al., 2022; Basaklar et al., 2023; Park et al., 2024; Park & Sung, 2025). MORL extends standard RL to handle simultaneous optimization of multiple objectives.

A common strategy in MORL involves optimizing a scalarized function defined over multiple objective returns (Rojers et al., 2013; Hayes et al., 2022). This framework seeks to identify a policy  $\pi$  that maximizes a scalarized value  $f(J_1(\pi), \dots, J_K(\pi))$ , where each  $J_k(\pi)$  represents the expected discounted return for the  $k$ -th objective among  $K (\geq 2)$  objectives, and  $f : \mathbb{R}^K \rightarrow \mathbb{R}$  is a non-decreasing scalarization function such that  $J_k(\pi) \geq J_k(\pi'), 1 \leq k \leq K \Rightarrow f(J(\pi)) \geq f(J(\pi'))$ . Thus,  $f$  plays a key role in imposing the designer's preference among multiple objectives.

Although much of the MORL literature employs a linear  $f$  (that is, the weighted sum:  $\max_{\pi} \sum_{k=1}^K w_k J_k(\pi)$ ) due to its simplicity, the weighted sum does not always accurately represent the preference of a designer, especially regarding fairness among objectives (Hayes et al., 2022; Park et al., 2024). For instance, imagine a traffic light system managing an intersection where several roads converge with asymmetric arrival rates. Instead of simply aiming to reduce the total sum waiting time for all vehicles across the roads, the designer could prioritize fairness by minimizing the longest individual waiting time among the roads. This helps reduce localized congestion (Raeis & Leon-Garcia, 2021) and avoid severe delays for individual drivers.

Fairness-driven objectives frequently arise in real-world scenarios and are addressed using scalarization methods beyond the standard weighted sum, such as max-min optimization or proportionally fair optimization (Khan et al., 2016) in MORL. While proportionally fair optimization, expressed as  $\max_{\pi} \sum_{k=1}^K w_k \log J_k(\pi)$ , is relatively straightforward to solve due to the smoothness and differentiability of the log function, max-min optimization presents greater challenges because of its non-differentiability and non-linearity. Recently, Park et al. (2024) proposed an algorithm to explicitly address the max-min objective in MORL using Gaussian smoothing (Nesterov & Spokoiny, 2017).

054 Although max-min optimization in MORL is a powerful tool with broad applicability (Regan &  
 055 Boutilier, 2010; Zehavi et al., 2013; Saifullah et al., 2014; Wang et al., 2019; Chakraborty et al.,  
 056 2024) **such as mitigating bottlenecks in cloud and edge resource management systems (Saifullah**  
 057 **et al., 2014; Wang et al., 2019)**, the standard framework lacks flexibility for diverse problem types.  
 058 First, it is designed to ensure fairness across homogeneous objectives, but applying max-min fairness  
 059 to heterogeneous objectives, such as velocity and energy consumption in locomotion, is inappropriate  
 060 due to their differing units and nature. In our context, two physical quantities are considered  
 061 heterogeneous if they have different units. In such cases, one may maximize the minimum of  
 062 homogeneous objectives while requiring other objectives to remain above certain thresholds. Second,  
 063 many real-world problems involve constraints that must be satisfied. For example, in resource  
 064 allocation, a MORL-based scheduler may aim to maximize throughput and fairness across task queues  
 065 under a strict power consumption constraint (Chen et al., 2020; Jiang et al., 2020). Incorporating  
 066 constraints into the max-min MORL framework thus significantly broadens its practical applicability.  
 067

068 In this paper, we propose a novel framework for constrained MORL that incorporates max-min  
 069 fairness. **Our approach is capable of maximizing the max-min fairness among homogeneous objectives**  
 070 **while simultaneously incorporating other heterogeneous quantities as constraints.** We present a  
 071 detailed theoretical basis for our algorithmic design. Moreover, our framework generalizes previous  
 072 frameworks in MORL, including the original max-min MORL formulation (Park et al., 2024) and  
 073 constrained weighted-sum MORL (Huang et al., 2021). Our main contributions are as follows:  
 074

- 075 • We introduce a unified framework for constrained MORL that integrates the max-min criterion  
 076 and establishes its theoretical foundations, including differentiability, twice-differentiability, and  
 077 smoothness of our objective function.
- 078 • We propose an iterative algorithm for constrained max-min MORL, accompanied by a formal  
 079 convergence analysis. We empirically assess its convergence in tabular environments.
- 080 • We establish the practical relevance of our method by applying it to simulated edge computing  
 081 resource allocation and locomotion control. Across these scenarios, our method demonstrates its  
 082 ability to better balance max-min fairness and constraint satisfaction than the considered baselines.

## 083 2 BACKGROUND

084 A multi-objective Markov decision process (MOMDP) is represented as  $\langle \mathcal{S}, \mathcal{A}, T, \mu_0, r, \gamma \rangle$ , where  
 085  $\mathcal{S}$  and  $\mathcal{A}$  are the sets of states and actions, respectively,  $T$  represents the transition probability  
 086 distribution,  $\mu_0$  specifies the initial state distribution, and  $\gamma \in [0, 1]$  is the discount factor. The reward  
 087 function  $r : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^{K+L}$ ,  $K \geq 1, L \geq 0$  is vector-valued with its  $k$ -th element denoted by  
 088  $r^{(k)}$  ( $1 \leq k \leq K + L$ ) such that  $|r^{(k)}| \leq r_{\max}^{(k)}$ , where  $K + L$  is the total number of objectives. At  
 089 each timestep, the agent selects an action  $a$  in the current state  $s$  according to its (stationary) policy  
 090  $\pi : \mathcal{S} \rightarrow \mathcal{P}(\mathcal{A})$ , where  $\mathcal{P}(\mathcal{A})$  represents the set of probability distributions in the action space  $\mathcal{A}$ .  
 091 The occupancy measure is defined as  $\rho(s, a) := \sum_{s'} \mu_0(s') \sum_{t=0}^{\infty} \gamma^t \Pr(s_t = s, a_t = a | s_0 = s', \pi^{\rho})$   
 092 where  $\pi^{\rho}$  is the corresponding stationary policy induced by  $\rho$ , expressed as  $\pi^{\rho}(a|s) = \frac{\rho(s, a)}{\sum_{a'} \rho(s, a')}$   
 093 (Puterman, 1994). Then, the vector return evaluated by  $\pi^{\rho}$  is given by

$$094 J(\pi^{\rho}) := [J_1(\pi^{\rho}), \dots, J_{K+L}(\pi^{\rho})]^{\top} = \mathbb{E}_{\pi^{\rho}} \left[ \sum_{t=0}^{\infty} \gamma^t r_t \right] = \sum_{(s, a)} r(s, a) \rho(s, a) \in \mathbb{R}^{K+L}. \quad (1)$$

## 095 3 CONSTRAINED MAX-MIN MORL FRAMEWORK

### 096 3.1 THEORETICAL FOUNDATION

097 We consider constrained MORL, where the last  $L$  of the total  $K + L$  objectives should satisfy certain  
 098 constraints. For theoretical development in this section, we assume that  $\mathcal{S}$  and  $\mathcal{A}$  are finite. The  
 099 problem is formulated as follows:

$$100 \max_{\pi^{\rho}} f(J_1(\pi^{\rho}), \dots, J_K(\pi^{\rho})) + \beta \sum_s \mathcal{H}_{\rho}(s) \rho(s) \quad (2)$$

$$101 \text{s.t. } J_{K+l}(\pi^{\rho}) \geq C^{(l)}, \quad l = 1, \dots, L \quad (3)$$

108 where  $\mathcal{H}_\rho(s) := -\sum_a \pi^\rho(a|s) \log \pi^\rho(a|s)$  is the entropy of  $\pi^\rho(\cdot|s)$ ,  $\rho(s) := \sum_a \rho(s, a)$  is the  
 109 stationary state distribution in  $\mathcal{S}$ ,  $\beta > 0$  is a balancing coefficient, and  $\{C^{(l)}\}_{l=1}^L$  is a set of threshold  
 110 values. We assume a mild condition that the set  $\{C^{(l)}\}_{l=1}^L$  is chosen by the designer such that  
 111 the optimization in equation 2 and equation 3 is feasible, an assumption commonly made in the  
 112 constrained MDP literature (Tessler et al., 2018; Ha et al., 2020).

113 In this paper, we set  $f$  the minimum function, i.e.,  $f(J_1(\pi^\rho), \dots, J_K(\pi^\rho)) =$   
 114  $\min(J_1(\pi^\rho), \dots, J_K(\pi^\rho))$ . We note that the entropy term is included in equation 2 to pro-  
 115 mote exploration and eliminate the indeterminacy of the max-min solution without the entropy  
 116 term (Park et al., 2024). The problem reduces to the unregularized formulation as  $\beta \rightarrow 0$ , with the  
 117 optimality gap decreasing linearly:

118 **Proposition 3.1.** *The gap between the optimal max-min value of the unregularized problem and that  
 119 of the regularized problem in equation 2 and equation 3 with  $f = \min$  is upper bounded by  $\frac{\beta \log |\mathcal{A}|}{1-\gamma}$ .  
 120 (Proof: See Appendix A.)*

121 Proposition 3.1 shows that the regularized problem is a valid approximation of the unregularized  
 122 criterion. Since directly optimizing equation 2 and equation 3 with  $f = \min$  and  $J_k(\pi^\rho) =$   
 123  $\mathbb{E}_{\pi^\rho}[\sum_{t=0}^{\infty} \gamma^t r_t^{(k)}]$  is non-trivial due to its non-differentiable and non-linear structure, we address this  
 124 challenge using the occupancy measure (i.e., stationary distribution (Puterman, 1994)) formulation.  
 125 The above optimization problem with  $f = \min$  can be rewritten as

$$126 \max_{\rho \geq 0} \min_{1 \leq k \leq K} \left( \sum_{(s,a)} r^{(k)}(s,a) \rho(s,a) \right) + \beta \sum_s \mathcal{H}_\rho(s) \rho(s) \quad (4)$$

$$127 \sum_{a'} \rho(s',a') = \mu_0(s') + \gamma \sum_{(s,a)} T(s'|s,a) \rho(s,a), \forall s' \quad (5)$$

$$128 \sum_{(s,a)} c^{(l)}(s,a) \rho(s,a) \geq C^{(l)}, \quad l = 1, \dots, L \quad (6)$$

129 where equation 5 is the Bellman flow equation for the occupancy measure (Puterman, 1994). Here,  
 130 we use the notation  $c^{(l)}(s,a) := r^{(K+l)}(s,a)$ ,  $l = 1, \dots, L$  to explicitly represent the dimensions  
 131 associated with the constraint. These quantities can be true rewards or negative of costs. Then the  
 132 formulation in equation 4, equation 5, and equation 6 constitutes a convex optimization problem.  
 133 Now we derive a convex optimization equivalent to the dual problem of equation 4, equation 5, and  
 134 equation 6, which serves as the foundation for our subsequent model-free applications (Section 5.2),  
 135 as stated in the following proposition.

136 **Proposition 3.2.** *The dual problem of equation 4, equation 5, and equation 6 is equivalent to the  
 137 following convex optimization problem:*

$$138 \min_{u \in \mathbb{R}_+^L, w \in \Delta^K} \mathcal{L}(u, w) = \sum_s \mu_0(s) v_{u,w}^*(s) - \sum_{l=1}^L u_l C^{(l)} \quad (7)$$

139 where  $\mathbb{R}_+^L := \{u \in \mathbb{R}^L | u_l \geq 0, 1 \leq l \leq L\}$ ,  $\Delta^K := \{w \in \mathbb{R}^K | \sum_{k=1}^K w_k = 1; w_k \geq 0, 1 \leq k \leq K\}$ , i.e., the  $(K-1)$ -dimensional simplex, and  $v_{u,w}^*$  is the fixed point of the operator  $\mathcal{T}_{u,w}$ :

$$140 [\mathcal{T}_{u,w} v](s) = \beta \log \sum_a \exp \left[ \frac{1}{\beta} \left\{ \sum_{l=1}^L u_l c^{(l)}(s,a) + \sum_{k=1}^K w_k r^{(k)}(s,a) + \gamma \sum_{s'} T(s'|s,a) v(s') \right\} \right], \forall s. \quad (8)$$

141 (Proof: See Appendix B.)

142 Strong duality holds if there exists an occupancy measure  $\rho$  such that  $\rho(s, a) > 0, \forall (s, a)$  and the  
 143 constraints in equation 6 are satisfied with strict inequalities, assumptions commonly used in RL (Lee  
 144 et al., 2021) and constrained RL settings (Tessler et al., 2018; Ha et al., 2020).

145 Proposition 3.2 hints that  $v_{u,w}^*$  can be obtained via soft value iteration in equation 8 and the weights  
 146  $u$  and  $w$  can be obtained by minimizing the loss  $\mathcal{L}(u, w)$  in equation 7 by some method. In addition,  
 147 in equation 8, we observe that the constrained reward  $c^{(l)}$ ,  $l = 1, \dots, L$  can be handled without

162 distinction from the unconstrained reward  $r^{(k)}$ ,  $k = 1, \dots, K$ . Note that both rewards appear as a  
 163 weighted sum in equation 8, enabling a unified framework for constrained and unconstrained MORL.  
 164

165 However, solving the optimization problem equation 7 directly is non-trivial because the fixed point  
 166  $v_{u,w}^*$  in equation 8 does not have a closed-form expression in terms of  $(u, w)$ . To address this issue,  
 167 we derive the key properties of  $v_{u,w}^*$ . For given  $(u, w)$ , we define

$$168 \quad Q_{u,w}^*(s, a) := \sum_{l=1}^L u_l c^{(l)}(s, a) + \sum_{k=1}^K w_k r^{(k)}(s, a) + \gamma \sum_{s'} T(s'|s, a) v_{u,w}^*(s'), \quad (9)$$

171 and define a policy  $\pi_{u,w}^*$  as

$$173 \quad \pi_{u,w}^*(a|s) = \frac{\exp(\frac{1}{\beta} Q_{u,w}^*(s, a))}{\sum_{a'} \exp(\frac{1}{\beta} Q_{u,w}^*(s, a'))}. \quad (10)$$

175 Then,  $\pi_{u,w}^*$  is an optimal policy for the entropy-regularized RL (Haarnoja et al., 2017) with a scalar  
 176 reward function  $\sum_{l=1}^L u_l c^{(l)}(s, a) + \sum_{k=1}^K w_k r^{(k)}(s, a)$ . Furthermore, regarding the relationship  
 177 between  $\pi_{u,w}^*$  and the gradient of  $v_{u,w}^*$ , we have the following theorem:

179 **Theorem 3.3.** *For each  $s, v_{u,w}^*(s)$  is differentiable w.r.t.  $(u, w) \in \mathbb{R}^{L+K}$ , and its gradient  
 180  $\nabla v_{u,w}^*(s) = [\nabla_u v_{u,w}^*(s)^\top, \nabla_w v_{u,w}^*(s)^\top]^\top$  has the form of*

$$182 \quad \nabla_u v_{u,w}^*(s) = v_c^{\pi_{u,w}^*}(s) \text{ and } \nabla_w v_{u,w}^*(s) = v_r^{\pi_{u,w}^*}(s), \quad (11)$$

184 where  $v_c^{\pi_{u,w}^*}(s) \in \mathbb{R}^L$  and  $v_r^{\pi_{u,w}^*}(s) \in \mathbb{R}^K$  are the value functions evaluated with the policy  $\pi_{u,w}^*$  for  
 185 the constrained reward  $c^{(l)}$  and the unconstrained reward  $r^{(k)}$ , respectively. (Proof: See Appendix  
 186 C.)

187 Theorem 3.3 implies that the objective function  $\mathcal{L}(u, w)$  in equation 7 is differentiable with respect to  
 188 (w.r.t.)  $(u, w)$ , and enables us to apply gradient descent to solve the optimization with the gradient  
 189  $(\nabla_u v_{u,w}^*(s), \nabla_w v_{u,w}^*(s))$  combined with value iteration.

191 It is surprising but makes sense that the gradient  $\nabla v_{u,w}^*(s)$  is expressed as the value function (which is  
 192 a vector quantity) evaluated with the policy  $\pi_{u,w}^*$ . First, consider the constrained part. Due to Theorem  
 193 3.3, the derivative of  $\mathcal{L}(u, w)$  in equation 7 is given by  $\sum_s \mu_0(s) v_c^{\pi_{u,w}^*}(s) - [C^{(1)}, \dots, C^{(L)}]^\top$ .  
 194 Hence, if the value of the  $l$ -th constrained dimension is larger than  $C^{(l)}$ , then the  $l$ -th component of  
 195 the gradient is positive, gradient descent will decrease the weight  $u_l$ , and hence  $c^{(l)}$  is less weighted  
 196 in the value iteration in equation 8. Otherwise, the opposite happens. In this way, the constraints on  
 197 the constrained dimensions are satisfied with gradient descent.

198 Regarding the unconstrained reward part, the gradient is given by  $\sum_s \mu_0(s) v_r^{\pi_{u,w}^*}(s)$ . Hence, for  
 199 the dimension of a smaller value, we have a smaller reduction in  $w_k$  by gradient descent to yield a  
 200 larger  $w_k$ . Therefore, the dimensions with smaller values are weighted more in the value iteration in  
 201 equation 8 to realize the max-min principle.

203 We now establish the twice-differentiability of  $v_{u,w}^*$  to derive its Hessian. This step is crucial for  
 204 establishing the smoothness of the objective function, which in turn is critical for analyzing the  
 205 convergence of our algorithm in Section 3.2.

206 **Theorem 3.4.** *For each  $s, v_{u,w}^*(s)$  is twice-differentiable w.r.t.  $(u, w) \in \mathbb{R}^{L+K}$ . Let  $|\mathcal{S}| = p$ , and  
 207 suppose the states are enumerated as  $\{s_1, \dots, s_p\}$ . Then, the  $(L+K) \times (L+K)$  Hessian matrix  
 208  $H[v_{u,w}^*(s_k)]$ ,  $1 \leq k \leq p$ , has the form of*

$$210 \quad H[v_{u,w}^*(s_k)] = \frac{1}{\beta} \sum_{l=1}^p [(I_p - \gamma T^{\pi_{u,w}^*})^{-1}]_{kl} B^{\pi_{u,w}^*}(s_l). \quad (12)$$

212 Here,  $I_p$  is the  $p \times p$  identity matrix;  $T^{\pi_{u,w}^*}$  is a  $p \times p$  matrix of which  $i$ -th row and  $j$ -th column element  
 213 is given by  $[T^{\pi_{u,w}^*}]_{ij} = \mathbb{E}_{a \sim \pi_{u,w}^*(\cdot|s_i)} [T(s_j|s_i, a)]$  ( $1 \leq i, j \leq p$ );  $[(I_p - \gamma T^{\pi_{u,w}^*})^{-1}]_{kl}$  denotes the  
 214  $k$ -th row and  $l$ -th column element of  $(I_p - \gamma T^{\pi_{u,w}^*})^{-1}$ ;  $B^{\pi_{u,w}^*}(s) = \mathbb{E}_{a \sim \pi_{u,w}^*(\cdot|s)} \left[ (Q^{\pi_{u,w}^*}(s, a) - \right.$

216  $\mathbb{E}_{a' \sim \pi_{u,w}^*(\cdot|s)}[Q^{\pi_{u,w}^*}(s, a')](Q^{\pi_{u,w}^*}(s, a) - \mathbb{E}_{a' \sim \pi_{u,w}^*(\cdot|s)}[Q^{\pi_{u,w}^*}(s, a')])^\top \in \mathbb{R}^{(L+K) \times (L+K)}$ ; and  
 217  $Q^{\pi_{u,w}^*}(s, a) \in \mathbb{R}^{L+K}$  is the value function evaluated with the policy  $\pi_{u,w}^*$ . (Proof: See Appendix D.)  
 218  
 219

220 Due to Theorem 3.4, the objective function  $\mathcal{L}(u, w)$  in equation 7 is twice-differentiable w.r.t.  $(u, w)$ .  
 221 Note that  $Q^{\pi_{u,w}^*}(s, a)$  in Theorem 3.4 is different from  $Q_{u,w}^*(s, a)$  in equation 9. By definition in  
 222 the entropy-regularized RL,  $Q_{u,w}^*(s, a) \in \mathbb{R}$  is the cumulative scalarized return plus the cumulative  
 223 entropy sum from  $\pi_{u,w}^*$ . On the other hand,  $Q^{\pi_{u,w}^*}(s, a) \in \mathbb{R}^{L+K}$  is a vector-valued cumulative sum  
 224 of unconstrained rewards and constrained rewards from  $\pi_{u,w}^*$  without the entropy sum. Therefore,  
 225  $[u; w]^\top Q^{\pi_{u,w}^*}(s, a)$  equals to  $Q_{u,w}^*(s, a)$  minus the cumulative entropy sum of  $\pi_{u,w}^*$ .  
 226

227 A natural approach to solving the convex optimization problem in equation 7 is projected gradient  
 228 descent, since the variables  $(u, w)$  lie in the convex set  $\mathbb{R}_+^L \times \Delta^K$ . The convergence of projected  
 229 gradient descent depends on the smoothness of the objective function (Boyd & Vandenberghe, 2004;  
 230 Bubeck, 2015). In our case,  $\mathcal{L}(u, w)$  satisfies the following smoothness property:

231 **Theorem 3.5.** For each  $s, v_{u,w}^*(s)$  is smooth w.r.t.  $(u, w)$  on  $\mathbb{R}^{L+K}$ . In other words,  $\nabla v_{u,w}^*(s)$   
 232 is Lipschitz continuous in  $\|\cdot\|_2$ . Furthermore,  $\mathcal{L}(u, w)$  is  $\alpha$ -smooth w.r.t.  $(u, w)$  on  $\mathbb{R}^{L+K}$  with  
 233  $\alpha := \frac{1}{\beta(1-\gamma)} \sum_{m=1}^{L+K} \left( \frac{r_{\max}^{(m)}}{1-\gamma} \right)^2$ . (Proof: See Appendix E.)  
 234

### 235 3.2 ALGORITHM AND CONVERGENCE ANALYSIS

236 Based on the foundation built in the previous section, we propose an algorithm for constrained MORL  
 237 with max-min fairness. Note that we need to jointly update the weights  $(u, w)$  and the value function,  
 238 which approximates  $v_{u,w}^*$ . We adopt the following update method alternating between update of the  
 239 value function and the weights  $(u, w)$ .  
 240

241 First, given a weight  $(u, w)$ , we update the value function to realize equation 8. For this, we use an  
 242 action value function  $Q$ , which approximates  $Q_{u,w}^*$ . Using the soft Bellman equation (Haarnoja et al.,  
 243 2017), the action value function  $Q_{u,w}^*$  in equation 9 is written as  $Q_{u,w}^*(s, a) = \sum_{l=1}^L u_l c^{(l)}(s, a) +$   
 244  $\sum_{k=1}^K w_k r^{(k)}(s, a) + \gamma \sum_{s'} T(s'|s, a) v_{u,w}^*(s')$ ,  $\forall (s, a)$ . If we plug this equation into the right-hand  
 245 side of equation 8, we have  $v_{u,w}^*(s) = [\mathcal{T}_{u,w} v_{u,w}^*](s) = \beta \log \sum_a \exp \left( \frac{Q_{u,w}^*(s, a)}{\beta} \right)$  for each  $s$ . Using  
 246 this form of  $v_{u,w}^*(s)$ , we implement applying  $\mathcal{T}_{u,w}$  as updating the Q-function with the following:  
 247

$$248 Q(s, a) \leftarrow [u; w]^\top [c; r] + \gamma \sum_{s'} T(s'|s, a) \beta \log \sum_{a'} \exp \left( \frac{Q(s', a')}{\beta} \right), \forall (s, a). \quad (13)$$

249 We have shown that  $\nabla_u v_{u,w}^*(s) = v_c^{\pi_{u,w}^*}(s)$ ,  $\nabla_w v_{u,w}^*(s) = v_r^{\pi_{u,w}^*}(s)$  for each  $s$ , where we denote  
 250  $v_c^{\pi_{u,w}^*}(s) \in \mathbb{R}^L$ ,  $v_r^{\pi_{u,w}^*}(s) \in \mathbb{R}^K$  as the value functions evaluated with the policy  $\pi_{u,w}^*$  for con-  
 251 strained reward  $c$  and unconstrained reward  $r$ , respectively. We compute an estimated gradient of  
 252  $\nabla_{(u,w)} \mathcal{L}(u, w)$  at the current weight  $(u, w) = (u^m, w^m)$  where  $m = 1, 2, \dots$  is the iteration index.  
 253 Note that the policy is extracted from the Q-function based on the form equation 10. We then update  
 254  $(u, w)$  using projected gradient descent:  
 255

$$256 (u^{m+1}, w^{m+1}) = \mathcal{P}_{K,L}[(u^m, w^m) - l_w \nabla_{(u,w)} \mathcal{L}(u^m, w^m)] \quad (14)$$

257 where  $l_w$  is a learning rate for  $(u, w)$  and  $\mathcal{P}_{K,L}[\cdot]$  is the projection onto the  $\mathbb{R}_+^L \times \Delta^K$ . We use the  
 258 convex optimization method from Wang & Carreira-Perpiñán (2013) to project onto the simplex  
 259  $\Delta^K$ , and apply non-negativity clipping for projection onto  $\mathbb{R}_+^L$ . Note that the projection onto  $\Delta^K$   
 260 is numerically stable as it is fully deterministic and avoids randomized procedures. In addition,  
 261 its complexity is  $O(K \log K)$  (Wang & Carreira-Perpiñán, 2013) which is relatively lightweight  
 262 compared to other components, due to the sublinear growth of the logarithmic term.  
 263

264 We iterate this process for each  $m$ , and the pseudocode of our algorithm is shown in Algorithm 1. We  
 265 now provide our convergence analysis of Algorithm 1 under the following assumption.  
 266

267 *Assumption* There exists at least one state  $s \in \mathcal{S}$  such that the centered action-value vectors in the set  
 268  $S_{\text{center}}(s) := \{Q^{\pi_{u,w}^*}(s, a) - \mathbb{E}_{a' \sim \pi_{u,w}^*(\cdot|s)}[Q^{\pi_{u,w}^*}(s, a')] : a \in \mathcal{A}\}$  span  $\mathbb{R}^{K+L}$ .  
 269

---

**Algorithm 1** Constrained Max-Min MORL Algorithm
 

---

```

270 1:  $Q^0 \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|}$ : initialized Q-function, ITER: total iteration number,  $l_w$ : learning rate for the
271 update of weights  $(u, w)$ 
272 2: Initialize weights  $u^0 \in \mathbb{R}_+^L$  and  $w^0 \in \Delta^K$ .
273 3: for  $m = 1, 2, \dots, \text{ITER}$  do
274 4:    $Q = Q^{m-1}$ 
275 5:   while not terminated do
276 6:     Update  $Q$  in equation 13 with  $[u; w] = [u^m; w^m]$ .
277 7:   end while
278 8:    $Q^m = Q$ 
279 9:   Compute  $\tilde{\nabla}_{(u,w)}\mathcal{L}(u^m, w^m)$ , an estimated gradient of  $\nabla_{(u,w)}\mathcal{L}(u^m, w^m)$  using  $\pi^m(\cdot|s) =$ 
280 softmax $\{Q^m(s, \cdot)/\beta\}$  based on equation 11.
281 10:   $(u^{m+1}, w^{m+1}) = \mathcal{P}_{K,L}[(u^m, w^m) - l_w \tilde{\nabla}_{(u,w)}\mathcal{L}(u^m, w^m)]$ .
282 11: end for
283 12: Return  $\pi(\cdot|s) = \text{softmax}\{Q^{\text{ITER}}(s, \cdot)/\beta\}, \forall s$ .
284
285
286

```

---

287 This condition fails only in degenerate multi-objective settings when for *every* state  $s \in \mathcal{S}$ , the set  
 288  $S_{\text{center}}(s)$  lies entirely within an affine subspace of dimension less than  $K + L$ . Under this assumption,  
 289 the Hessian  $H[\mathcal{L}(u, w)]$  is positive definite. (See Appendix F.1 for more details.) Let  $\lambda$  denote  
 290 the minimum eigenvalue of  $H[\mathcal{L}(u, w)]$ , which satisfies  $0 < \lambda \leq \alpha$  (Bubeck, 2015). Theorem 3.6  
 291 provides a formal guarantee of convergence for Algorithm 1 under approximate Q-updates.

292 **Theorem 3.6.** *Let  $(u^*, w^*)$  denote an optimal solution to equation 7. For each outer-loop index  
 293  $m \geq 1$  in Algorithm 1, let  $Q_{u^m, w^m}^*$  denote the fixed point of equation 13 with  $[u; w] = [u^m; w^m]$ ,  
 294 and let  $Q^m$  denote the Q-function after completing the  $m$ -th inner-loop update. For each  $m$ , assume  
 295  $\|Q^m - Q_{u^m, w^m}^*\|_\infty < \epsilon$  for some  $\epsilon > 0$ . Then for  $m \geq 1$ ,*

$$296 \quad 297 \quad 298 \quad 299 \quad \|[u^m; w^m] - [u^*; w^*]\|_2 \leq (1 - \frac{\lambda}{\alpha})^m \|[u^0; w^0] - [u^*; w^*]\|_2 + \frac{\sqrt{|\mathcal{S}|}}{\lambda} \sqrt{\sum_{i=1}^{K+L} \{r_{\max}^{(i)}\}^2} \frac{1 + \gamma}{(1 - \gamma)^2} \epsilon. \quad (15)$$

300 *(Proof: See Appendix F.2.)*

301 Theorem 3.6 establishes that the error decreases geometrically at rate  $O\left((1 - \frac{\lambda}{\alpha})^m\right)$ , up to  $O(\epsilon)$ .  
 302 (For completeness, Appendix F.3 provides the analysis of the degenerate case without Assumption.)

303 **3.3 DISCUSSION**

|            | $w$ fixed                                | $w$ learned                           |
|------------|------------------------------------------|---------------------------------------|
| $L = 0$    | Unconstr. weight-sum (Yang et al., 2019) | Unconstr. max-min (Park et al., 2024) |
| $L \geq 1$ | Constr. weight-sum (Huang et al., 2021)  | Constr. max-min                       |

310 **Table 1:** Generalizability of our framework to previous MORL settings

312 Our new framework is general enough to unify many existing MORL formulations. Note that we have  
 313 two major design choices: (i) scalarization strategy: whether the preference vector  $w$  on  $K$  objectives  
 314 used in the scalarization function is fixed or learned/adaptive, and (ii) whether constraints are present.  
 315 Table 1 shows four different setups of our framework. Our framework covers unconstrained weight-  
 316 sum MORL with  $L = 0$  and fixed  $w$ , constrained weighted-sum MORL with  $L \geq 1$  and fixed  $w$ ,  
 317 unconstrained max-min MORL with  $L = 0$  and  $w$  learning, and finally constrained max-min MORL  
 318 with  $L \geq 1$  and  $w$  learning.

319 **4 RELATED WORK**

320 **MORL** The dominant approach in MORL is utility-based (Rojers et al., 2013; Hayes et al.,  
 321 2022), where the goal is to find an optimal policy  $\pi^* = \arg \max_\pi f(J(\pi))$  given a non-decreasing

scalarization function  $f : \mathbb{R}^K \rightarrow \mathbb{R}$ . When  $f$  is linear, each non-negative weight vector defines a scalarized MDP (Boutilier et al., 1999), motivating work on learning a single model capable of generating policies across a continuum of preferences (Abels et al., 2019; Yang et al., 2019; Basaklar et al., 2023; Hung et al., 2023; Lu et al., 2023; Park & Sung, 2025; Li et al., 2025). This family of approaches is known as multi-policy MORL (Rojers et al., 2013; Hayes et al., 2022). For non-linear scalarization functions, however, Bellman optimality no longer holds in its standard form due to the loss of linearity, making optimization substantially more difficult (Rojers et al., 2013; Hayes et al., 2022). Algorithms that directly optimize the scalarized objective belong to the single-policy MORL category (Rojers et al., 2013; Hayes et al., 2022). Most work in this category considers a welfare function (Siddique et al., 2020; Cousins et al., 2024) as the nonlinear scalarization  $f$ . Note that single-policy and multi-policy methods are complementary rather than interchangeable (Rojers et al., 2013; Hayes et al., 2022).

**Unconstrained Max-min MORL** Max-min MORL studies the case where  $f = \min$ , aiming to enforce max-min fairness. This formulation is useful in many applications such as mitigating bottlenecks in cloud and edge resource management systems (Saifullah et al., 2014; Wang et al., 2019). Several studies optimize proxy objectives related to the unconstrained max-min formulation, for example, maximizing a conservative lower bound of  $\mathbb{E}_\pi \left[ \min_{1 \leq k \leq K} \left( \sum_{t=0}^{\infty} \gamma^t r_t^{(k)} \right) \right]$  (Fan et al., 2023; Peng et al., 2025), or maximizing the total return while enforcing per-group performance constraints (Eaton et al., 2025).

The work most closely related to ours is Park et al. (2024), which proposes a tractable approach for exact unconstrained max-min MORL using Gaussian smoothing to estimate gradients. However, this approach requires maintaining multiple network copies, increasing computational overhead. Furthermore, the gradient estimates are inherently inexact, as Gaussian smoothing of a convex function yields a convex upper bound rather than the true function (Nesterov & Spokoiny, 2017). In contrast, our method produces direct, theoretically grounded gradient estimates and extends naturally to constrained MORL. Concurrent with our work, Byeon et al. (2025) introduced an alternative unconstrained max-min MORL formulation based on a two-player zero-sum game framework (Daskalakis & Panageas, 2018; Miryoosefi et al., 2019). However, their method does not address the incorporation of constraints.

**Constrained RL** Many approaches to constrained MDPs reformulate the problem with a scalar reward (i.e., a special case of equation 2 and equation 3 with  $K = 1$  and without  $f$ ) into an unconstrained one by augmenting the objective with a weighted sum of constraint violations, typically via a Lagrangian formulation (Achiam et al., 2017; Tessler et al., 2018; Paternain et al., 2019; Ha et al., 2020; Vaswani et al., 2022; Calvo-Fullana et al., 2023; Müller et al., 2024). The motivation for this line of work is that the Lagrangian relaxation exhibits no duality gap, even when the original problem is non-convex with respect to the policy (Paternain et al., 2019). Most methods in this category, therefore, rely on alternating updates between the policy and the Lagrange multipliers. However, these approaches do not consider the multi-objective reward setting in equation 2 and equation 3 with  $K \geq 2$ . Moreover, applying them directly to our setting is non-trivial, since  $f = \min$  introduces non-differentiability in equation 2.

To resolve this, we reformulate our problem as a convex program using occupancy measures and then derive another convex program equivalent to the dual problem, which serves as the basis for our MORL algorithm. In particular, we show that both the max-min criterion and the constraints can be satisfied by jointly updating the weights  $u$  and  $w$ , a simple yet effective approach that to our knowledge has not been explored in the constrained MDP literature. Although Lee et al. (2022) also leverages convex analysis with occupancy measures, its focus is on constrained single-objective RL with a scalar reward (i.e.,  $K = 1$ ) in an offline setting. Unlike our work, it does not address fairness across multiple objectives in MORL settings.

Several recent works have incorporated constraints into MORL (Huang et al., 2021; Lin et al., 2024; Kim et al., 2025; Liu et al., 2025), but under settings different from our framework which integrates max-min optimization. See Appendix G for details of these works.

378 **5 EXPERIMENTS**  
 379

380 In this section, we present experimental validations of our theoretical analysis and algorithm. Section  
 381 5.1 examines the convergence properties of our method in tabular settings. In Section 5.2, we further  
 382 demonstrate the practical relevance of our approach through applications including edge computing  
 383 resource allocation and multi-objective locomotion control.  
 384

385 **5.1 TABULAR SETTINGS**  
 386

387 We conducted experiments in tabular settings to evaluate the convergence of our algorithm. Con-  
 388 strained MOMDPs were randomly generated, after a feasibility check, within two widely used classes  
 389 of structured MDPs. (See Appendix H.1 for details on the feasibility check.) First, bipartite state  
 390 graphs partition the state space into two disjoint subsets, enforcing transitions between them at  
 391 alternating time steps. This structure captures temporal dynamics in systems with role alternation  
 392 or interleaving phases (Littman, 1994). Second, hierarchical MDPs organize the state space into  
 393 multiple levels or stages, where transitions flow sequentially from one level to the next. This reflects  
 394 tasks with subgoals or temporal abstraction (Dietterich, 2000).  
 395

396 The optimal value for each MOMDP was computed by solving equation 4, equation 5, and equation 6  
 397 with  $\beta = 0$  via linear programming (LP), and performance was evaluated as the error relative to these  
 398 LP-optimal values. We compared our method, which computes  $\nabla_u v_{u,w}^*(s)$  and  $\nabla_w v_{u,w}^*(s)$  using  
 399 Theorem 3.3, against a modified version of the Gaussian smoothing method from Park et al. (2024).  
 400 We adapted this baseline to incorporate both the max-min weights ( $w$ ) and the constraint weights  
 401 ( $u$ ). We selected this baseline because, to the best of our knowledge, no prior work has proposed  
 402 a constrained max-min MORL algorithm. However, Park et al. (2024) can be naturally extended  
 403 to this setting using its gradient estimation approach based on Gaussian smoothing. Both methods  
 404 follow the same alternating update scheme: (i) updating the policy using equation 13 and (ii) updating  
 405 the weight vectors using projected gradient descent, until convergence with respect to  $(u, w)$ . (See  
 406 Appendix H.2 for further details on the baseline and experimental setup.)  
 407



416 Figure 1: Average optimality gap across generated  
 417 MOMDPs  
 418

419 Figure 1 shows that our method converges reliably to the optimal value, whereas the Gaussian smoothing  
 420 baseline exhibits larger approximation errors and unstable learning behavior. This observation  
 421 can be explained by two factors: (i) Gaussian smoothing of a convex function yields another convex  
 422 function that forms an upper bound to the original objective, and (ii) its theoretical guarantee ensures  
 423 only average-iterate convergence rather than last-iterate convergence (Nesterov & Spokoiny, 2017).  
 424 The latter contributes to the oscillatory behavior observed during training.  
 425

426 As analyzed in Appendix H.3, the Gaussian smoothing baseline requires approximately  $N + 1$  times  
 427 more computation per weight update than our method, where  $N$  is the number of perturbed Q-tables  
 428 used in Gaussian smoothing. In summary, our method is superior in accuracy and computation for  
 429 constrained max-min optimization compared to Gaussian smoothing in tabular settings.  
 430

431 To evaluate the effect of learning the weight vectors in our algorithm, we independently disabled  
 432 the learning of  $u$ , of  $w$ , and of both  $(u, w)$  while initializing  $u$  to a zero vector and  
 433  $w = [1/K, \dots, 1/K] \in \Delta^K$  on the simplex. Table 2 demonstrates that removing the learning

| Algorithm         | Optimal value error ( $\downarrow$ ) |
|-------------------|--------------------------------------|
| Ours              | 0.004                                |
| w/o $u$ update    | 0.325                                |
| w/o $w$ update    | 0.657                                |
| w/o $(u, w)$ upd. | 1.008                                |

Table 2: Ablation study on the impact of weight learning in our tabular setting

432 of either weight component noticeably increases the optimal value estimation error. (See Appendix  
 433 H.4 for the ablation study on the impact of the regularization coefficient  $\beta$ .)  
 434

435 **5.2 EXTENSION TO APPLICATIONS**  
 436

437 In this section, we extend our algorithm to practical applications. To ensure stable gradient estimation  
 438 of our algorithm in continuous state spaces, we parameterize a gradient network  $g_\theta(s) \in \mathbb{R}^{L+K}$   
 439 to estimate  $\nabla_u v_{u,w}^*(s)$  and  $\nabla_w v_{u,w}^*(s)$ , following Theorem 3.3. Implementation details, including  
 440 gradient estimation and our constrained max-min algorithm for applications, are provided in Appendix  
 441 I.1.  
 442

443 **5.2.1 EDGE COMPUTING RESOURCE ALLOCATION**  
 444

445 We consider a simulated edge computing resource allocation environment (Bae et al., 2020). The  
 446 system includes  $N_{\text{type}}$  distinct user application types, and multiple mobile devices generate tasks  
 447 according to these types and send them to an edge computing node. The edge computing node  
 448 is equipped with multi-core CPUs and maintains  $N_{\text{type}}$  separate task queues, each associated with  
 449 a specific application type. Incoming tasks from the mobile devices are sorted into these queues  
 450 accordingly. Once tasks arrive, the edge computing node either processes them locally or offloads a  
 451 portion to a cloud computing node through a dedicated communication link.  
 452

453 The unconstrained reward is an  $N_{\text{type}}$ -dimensional vector, where each entry corresponds to the negative  
 454 value of the current queue length for a given application type to encourage queue minimization.  
 455 Minimizing the delay of the worst-performing user group is crucial for maintaining smooth system  
 456 operation (Zehavi et al., 2013; Saifullah et al., 2014; Wang et al., 2019). The cost is the total power  
 457 consumption of the system, normalized by the environment. The goal is to control the system to  
 458 minimize the maximum cumulative discounted sum of queue length across application types within  
 459 each episode, while satisfying the system’s power consumption constraint with its designed threshold  
 460 value  $C_{th} = 5.6$  with  $N_{\text{type}} = 3$ . (Additional details of the environment are given in Appendix I.2.)  
 461

462 We consider **five** baselines: (i) randomly selects one queue for allocation at each timestep (Random),  
 463 (ii) unconstrained max-average SAC (MA-SAC) (Haarnoja et al., 2018), (iii) max-average SAC with a  
 464 Lagrangian relaxation (MA-SAC-L) (Ha et al., 2020; Yang et al., 2021), (iv) unconstrained max-min  
 465 MQL algorithm with Gaussian smoothing Park et al. (2024) (**Max-min GS**), and (v) **unconstrained**  
 466 **max-min MQL algorithm from a concurrent work (Byeon et al., 2025) (ARAM)**. Each of the  
 467 baselines lacks either max-min fairness ((iii)), constraint handling ((iv), (v)), or both ((i), (ii)). We  
 468 report the mean performance computed across twelve random seeds. (See Appendices I.3 and I.4 for  
 469 the implementation of the Max-min baseline GS and hyperparameter settings, respectively.)  
 470

| Algorithm  | Cost sum<br>( $C_{th} = 5.6$ ) | Maximum<br>queue length (↓) |
|------------|--------------------------------|-----------------------------|
| Random     | 5.9                            | 72.4                        |
| MA-SAC     | 5.8                            | 46.5                        |
| MA-SAC-L   | <b>5.6</b>                     | 52.9                        |
| Ours       | <b>5.6</b>                     | 37.9                        |
| Max-min GS | 5.8                            | 23.7                        |
| ARAM       | <b>6.1</b>                     | <b>14.8</b>                 |

471 Table 3: Cumulative cost sum and total maximum  
 472 queue length with the two constraint-  
 473 satisfying algorithms highlighted in **bold**  
 474

475 Table 3 presents the cumulative cost sum and the total maximum queue length. Compared to the  
 476 Random baseline, MA-SAC reduces the total maximum queue length but still fails to satisfy the power  
 477 consumption constraint, with its cost sum exceeding the threshold  $C_{th} = 5.6$ . While MA-SAC-L  
 478 satisfies the power constraint, it does so at the cost of a higher total maximum queue length compared  
 479 to MA-SAC. As shown in Figure 2, our method substantially reduces the total maximum queue length  
 480



481 Figure 2: Comparison of queue length sums  
 482 across queues for each algorithm  
 483

486 relative to MA-SAC-L, while still adhering to the power constraint. **We note that both Max-min GS**  
 487 **and ARAM violate the power constraint.**

488 Table 4 shows that ablating the constraint-  
 489 related  $u$  update causes constraint violations,  
 490 while removing the max-min-related  $w$  update  
 491 substantially increases the total maximum queue  
 492 length. These results confirm that our method  
 493 effectively balances max-min performance with  
 494 constraint satisfaction.

| Algorithm         | Cost sum<br>( $C_{th} = 5.6$ ) | Maximum<br>queue length (↓) |
|-------------------|--------------------------------|-----------------------------|
| Ours              | 5.6                            | 37.9                        |
| w/o $u$ update    | 5.8                            | 33.7                        |
| w/o $w$ update    | 5.5                            | 52.7                        |
| w/o $(u, w)$ upd. | 5.8                            | 44.7                        |

Table 4: Ablation study in resource allocation

### 497 5.2.2 MULTI-OBJECTIVE LOCOMOTION CONTROL

498 We include MoAnt-v5 environment (Felten et al.,  
 499 2023), where the agent learns locomotion to maximize  
 500  $x$  and  $y$  velocities while keeping energy consumption  
 501 under a threshold. We consider an asymmetric case  
 502 where movement in the  $x$  direction is attenuated by  
 503 friction at rate 0.3. The velocities  $(v_x, v_y)$ , combined  
 504 with bonus terms, constitute a 2-D reward, while the  
 505 control cost is treated as a constraint. (See Appendix  
 506 I.5 for details on hyperparameters.)

507 Table 5 shows that both our method and MA-SAC-L  
 508 satisfy the constraints, but our method achieves su-  
 509 perior max-min performance. In contrast, the other  
 510 four algorithms severely violate the constraints, as  
 511 they do not explicitly account for constraint satisfaction.  
 512 Overall, our algorithm balances constraint  
 513 satisfaction and max-min fairness.

514 In Appendix J, we further evaluate our method on a traffic signal control environment (Alegre, 2019)  
 515 featuring 16 objectives (Park & Sung, 2025; Byeon et al., 2025), allowing us to test its performance  
 516 in a higher-dimensional MORL setting.

## 517 6 CONCLUSION

518 We have proposed a unified framework for constrained MORL that integrates max-min fairness with  
 519 constraint satisfaction. Our approach offers flexibility in modeling problems that satisfy fairness and  
 520 operational constraints. We established a theoretical foundation and developed an algorithm that  
 521 shows strong performance in both tabular settings and practical applications. By jointly addressing  
 522 fairness and resource constraints, our work contributes to advancing sustainable AI, offering a  
 523 compelling alternative to conventional approaches that focus solely on performance, often at the  
 524 expense of equity and resource constraints. A broader impact of our work is discussed in Appendix  
 525 K, and a discussion of limitations and future directions is provided in Appendix L.

## 526 529 REPRODUCIBILITY STATEMENT

530 We provide detailed descriptions of our algorithm in Section 3.2 and Appendix I.1. Appendices H and  
 531 I contain the experimental setup, fine-tuned hyperparameters, and infrastructure details. To ensure  
 532 accessibility and reproducibility, we provide the source code for the resource allocation environment  
 533 in the supplementary material. Furthermore, all theorems are presented in a self-contained manner,  
 534 making it straightforward to verify the theoretical results.

## 535 537 REFERENCES

538 Axel Abels, Diederik M. Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckelmacher. Dynamic  
 539 weights in multi-objective deep reinforcement learning. In Kamalika Chaudhuri and Ruslan

540 Salakhutdinov (eds.), *Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA*, volume 97 of *Proceedings of Machine Learning Research*, pp. 11–20. PMLR, 2019. URL <http://proceedings.mlr.press/v97/abels19a.html>.

541

542

543

544

545 Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In *International conference on machine learning*, pp. 22–31. PMLR, 2017.

546

547

548 Lucas N. Alegre. SUMO-RL. <https://github.com/LucasAlegre/sumo-rl>, 2019.

549

550 Sohee Bae, Seungyul Han, and Youngchul Sung. A reinforcement learning formulation of the

551 lyapunov optimization: Application to edge computing systems with queue stability. *CoRR*,

552 abs/2012.07279, 2020. URL <https://arxiv.org/abs/2012.07279>.

553

554 Toygun Basaklar, Suat Gumussoy, and Ümit Y. Ogras. PD-MORL: preference-driven multi-

555 objective reinforcement learning algorithm. In *The Eleventh International Conference on Learning*

556 *Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL

557 <https://openreview.net/pdf?id=zS9sRyaPF1J>.

558

559

560 Craig Boutilier, Thomas L. Dean, and Steve Hanks. Decision-theoretic planning: Structural assump-

561 tions and computational leverage. *J. Artif. Intell. Res.*, 11:1–94, 1999. doi: 10.1613/JAIR.575.

562

563 URL <https://doi.org/10.1613/jair.575>.

564

565 Stephen P Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.

566

567 Sébastien Bubeck. Convex optimization: Algorithms and complexity. 2015. URL <https://arxiv.org/abs/1405.4980>.

568

569 Woohyeon Byeon, Giseung Park, Jongseong Chae, Amir Leshem, and Youngchul Sung. Multi-

570 objective reinforcement learning with max-min criterion: A game-theoretic approach. In *The*

571 *Thirty-ninth Annual Conference on Neural Information Processing Systems*, 2025. URL <https://openreview.net/forum?id=YFb7KFE39x>.

572

573 Miguel Calvo-Fullana, Santiago Paternain, Luiz FO Chamon, and Alejandro Ribeiro. State augmented

574 constrained reinforcement learning: Overcoming the limitations of learning with rewards. *IEEE*

575 *Transactions on Automatic Control*, 69(7):4275–4290, 2023.

576

577 Souradip Chakraborty, Jiahao Qiu, Hui Yuan, Alec Koppel, Dinesh Manocha, Furong Huang, Amrit S.

578 Bedi, and Mengdi Wang. Maxmin-rlhf: Alignment with diverse human preferences. In *Forty-first*

579 *International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*.

580 OpenReview.net, 2024. URL <https://openreview.net/forum?id=8tzjEMF0Vq>.

581

582 Fengdi Che, Chenjun Xiao, Jincheng Mei, Bo Dai, Ramki Gummadi, Oscar A. Ramirez, Christo-

583 pher K. Harris, A. Rupam Mahmood, and Dale Schuurmans. Target networks and over-

584 parameterization stabilize off-policy bootstrapping with function approximation. In *Forty-first*

585 *International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*.

586 OpenReview.net, 2024. URL <https://openreview.net/forum?id=R6GT1UDcOW>.

587

588

589

590 Xiaojing Chen, Zhouyu Lu, Wei Ni, Xin Wang, Feng Wang, Shunqing Zhang, and Shugong Xu.

591 Cooling-aware resource allocation and load management for mobile edge computing systems.

592 *arXiv preprint arXiv:2006.10978*, 2020.

593

594 Cyrus Cousins, Kavosh Asadi, Elita Lobo, and Michael Littman. On welfare-centric fair reinforcement

595 learning. In *Reinforcement Learning Conference*, 2024. URL <https://openreview.net/forum?id=aWGtAqYBie>.

596

597

598

599 Constantinos Daskalakis and Ioannis Panageas. Last-iterate convergence: Zero-sum games and

600 constrained min-max optimization. *arXiv preprint arXiv:1807.04252*, 2018.

601

602

603 Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value function decomposi-

604 tion. *Journal of artificial intelligence research*, 13:227–303, 2000.

594 Eric Eaton, Marcel Hussing, Michael Kearns, Aaron Roth, Sikata Bela Sengupta, and Jessica Sorrell.  
 595 Intersectional fairness in reinforcement learning with large state and constraint spaces. In Aarti  
 596 Singh, Maryam Fazel, Daniel Hsu, Simon Lacoste-Julien, Felix Berkenkamp, Tegan Maharaj, Kiri  
 597 Wagstaff, and Jerry Zhu (eds.), *Proceedings of the 42nd International Conference on Machine  
 598 Learning*, volume 267 of *Proceedings of Machine Learning Research*, pp. 14918–14933. PMLR,  
 599 13–19 Jul 2025. URL <https://proceedings.mlr.press/v267/eaton25a.html>.

600 Zimeng Fan, Nianli Peng, Muhang Tian, and Brandon Fain. Welfare and fairness in multi-objective  
 601 reinforcement learning. In Noa Agmon, Bo An, Alessandro Ricci, and William Yeoh (eds.),  
 602 *Proceedings of the 2023 International Conference on Autonomous Agents and Multiagent Systems,  
 603 AAMAS 2023, London, United Kingdom, 29 May 2023 - 2 June 2023*, pp. 1991–1999. ACM, 2023.  
 604 doi: 10.5555/3545946.3598870. URL [https://dl.acm.org/doi/10.5555/3545946.  
 605 3598870](https://dl.acm.org/doi/10.5555/3545946.3598870).

606 Florian Felten, Lucas N. Alegre, Ann Nowé, Ana L. C. Bazzan, El Ghazali Talbi, Grégoire Danoy,  
 607 and Bruno Castro da Silva. A toolkit for reliable benchmarking and research in multi-objective  
 608 reinforcement learning. In *Proceedings of the 37th Conference on Neural Information Processing  
 609 Systems (NeurIPS 2023)*, 2023.

610 Roy Fox, Ari Pakman, and Naftali Tishby. Taming the noise in reinforcement learning via soft updates.  
 611 In Alexander Ihler and Dominik Janzing (eds.), *Proceedings of the Thirty-Second Conference on  
 612 Uncertainty in Artificial Intelligence, UAI 2016, June 25-29, 2016, New York City, NY, USA*. AUAI  
 613 Press, 2016. URL <http://auai.org/uai2016/proceedings/papers/219.pdf>.

614 Sehoon Ha, Peng Xu, Zhenyu Tan, Sergey Levine, and Jie Tan. Learning to walk in the real world  
 615 with minimal human effort. *arXiv preprint arXiv:2002.08550*, 2020.

616 Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with  
 617 deep energy-based policies. In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th  
 618 International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August  
 619 2017*, volume 70 of *Proceedings of Machine Learning Research*, pp. 1352–1361. PMLR, 2017.  
 620 URL <http://proceedings.mlr.press/v70/haarnoja17a.html>.

621 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy  
 622 maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer G. Dy and  
 623 Andreas Krause (eds.), *Proceedings of the 35th International Conference on Machine Learning,  
 624 ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018*, volume 80 of *Proceedings  
 625 of Machine Learning Research*, pp. 1856–1865. PMLR, 2018. URL <http://proceedings.mlr.press/v80/haarnoja18b.html>.

626 Conor F. Hayes, Roxana Radulescu, Eugenio Bargiacchi, Johan Källström, Matthew Macfarlane,  
 627 Mathieu Reymond, Timothy Verstraeten, Luisa M. Zintgraf, Richard Dazeley, Fredrik Heintz,  
 628 Enda Howley, Athirai A. Irissappane, Patrick Mannion, Ann Nowé, Gabriel de Oliveira Ramos,  
 629 Marcello Restelli, Peter Vamplew, and Diederik M. Roijers. A practical guide to multi-objective  
 630 reinforcement learning and planning. *Auton. Agents Multi Agent Syst.*, 36(1):26, 2022. doi: 10.1007/  
 631 S10458-022-09552-Y. URL <https://doi.org/10.1007/s10458-022-09552-y>.

632 Roger A Horn and Charles R Johnson. *Matrix analysis*. Cambridge university press, 2012.

633 Sandy H. Huang, Abbas Abdolmaleki, Giulia Vezzani, Philemon Brakel, Daniel J. Mankowitz,  
 634 Michael Neunert, Steven Bohez, Yuval Tassa, Nicolas Heess, Martin A. Riedmiller, and Raia  
 635 Hadsell. A constrained multi-objective reinforcement learning framework. In Aleksandra Faust,  
 636 David Hsu, and Gerhard Neumann (eds.), *Conference on Robot Learning, 8-11 November 2021,  
 637 London, UK*, volume 164 of *Proceedings of Machine Learning Research*, pp. 883–893. PMLR,  
 638 2021. URL <https://proceedings.mlr.press/v164/huang22a.html>.

639 Wei Hung, Bo-Kai Huang, Ping-Chun Hsieh, and Xi Liu. Q-pensieve: Boosting sample efficiency of  
 640 multi-objective RL through memory sharing of q-snapshots. In *The Eleventh International Confer-  
 641 ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net,  
 642 2023. URL <https://openreview.net/pdf?id=AwWaBXLIJE>.

643 Congfeng Jiang, Tiantian Fan, Honghao Gao, Weisong Shi, Liangkai Liu, Christophe Cérin, and Jian  
 644 Wan. Energy aware edge computing: A survey. *Computer Communications*, 151:556–580, 2020.

648 Whiyoung Jung, Myungsik Cho, Jongeui Park, and Youngchul Sung. Quantile constrained rein-  
 649 forcement learning: A reinforcement learning framework constraining outage probability. In  
 650 Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Ad-*  
 651 *vances in Neural Information Processing Systems 35: Annual Conference on Neural Information*  
 652 *Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December*  
 653 *9, 2022, 2022*. URL [http://papers.nips.cc/paper\\_files/paper/2022/hash/2a07348a6a7b2c208ab5cb1ee0e78ab5-Abstract-Conference.html](http://papers.nips.cc/paper_files/paper/2022/hash/2a07348a6a7b2c208ab5cb1ee0e78ab5-Abstract-Conference.html).

654 Ubaid Ullah Khan, Naqqash Dilshad, Mubashir Husain Rehmani, and Tariq Umer. Fairness in  
 655 cognitive radio networks: Models, measurement methods, applications, and future research di-  
 656 rections. *J. Netw. Comput. Appl.*, 73:12–26, 2016. doi: 10.1016/J.JNCA.2016.07.008. URL  
 657 <https://doi.org/10.1016/j.jnca.2016.07.008>.

658 Dohyeong Kim, Mineui Hong, Jeongho Park, and Songhwai Oh. Conflict-averse gradient aggre-  
 659 gation for constrained multi-objective reinforcement learning. In *The Thirteenth International*  
 660 *Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=ogXkmugNZw>.

661 Jongmin Lee, Wonseok Jeon, Byung-Jun Lee, Joelle Pineau, and Kee-Eung Kim. Optidice: Offline  
 662 policy optimization via stationary distribution correction estimation. In Marina Meila and Tong  
 663 Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning, ICML*  
 664 *2021, 18-24 July 2021, Virtual Event*, volume 139 of *Proceedings of Machine Learning Research*,  
 665 pp. 6120–6130. PMLR, 2021. URL <http://proceedings.mlr.press/v139/lee21f.html>.

666 Jongmin Lee, Cosmin Paduraru, Daniel J Mankowitz, Nicolas Heess, Doina Precup, Kee-Eung  
 667 Kim, and Arthur Guez. COptiDICE: Offline constrained reinforcement learning via stationary  
 668 distribution correction estimation. In *International Conference on Learning Representations*, 2022.  
 669 URL <https://openreview.net/forum?id=FLA55mBee6Q>.

670 Pengyi Li, Hongyao Tang, Yifu Yuan, Jianye HAO, Zibin Dong, and YAN ZHENG. COLA: Towards  
 671 efficient multi-objective reinforcement learning with conflict objective regularization in latent  
 672 space. In *The Thirty-ninth Annual Conference on Neural Information Processing Systems*, 2025.  
 673 URL <https://openreview.net/forum?id=Cldpn7H3NN>.

674 Qian Lin, Zongkai Liu, Danying Mo, and Chao Yu. An offline adaptation framework for con-  
 675 strained multi-objective reinforcement learning. In Amir Globersons, Lester Mackey, Danielle  
 676 Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Ad-*  
 677 *vances in Neural Information Processing Systems 38: Annual Conference on Neural Infor-*  
 678 *mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -*  
 679 *15, 2024, 2024*. URL [http://papers.nips.cc/paper\\_files/paper/2024/hash/fdb11b1acf5e3724737dd585e590146-Abstract-Conference.html](http://papers.nips.cc/paper_files/paper/2024/hash/fdb11b1acf5e3724737dd585e590146-Abstract-Conference.html).

680 Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In  
 681 *Machine learning proceedings 1994*, pp. 157–163. Elsevier, 1994.

682 Ruohong Liu, Yuxin Pan, Linjie Xu, Lei Song, Pengcheng You, Yize Chen, and Jiang Bian. Efficient  
 683 discovery of pareto front for multi-objective reinforcement learning. In *The Thirteenth International*  
 684 *Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=fDGPIuCdGi>.

685 Yongshuai Liu, Jiaxin Ding, and Xin Liu. Ipo: Interior-point policy optimization under constraints,  
 686 2019. URL <https://arxiv.org/abs/1910.09615>.

687 Haoye Lu, Daniel Herman, and Yaoliang Yu. Multi-objective reinforcement learning: Convex-  
 688 ity, stationarity and pareto optimality. In *The Eleventh International Conference on Learning*  
 689 *Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL  
 690 <https://openreview.net/pdf?id=TjEzIsyEsQ6>.

691 Shehryar Malik, Usman Anwar, Alireza Aghasi, and Ali Ahmed. Inverse constrained reinforcement  
 692 learning. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference*  
 693 *on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp. 7390–7399.

702 PMLR, 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/malik21a.html>.

703

704

705 Sobhan Miryoosefi, Kianté Brantley, Hal Daume III, Miro Dudik, and Robert E Schapire. Reinforce-  
706 ment learning with convex constraints. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-  
707 Buc, E. Fox, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32.  
708 Curran Associates, Inc., 2019. URL [https://proceedings.neurips.cc/paper\\_files/paper/2019/file/873be0705c80679f2c71fbf4d872df59-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2019/file/873be0705c80679f2c71fbf4d872df59-Paper.pdf).

709

710 Adrian Müller, Pragnya Alatur, Volkan Cevher, Giorgia Ramponi, and Niao He. Truly no-regret  
711 learning in constrained MDPs. In *Forty-first International Conference on Machine Learning*, 2024.  
712 URL <https://openreview.net/forum?id=hrWte3nlzr>.

713

714 Yurii E. Nesterov and Vladimir G. Spokoiny. Random gradient-free minimization of convex functions.  
715 *Found. Comput. Math.*, 17(2):527–566, 2017. doi: 10.1007/S10208-015-9296-2. URL <https://doi.org/10.1007/s10208-015-9296-2>.

716

717 Giseung Park and Youngchul Sung. Reward dimension reduction for scalable multi-objective  
718 reinforcement learning. In *The Thirteenth International Conference on Learning Representations*,  
719 2025. URL <https://openreview.net/forum?id=ssRdQimeUI>.

720

721 Giseung Park, Woohyeon Byeon, Seongmin Kim, Elad Havakuk, Amir Leshem, and Youngchul  
722 Sung. The max-min formulation of multi-objective reinforcement learning: From theory to a  
723 model-free algorithm. In *Forty-first International Conference on Machine Learning, ICML 2024*,  
724 Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL <https://openreview.net/forum?id=cY9g0bwizx>.

725

726 Santiago Paternain, Luiz Chamon, Miguel Calvo-Fullana, and Alejandro Ribeiro. Constrained  
727 reinforcement learning has zero duality gap. *Advances in Neural Information Processing Systems*,  
728 32, 2019.

729

730 Nianli Peng, Muhang Tian, and Brandon Fain. Multi-objective reinforcement learning with nonlinear  
731 preferences: Provable approximation for maximizing expected scalarized return, 2025. URL  
732 <https://arxiv.org/abs/2311.02544>.

733

734 Martin L. Puterman. *Markov Decision Processes: Discrete Stochastic Dynamic Programming*.  
735 Wiley Series in Probability and Statistics. Wiley, 1994. ISBN 978-0-47161977-2. doi: 10.1002/9780470316887. URL <https://doi.org/10.1002/9780470316887>.

735

736 Majid Raeis and Alberto Leon-Garcia. A deep reinforcement learning approach for fair traffic signal  
737 control. In *2021 IEEE international intelligent transportation systems conference (ITSC)*, pp.  
2512–2518. IEEE, 2021.

738

739 Kevin Regan and Craig Boutilier. Robust policy computation in reward-uncertain mdps using  
740 nondominated policies. In Maria Fox and David Poole (eds.), *Proceedings of the Twenty-Fourth  
741 AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010*,  
742 pp. 1127–1133. AAAI Press, 2010. doi: 10.1609/AAAI.V24I1.7740. URL <https://doi.org/10.1609/aaai.v24i1.7740>.

743

744 Diederik M. Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-  
745 objective sequential decision-making. *J. Artif. Intell. Res.*, 48:67–113, 2013. doi: 10.1613/JAIR.3987. URL <https://doi.org/10.1613/jair.3987>.

746

747 Abusayeed Saifullah, David Ferry, Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher D. Gill.  
748 Parallel real-time scheduling of dags. *IEEE Trans. Parallel Distributed Syst.*, 25(12):3242–3252,  
2014. doi: 10.1109/TPDS.2013.2297919.

749

750 Mark Schmidt, Nicolas Le Roux, and Francis Bach. Convergence rates of inexact proximal-gradient  
751 methods for convex optimization. 2011. URL <https://arxiv.org/abs/1109.2415>.

752

753 Umer Siddique, Paul Weng, and Matthieu Zimmer. Learning fair policies in multi-objective (deep)  
754 reinforcement learning with average and discounted rewards. In *Proceedings of the 37th Interna-  
755 tional Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event*, volume 119 of *Proceedings of Machine Learning Research*, pp. 8905–8915. PMLR, 2020. URL  
<http://proceedings.mlr.press/v119/siddique20a.html>.

756 David Silver. Lectures on reinforcement learning. URL: <https://www.davidsilver.uk/teaching/>, 2015.

757

758

759 Sriram Ganapathi Subramanian, Guiliang Liu, Mohammed Elmahioui, Kasra Rezaee, and Pascal  
760 Poupart. Confidence aware inverse constrained reinforcement learning. In *Forty-first International  
761 Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=6TCeizkLJV>.

762

763 Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. MIT press, 2018.

764

765 Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. *arXiv  
766 preprint arXiv:1805.11074*, 2018.

767

768 Sharan Vaswani, Lin Yang, and Csaba Szepesvari. Near-optimal sample complexity bounds for  
769 constrained MDPs. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),  
770 *Advances in Neural Information Processing Systems*, 2022. URL [https://openreview.net/forum?id=ZJ7Lrtd12x\\_](https://openreview.net/forum?id=ZJ7Lrtd12x_).

771

772 Kankan Wang, Xu Jiang, Nan Guan, Di Liu, Weichen Liu, and Qingxu Deng. Real-time scheduling  
773 of DAG tasks with arbitrary deadlines. *ACM Trans. Design Autom. Electr. Syst.*, 24(6):66:1–66:22,  
774 2019. doi: 10.1145/3358603.

775

776 Weiran Wang and Miguel Á. Carreira-Perpiñán. Projection onto the probability simplex: An  
777 efficient algorithm with a simple proof, and an application. *CoRR*, abs/1309.1541, 2013. URL  
778 <http://arxiv.org/abs/1309.1541>.

779

780 Qisong Yang, Thiago D. Simão, Simon H. Tindemans, and Matthijs T. J. Spaan. WCSAC: worst-case  
781 soft actor critic for safety-constrained reinforcement learning. In *Thirty-Fifth AAAI Conference  
782 on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of  
783 Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial  
784 Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021*, pp. 10639–10646. AAAI Press, 2021.  
785 doi: 10.1609/AAAI.V35I12.17272. URL <https://doi.org/10.1609/aaai.v35i12.17272>.

786

787 Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective  
788 reinforcement learning and policy adaptation. In Hanna M. Wallach, Hugo Larochelle, Alina  
789 Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), *Advances in  
790 Neural Information Processing Systems 32: Annual Conference on Neural Information Processing  
791 Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada*, pp.  
792 14610–14621, 2019. URL <https://proceedings.neurips.cc/paper/2019/hash/4a46fbfca3f1465a27b210f4bdfe6ab3-Abstract.html>.

793

794 Tong Yang, Shicong Cen, Yuting Wei, Yuxin Chen, and Yuejie Chi. Federated natural policy  
795 gradient and actor critic methods for multi-task reinforcement learning. 2024. URL <https://arxiv.org/abs/2311.00201>.

796

797 Ephraim Zehavi, Amir Leshem, Ronny Levanda, and Zhu Han. Weighted max-min resource allocation  
798 for frequency selective channels. *IEEE Trans. Signal Process.*, 61(15):3723–3732, 2013. doi:  
799 10.1109/TSP.2013.2262278. URL <https://doi.org/10.1109/TSP.2013.2262278>.

800

801

802

803

804

805

806

807

808

809

810 A PROOF ON OPTIMALITY GAP  
811

812 *Proof.* With a slight abuse of notation, let  $J(\pi) := [J_1(\pi), \dots, J_K(\pi)]^\top \in \mathbb{R}^K$  and let  $\mathcal{H}(\pi)$  denote  
813 the expected cumulative entropy of  $\pi$ . We express the optimization of equation 2 and equation 3 with  
814  $f = \min$  as follows:

$$815 \max_{\pi \in \Pi_{\text{feas}}} \min_{1 \leq k \leq K} J_k(\pi) + \beta \mathcal{H}(\pi) \quad (16)$$

816 where  $\Pi_{\text{feas}} := \left\{ \pi \left| \mathbb{E}_{\mu_0, \pi} \left[ \sum_{t=0}^{\infty} \gamma^t c_t^{(l)} \right] \geq C^{(l)}, \quad \forall l = 1, \dots, L \right. \right\}$  and it is assumed to be non-  
817 empty under the typical assumption in constrained RL (Tessler et al., 2018; Ha et al., 2020).  
818

819 Let the optimal solution to the regularized problem in equation 16 be  $\pi_r^* := \arg \max_{\pi \in \Pi_{\text{feas}}} \min_{1 \leq k \leq K} J_k(\pi) + \beta \mathcal{H}(\pi) = \arg \max_{\pi \in \Pi_{\text{feas}}} \min_w \langle w, J(\pi) \rangle + \beta \mathcal{H}(\pi)$  where  
820  $\min_w \in \Delta^K$  is abbreviated as  $\min_w$  for brevity. Let  $w^*(\pi) := \arg \min_w \langle w, J(\pi) \rangle$  and  $w_r^* := w^*(\pi_r^*)$ .  
821

822 Let the optimal solution to the unregularized problem be  $\pi^* := \arg \max_{\pi \in \Pi_{\text{feas}}} \min_w \langle w, J(\pi) \rangle$  and  
823  $w^* = w^*(\pi^*)$ . Let the optimal max-min value of the unregularized problem be  $V_{w^*}^{\pi^*} := \langle w^*, J(\pi^*) \rangle$ .  
824 Similarly, let the optimal value of the regularized problem be  $V_{w_r^*}^{\pi_r^*} := \langle w_r^*, J(\pi_r^*) \rangle$ . For simplicity,  
825 we abbreviate  $\max_{\pi \in \Pi_{\text{feas}}}$  as  $\max_{\pi}$  below.  
826

827 First, a lower bound is derived as follows:

$$828 \begin{aligned} V_{w_r^*}^{\pi_r^*} + \beta \mathcal{H}(\pi_r^*) \\ 829 &= \max_{\pi} \min_w \langle w, J(\pi) \rangle + \beta \mathcal{H}(\pi) \\ 830 &\geq \min_w \langle w, J(\pi^*) \rangle + \beta \mathcal{H}(\pi^*) \\ 831 &= \langle w^*, J(\pi^*) \rangle + \beta \mathcal{H}(\pi^*). \end{aligned}$$

832 Since  $0 \leq \mathcal{H}(\pi) \leq \frac{\log |\mathcal{A}|}{1-\gamma}$  for any  $\pi$ , we obtain  $V_{w_r^*}^{\pi_r^*} - V_{w^*}^{\pi^*} \geq -\frac{\beta \log |\mathcal{A}|}{1-\gamma}$ .  
833

834 Next, an upper bound is derived as follows:

$$835 \begin{aligned} V_{w^*}^{\pi^*} \\ 836 &= \max_{\pi} \min_w \langle w, J(\pi) \rangle \\ 837 &\geq \min_w \langle w, J(\pi_r^*) \rangle \\ 838 &= \langle w_r^*, J(\pi_r^*) \rangle. \end{aligned}$$

839 Thus,  $V_{w_r^*}^{\pi_r^*} - V_{w^*}^{\pi^*} \leq 0$ .  
840

841 Combining these two bounds, we obtain the optimality value gap ranges as  $0 \leq V_{w^*}^{\pi^*} - V_{w_r^*}^{\pi_r^*} \leq$   
842  $\frac{\beta \log |\mathcal{A}|}{1-\gamma}$ .  
843  $\square$

844  
845  
846  
847  
848  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
860  
861  
862  
863

864 **B PROOF ON EQUIVALENT OPTIMIZATION**  
865866 *Proof.* The dual problem of equation 4, equation 5, and equation 6 is rewritten as follows:  
867

$$\begin{aligned}
& \min_{u \geq 0} \min_{w \geq 0, v} \min_{\xi \geq 0} \max_{\rho, b} \left[ b \left( 1 - \sum_{k=1}^K w_k \right) - \beta \sum_{s,a} \rho(s,a) \log \frac{\rho(s,a)}{\sum_{a'} \rho(s,a')} \right. \\
& \quad + \sum_s \mu_0(s) v(s) + \sum_{s,a} \xi(s,a) \rho(s,a) - \sum_{l=1}^L u_l C^{(l)} \\
& \quad \left. + \sum_{s,a} \rho(s,a) \left[ \sum_{k=1}^K w_k r^{(k)}(s,a) + \sum_{l=1}^L u_l c^{(l)}(s,a) + \gamma \sum_{s'} T(s'|s,a) v(s') - v(s) \right] \right]. \quad (17)
\end{aligned}$$

877 Here  $b$  is an auxiliary variable satisfying  $\sum_{s,a} r^{(k)}(s,a) \rho(s,a) \geq b$ ,  $1 \leq k \leq K$ . Let  $\eta_{u,v,w}(s,a) :=$   
878  $\sum_{k=1}^K w_k r^{(k)}(s,a) + \sum_{l=1}^L u_l c^{(l)}(s,a) + \gamma \sum_{s'} T(s'|s,a) v(s') - v(s)$ . We apply KKT conditions.  
879

880 1. Stationarity condition gives

881 
$$\forall (s,a), -\beta \log \frac{\rho(s,a)}{\sum_{a'} \rho(s,a')} + \xi(s,a) + \eta_{u,v,w}(s,a) = 0 \quad (18)$$
  
882

883 and

884 
$$1 - \sum_{k=1}^K w_k = 0. \quad (19)$$
  
885

886 2. Complementary slackness condition gives

887 
$$\forall (s,a), \xi(s,a) \rho(s,a) = 0. \quad (20)$$

888 From equation 18, we derive

889 
$$\forall (s,a), \frac{\rho(s,a)}{\sum_{a'} \rho(s,a')} = \exp \left( \frac{\xi(s,a) + \eta_{u,v,w}(s,a)}{\beta} \right) \quad (21)$$

890 so  $\rho(s,a) > 0$  and  $\xi(s,a) = 0$  from equation 20. Therefore,

891 
$$\forall (s,a), \frac{\rho(s,a)}{\sum_{a'} \rho(s,a')} = \exp \left( \frac{\eta_{u,v,w}(s,a)}{\beta} \right). \quad (22)$$

892 Inserting equation 19 and equation 22, we obtain:

893 
$$\min_{u \in \mathbb{R}_+^L} \min_{v,w} \sum_s \mu_0(s) v(s) - \sum_{l=1}^L u_l C^{(l)} \quad (23)$$
  
894

895 
$$\forall s, v(s) = \beta \log \sum_a \exp \left[ \frac{1}{\beta} \left\{ \sum_{k=1}^K w_k r^{(k)}(s,a) + \sum_{l=1}^L u_l c^{(l)}(s,a) + \gamma \sum_{s'} T(s'|s,a) v(s') \right\} \right] := [\mathcal{T}_{u,w} v](s) \quad (24)$$
  
896

897 
$$\sum_{k=1}^K w_k = 1; w_k \geq 0 \quad \forall 1 \leq k \leq K. \quad (25)$$

898 where equation 24 is derived from  $\sum_a \exp \left( \frac{\eta_{u,v,w}(s,a)}{\beta} \right) = 1$ ,  $\forall s$ , and strong duality holds under  
899 Slater condition (Boyd & Vandenberghe, 2004). Since  $\mathcal{T}_{u,w}$  is a contraction mapping (Haarnoja et al.,  
900 2017; Fox et al., 2016), it has the unique fixed point  $v_{u,w}^*$ . Therefore,  $v = v_{u,w}^*$  is the only feasible  
901 solution that satisfies equation 24 and we have the following:

902 
$$\min_{u \in \mathbb{R}_+^L, w \in \Delta^K} \mathcal{L}(u, w) = \sum_s \mu_0(s) v_{u,w}^*(s) - \sum_{l=1}^L u_l C^{(l)}. \quad (26)$$
  
903

904 Under Slater condition, this optimization attains the same optimal value as in the original convex  
905 optimization. Lastly, the convexity of this optimization is directly obtained from Theorem 4.1. in  
906 Park et al. (2024).  
907

□

918 **C PROOF OF DIFFERENTIABILITY**  
919

920 *Proof.* We first note that for the simplicity of notation, it is enough to show the theorem for the  
921 case of  $L = 0$  (i.e., with no constraints). This holds because, given  $(u, w) \in \mathbb{R}^{L+K}$ , the map-  
922 ping  $\mathcal{T}_{u,w}$  is defined by  $[\mathcal{T}_{u,w}v](s) = \beta \log \sum_a \exp[\frac{1}{\beta} \{ \sum_{l=1}^L u_l c^{(l)}(s, a) + \sum_{k=1}^K w_k r^{(k)}(s, a) + \gamma \sum_{s'} T(s'|s, a) v(s') \}], \forall s$ , and we can regard the concatenation of  $c(s, a)$  and  $r(s, a)$  as a new vector  
923 reward of size  $L + K$  with its weight  $(u, w)$ . Therefore, we use the notation of the following mapping  
924  $[\mathcal{T}_w v](s) = \beta \log \sum_a \exp[\frac{1}{\beta} \{ \sum_{k=1}^K w_k r^{(k)}(s, a) + \gamma \sum_{s'} T(s'|s, a) v(s') \}], \forall s$ .  
925

926 Let  $|\mathcal{S}| = p$ . We define  $F(w, v) := v - \mathcal{T}_w v$ ,  $F : \mathbb{R}^K \times \mathbb{R}^p \rightarrow \mathbb{R}^p$ . Let  $v_w^*$  be the unique fixed point  
927 of  $\mathcal{T}_w$ . Then  $F(w, v_w^*) = v_w^* - \mathcal{T}_w v_w^* = 0$ . Here  $v_w^*$  is implicitly expressed w.r.t.  $w$ , and we aim to  
928 analyze  $v_w^*$  using *implicit function theorem*.  
929

930 First of all,  $F : \mathbb{R}^K \times \mathbb{R}^p \rightarrow \mathbb{R}^p$  is a continuously differentiable function. For each  $s$ ,  $F(w, v)(s) =$   
931  $v(s) - [\mathcal{T}_w v](s) = v(s) - \beta \log \sum_a \exp[\frac{1}{\beta} \{ \sum_{k=1}^K w_k r^{(k)}(s, a) + \gamma \sum_{s'} T(s'|s, a) v(s') \}]$  which is a  
932 composition of linear, logarithm, summation, exponential, and linear functions.  
933

934 Now we fix  $w$  and check whether the Jacobian matrix  $\partial_v F(w, v)|_{v=v_w^*} \in \mathbb{R}^{p \times p}$  is invertible where  
935  $[\partial_v F(w, v)|_{v=v_w^*}]_{ij} = \frac{\partial F(w, v)(s_i)}{\partial v(s_j)}|_{v=v_w^*}$ . We have  $\partial_v F(w, v) = I_p - \partial_v [\mathcal{T}_w v]$  where  $I_p$  is the  $p \times p$   
936 identity matrix. Then  
937

938 
$$\frac{\partial [\mathcal{T}_w v](s_i)}{\partial v(s_j)}|_{v=v_w^*} = \gamma \mathbb{E}_{a \sim \pi_w^*(\cdot|s_i)} [T(s_j|s_i, a)] \quad (27)$$
939

940 where  
941

942 
$$\pi_w^*(a|s) = \frac{\exp[\frac{1}{\beta} \{ \sum_{k=1}^K w_k r^{(k)}(s, a) + \gamma \sum_{s'} T(s'|s, a) v_w^*(s') \}]}{\sum_{a'} \exp[\frac{1}{\beta} \{ \sum_{k=1}^K w_k r^{(k)}(s, a') + \gamma \sum_{s'} T(s'|s, a') v_w^*(s') \}]} \quad (28)$$
943

944 If we denote  $T(\cdot|s, a) := [T(s_1|s, a) \cdots T(s_p|s, a)]$ , we have  
945

946 
$$\partial_v F(w, v)|_{v=v_w^*} = I_p - \gamma \begin{bmatrix} \mathbb{E}_{a \sim \pi_w^*(\cdot|s_1)} [T(\cdot|s_1, a)] \\ \vdots \\ \mathbb{E}_{a \sim \pi_w^*(\cdot|s_p)} [T(\cdot|s_p, a)] \end{bmatrix} =: I_p - \gamma \begin{bmatrix} T^{\pi_w^*}(\cdot|s_1) \\ \vdots \\ T^{\pi_w^*}(\cdot|s_p) \end{bmatrix} \quad (29)$$
947

948 where  $T^{\pi_w^*}(s_j|s_i) = \mathbb{E}_{a \sim \pi_w^*(\cdot|s_i)} [T(s_j|s_i, a)] =: [T^{\pi_w^*}]_{ij}$ . Then  $I_p - \gamma T^{\pi_w^*}$  is invertible since  $T^{\pi_w^*}$   
949 is a row-stochastic square matrix (Horn & Johnson, 2012).  
950

951 Therefore,  $\partial_v F(w, v)|_{v=v_w^*}$  is invertible. By implicit function theorem, there exists an open set  $U \subset$   
952  $\mathbb{R}^K$  containing  $w$  such that there exists a unique continuously differentiable function  $h : U \rightarrow \mathbb{R}^p$   
953 such that  $h(w) = v_w^*$  and  $F(w', h(w')) = 0$ , i.e.,  $h(w') = \mathcal{T}_{w'} h(w')$  for all  $w' \in U$ . Since  $h(w')$  is  
954 the unique fixed point of  $\mathcal{T}_{w'}$ ,  $h(w') = v_{w'}^*$ ,  $\forall w' \in U$ . If we use the implicit function theorem for all  
955  $w \in \mathbb{R}^K$ , we can conclude that  $v = v_w^*$  is a unique continuously differentiable function in  $w \in \mathbb{R}^K$   
956 that satisfies  $v = \mathcal{T}_w v$ .  
957

958 Moreover, for  $1 \leq k \leq K$ ,  
959

960 
$$\frac{\partial [\mathcal{T}_w v](s_i)}{\partial w_k}|_{v=v_w^*} = \mathbb{E}_{a \sim \pi_w^*(\cdot|s_i)} [r^{(k)}(s_i, a)]. \quad (30)$$
961

962 With a slight abuse of notation, if we denote  $r(s, a) := [r^{(1)}(s, a) \cdots r^{(K)}(s, a)]$ , we have  
963

964 
$$\partial_w F(w, v)|_{v=v_w^*} = - \begin{bmatrix} \mathbb{E}_{a \sim \pi_w^*(\cdot|s_1)} [r(s_1, a)] \\ \vdots \\ \mathbb{E}_{a \sim \pi_w^*(\cdot|s_p)} [r(s_p, a)] \end{bmatrix} =: - \begin{bmatrix} r^{\pi_w^*}(s_1) \\ \vdots \\ r^{\pi_w^*}(s_p) \end{bmatrix} \quad (31)$$
965

966 where  $r^{\pi_w^*}(s) = \mathbb{E}_{a \sim \pi_w^*(\cdot|s)} [r(s, a)] \in \mathbb{R}^{1 \times K}$ . By implicit function theorem, we have  
967

968 
$$\begin{bmatrix} \nabla_w v_w^*(s_1)^\top \\ \vdots \\ \nabla_w v_w^*(s_p)^\top \end{bmatrix} = -[\partial_v F(w, v)|_{v=v_w^*}]^{-1} \partial_w F(w, v)|_{v=v_w^*} = (I_p - \gamma T^{\pi_w^*})^{-1} r^{\pi_w^*}. \quad (32)$$
969

Note that the  $k$ -th ( $1 \leq k \leq K$ ) column of equation 32 is equivalent to the policy evaluation of  $\pi_w^*$  considering a scalar reward function  $r^{(k)}$  (Silver, 2015; Sutton & Barto, 2018). We denote the value function as  $v_k^{\pi_w^*} \in \mathbb{R}^p$ . Then

$$\frac{\partial v_w^*(s)}{\partial w_k} = v_k^{\pi_w^*}(s), \forall s. \quad (33)$$

If we denote  $v^{\pi_w^*}(s) = [v_1^{\pi_w^*}(s), \dots, v_K^{\pi_w^*}(s)]^\top \in \mathbb{R}^K$  for all  $s$ , then  $v^{\pi_w^*}(s)$  is the value function evaluated with the policy  $\pi_w^*$  in a given MOMDP. We have

$$\nabla_w v_w^*(s) = v^{\pi_w^*}(s), \forall s. \quad (34)$$

For the case of  $L > 0$ , the only difference is that  $\pi_w^*$  is changed to

$$\pi_{u,w}^*(a|s) = \frac{\exp[\frac{1}{\beta}\{\sum_{l=1}^L u_l c^{(l)}(s, a) + \sum_{k=1}^K w_k r^{(k)}(s, a) + \gamma \sum_{s'} T(s'|s, a) v_{u,w}^*(s')\}]}{\sum_{a'} \exp[\frac{1}{\beta}\{\sum_{l=1}^L u_l c^{(l)}(s, a') + \sum_{k=1}^K w_k r^{(k)}(s, a') + \gamma \sum_{s'} T(s'|s, a') v_{u,w}^*(s')\}]} \quad (35)$$

where  $v_{u,w}^*$  is the fixed point of the operator  $\mathcal{T}_{u,w}$ :

$$\forall s, [\mathcal{T}_{u,w} v](s) = \beta \log \sum_a \exp[\frac{1}{\beta} \{\sum_{l=1}^L u_l c^{(l)}(s, a) + \sum_{k=1}^K w_k r^{(k)}(s, a) + \gamma \sum_{s'} T(s'|s, a) v(s')\}] \quad (36)$$

and the column size of  $r^{\pi_{u,w}^*}$  is  $L + K$ , not  $K$ . We denote  $v_c^{\pi_{u,w}^*}(s) \in \mathbb{R}^L$ ,  $v_r^{\pi_{u,w}^*}(s) \in \mathbb{R}^K$  as the value functions evaluated with the policy  $\pi_{u,w}^*$  for constrained reward  $c$  and unconstrained reward  $r$ , respectively. Finally, we have

$$\nabla_u v_{u,w}^*(s) = v_c^{\pi_{u,w}^*}(s), \nabla_w v_{u,w}^*(s) = v_r^{\pi_{u,w}^*}(s), \forall s. \quad (37)$$

□

1026 **D PROOF OF TWICE-DIFFERENTIABILITY**  
1027

1028 *Proof.* Here we also use the implicit function theorem and follow a similar logic in the proof of  
1029 differentiability in Appendix C. Let  $|\mathcal{S}| = p$ . We show the theorem for the case of  $L = 0$  to guarantee  
1030 notational simplicity. For each  $1 \leq i \leq K$ , we want to show that  $\frac{\partial v_w^*}{\partial w_i} := [\frac{\partial v_w^*(s_1)}{\partial w_i}, \dots, \frac{\partial v_w^*(s_p)}{\partial w_i}]^\top \in$   
1031  $\mathbb{R}^p$  is differentiable in  $w \in \mathbb{R}^K$ . From the result in Appendix C, we have

1032 
$$\frac{\partial v_w^*}{\partial w_i} = v_i^{\pi_w^*} \quad (38)$$

1033 where  $v_i^{\pi_w^*} \in \mathbb{R}^p$  is the value function evaluated with the policy  $\pi_w^*$  in equation 28 with the  $i$ -th  
1034 reward  $r^{(i)}$ . Let  $r_i^{\pi_w^*}(s) = \mathbb{E}_{a \sim \pi_w^*(\cdot|s)}[r^{(i)}(s, a)] \in \mathbb{R}$ . From equation 32, we have

1035 
$$v_i^{\pi_w^*} = (I_p - \gamma T^{\pi_w^*})^{-1} r_i^{\pi_w^*} \quad (39)$$

1036 or equivalently,

1037 
$$v_i^{\pi_w^*} = r_i^{\pi_w^*} + \gamma T^{\pi_w^*} v_i^{\pi_w^*} =: \mathcal{T}_w^* v_i^{\pi_w^*}. \quad (40)$$

1038 We define  $F(w, v) := v - \mathcal{T}_w^* v$ ,  $F : \mathbb{R}^K \times \mathbb{R}^p \rightarrow \mathbb{R}^p$ . Then  $F(w, v_i^{\pi_w^*}) = v_i^{\pi_w^*} - \mathcal{T}_w^* v_i^{\pi_w^*} = 0$ . Here  
1039  $v_i^{\pi_w^*}$  is the unique fixed point of  $\mathcal{T}_w^*$  and is implicitly expressed w.r.t.  $w$ , and we aim to analyze  $v_i^{\pi_w^*}$   
1040 using *implicit function theorem*.

1041 First of all,  $F : \mathbb{R}^K \times \mathbb{R}^p \rightarrow \mathbb{R}^p$  is a continuously differentiable function. For each  $s$ ,  $F(w, v)(s) =$   
1042  $v(s) - [\mathcal{T}_w^* v](s) = v(s) - [r_i^{\pi_w^*}(s) + \gamma \sum_{s'} T^{\pi_w^*}(s'|s)v(s')] = v(s) - \sum_a \pi_w^*(a|s)[r^{(i)}(s, a) +$   
1043  $\gamma \sum_{s'} T(s'|s, a)v(s')]$ . As seen in equation 28,  $\pi_w^*$  contains  $v_w^*$  which is continuously differentiable  
1044 in  $w$  (as a result of the proof in Appendix C), and  $\pi_w^*$  is a composition of quotient, exponential,  
1045 summation and linear functions of  $w$  and  $v_w^*$ .

1046 Now we fix  $w$  and check whether the Jacobian matrix  $\partial_v F(w, v)|_{v=v_i^{\pi_w^*}} \in \mathbb{R}^{p \times p}$  is invertible where  
1047  $[\partial_v F(w, v)|_{v=v_i^{\pi_w^*}}]_{ij} = \frac{\partial F(w, v)(s_i)}{\partial v(s_j)}|_{v=v_i^{\pi_w^*}}$ . We have  $\partial_v F(w, v) = I_p - \partial_v [\mathcal{T}_w^* v]$  where  $I_p$  is the  
1048  $p \times p$  identity matrix. Then

1049 
$$\frac{\partial [\mathcal{T}_w^* v](s_i)}{\partial v(s_j)}|_{v=v_i^{\pi_w^*}} = \gamma \mathbb{E}_{a \sim \pi_w^*(\cdot|s_i)}[T(s_j|s_i, a)]. \quad (41)$$

1050 If we denote  $T(\cdot|s, a) := [T(s_1|s, a) \dots T(s_p|s, a)]$ , we have

1051 
$$\partial_v F(w, v)|_{v=v_i^{\pi_w^*}} = I_p - \gamma \begin{bmatrix} \mathbb{E}_{a \sim \pi_w^*(\cdot|s_1)}[T(\cdot|s_1, a)] \\ \vdots \\ \mathbb{E}_{a \sim \pi_w^*(\cdot|s_p)}[T(\cdot|s_p, a)] \end{bmatrix} =: I_p - \gamma \begin{bmatrix} T^{\pi_w^*}(\cdot|s_1) \\ \vdots \\ T^{\pi_w^*}(\cdot|s_p) \end{bmatrix} \quad (42)$$

1052 where  $T^{\pi_w^*}(s_j|s_i) = \mathbb{E}_{a \sim \pi_w^*(\cdot|s_i)}[T(s_j|s_i, a)] =: [T^{\pi_w^*}]_{ij}$ . Then  $I_p - \gamma T^{\pi_w^*}$  is invertible since  $T^{\pi_w^*}$   
1053 is a row-stochastic square matrix (Horn & Johnson, 2012).

1054 Therefore,  $\partial_v F(w, v)|_{v=v_i^{\pi_w^*}}$  is invertible. By implicit function theorem, there exists an open set  $U \subset$   
1055  $\mathbb{R}^K$  containing  $w$  such that there exists a unique continuously differentiable function  $h : U \rightarrow \mathbb{R}^p$   
1056 such that  $h(w) = v_i^{\pi_w^*}$  and  $F(w', h(w')) = 0$ , i.e.,  $h(w') = \mathcal{T}_w^* h(w')$  for all  $w' \in U$ . Since  $h(w')$   
1057 is the unique fixed point of  $\mathcal{T}_{w'}^*$ ,  $h(w') = v_i^{\pi_{w'}^*}, \forall w' \in U$ . If we use the implicit function theorem  
1058 for all  $w \in \mathbb{R}^K$ , we can conclude that  $v = v_i^{\pi_w^*}$  is a unique continuously differentiable function in  
1059  $w \in \mathbb{R}^K$  that satisfies  $v = \mathcal{T}_w^* v$ .

1060 Now, for  $1 \leq j \leq K$ , we aim to calculate  $\frac{\partial [\mathcal{T}_w^* v](s)}{\partial w_j}|_{v=v_i^{\pi_w^*}}$ . For notational simplicity, let  $Q_w^*(s, a) :=$   
1061  $\sum_{k=1}^K w_k r^{(k)}(s, a) + \gamma \sum_{s'} T(s'|s, a)v_w^*(s')$ . Then we express  $\pi_w^*$  as follows:

1062 
$$\pi_w^*(a|s) = \frac{\exp[\frac{1}{\beta}\{Q_w^*(s, a)\}]}{\sum_{a'} \exp[\frac{1}{\beta}\{Q_w^*(s, a')\}]} \quad (43)$$

1080 We also have

$$\frac{\partial Q_w^*(s, a)}{\partial w_j} = r^{(j)}(s, a) + \gamma \sum_{s'} T(s'|s, a) \frac{\partial v_w^*(s')}{\partial w_j} = r^{(j)}(s, a) + \gamma \sum_{s'} T(s'|s, a) v_j^{\pi_w^*}(s') := Q_j^{\pi_w^*}(s, a). \quad (44)$$

1085 In other words, we denote  $Q_j^{\pi_w^*}$  as the action-value function evaluated with  $\pi_w^*$  for a scalar reward  
1086 function  $r^{(j)}$ . Then

$$\frac{\partial [\mathcal{T}_w^* v](s)}{\partial w_j} \Big|_{v=v_i^{\pi_w^*}} = \sum_a Q_i^{\pi_w^*}(s, a) \frac{\partial \pi_w^*(a|s)}{\partial w_j} \quad (45)$$

1090 which is equivalent to

$$\frac{\partial [\mathcal{T}_w^* v](s)}{\partial w_j} \Big|_{v=v_i^{\pi_w^*}} = \frac{1}{\beta} \sum_a Q_i^{\pi_w^*}(s, a) \left[ \pi_w^*(a|s) Q_j^{\pi_w^*}(s, a) - \pi_w^*(a|s) \sum_{a'} \{\pi_w^*(a'|s) Q_j^{\pi_w^*}(s, a')\} \right] \quad (46)$$

1095 and we have

$$\frac{\partial [\mathcal{T}_w^* v](s)}{\partial w_j} \Big|_{v=v_i^{\pi_w^*}} = \frac{1}{\beta} \left[ \mathbb{E}_{a \sim \pi_w^*(\cdot|s)} [Q_i^{\pi_w^*}(s, a) Q_j^{\pi_w^*}(s, a)] - \mathbb{E}_{a \sim \pi_w^*(\cdot|s)} [Q_i^{\pi_w^*}(s, a)] \mathbb{E}_{a \sim \pi_w^*(\cdot|s)} [Q_j^{\pi_w^*}(s, a)] \right]. \quad (47)$$

1099 By implicit function theorem, we have

$$\begin{bmatrix} \nabla_w \frac{\partial v_w^*(s_1)}{\partial w_i}^\top \\ \vdots \\ \nabla_w \frac{\partial v_w^*(s_p)}{\partial w_i}^\top \end{bmatrix} = -[\partial_v F(w, v) \Big|_{v=v_i^{\pi_w^*}}]^{-1} \partial_w F(w, v) \Big|_{v=v_i^{\pi_w^*}} = \frac{1}{\beta} (I_p - \gamma T^{\pi_w^*})^{-1} E_i^{\pi_w^*} \quad (48)$$

1106 where  $E_i^{\pi_w^*}$  is a  $p \times K$  matrix where for each row corresponding to  $s$ , the  $j$ -th element is  
1107  $\mathbb{E}_{a \sim \pi_w^*(\cdot|s)} [Q_i^{\pi_w^*}(s, a) Q_j^{\pi_w^*}(s, a)] - \mathbb{E}_{a \sim \pi_w^*(\cdot|s)} [Q_i^{\pi_w^*}(s, a)] \mathbb{E}_{a \sim \pi_w^*(\cdot|s)} [Q_j^{\pi_w^*}(s, a)]$ . This formulation  
1108 holds for each  $1 \leq i \leq K$ .

1110 Therefore, we construct a  $p \times K \times K$  tensor, say  $B^{\pi_w^*}$ , by stacking  $\{E_i^{\pi_w^*}\}_i$  along the new (third)  
1111 dimension. Then along the first dimension of size  $p$ , for each  $s$ , let  $B^{\pi_w^*}(s) \in \mathbb{R}^{K \times K}$  be the  
1112 corresponding slice of  $B$ . Let  $Q^{\pi_w^*}(s, a) = [Q_1^{\pi_w^*}(s, a), \dots, Q_K^{\pi_w^*}(s, a)]^\top \in \mathbb{R}^K$  be the action-value  
1113 function evaluated with  $\pi_w^*$  for vector reward  $r$ . Then we have

$$B^{\pi_w^*}(s) = \mathbb{E}_{a \sim \pi_w^*(\cdot|s)} \left[ (Q^{\pi_w^*}(s, a) - \mathbb{E}_{a' \sim \pi_w^*(\cdot|s)} [Q^{\pi_w^*}(s, a')]) (Q^{\pi_w^*}(s, a) - \mathbb{E}_{a' \sim \pi_w^*(\cdot|s)} [Q^{\pi_w^*}(s, a')])^\top \right] \quad (49)$$

1119 which is the covariance matrix of  $Q^{\pi_w^*}(s, \cdot)$  over the probability distribution  $\pi_w^*(\cdot|s)$ . Let  $s_k$  correspond  
1120 to the  $k$ -th row of  $T^{\pi_w^*}$  ( $1 \leq k \leq p$ ). Then we have the following Hessian formulation for  
1121  $s_k$ :

$$H[v_w^*(s_k)] = \frac{1}{\beta} \sum_{l=1}^p [(I_p - \gamma T^{\pi_w^*})^{-1}]_{kl} B^{\pi_w^*}(s_l). \quad (50)$$

1125 For the case of  $L > 0$ , the only difference is that  $\pi_w^*$  is changed to

$$\pi_{u,w}^*(a|s) = \frac{\exp[\frac{1}{\beta} \{\sum_{l=1}^L u_l c^{(l)}(s, a) + \sum_{k=1}^K w_k r^{(k)}(s, a) + \gamma \sum_{s'} T(s'|s, a) v_{u,w}^*(s')\}]}{\sum_{a'} \exp[\frac{1}{\beta} \{\sum_{l=1}^L u_l c^{(l)}(s, a') + \sum_{k=1}^K w_k r^{(k)}(s, a') + \gamma \sum_{s'} T(s'|s, a') v_{u,w}^*(s')\}]} \quad (51)$$

1130 where  $v_{u,w}^*$  is the fixed point of the operator  $\mathcal{T}_{u,w}$ :

$$\forall s, [\mathcal{T}_{u,w} v](s) = \beta \log \sum_a \exp[\frac{1}{\beta} \{\sum_{l=1}^L u_l c^{(l)}(s, a) + \sum_{k=1}^K w_k r^{(k)}(s, a) + \gamma \sum_{s'} T(s'|s, a) v(s')\}] \quad (52)$$

1134 and the size of  $B^{\pi_{u,w}^*}(s)$  is  $(L+K) \times (L+K)$ , not  $K \times K$ , defined by  $Q^{\pi_{u,w}^*}(s, a) \in \mathbb{R}^{L+K}$  which  
 1135 is the action-value function evaluated with  $\pi_{u,w}^*$  for the concatenated vector function of constrained  
 1136 reward  $c$  and unconstrained reward  $r$ . Finally, we have  
 1137

$$1138 H[v_{u,w}^*(s_k)] = \frac{1}{\beta} \sum_{l=1}^p [(I_p - \gamma T^{\pi_{u,w}^*})^{-1}]_{kl} B^{\pi_{u,w}^*}(s_l). \quad (53)$$

1140

□

1141

1142

## 1143 E PROOF OF SMOOTHNESS

1144

1145 *Proof.* Let  $a = (u', w')$  and  $b = (u'', w'')$  in  $\mathbb{R}^{L+K}$ . By the differentiability of  $\nabla v_{u,w}^*(s)$  proved in  
 1146 Theorem 3.4, we use generalized mean value inequality in Banach spaces and have

$$1147 \| \nabla v_{u,w}^*(s) |_{(u,w)=b} - \nabla v_{u,w}^*(s) |_{(u,w)=a} \|_2 \leq \sup_{t \in [0,1]} \| H[v_{u,w}^*(s)] |_{(u,w)=a+t(b-a)} \|_2 \| b - a \|_2 \quad (54)$$

1149

1150 Let  $\lambda_{\max}(A)$  be the maximum eigenvalue of a real symmetric matrix  $A$ . For each  $s_k$  ( $1 \leq k \leq p$ ),  
 1151 the eigenvalues of  $H[v_{u,w}^*(s_k)]$  are nonnegative. Since trace operator is additive, we have

$$1153 \| H[v_{u,w}^*(s_k)] \|_2 = \lambda_{\max}(H[v_{u,w}^*(s_k)]) \leq \text{Tr}(H[v_{u,w}^*(s_k)]) = \frac{1}{\beta} \sum_{l=1}^p [(I_p - \gamma T^{\pi_{u,w}^*})^{-1}]_{kl} \text{Tr}(B^{\pi_{u,w}^*}(s_l)). \quad (55)$$

1155

1156 For each  $s$ , we also have

$$1157 \text{Tr}(B^{\pi_{u,w}^*}(s)) = \sum_{k=1}^{L+K} \text{Var}(Q_k^{\pi_{u,w}^*}(s, a)) \leq \sum_{k=1}^{L+K} \mathbb{E}[|Q_k^{\pi_{u,w}^*}(s, \cdot)|^2] \leq \sum_{k=1}^{L+K} \left( \frac{r_{\max}^{(k)}}{1 - \gamma} \right)^2. \quad (56)$$

1160

1161 Since  $(I_p - \gamma T^{\pi_{u,w}^*})^{-1} = \sum_{i=0}^{\infty} (\gamma T^{\pi_{u,w}^*})^i$  and each  $(T^{\pi_{u,w}^*})^i$  is a probability transition matrix,  
 1162

$$1163 \| H[v_{u,w}^*(s_k)] \|_2 \leq \frac{1}{\beta} \sum_{m=1}^{L+K} \left( \frac{r_{\max}^{(m)}}{1 - \gamma} \right)^2 \left( \sum_{i=0}^{\infty} \gamma^i \sum_{l=1}^p (T^{\pi_{u,w}^*})_{kl}^i \right) = \frac{1}{\beta(1 - \gamma)} \sum_{m=1}^{L+K} \left( \frac{r_{\max}^{(m)}}{1 - \gamma} \right)^2. \quad (57)$$

1166

1167 It should be noted that  $\| H[v_{u,w}^*(s_k)] \|_2$  is uniformly bounded regardless of  $s_k$  and  $(u, w)$ . Therefore,  
 1168  $\nabla v_{u,w}^*(s)$  is Lipschitz continuous in  $\| \cdot \|_2$  from equation 54. □

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188 **F CONVERGENCE ANALYSIS**  
 1189

1190 **F.1 ASSUMPTION FOR ACTION-VALUE NONDEGENERACY**  
 1191

1192 *Assumption* There exists at least one state  $s \in \mathcal{S}$  such that the centered action-value vectors  
 1193  $\{Q^{\pi_{u,w}^*}(s, a) - \mathbb{E}_{a' \sim \pi_{u,w}^*(\cdot|s)}[Q^{\pi_{u,w}^*}(s, a')] : a \in \mathcal{A}\}$  span  $\mathbb{R}^{K+L}$ .  
 1194

1195 This condition fails only in degenerate multi-objective settings when for *every* state  $s \in \mathcal{S}$ , the set  
 1196  $\{Q^{\pi_{u,w}^*}(s, a) - \mathbb{E}_{a' \sim \pi_{u,w}^*(\cdot|s)}[Q^{\pi_{u,w}^*}(s, a')] : a \in \mathcal{A}\}$  lies entirely within an affine subspace of  
 1197 dimension less than  $K+L$  (e.g., the size of an action set is smaller than the number of objectives).  
 1198

1199 Then  $B^{\pi_{u,w}^*}(s) = \mathbb{E}_{a \sim \pi_{u,w}^*(\cdot|s)} \left[ (Q^{\pi_{u,w}^*}(s, a) - \mathbb{E}_{a' \sim \pi_{u,w}^*(\cdot|s)}[Q^{\pi_{u,w}^*}(s, a')])(Q^{\pi_{u,w}^*}(s, a) - \mathbb{E}_{a' \sim \pi_{u,w}^*(\cdot|s)}[Q^{\pi_{u,w}^*}(s, a')])^\top \right] \in \mathbb{R}^{(L+K) \times (L+K)}$  is positive definite. This is because (i)  
 1200  $\pi_{u,w}^*(a|s) > 0$  for all  $a$  (equation 10, which has this favorable property that facilitate analysis),  
 1201 and (ii) for any  $y \in \mathbb{R}^{K+L}$  with  $y \neq 0$ ,  $y^\top B^{\pi_{u,w}^*}(s)y = \sum_a \pi_{u,w}^*(a|s) \left( y^\top (Q^{\pi_{u,w}^*}(s, a) - \mathbb{E}_{a' \sim \pi_{u,w}^*(\cdot|s)}[Q^{\pi_{u,w}^*}(s, a')]) \right)^2 > 0$  as at least one  $a$  should satisfy  $y^\top (Q^{\pi_{u,w}^*}(s, a) - \mathbb{E}_{a' \sim \pi_{u,w}^*(\cdot|s)}[Q^{\pi_{u,w}^*}(s, a')]) \neq 0$ .  
 1202

1203 By Theorem 3.4, we have the Hessian of  $\mathcal{L}(u, w)$  as  $H[\mathcal{L}(u, w)] = \frac{1}{\beta} \sum_{l=1}^p [\mu_0^\top (I_p - \gamma T^{\pi_{u,w}^*})^{-1}]_l B^{\pi_{u,w}^*}(s_l) = \frac{1}{\beta} \sum_s \rho^{\pi_{u,w}^*}(s) B^{\pi_{u,w}^*}(s)$  where  $p = |\mathcal{S}|$  and  $\rho^{\pi_{u,w}^*}(s) = \sum_{t=0}^{\infty} \gamma^t \Pr(s_t = s | \pi_{u,w}^*, \mu_0)$ , and  $\rho^{\pi_{u,w}^*}(s) > 0$  by the reachability assumption (Lee et al., 2021). Therefore,  $H[\mathcal{L}(u, w)]$  is positive definite under the assumption.  
 1204

1205 **F.2 PROOF OF CONVERGENCE ANALYSIS**  
 1206

1207 Let  $\lambda_{\min}(A)$  be the minimum eigenvalue of a real symmetric matrix  $A$ . For simplicity, we denote  
 1208  $\lambda := \lambda_{\min}(H[\mathcal{L}(u, w)])$ . Then  $0 < \lambda \leq \alpha$  (Bubeck, 2015) and  $\mathcal{L}(u, w)$  is  $\lambda$ -strongly convex.  
 1209

1210 **Theorem 3.6** Let  $(u^*, w^*)$  denote the optimal solution to equation 7. For each outer-loop index  
 1211  $m \geq 1$  in Algorithm 1, let  $Q_{u^m, w^m}^*$  denote the fixed point of equation 13 with  $[u; w] = [u^m; w^m]$ ,  
 1212 and let  $Q^m$  denote the Q-function after completing the  $m$ -th inner-loop update. For each  $m$ , assume  
 1213  $\|Q^m - Q_{u^m, w^m}^*\|_\infty < \epsilon$  for some  $\epsilon > 0$ . Then for  $m \geq 1$ ,  
 1214

1215

$$\| [u^m; w^m] - [u^*; w^*] \|_2 \leq (1 - \frac{\lambda}{\alpha})^m \| [u^0; w^0] - [u^*; w^*] \|_2 + \frac{\sqrt{|\mathcal{S}|}}{\lambda} \sqrt{\sum_{i=1}^{K+L} \{r_{\max}^{(i)}\}^2} \frac{1 + \gamma}{(1 - \gamma)^2} \epsilon. \quad (58)$$

1216

1217 *Proof.* By the definition in equation 10, we have the optimal policy  $\pi_{u^m, w^m}^*(a|s) = \frac{\exp(\frac{1}{\beta} Q_{u^m, w^m}^*(s, a))}{\sum_{a'} \exp(\frac{1}{\beta} Q_{u^m, w^m}^*(s, a'))}$  when  $(u, w) = (u^m, w^m)$ . According to Theorem 3.3, we have  
 1218  $\nabla_{(u,w)} \mathcal{L}(u^m, v^m) = [\sum_s \mu_0(s) v_c^{\pi_{u^m, w^m}^*}(s) - [C^{(1)}, \dots, C^{(L)}]^\top; \sum_s \mu_0(s) v_r^{\pi_{u^m, w^m}^*}(s)] \in \mathbb{R}^{L+K}$ .  
 1219

1220 We also have  $\tilde{\nabla}_{(u,w)} \mathcal{L}(u^m, v^m) := [\sum_s \mu_0(s) v_c^{\pi^m}(s) - [C^{(1)}, \dots, C^{(L)}]^\top; \sum_s \mu_0(s) v_r^{\pi^m}(s)] \in \mathbb{R}^{L+K}$ , an estimated gradient of  $\nabla_{(u,w)} \mathcal{L}(u^m, w^m)$  using  $\pi^m$  where  $\pi^m(a|s) = \frac{\exp(\frac{1}{\beta} Q^m(s, a))}{\sum_{a'} \exp(\frac{1}{\beta} Q^m(s, a'))}$ .  
 1221

1222 Let  $e_m := \tilde{\nabla}_{(u,w)} \mathcal{L}(u^m, v^m) - \nabla_{(u,w)} \mathcal{L}(u^m, w^m)$ . For each  $s$ , let  $v_{r,i}^\pi(s)$  ( $1 \leq i \leq K$ ) and  
 1223  $v_{c,j}^\pi(s)$  ( $1 \leq j \leq L$ ) denote the elements of the  $i$ -th dimension of  $v_r^\pi(s) \in \mathbb{R}^K$  and the  $j$ -th  
 1224

dimension of  $v_c^\pi(s) \in \mathbb{R}^L$ , respectively. Then we have

$$\begin{aligned}
 \|e_m\|_2^2 &= \|[\sum_s \mu_0(s)(v_c^{\pi^m}(s) - v_c^{\pi_{u^m, v^m}^*}(s)); \sum_s \mu_0(s)(v_r^{\pi^m}(s) - v_r^{\pi_{u^m, v^m}^*}(s))]\|_2^2 \\
 &= \sum_{i=1}^K \left( \sum_s \mu_0(s)(v_{r,i}^{\pi^m}(s) - v_{r,i}^{\pi_{u^m, w^m}^*}(s)) \right)^2 + \sum_{j=1}^L \left( \sum_s \mu_0(s)(v_{c,j}^{\pi^m}(s) - v_{c,j}^{\pi_{u^m, w^m}^*}(s)) \right)^2 \\
 &\leq \|\mu_0\|_2^2 \sum_s \left[ \sum_{i=1}^K (v_{r,i}^{\pi^m}(s) - v_{r,i}^{\pi_{u^m, w^m}^*}(s))^2 + \sum_{j=1}^L (v_{c,j}^{\pi^m}(s) - v_{c,j}^{\pi_{u^m, w^m}^*}(s))^2 \right]
 \end{aligned} \tag{59}$$

where  $\|\mu_0\|_2^2 = \sum_s (\mu_0(s))^2$  and the inequality holds by Cauchy-Schwarz.

Since both  $\pi^m$  and  $\pi_{u^m, w^m}^*$  use softmax parameterization with  $Q^m$  and  $Q_{u^m, w^m}^*$ , respectively, we have

$$\forall s, |v_{r,i}^{\pi^m}(s) - v_{r,i}^{\pi_{u^m, w^m}^*}(s)| \leq \frac{(1+\gamma)r_{\max}^{(i)}}{(1-\gamma)^2} \|Q^m - Q_{u^m, w^m}^*\|_\infty \quad (1 \leq i \leq K) \tag{60}$$

and

$$\forall s, |v_{c,j}^{\pi^m}(s) - v_{c,j}^{\pi_{u^m, w^m}^*}(s)| \leq \frac{(1+\gamma)r_{\max}^{(K+j)}}{(1-\gamma)^2} \|Q^m - Q_{u^m, w^m}^*\|_\infty \quad (1 \leq j \leq L) \tag{61}$$

according to the property of equation (261) in Yang et al. (2024). Combining equation 60, equation 61, and  $\|\mu_0\|_2 \leq 1$  with equation 59 gives

$$\begin{aligned}
 \|e_m\|_2 &\leq \sqrt{|\mathcal{S}|} \sqrt{\sum_{i=1}^{K+L} \{r_{\max}^{(i)}\}^2 \frac{1+\gamma}{(1-\gamma)^2} \|Q^m - Q_{u^m, w^m}^*\|_\infty} \\
 &< \sqrt{|\mathcal{S}|} \sqrt{\sum_{i=1}^{K+L} \{r_{\max}^{(i)}\}^2 \frac{1+\gamma}{(1-\gamma)^2} \epsilon}.
 \end{aligned} \tag{62}$$

Next, we view the projected gradient descent for each outer loop as a proximal gradient descent. We reformulate the optimization in equation 7 of

$$\min_{u \in \mathbb{R}_+^L, w \in \Delta^K} \mathcal{L}(u, w) \tag{63}$$

as follows:

$$\min_{(u,w) \in \mathbb{R}^{L+K}} \mathcal{L}(u, w) + I_{\mathbb{R}_+^L \times \Delta^K}(u, w) \tag{64}$$

where  $I_{\mathbb{R}_+^L \times \Delta^K}(u, w)$  is the indicator function with its value 0 if  $(u, w) \in \mathbb{R}_+^L \times \Delta^K$  and  $+\infty$  otherwise.  $I_{\mathbb{R}_+^L \times \Delta^K}$  is convex because its epigraph  $\{(u, w, t_e) | t_e \geq 0, (u, w) \in \mathbb{R}_+^L \times \Delta^K\}$  is convex. We note that according to Theorem 3.5, the smoothness of  $\mathcal{L}(u, w)$  is satisfied on  $\mathbb{R}^{L+K}$ , which makes equation 64 valid. We also note that we computed the smoothness coefficient  $\alpha = \frac{1}{\beta(1-\gamma)} \sum_{i=1}^{K+L} \left( \frac{r_{\max}^{(i)}}{1-\gamma} \right)^2$  of  $\mathcal{L}$  in Appendix E.

Applying the error bound in equation 62 to the analysis of inexact proximal gradient method (Schmidt et al., 2011), we have

$$\begin{aligned}
 \| [u^m; w^m] - [u^*; w^*] \|_2 &\leq (1 - \frac{\lambda}{\alpha})^m \| [u^0; w^0] - [u^*; w^*] \|_2 + \frac{1}{\alpha} \sum_{i=1}^m (1 - \frac{\lambda}{\alpha})^{m-i} \|e_i\|_2 \\
 &\leq (1 - \frac{\lambda}{\alpha})^m \| [u^0; w^0] - [u^*; w^*] \|_2 + \frac{\sqrt{|\mathcal{S}|}}{\lambda} \sqrt{\sum_{i=1}^{K+L} \{r_{\max}^{(i)}\}^2 \frac{1+\gamma}{(1-\gamma)^2} \epsilon}.
 \end{aligned} \tag{65}$$

This is achieved because we use the convex optimization method from Wang & Carreira-Perpiñán (2013) for projection onto the simplex  $\Delta^K$ , and apply non-negativity clipping for projection onto  $\mathbb{R}_+^L$ ,

1296 both of them induce zero error in each phase of proximal objective update as it is fully deterministic  
 1297 and avoids randomized procedures.

1298 It remains to check whether  $I_{\mathbb{R}_+^L \times \Delta^K}$  in equation 64 is a lower semi-continuous proper convex  
 1299 function (Schmidt et al., 2011).  $I_{\mathbb{R}_+^L \times \Delta^K}$  is lower semi-continuous because  $\mathbb{R}_+^L \times \Delta^K$  is closed, and  
 1300 it is also proper convex since  $I_{\mathbb{R}_+^L \times \Delta^K}$  never attains  $-\infty$  and  $\mathbb{R}_+^L \times \Delta^K$  is non-empty.

1302

1303

1304

## 1305 F.3 CONVERGENCE ANALYSIS FOR DEGENERATE CASE

1306

1307 **Theorem F.1.** *Let  $(u^*, w^*)$  denote an optimal solution to equation 7. For each outer-loop index  
 1308  $m \geq 1$  in Algorithm 1, let  $Q_{u^m, w^m}^*$  denote the fixed point of equation 13 with  $[u; w] = [u^m; w^m]$ ,  
 1309 and let  $Q^m$  denote the  $Q$ -function after completing the  $m$ -th inner-loop update. For each  $m$ , assume  
 1310  $\|Q^m - Q_{u^m, w^m}^*\|_\infty < \epsilon_m$  for some  $\epsilon_m > 0$ . Then for  $m \geq 1$ ,*

$$1311 \mathcal{L}\left(\frac{1}{m} \sum_{i=1}^m (u^i, w^i)\right) - \mathcal{L}(u^*, w^*) \leq \frac{\alpha}{2m} (\| [u^0; w^0] - [u^*; w^*] \|_2 + \frac{2M}{\alpha} \sum_{i=1}^m \epsilon_i)^2 \quad (66)$$

1312 where  $M = \sqrt{|\mathcal{S}|} \sqrt{\sum_{j=1}^{K+L} \{r_{\max}^{(j)}\}^2 \frac{1+\gamma}{(1-\gamma)^2}}$ .

1313

1314 *Proof.* Using an analysis of inexact proximal gradient method (Schmidt et al., 2011) using the same  
 1315 logic in the proof of Theorem 3.6 (Appendix F.2), we have

1316

$$1317 \mathcal{L}\left(\frac{1}{m} \sum_{i=1}^m (u^i, w^i)\right) - \mathcal{L}(u^*, w^*) \leq \frac{\alpha}{2m} (\| [u^0; w^0] - [u^*; w^*] \|_2 + \frac{2}{\alpha} \sum_{i=1}^m \|e_i\|_2)^2 \quad (67)$$

1318

1319 where  $e_i := \tilde{\nabla}_{(u,w)} \mathcal{L}(u^i, w^i) - \nabla_{(u,w)} \mathcal{L}(u^i, w^i)$  is the  $i$ -th gradient error and

1320

1321

1322

1323

1324

1325

1326

1327

$$\|e_i\|_2 < \sqrt{|\mathcal{S}|} \sqrt{\sum_{j=1}^{K+L} \{r_{\max}^{(j)}\}^2 \frac{1+\gamma}{(1-\gamma)^2} \epsilon_i} = M \epsilon_i \quad (68)$$

1328

1329 from equation 62. □

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350 **G ADDITIONAL RELATED WORK**

1352 Several recent works have explored constrained MORL, but under settings that differ from ours,  
 1353 which explicitly incorporates the max-min objective.

1354 For instance, Huang et al. (2021) reformulates constrained RL as a MOMDP by treating constraint  
 1355 costs as an additional reward dimension, thereby enabling constraint satisfaction while exploring pref-  
 1356 erence trade-offs. Similarly, Kim et al. (2025) learns preference-conditioned policies by reformulating  
 1357 the agent update to mitigate objective-wise gradient conflicts. These approaches pursue complemen-  
 1358 tary goals to ours. Both are based on a multi-policy framework, where policies are conditioned on  
 1359 a preference vector. However, it remains unclear how to select a preference vector such that the  
 1360 resulting policy exactly corresponds to the optimal solution under a nonlinear scalarization function,  
 1361 such as the max-min criterion considered in our setting. In contrast, our method directly solves a  
 1362 single-policy constrained max-min optimization problem. This conceptual distinction parallels the  
 1363 complementary relationship between single-policy and multi-policy approaches in unconstrained  
 1364 MORL (Rojers et al., 2013; Hayes et al., 2022).

1365 Recently, Lin et al. (2024) studied offline constrained MORL, where policies are trained on offline  
 1366 data and later adapted to target preferences using additional demonstrations. In contrast, our work  
 1367 focuses on online learning and does not assume access to additional demonstration data. Liu et al.  
 1368 (2025) train multiple policies in parallel to approximate the Pareto front, improving coverage by  
 1369 solving constrained optimizations in underexplored regions. Their method targets standard MORL  
 1370 with linear scalarization, enhancing it via constrained optimization rather than directly tackling  
 1371 constrained MORL.

1372 **H EXPERIMENTAL DETAILS: TABULAR SETTINGS**

1373 **H.1 FEASIBILITY CHECK**

1377 When generating structured MOMDPs randomly, we first verify whether the generated instances are  
 1378 feasible. To do this, We first consider the following unregularized convex optimization:

$$1379 \max_{\rho \geq 0} \min_{1 \leq k \leq K} \left( \sum_{(s,a)} r^{(k)}(s,a) \rho(s,a) \right) \quad (69)$$

$$1383 \sum_{a'} \rho(s',a') = \mu_0(s') + \gamma \sum_{(s,a)} T(s'|s,a) \rho(s,a), \forall s' \quad (70)$$

$$1386 \sum_{(s,a)} c^{(l)}(s,a) \rho(s,a) \geq C^{(l)}, \quad l = 1, \dots, L \quad (71)$$

1388 which is equivalently expressed as the following LP by using additional scalar variable  $\tilde{c} \in \mathbb{R}$ :

$$1389 \max_{\rho \geq 0, \tilde{c}} \tilde{c} \quad (72)$$

$$1392 \sum_{a'} \rho(s',a') = \mu_0(s') + \gamma \sum_{(s,a)} T(s'|s,a) \rho(s,a), \forall s' \quad (73)$$

$$1395 \sum_{(s,a)} r^{(k)}(s,a) \rho(s,a) \geq \tilde{c}, \quad k = 1, \dots, K, \quad (74)$$

$$1398 \sum_{(s,a)} c^{(l)}(s,a) \rho(s,a) \geq C^{(l)}, \quad l = 1, \dots, L. \quad (75)$$

1400 We want to generate  $\mu_0, T, r$ , and  $c$  in structured MOMDPs to satisfy feasibility and Slater condition  
 1401 by solving the following LP using the pywraplp function from the OR-Tools library:

$$1403 \max_{\rho \geq \epsilon_{\text{low}}} 0 \quad (76)$$

$$\sum_{a'} \rho(s', a') = \mu_0(s') + \gamma \sum_{(s,a)} T(s'|s, a) \rho(s, a), \forall s' \quad (77)$$

$$\sum_{(s,a)} r^{(k)}(s, a) \rho(s, a) \geq \tilde{c} + \epsilon_{\text{low}}, \quad k = 1, \dots, K, \quad (78)$$

$$\sum_{(s,a)} c^{(l)}(s, a) \rho(s, a) \geq C^{(l)} + \epsilon_{\text{low}}, \quad l = 1, \dots, L \quad (79)$$

where  $\epsilon_{\text{low}}$  is used to guarantee the strict feasibility for Slater condition, and we set  $\epsilon_{\text{low}} = 10^{-4}$ . If the LP solver does not find a feasible solution, we regenerate the constrained MOMDP until a feasible instance is found. Once any feasible solution is found, we solve the LP of equation 72, equation 73, equation 74, and equation 75 by using LP solver to acquire the optimal max-min value  $\tilde{c}^*$ .

## H.2 EXPERIMENTAL SETUP

In the Gaussian smoothing method, we create  $N$  copies  $\{\tilde{Q}_i\}_{i=1}^N$  of the current  $Q$ -function and update each  $\tilde{Q}_i$  using scalarization with  $N$  perturbed weights  $\{(\tilde{u}_i, \tilde{w}_i)\}_{i=1}^N$ , sampled from a Gaussian distribution centered at the current weight vector  $(u, w)$ . Specifically, we compute  $\tilde{Q}_i(s, a) \leftarrow [\tilde{u}_i; \tilde{w}_i]^\top [c; r] + \gamma \sum_{s'} T(s'|s, a) \beta \log \sum_{a'} \exp\left(\frac{\tilde{Q}_i(s', a')}{\beta}\right)$  until convergence, given the perturbed weights  $\{(\tilde{u}_i, \tilde{w}_i)\}_{i=1}^N$ . The gradient w.r.t.  $(u, w)$  is then estimated by computing the slope of a linear regression over the pairs  $\{(\tilde{u}_i, \tilde{w}_i)\}_{i=1}^N, \{\tilde{Q}_i\}_{i=1}^N$ .

The update of our algorithm is applied iteratively for each  $(u, w)$  pair until the maximum change in the  $Q$ -function between successive iterations falls below  $10^{-4}$ . We use the following setting:  $\gamma = 0.8$ ,  $l_w = 0.001$ , and  $\text{ITER} = 3000$ .  $u$  was initialized as all-one vector while  $w$  is initialized as the uniform vector on the simplex. For Gaussian smoothing, we set  $N = 24$  and use a Gaussian distribution with a standard deviation **0.001**. We tuned  $N$  to prevent unstable divergence in the Gaussian smoothing method when  $N$  is too small, while also avoiding excessive computational overhead. Both algorithms used  $\beta = 0.03$  for the bipartite setting and  $\beta = 0.01$  for the hierarchical setting, respectively. **Each algorithm was evaluated using three random seeds for each constrained MOMDP setting, resulting in six runs when averaged across the MOMDP classes.** All experiments were conducted on an Intel Core i9-10900X CPU @ 3.70GHz.

## H.3 COMPARISON OF ALGORITHMIC COMPLEXITY

We now include a comparison of the algorithmic complexity per weight update  $(u, w)$  in tabular settings. Let  $S = |\mathcal{S}|$ ,  $A = |\mathcal{A}|$ , and  $d = K + L$ . Although each update of equation 13 given weight  $(u, w)$  theoretically requires infinitely many steps for convergence, we denote the practical number of steps as  $T_{\text{soft}}$  for our complexity analysis.

First, the per-iteration complexity of our method is given by  $O(T_{\text{soft}}S^2A + SAd + S^3 + S^2d)$ . Here,  $T_{\text{soft}}S^2A$  is the cost of update in equation 13, and the remaining part is the cost of computing the gradient via dynamic programming based on Theorem 3.3. If  $T_{\text{soft}}$  is large enough, the update of equation 13 dominates the computation:  $O(T_{\text{soft}}S^2A + SAd + S^3 + S^2d) \approx O(T_{\text{soft}}S^2A)$ .

Regarding the Gaussian smoothing method, let  $N$  denote the number of perturbed Q-tables used for smoothing. Then the complexity per iteration is  $O((N + 1)T_{\text{soft}}S^2A + d^3 + Nd^2)$  where  $(N + 1)T_{\text{soft}}S^2A$  is the computation of equation 13 for the current Q-table and its  $N$  copies. The other terms are related to gradient estimation using linear regression (Park et al., 2024). Again, equation 13 dominates the computation and  $O((N + 1)T_{\text{soft}}S^2A + d^3 + Nd^2) \approx O((N + 1)T_{\text{soft}}S^2A)$  if  $T_{\text{soft}}$  is large enough.

In summary, the Gaussian smoothing baseline incurs approximately  $N + 1$  times more computational cost per weight update compared to our method. Note that the complexity of the projection onto  $\Delta^K$  is  $O(K \log K)$  (Wang & Carreira-Perpiñán, 2013) which is relatively lightweight compared to other components, due to the sublinear growth of the logarithmic term.

1458 H.4 IMPACT OF THE ENTROPY REGULARIZATION COEFFICIENT  
14591460 We further analyzed the effect of  $\beta$  on convergence. As shown in Table 6, values of  $\beta < 0.1$  yield  
1461 stable convergence with low sensitivity across both constrained MOMDP types. Based on this, we  
1462 recommend selecting  $\beta$  such that the ratio between (i) the entropy term (scaled by  $\beta$ ) and (ii) the  
1463 objective value without entropy remains below  $10^{-2}$ , approximating the optimal value as  $\beta \rightarrow 0$ .

| $\beta$      | 0.1   | 0.03  | 0.01  | 0.003 | 0.001 |
|--------------|-------|-------|-------|-------|-------|
| Bipartite    | 0.086 | 0.005 | 0.016 | 0.029 | 0.026 |
| Hierarchical | 0.037 | 0.004 | 0.003 | 0.011 | 0.016 |

1464 Table 6: Optimal value errors of our algorithm across different values of  $\beta$   
1465  
1466  
1467

---

1512 **I EXPERIMENTAL DETAILS: APPLICATIONS**

1513 **I.1 IMPLEMENTATION OF OUR ALGORITHM FOR APPLICATIONS**

1514 We now leverage the usage of neural network for our algorithm. If we differentiate the both side of  
1515  $v_{u,w}^*(s) = [\mathcal{T}_{u,w}v_{u,w}^*](s)$  w.r.t.  $u$  and  $w$  for all  $s$ , then we have the following formula:  
1516

1517 
$$\forall s, \nabla_w v_{u,w}^*(s) = \sum_a \pi_{u,w}^*(a|s) \left( r(s, a) + \gamma \sum_{s'} T(s'|s, a) \nabla_w v_{u,w}^*(s') \right). \quad (80)$$

1518 
$$\forall s, \nabla_u v_{u,w}^*(s) = \sum_a \pi_{u,w}^*(a|s) \left( c(s, a) + \gamma \sum_{s'} T(s'|s, a) \nabla_u v_{u,w}^*(s') \right). \quad (81)$$

1519 Here,  $\pi_{u,w}^*(a|s)$  is defined as in equation 10. To ensure stable gradient estimation in continuous  
1520 state spaces, we parameterize a gradient network to estimate  $\nabla_u v_{u,w}^*(s)$  and  $\nabla_w v_{u,w}^*(s)$ . Since each  
1521 action is also continuous, we employ an actor network  $\pi_\theta$  and implement Algorithm 2. To further  
1522 stabilize the estimation of the gradient, we add an additional linear layer after the penultimate layer  
1523 of the actor network  $\pi_\theta$ , and use its  $(L + K)$ -dimensional output as the gradient network  $g_\theta(s)$ . We  
1524 use the notation  $g_\theta$  to indicate that the actor network and the gradient network share parameters and  
1525 jointly update their lower-layer weights.  
1526

---

1527 **Algorithm 2** Proposed Constrained Max-min Algorithm for Continuous Action

1528 

1:  $\pi_\theta$ : actor,  $Q_\phi$ : critic,  $Q_{\bar{\phi}}$ : target critic,  $g_\theta$ : gradient network,  $g_{\bar{\theta}}$ : target gradient network,  $\mathcal{D}$ :  
1529 replay buffer,  $T_{\text{init}}$ : initial iteration number,  $\tau$ : target update ratio,  $U$ : main iteration number,  $U_s$ :  
1530 gradient step for critic update,  $l_g$ : learning rate of the gradient network,  $l_0$ : initial learning rate of  
1531 the weight  $(u, w)$ ,  $K$ : unconstrained reward dimension,  $L$ : the number of constraints,  $C_{th} \in \mathbb{R}^L$ :  
1532 threshold vector for the constraints

1533 2: Initialize target critic  $\bar{\phi} \leftarrow \phi$ , target gradient network  $\bar{\theta} \leftarrow \theta$ , and weights  $u^0 \in \mathbb{R}_+^L$ ,  $w^0 \in \Delta^K$ .  
1534 3: **for**  $j = 0, \dots, T_{\text{init}} - 1$  **do**  
1535 4: Rollout sample from  $\pi_\theta$  and save it in  $\mathcal{D}$ . Sample a batch of data  $\mathcal{B} \subset \mathcal{D}$ .  
1536 5:  $Q_\phi \leftarrow \text{Critic Update}(Q_\phi, Q_{\bar{\phi}}, \pi_\theta, (u^0, w^0), \mathcal{B})$  (Algorithm 3)  
1537 6: Update target critic parameter  $\bar{\phi} \leftarrow \tau\phi + (1 - \tau)\bar{\phi}$ .  
1538 7:  $\pi_\theta \leftarrow \text{Actor Update}(Q_\phi, \pi_\theta, \mathcal{D})$  (Algorithm 4)  
1539 8: **end for**  
1540 9: **for**  $m = 0, 1, 2, \dots, U - 1$  **do**  
1541 10: Rollout sample from  $\pi_\theta$  and save  $(s, a, r, c, s', \pi_{\theta_{\text{old}}}(a|s))$  in  $\mathcal{D}$  where  $\pi_{\theta_{\text{old}}}(a|s) = \pi_\theta(a|s)$ .  
1542 11: Update the gradient network  $g_\theta$  as follows:  
1543 
$$\theta \leftarrow \theta - l_g \nabla_\theta \mathbb{E}_{(s, a, r, c, s', \pi_{\theta_{\text{old}}}(a|s)) \sim \mathcal{D}} \left[ \left\| \frac{\pi_{\theta_m}(a|s)}{\pi_{\theta_{\text{old}}}(a|s)} ([c; r] + \gamma g_{\bar{\theta}}(s')) - g_\theta(s) \right\|^2 \right]$$
  
1544 where  $\theta_m$  is a frozen copy of the current parameter  $\theta$ .  
1545 12: Update target gradient network parameter  $\bar{\theta} \leftarrow \tau\theta + (1 - \tau)\bar{\theta}$ .  
1546 13: Update  $(u, w) = (u^m, w^m)$  using the projected gradient descent:  
1547 
$$(u^{m+1}, w^{m+1}) = \mathcal{P}_{K,L} [(u^m, w^m) - l_m (\mathbb{E}_{s \sim \mu_0} [g_\theta(s)] - [C_{th}; \mathbf{0}_K])].$$
  
1548  
1549 14: Schedule current learning rate of the weight  $l_m$ .  
1550 15: **for**  $j = 0, \dots, U_s - 1$  **do**  
1551 16: Sample a batch of data  $\mathcal{B} \subset \mathcal{D}$ .  
1552 17:  $Q_\phi \leftarrow \text{Critic Update}(Q_\phi, Q_{\bar{\phi}}, \pi_\theta, (u^{m+1}, w^{m+1}), \mathcal{B})$   
1553 18: **end for**  
1554 19: Update target critic parameter  $\bar{\phi} \leftarrow \tau\phi + (1 - \tau)\bar{\phi}$ .  
1555 20:  $\pi_\theta \leftarrow \text{Actor Update}(Q_\phi, \pi_\theta, \mathcal{D})$   
1556 21: **end for**  
1557 22: Return  $\pi_\theta$ .

---

1566

**Algorithm 3** Critic Update

1567

1568

1569

**Input:** critic  $Q_\phi$ , target critic  $Q_{\bar{\phi}}$ , actor  $\pi_\theta$ , weight  $(u, w)$ , sample batch  $\mathcal{B}$ 2: Update the critic parameter  $\phi$  as follows:

1570

1571

1572

1573

1574

1575

1576

$$\phi \leftarrow \phi - l_c \nabla_\phi \frac{1}{|\mathcal{B}|} \sum_{(s, a, r, s') \in \mathcal{B}} \left( \sum_{k=1}^K w_k r^{(k)}(s, a) + \sum_{l=1}^L u_l c^{(l)}(s, a) \right. \\ \left. + \gamma \beta \log \mathbb{E}_{a' \sim \pi_\theta} \left[ \frac{\exp(Q_{\bar{\phi}}(s', a')/\beta)}{\pi_\theta(a'|s')} \right] - Q_\phi(s, a) \right)^2 \quad (82)$$

1577

where  $l_c$  is a critic learning rate.

1578

**Output:** Updated critic  $Q_\phi$ 

1579

1580

**Algorithm 4** Actor Update

1581

1582

1583

**Input:** critic  $Q_\phi$ , actor  $\pi_\theta$ , replay buffer  $\mathcal{D}$ Sample a batch of data  $\mathcal{B} \subset \mathcal{D}$  and find the actor satisfying the following:

1584

1585

$$\theta \leftarrow \arg \min_{\theta} \mathbb{E}_{s \sim \mathcal{B}} \mathbb{E}_{a \sim \pi_\theta(\cdot|s)} [\beta \log \pi_\theta(a|s) - Q_\phi(s, a)]. \quad (83)$$

1586

1587

3: **Output:** Updated actor  $\pi_\theta$ 

1588

1589

## I.2 ENVIRONMENTAL DETAILS: RESOURCE ALLOCATION

1590

We modified the source code of the edge computing simulator (Bae et al., 2020) uploaded to [https://github.com/sosam002/KAIST\\_MEC\\_simulator](https://github.com/sosam002/KAIST_MEC_simulator), implemented with  $N_{\text{type}} = 3$ . Here,  $K = N_{\text{type}}$  and  $L = 1$ .

1591

1592

1593

At each timestep, the system observes a state containing the current length of each task queue. Based on this state, it selects a  $2(N_{\text{type}} + 1)$ -dimensional nonnegative continuous action  $a_t = [a_e^{(1)}(t), \dots, a_e^{(N_{\text{type}}+1)}(t), a_c^{(1)}(t), \dots, a_c^{(N_{\text{type}}+1)}(t)]$ . Here,  $\{a_e^{(i)}(t)\}_{i=1}^{N_{\text{type}}}$  denotes the CPU core allocation ratios across task queues at the edge node, subject to the constraint  $\sum_{i=1}^{N_{\text{type}}+1} a_e^{(i)}(t) = 1$ . Similarly,  $\{a_c^{(i)}(t)\}_{i=1}^{N_{\text{type}}}$  denotes the bandwidth allocation ratios at the cloud node, with the constraint  $\sum_{i=1}^{N_{\text{type}}+1} a_c^{(i)}(t) = 1$ .

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

Each state is represented by a 16-dimensional vector that captures both dynamic and static characteristics. The edge device contributes 15 dimensions, derived from three application queues, each described by five features: (1) average task arrivals over the most recent 10 timesteps, (2) task arrivals at the current timestep, (3) current queue lengths, (4) CPU utilization ratios, and (5) fixed workload values per application. The remaining dimension represents the current CPU utilization ratio of the cloud server. Among these features, the workload values per application are static, defined as fixed CPU cycles per bit, while all other dimensions vary dynamically over time.

1608

1609

Table 7: Parameters for Each Application Types ( $K = N_{\text{type}} = 3$ )

1610

1611

1612

1613

1614

1615

| Application                 | Workload | Popularity | Min Bits | Max Bits |
|-----------------------------|----------|------------|----------|----------|
| SPEECH RECOGNITION          | 10435    | 0.5        | 40 KB    | 300 KB   |
| NATURAL LANGUAGE PROCESSING | 25346    | 0.8        | 4 KB     | 100 KB   |
| VIRTUAL REALITY             | 40305    | 0.1        | 0.1 MB   | 3 MB     |

1616

1617

1618

1619

Table 7 summarizes the key parameters for each application (Bae et al., 2020). The *workload* (CPU cycles/bit) indicates the computational load per application. The *popularity* represents the average arrival rate of incoming tasks modeled by a Poisson distribution. Each application's input data size follows a normal distribution, bounded between the specified *minimum* and *maximum bits*, reflecting diverse and practical scenarios.

1620 Each episode consists of 1,000 timesteps. The total training spans 2 million timesteps, with evaluations  
 1621 conducted at the end of every episode, resulting in 2,000 evaluation points. An episode is run during  
 1622 each evaluation and the cumulative discounted sum of the  $(L + K)$ -dimensional vector reward is  
 1623 computed. These experiments were conducted using an NVIDIA TITAN X GPU (12GB) across  
 1624 twelve random seeds.

1625

1626 **I.3 UNCONSTRAINED MAX-MIN MORL ALGORITHM**

1627

---

1628 **Algorithm 5** Gaussian-smoothing-based Max-min Algorithm for Continuous Action (Our modifica-  
 1629 tion from Park et al. (2024))

---

1630 1:  $\pi_\theta$ : actor,  $Q_\phi$ : critic,  $Q_{\bar{\phi}}$ : target critic,  $\mathcal{D}$ : replay buffer,  $T_{\text{init}}$ : initial iteration number,  $\tau$ : target  
 1631 update ratio,  $U$ : main iteration number,  $U_s$ : gradient step for critic update,  $N_s$ : number of  
 1632 perturbed samples,  $\mu$ : perturbation parameter,  $l_0$ : initial learning rate of the weight  $w$ ,  $K$ : reward  
 1633 dimension

1634 2: Initialize target critic  $\bar{\phi} \leftarrow \phi$  and weight  $w^0 \in \Delta^K$ .

1635 3: **for**  $j = 0, \dots, T_{\text{init}} - 1$  **do**

1636 4: Rollout sample from  $\pi_\theta$  and save it in  $\mathcal{D}$ . Sample a batch of data  $\mathcal{B} \subset \mathcal{D}$ .

1637 5:  $Q_\phi \leftarrow \text{Critic Update}(Q_\phi, Q_{\bar{\phi}}, \pi_\theta, w^0, \mathcal{B})$  (Algorithm 3 without the term of  $\sum_{l=1}^L u_l c^{(l)}(s, a)$ )

1638

1639 6: Update target critic parameter  $\bar{\phi} \leftarrow \tau\phi + (1 - \tau)\bar{\phi}$ .

1640 7:  $\pi_\theta \leftarrow \text{Actor Update}(Q_\phi, \pi_\theta, \mathcal{D})$  (Algorithm 4)

1641 8: **end for**

1642 9: **for**  $m = 0, 1, 2, \dots, U - 1$  **do**

1643 10: Rollout sample from  $\pi_\theta$  and save it in  $\mathcal{D}$ .

1644 11: Generate  $N_s$  perturbed weights  $\{w^m + \mu u_n^m\}_{n=1}^{N_s}$ ,  $u_n^m \sim \mathcal{N}(0, I_K)$ .

1645 12: Make  $N_s$  copies of  $Q_\phi$ :  $\{\hat{Q}_{\phi, \text{copy}, n}\}_{n=1}^{N_s}$ . Sample a common batch of data  $\mathcal{B}_c \subset \mathcal{D}$ .

1646 13: **for**  $n = 1, \dots, N_s$  **do**

1647 14:  $\hat{Q}_{w^m + \mu u_n^m, \text{copy}, n} \leftarrow \text{Critic Update}(\hat{Q}_{\phi, \text{copy}, n}, Q_{\bar{\phi}}, \pi_\theta, w^m + \mu u_n^m, \mathcal{B}_c)$

1648 15: **end for**

1649 16: Calculate  $\hat{L}(w^m + \mu u_n^m) = \mathbb{E}_{s \sim \mu_0} \left[ \beta \log \mathbb{E}_{a \sim \pi_\theta} \left[ \frac{\exp[\hat{Q}_{w^m + \mu u_n^m, \text{copy}, n}(s, a) / \beta]}{\pi_\theta(a | s)} \right] \right]$ .

1650 17: Conduct linear regression using  $\{w^m + \mu u_n^m, \hat{L}(w^m + \mu u_n^m)\}_{n=1}^{N_s}$  and calculate the linear  
 1651 weight  $a_m$ . Discard  $\{\hat{Q}_{w^m + \mu u_n^m, \text{copy}, n}\}_{n=1}^{N_s}$ .

1652 18: Update  $w = w^m$  using the projected gradient descent:

1653 
$$w^{m+1} = \text{proj}_{\Delta^K} (w^m - l_m a_m).$$

1654

1655

1656 19: Schedule current learning rate of the weight  $l_m$ .

1657 20: **for**  $j = 0, \dots, U_s - 1$  **do**

1658 21: Sample a batch of data  $\mathcal{B} \subset \mathcal{D}$ .

1659 22:  $Q_\phi \leftarrow \text{Critic Update}(Q_\phi, Q_{\bar{\phi}}, \pi_\theta, w^{m+1}, \mathcal{B})$

1660 23: **end for**

1661 24: Update target critic parameter  $\bar{\phi} \leftarrow \tau\phi + (1 - \tau)\bar{\phi}$ .

1662 25:  $\pi_\theta \leftarrow \text{Actor Update}(Q_\phi, \pi_\theta, \mathcal{D})$

1663 26: **end for**

1664 27: Return  $\pi_\theta$ .

---

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674 I.4 HYPERPARAMETERS FOR RESOURCE ALLOCATION  
16751676 Table 8: Hyperparameters for Algorithms ( $K = N_{\text{type}}$ )  
1677

| 1678                                                | Parameter                         | Value                                                                                         |
|-----------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------|
| <b>Shared</b>                                       |                                   |                                                                                               |
| 1681                                                | optimizer                         | Adam (Kingma & Ba, 2015)                                                                      |
| 1682                                                | discount ( $\gamma$ )             | 0.99                                                                                          |
| 1683                                                | target update interval            | 1                                                                                             |
| 1684                                                | target smoothing ratio ( $\tau$ ) | 0.001                                                                                         |
| 1685                                                | gradient steps                    | 1                                                                                             |
| 1686                                                | reward dimension                  | 3 or 8                                                                                        |
| 1687                                                | max episode step                  | 1000                                                                                          |
| 1688                                                | replay buffer size                | $2 \times 10^6$                                                                               |
| 1689                                                | hidden layers                     | 2                                                                                             |
| 1690                                                | hidden units per layer            | 64                                                                                            |
| 1691                                                | minibatch size                    | 32                                                                                            |
| 1692                                                | activation function               | ReLU                                                                                          |
| 1693                                                | entropy coefficient               | 0.05                                                                                          |
| 1694                                                | weight learning rate              | 0.01                                                                                          |
| 1695                                                | weight scheduling                 | $1/\sqrt{t}$                                                                                  |
| <b>Constrained Max-min MORL (Ours)</b>              |                                   |                                                                                               |
| 1697                                                | constraint type                   | maximize                                                                                      |
| 1698                                                | constraint dimension              | 1                                                                                             |
| 1699                                                | constraint epsilon                | 1.0                                                                                           |
| 1700                                                | constraint threshold              | -5.6                                                                                          |
| 1701                                                | main learning rate                | $7.5 \times 10^{-4}$                                                                          |
| 1702                                                | gradient steps for critic update  | 3                                                                                             |
| 1703                                                | gradient estimation learning rate | $1 \times 10^{-5}$ ( $N_{\text{type}} = 3$ ), $1.25 \times 10^{-5}$ ( $N_{\text{type}} = 8$ ) |
| 1704                                                | gradient estimation steps         | 1                                                                                             |
| 1705                                                | gradient target smoothing ratio   | 0.001                                                                                         |
| <b>Unconstrained Max-min MORL (Gaussian)</b>        |                                   |                                                                                               |
| 1707                                                | main learning rate                | $7.5 \times 10^{-4}$                                                                          |
| 1708                                                | perturbation $q$ learning rate    | 0.073                                                                                         |
| 1709                                                | perturbation gradient steps       | 1                                                                                             |
| 1710                                                | gradient steps for critic update  | 3                                                                                             |
| 1711                                                | perturbation $q$ -copies          | 10                                                                                            |
| 1712                                                | perturbation noise std-dev        | 0.01                                                                                          |
| <b>Unconstrained Max-min MORL (ARAM)</b>            |                                   |                                                                                               |
| 1714                                                | main learning rate                | $7.5 \times 10^{-4}$                                                                          |
| 1715                                                | CI coefficient $\eta$             | 0.01                                                                                          |
| 1716                                                | MD coefficient $\lambda$          | 0.03                                                                                          |
| <b>Max-average SAC with a Lagrangian Relaxation</b> |                                   |                                                                                               |
| 1719                                                | constraint type                   | minimize                                                                                      |
| 1720                                                | initial lambda                    | 1.0                                                                                           |
| 1721                                                | main learning rate (actor/critic) | $3 \times 10^{-4}$                                                                            |
| 1722                                                | constraint threshold              | 5.6                                                                                           |
| 1723                                                | entropy coefficient               | 0.05                                                                                          |
| 1724                                                | lambda learning rate              | 0.001                                                                                         |
| <b>Unconstrained Max-average SAC</b>                |                                   |                                                                                               |
| 1726                                                | main learning rate (actor/critic) | $3 \times 10^{-4}$                                                                            |

1728 I.5 HYPERPARAMETERS FOR LOCOMOTION CONTROL  
17291730 Table 9: Hyperparameters for Algorithms  
1731

| 1732 <b>Parameter</b>                               | 1732 <b>Value</b>        |
|-----------------------------------------------------|--------------------------|
| <b>Shared</b>                                       |                          |
| 1735 optimizer                                      | Adam (Kingma & Ba, 2015) |
| 1736 discount ( $\gamma$ )                          | 0.99                     |
| 1737 target update interval                         | 1                        |
| 1738 target smoothing ratio ( $\tau$ )              | 0.001                    |
| 1739 gradient steps                                 | 1                        |
| 1740 reward dimension                               | 2                        |
| 1741 max episode step                               | 1000                     |
| 1742 replay buffer size                             | $1 \times 10^6$          |
| 1743 hidden layers                                  | 2                        |
| 1744 hidden units per layer                         | 64                       |
| 1745 minibatch size                                 | 32                       |
| 1746 activation function                            | ReLU                     |
| 1747 entropy coefficient                            | 0.05                     |
| 1748 weight learning rate                           | 0.001                    |
| 1748 weight scheduling                              | $1/\sqrt{t}$             |
| <b>Constrained Max-min MORL (Ours)</b>              |                          |
| 1751 constraint type                                | maximize                 |
| 1752 constraint dimension                           | 1                        |
| 1753 constraint epsilon                             | 1.0                      |
| 1754 constraint threshold                           | -50                      |
| 1755 main learning rate                             | $7.5 \times 10^{-4}$     |
| 1756 gradient steps for critic update               | 3                        |
| 1757 gradient estimation learning rate              | $2.5 \times 10^{-5}$     |
| 1758 gradient estimation steps                      | 1                        |
| 1758 gradient target smoothing ratio                | 0.001                    |
| <b>Unconstrained Max-min MORL (Gaussian)</b>        |                          |
| 1761 main learning rate                             | $7.5 \times 10^{-4}$     |
| 1762 perturbation $q$ learning rate                 | 0.073                    |
| 1763 perturbation gradient steps                    | 1                        |
| 1764 gradient steps for critic update               | 3                        |
| 1765 perturbation $q$ -copies                       | 10                       |
| 1766 perturbation noise std-dev                     | 0.01                     |
| <b>Unconstrained Max-min MORL (ARAM)</b>            |                          |
| 1768 main learning rate                             | $7.5 \times 10^{-4}$     |
| 1769 CI coefficient $\eta$                          | 0.2                      |
| 1770 MD coefficient $\lambda$                       | 0.03                     |
| <b>Max-average SAC with a Lagrangian Relaxation</b> |                          |
| 1773 constraint type                                | minimize                 |
| 1774 initial lambda                                 | 1.0                      |
| 1775 main learning rate (actor/critic)              | $3 \times 10^{-4}$       |
| 1776 constraint threshold                           | 50                       |
| 1777 entropy coefficient                            | 0.05                     |
| 1777 lambda learning rate                           | 0.001                    |
| <b>Unconstrained Max-average SAC</b>                |                          |
| 1780 main learning rate (actor/critic)              | $3 \times 10^{-4}$       |

1782 **J TRAFFIC SIGNAL CONTROL**  
1783

1784 To further evaluate scalability, we extend our  
 1785 method to an environment with a larger objective  
 1786 space. We note that MORL benchmark environ-  
 1787 ments, particularly those with more than four  
 1788 objectives, are still limited (Hayes et al., 2022;  
 1789 Park & Sung, 2025). To address this gap, we  
 1790 include a traffic signal control environment (Aleg-  
 1791 re, 2019) with a 16-dimensional objective vector  
 1792 (Park & Sung, 2025; Byeon et al., 2025), which  
 1793 to our knowledge represents the largest number of  
 1794 objectives explored in MORL to date.

1795 In a simulated 16-lane four-way intersection, the  
 1796 agent manages the traffic lights using thirty-seven-  
 1797 dimensional continuous traffic states. The feedback signal consists of a 16-dimensional reward vector,  
 1798 where each component represents the negative waiting time of a corresponding lane. Following prior  
 1799 work (Park & Sung, 2025; Byeon et al., 2025), we evaluate performance in an asymmetric traffic flow  
 1800 scenario. Our goal is to achieve fair traffic flow across all lanes while enforcing a constraint on total  
 1801  $\text{CO}_2$  emissions, contributing to a more sustainable traffic control system. Since this environment  
 1802 operates in a discrete action space, we replaced the MA-SAC and MA-SAC-L baselines with PPO-  
 1803 based variants (MA-PPO and MA-CPPO). MA-CPPO denotes max-average constrained PPO, which  
 1804 applies clipping only to the scalar reward while keeping the Lagrangian update unclipped, following  
 1805 Liu et al. (2019) to improve constraint satisfaction. We ran each method for 100k timesteps per seed,  
 1806 using five random seeds. As shown in Table 10, among the three algorithms that satisfy the constraint,  
 1807 both our method and MA-CPPO outperform the Random baseline in terms of max-min performance.  
 1808 However, our method requires less cost than MA-CPPO, demonstrating its ability to better balance  
 1809 constraint satisfaction and max-min fairness.

| Algorithm  | Cost sum<br>( $C_{th} = 60,000$ ) | Minimum<br>return ( $\uparrow$ ) |
|------------|-----------------------------------|----------------------------------|
| Random     | <b>57,702</b>                     | -31,746                          |
| MA-PPO     | 77,757                            | -20,434                          |
| MA-CPPO    | <b>53,160</b>                     | -26,410                          |
| Ours       | <b>48,230</b>                     | -26,798                          |
| Max-min GS | 72,234                            | -21,532                          |
| ARAM       | 88,748                            | -19,700                          |

Table 10: Traffic signal control results over five seeds with the constraint-satisfying algorithms highlighted in **bold**

1810  
1811  
1812  
1813  
1814  
1815  
1816  
1817  
1818  
1819  
1820  
1821  
1822  
1823  
1824  
1825  
1826  
1827  
1828  
1829  
1830  
1831  
1832  
1833  
1834  
1835

Table 11: Hyperparameters for traffic signal control environment

| Parameter                                    | Value                    |
|----------------------------------------------|--------------------------|
| <b>Shared</b>                                |                          |
| optimizer                                    | Adam (Kingma & Ba, 2015) |
| discount ( $\gamma$ )                        | 0.99                     |
| target update interval                       | 1                        |
| target smoothing ratio ( $\tau$ )            | 0.001                    |
| gradient steps                               | 1                        |
| reward dimension                             | 16                       |
| total seconds per episode                    | 9000                     |
| delta time (seconds)                         | 30                       |
| total timesteps                              | $1 \times 10^5$          |
| replay buffer size                           | $1 \times 10^5$          |
| hidden layers                                | 2                        |
| hidden units per layer                       | 64                       |
| minibatch size                               | 32                       |
| activation function                          | ReLU                     |
| entropy coefficient                          | 0.05                     |
| weight scheduling                            | $1/\sqrt{t}$             |
| <b>Constrained Max-min MORL (Ours)</b>       |                          |
| constraint type                              | minimize                 |
| constraint dimension                         | 1                        |
| constraint epsilon                           | -1.0                     |
| constraint threshold                         | $6.0 \times 10^4$        |
| main learning rate                           | $7.5 \times 10^{-4}$     |
| weight learning rate                         | 0.01                     |
| gradient steps for critic update             | 3                        |
| gradient estimation learning rate            | $1.0 \times 10^{-4}$     |
| gradient estimation steps                    | 1                        |
| gradient target smoothing ratio              | 0.001                    |
| <b>Unconstrained Max-min MORL (Gaussian)</b> |                          |
| main learning rate                           | $7.5 \times 10^{-4}$     |
| weight learning rate                         | 0.01                     |
| perturbation $q$ learning rate               | 0.073                    |
| perturbation gradient steps                  | 1                        |
| gradient steps for critic update             | 3                        |
| perturbation $q$ -copies                     | 20                       |
| perturbation noise std-dev                   | 0.01                     |
| <b>Unconstrained Max-min MORL (ARAM)</b>     |                          |
| main learning rate                           | 0.001                    |
| CI coefficient $\eta$                        | 0.00202                  |
| MD coefficient $\lambda$                     | 0.2                      |
| <b>Constrained Max-average PPO</b>           |                          |
| main learning rate                           | 0.01                     |
| constraint type                              | minimize                 |
| constraint threshold                         | $6.0 \times 10^4$        |
| constraint learning rate                     | 0.005                    |
| <b>Unconstrained Max-average PPO</b>         |                          |
| main learning rate                           | 0.01                     |

---

## 1890 K BROADER IMPACT

1891  
 1892 In this work, we propose an algorithm for constrained MORL based on the max-min criterion. First,  
 1893 max-min MORL plays a critical role in promoting fairness across objectives in domains such as  
 1894 traffic management and resource allocation. Unfair results can lead to user dissatisfaction and, in  
 1895 turn, degrade overall system performance, for example, by contributing to traffic congestion (Raeis  
 1896 & Leon-Garcia, 2021). Second, incorporating constraints into RL is essential for the responsible  
 1897 development of AI systems, especially given real-world limitations on resources such as electricity,  
 1898 power consumption, and fossil fuels.

1899 Our work advances the goal of **sustainable AI** by simultaneously incorporating fairness and resource  
 1900 constraints into decision-making. This contrasts to traditional methods that prioritize performance  
 1901 alone, often overlooking concerns of equity and efficient resource use. We believe our framework  
 1902 has the potential to make a meaningful and positive impact on the broader AI community, not only  
 1903 in resource allocation but also in emerging areas such as fair and safe alignment of large language  
 1904 models.

## 1905 L LIMITATION, FUTURE WORK, AND [DISCUSSION](#)

1906 In this section, we discuss several limitations of our work and related future research avenues,  
 1907 although our method offers a promising direction for developing constrained MORL algorithms.

1908 First, there is a lack of well-established benchmarks for MORL compared to standard RL settings  
 1909 (Hayes et al., 2022), and even fewer environments are specifically designed for constrained MORL.  
 1910 Additionally, most existing MORL environments have low-dimensional reward spaces (typically  
 1911 fewer than four dimensions) (Park & Sung, 2025), which limits the ability to evaluate our algorithm  
 1912 in high-dimensional settings. Developing practical benchmarks for both MORL and constrained  
 1913 MORL is therefore a critical research direction for the community.

1914 Second, while it is common in the constrained MDP literature to assume that feasibility is ensured by  
 1915 appropriately chosen thresholds (Tessler et al., 2018; Ha et al., 2020), determining such thresholds,  
 1916 that is, setting the constraint set  $\{C^{(l)}\}_{l=1}^L$ , is non-trivial in practice outside of simple or tabular  
 1917 domains. Unlike trial-and-error reward design, constraint threshold design is often infeasible or unsafe  
 1918 due to the potential risks and costs involved. Leveraging external sources of information, such as  
 1919 human demonstrations or natural language descriptions, offers a promising path for setting constraint  
 1920 thresholds in constrained RL and MORL. [Another possible approach is to infer the constraint values](#)  
 1921 [from expert demonstrations, commonly referred to as inverse constrained RL](#) (Malik et al., 2021;  
 1922 Subramanian et al., 2024).

1923 Third, while our resource allocation setting clearly distinguishes rewards from costs, this distinction  
 1924 may be ambiguous in other domains. Determining which objectives should be treated as constraints  
 1925 versus unconstrained rewards can be challenging. As with constraint threshold design, incorporating  
 1926 external guidance could help better structure constrained MORL problems.

1927 Fourth, several constrained RL studies have explored more conservative formulations than those based  
 1928 on expected cumulative cost, for example, using outage probability or quantile-based constraints to  
 1929 manage rare but critical failures in domains such as finance or insurance (Yang et al., 2021; Jung  
 1930 et al., 2022). While our current framework and analysis rely on expected cumulative cost, extending  
 1931 it to support such conservative constraint formulations presents a valuable direction for future work.

1932 Lastly, although we assume the convergence of the (action) value function for each weight pair  
 1933  $(u, w)$ , it is well known that the combination of function approximation, bootstrapped updates, and  
 1934 off-policy learning can lead to instability and even divergence during training (Sutton & Barto, 2018;  
 1935 Che et al., 2024). A theoretical investigation into this so-called *deadly triad*, along with additional  
 1936 convergence guarantees, would further improve the robustness of our algorithm in the resource  
 1937 allocation experiment and broaden its applicability to other domains.

1938 [Scalarization-based methods are highly valuable, especially because of their interpretability and](#)  
 1939 [flexibility in expressing designer preferences. In particular, when incorporating constraints, these](#)  
 1940 [methods also make it straightforward to assess constraint satisfaction through the corresponding](#)  
 1941 [dual variables. However, linear scalarization cannot recover nonlinear or concave regions of the](#)

1944 Pareto frontier, potentially missing desirable trade-off solutions (Rojers et al., 2013; Hayes et al.,  
1945 2022). While mixtures of convex scalarization functions can help approximate concave regions, this  
1946 often requires careful tuning and may increase computational effort. Addressing the limitations of  
1947 scalarization-based approaches is indeed valuable.

1948 We also agree that, in many real-world systems, verifying smoothness analytically or designing  
1949 theoretically optimal initialization is not straightforward. However, our method does not require users  
1950 to prove smoothness beforehand, nor does it rely on fragile initialization. Instead, smoothness is  
1951 used to (i) guarantee convergence behavior theoretically, and (ii) characterize how approximation  
1952 errors propagate during weight updates. In practice, we adopt standard strategies such as entropy  
1953 regularization and projection onto the simplex, which naturally stabilize learning without requiring  
1954 explicit verification of smoothness. Empirically, we observe convergence in our paper even without  
1955 tuning for smoothness-related parameters beyond the default hyperparameters. Regarding initialization,  
1956 while local methods can be sensitive in general nonlinear optimization, we find that (i) uniform  
1957 initialization on the probability simplex consistently works across tasks, and (ii) the algorithm does  
1958 not require task-specific warm-starts. Finally, we note that the purpose of our theoretical results is not  
1959 to imply that all assumptions will be checked analytically in practice, but rather to provide predictable  
1960 behavior and guidance for practical usage of our algorithm.

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997