
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CONSTRAINED MULTI-OBJECTIVE REINFORCEMENT
LEARNING WITH MAX-MIN CRITERION

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-Objective Reinforcement Learning (MORL) extends standard RL by opti-
mizing policies over multiple and often conflicting objectives. Although max-min
scalarization has emerged as a powerful approach to promote fairness in MORL,
it has limited applicability, especially when handling heterogeneous objectives
or incorporating constraints. In this paper, we propose a unified framework for
constrained MORL that combines the max-min criterion with constraint satisfac-
tion and generalizes prior formulations such as unconstrained max-min MORL
and constrained weighted-sum MORL. We establish a theoretical foundation for
our framework and validate our algorithm through a formal convergence analy-
sis and experiments in tabular environments. We further extend it to practical
applications, including simulated edge computing resource allocation and loco-
motion control, demonstrating our framework’s capability to address fairness and
constraint handling in multi-objective decision-making.

1 INTRODUCTION

Reinforcement Learning (RL) is a powerful machine learning framework that enables an agent to
learn optimal decision-making strategies through interaction with an environment. In recent years,
Multi-Objective Reinforcement Learning (MORL) has gained significant interest because many
real-world control problems inherently involve multiple, often conflicting objectives (Roijers et al.,
2013; Yang et al., 2019; Hayes et al., 2022; Basaklar et al., 2023; Park et al., 2024; Park & Sung,
2025). MORL extends standard RL to handle simultaneous optimization of multiple objectives.

A common strategy in MORL involves optimizing a scalarized function defined over multiple
objective returns (Roijers et al., 2013; Hayes et al., 2022). This framework seeks to identify a policy
π that maximizes a scalarized value f(J1(π), . . . , JK(π)), where each Jk(π) represents the expected
discounted return for the k-th objective among K(≥ 2) objectives, and f : RK → R is a non-
decreasing scalarization function such that Jk(π) ≥ Jk(π

′), 1 ≤ k ≤ K ⇒ f(J(π)) ≥ f(J(π′)).
Thus, f plays a key role in imposing the designer’s preference among multiple objectives.

Although much of the MORL literature employs a linear f (that is, the weighted sum:
maxπ

∑K
k=1 wkJk(π)) due to its simplicity, the weighted sum does not always accurately rep-

resent the preference of a designer, especially regarding fairness among objectives (Hayes et al.,
2022; Park et al., 2024). For instance, imagine a traffic light system managing an intersection where
several roads converge with asymmetric arrival rates. Instead of simply aiming to reduce the total sum
waiting time for all vehicles across the roads, the designer could prioritize fairness by minimizing the
longest individual waiting time among the roads. This helps reduce localized congestion (Raeis &
Leon-Garcia, 2021) and avoid severe delays for individual drivers.

Fairness-driven objectives frequently arise in real-world scenarios and are addressed using scalariza-
tion methods beyond the standard weighted sum, such as max-min optimization or proportionally
fair optimization (Khan et al., 2016) in MORL. While proportionally fair optimization, expressed
as maxπ

∑K
k=1 wk log Jk(π), is relatively straightforward to solve due to the smoothness and dif-

ferentiability of the log function, max-min optimization presents greater challenges because of its
non-differentiability and non-linearity. Recently, Park et al. (2024) proposed an algorithm to explicitly
address the max-min objective in MORL using Gaussian smoothing (Nesterov & Spokoiny, 2017).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Although max-min optimization in MORL is a powerful tool with broad applicability (Regan &
Boutilier, 2010; Zehavi et al., 2013; Saifullah et al., 2014; Wang et al., 2019; Chakraborty et al., 2024),
the standard framework lacks flexibility for diverse problem types. First, it is primarily designed
to ensure fairness across homogeneous objectives, but applying max-min fairness to heterogeneous
objectives, such as velocity and energy consumption in locomotion, is inappropriate due to their
differing units and nature. In our context, two physical quantities are considered heterogeneous if they
have different units. In such cases, one may maximize the minimum of homogeneous objectives while
requiring other objectives to remain above certain thresholds. Second, many real-world problems
inherently involve constraints that must be satisfied from the outset. For example, in resource
allocation, a MORL-based scheduler may aim to maximize throughput and fairness across task
queues under a strict power consumption constraint. Incorporating constraints into the max-min
MORL framework thus significantly broadens its practical applicability.

In this paper, we propose a novel framework for constrained MORL that incorporates max-min
fairness. Our approach is capable of satisfying constraints while simultaneously maximizing the
max-min objective. We present a detailed theoretical basis for our algorithmic design. Moreover,
our framework generalizes previous frameworks in MORL, including the original max-min MORL
formulation (Park et al., 2024) and constrained weighted-sum MORL (Huang et al., 2021). Our main
contributions are summarized as follows:

•We introduce a unified framework for constrained MORL that integrates the max-min criterion
and establishes its theoretical foundations, including differentiability, twice-differentiability, and
smoothness of our objective function.

• We propose an iterative algorithm for constrained max-min MORL, accompanied by a formal
convergence analysis. We empirically assess its convergence in tabular environments.

•We further establish the practical relevance of our method by applying it to edge computing resource
allocation and locomotion control, demonstrating its effectiveness in real-world inspired scenarios.

2 BACKGROUND

A multi-objective Markov decision process (MOMDP) is represented as ⟨S,A, T, µ0, r, γ⟩, where
S and A are the sets of states and actions, respectively, T represents the transition probability
distribution, µ0 specifies the initial state distribution, and γ ∈ [0, 1) is the discount factor. The reward
function r : S × A → RK+L, K ≥ 1, L ≥ 0 is vector-valued with its k-th element denoted by
r(k) (1 ≤ k ≤ K + L) such that |r(k)| ≤ r

(k)
max, where K + L is the total number of objectives. At

each timestep, the agent selects an action a in the current state s according to its (stationary) policy
π : S → P(A), where P(A) represents the set of probability distributions in the action space A.
The occupancy measure is defined as ρ(s, a) :=

∑
s′ µ0(s

′)
∑∞

t=0 γ
tPr(st = s, at = a|s0 = s′, πρ)

where πρ is the corresponding stationary policy induced by ρ, expressed as πρ(a|s) = ρ(s,a)∑
a′ ρ(s,a′)

(Puterman, 1994). Then, the vector return evaluated by πρ is given by

J(πρ) := [J1(π
ρ), · · · , JK+L(π

ρ)]⊤ = Eπρ

[∞∑
t=0

γtrt

]
=
∑
(s,a)

r(s, a)ρ(s, a) ∈ RK+L. (1)

3 CONSTRAINED MAX-MIN MORL FRAMEWORK

3.1 THEORETICAL FOUNDATION

We consider constrained MORL, where the last L of the total K +L objectives should satisfy certain
constraints. For theoretical development in this section, we assume that S and A are finite. The
problem is formulated as follows:

max
πρ

f(J1(π
ρ), · · · , JK(πρ)) + β

∑
s

Hρ(s)ρ(s) (2)

s.t. JK+l(π
ρ) ≥ C(l), l = 1, · · · , L (3)

where Hρ(s) := −
∑

a π
ρ(a|s) log πρ(a|s) is the entropy of πρ(·|s), ρ(s) :=

∑
a ρ(s, a) is the

stationary state distribution in S , β > 0 is a balancing coefficient, and {C(l)}Ll=1 is a set of threshold

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

values. We assume a mild condition that the set {C(l)}Ll=1 is chosen by the designer such that
the optimization in equation 2 and equation 3 is feasible, an assumption commonly made in the
constrained MDP literature (Tessler et al., 2018; Ha et al., 2020).

In this paper, we set f the minimum function, i.e., f(J1(π
ρ), · · · , JK(πρ)) =

min(J1(π
ρ), · · · , JK(πρ)). We note that the entropy term is included in equation 2 to pro-

mote exploration and eliminate the indeterminacy of the max-min solution without the entropy
term (Park et al., 2024). The problem reduces to the unregularized formulation as β → 0, with the
optimality gap decreasing linearly:

Proposition 3.1. The gap between the optimal max-min value of the unregularized problem and that
of the regularized problem in equation 2 and equation 3 with f = min is upper bounded by β log |A|

1−γ .
(Proof: See Appendix A.)

Proposition 3.1 shows that the regularized problem is a valid approximation of the unregularized
criterion. Since directly optimizing equation 2 and equation 3 with f = min and Jk(π

ρ) =

Eπρ [
∑∞

t=0 γ
tr

(k)
t] is non-trivial due to its non-differentiable and non-linear structure, we address this

challenge using the occupancy measure (i.e., stationary distribution (Puterman, 1994)) formulation.
The above optimization problem with f = min can be rewritten as

max
ρ≥0

min
1≤k≤K

(∑
(s,a)

r(k)(s, a)ρ(s, a)

)
+ β

∑
s

Hρ(s)ρ(s) (4)

∑
a′

ρ(s′, a′) = µ0(s
′) + γ

∑
(s,a)

T (s′|s, a)ρ(s, a), ∀s′ (5)

∑
(s,a)

c(l)(s, a)ρ(s, a) ≥ C(l), l = 1, · · · , L (6)

where equation 5 is the Bellman flow equation for the occupancy measure (Puterman, 1994). Here,
we use the notation c(l)(s, a) := r(K+l)(s, a), l = 1, · · · , L to explicitly represent the dimensions
associated with the constraint. These quantities can be true rewards or negative of costs. Then the
formulation in equation 4, equation 5, and equation 6 constitutes a convex optimization problem.
Now we derive a convex optimization equivalent to the dual problem of equation 4, equation 5, and
equation 6, which serves as the foundation for our subsequent model-free applications (Section 5.2),
as stated in the following proposition.

Proposition 3.2. The dual problem of equation 4, equation 5, and equation 6 is equivalent to the
following convex optimization problem:

min
u∈RL

+,w∈∆K
L(u,w) =

∑
s

µ0(s)v
∗
u,w(s)−

L∑
l=1

ulC
(l) (7)

where RL
+ := {u ∈ RL|ul ≥ 0, 1 ≤ l ≤ L}, ∆K := {w ∈ RK |

∑K
k=1 wk = 1; wk ≥ 0, 1 ≤ k ≤

K}, i.e., the (K − 1)-dimensional simplex, and v∗u,w is the fixed point of the operator Tu,w:

[Tu,wv](s) = β log
∑
a

exp[
1

β
{

L∑
l=1

ulc
(l)(s, a)+

K∑
k=1

wkr
(k)(s, a)+γ

∑
s′

T (s′|s, a)v(s′)}], ∀s. (8)

(Proof: See Appendix B.)

Strong duality holds if there exists an occupancy measure ρ such that ρ(s, a) > 0, ∀(s, a) and the
constraints in equation 6 are satisfied with strict inequalities, assumptions commonly used in RL (Lee
et al., 2021) and constrained RL settings (Tessler et al., 2018; Ha et al., 2020).

Proposition 3.2 hints that v∗u,w can be obtained via soft value iteration in equation 8 and the weights
u and w can be obtained by minimizing the loss L(u,w) in equation 7 by some method. In addition,
in equation 8, we observe that the constrained reward c(l), l = 1, · · · , L can be handled without
distinction from the unconstrained reward r(k), k = 1, · · · ,K. Note that both rewards appear as a
weighted sum in equation 8, enabling a unified framework for constrained and unconstrained MORL.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

However, solving the optimization problem equation 7 directly is non-trivial because the fixed point
v∗u,w in equation 8 does not have a closed-form expression in terms of (u,w). To address this issue,
we derive the key properties of v∗u,w. For given (u,w), we define

Q∗
u,w(s, a) :=

L∑
l=1

ulc
(l)(s, a) +

K∑
k=1

wkr
(k)(s, a) + γ

∑
s′

T (s′|s, a)v∗u,w(s′), (9)

and define a policy π∗
u,w as

π∗
u,w(a|s) =

exp(1βQ
∗
u,w(s, a))∑

a′ exp(1βQ
∗
u,w(s, a

′))
. (10)

Then, π∗
u,w is an optimal policy for the entropy-regularized RL (Haarnoja et al., 2017) with a scalar

reward function
∑L

l=1 ulc
(l)(s, a) +

∑K
k=1 wkr

(k)(s, a). Furthermore, regarding the relationship
between π∗

u,w and the gradient of v∗u,w, we have the following theorem:

Theorem 3.3. For each s, v∗u,w(s) is differentiable w.r.t. (u,w) ∈ RL+K , and its gradient
∇v∗u,w(s) = [∇uv

∗
u,w(s)

⊤,∇wv
∗
u,w(s)

⊤]⊤ has the form of

∇uv
∗
u,w(s) = v

π∗
u,w

c (s) and ∇wv
∗
u,w(s) = v

π∗
u,w

r (s), (11)

where v
π∗
u,w

c (s) ∈ RL and v
π∗
u,w

r (s) ∈ RK are the value functions evaluated with the policy π∗
u,w for

the constrained reward c(l) and the unconstrained reward r(k), respectively. (Proof: See Appendix
C.)

Theorem 3.3 implies that the objective function L(u,w) in equation 7 is differentiable with respect to
(w.r.t.) (u,w), and enables us to apply gradient descent to solve the optimization with the gradient
(∇vv

∗
u,w(s),∇wv

∗
u,w(s)) combined with value iteration.

It is surprising but makes sense that the gradient∇v∗u,w(s) is expressed as the value function (which is
a vector quantity) evaluated with the policy π∗

u,w. First, consider the constrained part. Due to Theorem

3.3, the derivative of L(u,w) in equation 7 is given by
∑

s µ0(s)v
π∗
u,w

c (s) − [C(1), · · · , C(L)]⊤.
Hence, if the value of the l-th constrained dimension is larger than C(l), then the l-th component of
the gradient is positive, gradient descent will decrease the weight ul, and hence c(l) is less weighted
in the value iteration in equation 8. Otherwise, the opposite happens. In this way, the constraints on
the constrained dimensions are satisfied with gradient descent.

Regarding the unconstrained reward part, the gradient is given by
∑

s µ0(s)v
π∗
u,w

r (s). Hence, for
the dimension of a smaller value, we have a smaller reduction in wk by gradient descent to yield a
larger wk. Therefore, the dimensions with smaller values are weighted more in the value iteration in
equation 8 to realize the max-min principle.

We now establish the twice-differentiability of v∗u,w to derive its Hessian. This step is crucial for
establishing the smoothness of the objective function, which in turn is critical for analyzing the
convergence of our algorithm in Section 3.2.
Theorem 3.4. For each s, v∗u,w(s) is twice-differentiable w.r.t. (u,w) ∈ RL+K . Let |S| = p, and
suppose the states are enumerated as {s1, · · · , sp}. Then, the (L+K)× (L+K) Hessian matrix
H[v∗u,w(sk)], 1 ≤ k ≤ p, has the form of

H[v∗u,w(sk)] =
1

β

p∑
l=1

[(Ip − γTπ∗
u,w)−1]klB

π∗
u,w(sl). (12)

Here, Ip is the p×p identity matrix; Tπ∗
u,w is a p×p matrix of which i-th row and j-th column element

is given by [Tπ∗
u,w]ij = Ea∼π∗

u,w(·|si)[T (sj |si, a)] (1 ≤ i, j ≤ p); [(Ip − γTπ∗
u,w)−1]kl denotes the

k-th row and l-th column element of (Ip − γTπ∗
u,w)−1; Bπ∗

u,w(s) = Ea∼π∗
u,w(·|s)

[
(Qπ∗

u,w(s, a) −

Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′)])(Qπ∗

u,w(s, a)− Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′)])⊤

]
∈ R(L+K)×(L+K); and

Qπ∗
u,w(s, a) ∈ RL+K is the value function evaluated with the policy π∗

u,w. (Proof: See Appendix D.)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Due to Theorem 3.4, the objective function L(u,w) in equation 7 is twice-differentiable w.r.t. (u,w).
Note that Qπ∗

u,w(s, a) in Theorem 3.4 is different from Q∗
u,w(s, a) in equation 9. By definition in

the entropy-regularized RL, Q∗
u,w(s, a) ∈ R is the cumulative scalarized return plus the cumulative

entropy sum from π∗
u,w. On the other hand, Qπ∗

u,w(s, a) ∈ RL+K is a vector-valued cumulative sum
of unconstrained rewards and constrained rewards from π∗

u,w without the entropy sum. Therefore,
[u;w]⊤Qπ∗

u,w(s, a) equals to Q∗
u,w(s, a) minus the cumulative entropy sum of π∗

u,w.

A natural approach to solving the convex optimization problem in equation 7 is projected gradient
descent, since the variables (u,w) lie in the convex set RL

+ ×∆K . The convergence of projected
gradient descent depends on the smoothness of the objective function (Boyd & Vandenberghe, 2004;
Bubeck, 2015). In our case, L(u,w) satisfies the following smoothness property:

Theorem 3.5. For each s, v∗u,w(s) is smooth w.r.t. (u,w) on RL+K . In other words, ∇v∗u,w(s)
is Lipschitz continuous in ∥ · ∥2. Furthermore, L(u,w) is α-smooth w.r.t. (u,w) on RL+K with

α := 1
β(1−γ)

∑L+K
m=1

(
r(m)

max
1−γ

)2
. (Proof: See Appendix E.)

3.2 ALGORITHM AND CONVERGENCE ANALYSIS

Based on the foundation built in the previous section, we propose an algorithm for constrained MORL
with max-min fairness. Note that we need to jointly update the weights (u,w) and the value function,
which approximates v∗u,w. We adopt the following update method alternating between update of the
value function and the weights (u,w).

First, given a weight (u,w), we update the value function to realize equation 8. For this, we use an
action value function Q, which approximates Q∗

u,w. Using the soft Bellman equation (Haarnoja et al.,
2017), the action value function Q∗

u,w in equation 9 is written as Q∗
u,w(s, a) =

∑L
l=1 ulc

(l)(s, a) +∑K
k=1 wkr

(k)(s, a) + γ
∑

s′T (s
′|s, a)v∗u,w(s′), ∀(s, a). If we plug this equation into the right-hand

side of equation 8, we have v∗u,w(s) = [Tu,wv∗u,w](s) = β log
∑

a exp
(

Q∗
u,w(s,a)

β

)
for each s. Using

this form of v∗u,w(s), we implement applying Tu,w as updating the Q-function with the following:

Q(s, a)← [u;w]⊤[c; r] + γ
∑
s′

T (s′|s, a)β log
∑
a′

exp

(
Q(s′, a′)

β

)
, ∀(s, a). (13)

We have shown that ∇uv
∗
u,w(s) = v

π∗
u,w

c (s), ∇wv
∗
u,w(s) = v

π∗
u,w

r (s) for each s, where we denote

v
π∗
u,w

c (s) ∈ RL, v
π∗
u,w

r (s) ∈ RK as the value functions evaluated with the policy π∗
u,w for con-

strained reward c and unconstrained reward r, respectively. We compute an estimated gradient of
∇(u,w)L(u,w) at the current weight (u,w) = (um, wm) where m = 1, 2, · · · is the iteration index.
Note that the policy is extracted from the Q-function based on the form equation 10. We then update
(u,w) using projected gradient descent:

(um+1, wm+1) = PK,L[(u
m, wm)− lw∇(u,w)L(um, wm)] (14)

where lw is a learning rate for (u,w) and PK,L[·] is the projection onto the RL
+ ×∆K . We use the

convex optimization method from Wang & Carreira-Perpiñán (2013) to project onto the simplex
∆K , and apply non-negativity clipping for projection onto RL

+. Note that the projection onto ∆K

is numerically stable as it is fully deterministic and avoids randomized procedures. In addition,
its complexity is O(K logK) (Wang & Carreira-Perpiñán, 2013) which is relatively lightweight
compared to other components, due to the sublinear growth of the logarithmic term.

We iterate this process for each m, and the pseudocode of our algorithm is shown in Algorithm 1. We
now provide our convergence analysis of Algorithm 1 under the following assumption.

Assumption There exists at least one state s ∈ S such that the centered action-value vectors in the set
Scenter(s) :=

{
Qπ∗

u,w(s, a)− Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′)] : a ∈ A

}
span RK+L.

This condition fails only in degenerate multi-objective settings when for every state s ∈ S, the set
Scenter(s) lies entirely within an affine subspace of dimension less than K+L. Under this assumption,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Constrained Max-Min MORL Algorithm

1: Q0 ∈ R|S||A|: initialized Q-function, ITER: total iteration number, lw: learning rate for the
update of weights (u,w)

2: Initialize weights u0 ∈ RL
+ and w0 ∈ ∆K .

3: for m = 1, 2, · · · , ITER do
4: Q = Qm−1

5: while not terminated do
6: Update Q in equation 13 with [u;w] = [um;wm].
7: end while
8: Qm = Q
9: Compute ∇̃(u,w)L(um, vm), an estimated gradient of ∇(u,w)L(um, wm) using πm(·|s) =

softmax{Qm(s, ·)/β} based on equation 11.
10: (um+1, wm+1) = PK,L[(u

m, wm)− lw∇̃(u,w)L(um, wm)].
11: end for
12: Return π(·|s) = softmax{QITER(s, ·)/β}, ∀s.

the Hessian H[L(u,w)] is positive definite. (See Appendix F.1 for more details.) Let λ denote
the minimum eigenvalue of H[L(u,w)], which satisfies 0 < λ ≤ α (Bubeck, 2015). Theorem 3.6
provides a formal guarantee of convergence for Algorithm 1 under approximate Q-updates.

Theorem 3.6. Let (u∗, w∗) denote the optimal solution to equation 7. For each outer-loop index
m ≥ 1 in Algorithm 1, let Q∗

um,wm denote the fixed point of equation 13 with [u;w] = [um;wm],
and let Qm denote the Q-function after completing the m-th inner-loop update. For each m, assume
∥Qm −Q∗

um,wm∥∞ < ϵ for some ϵ > 0. Then for m ≥ 1,

∥[um;wm]−[u∗;w∗]∥2 ≤ (1− λ

α
)m∥[u0;w0]−[u∗;w∗]∥2+

√
|S|
λ

√√√√K+L∑
i=1

{r(i)max}2
1 + γ

(1− γ)2
ϵ. (15)

(Proof: See Appendix F.2.)

Theorem 3.6 establishes that the error decreases geometrically at rate O
(
(1− λ

α)
m
)
, up to O(ϵ).

(For completeness, Appendix F.3 provides the analysis of the degenerate case without Assumption.)

3.3 DISCUSSION

w fixed w learned
L = 0 Unconst. weight-sum (Yang et al., 2019) Unconst. max-min (Park et al., 2024)
L ≥ 1 Const. weight-sum (Huang et al., 2021) Const. max-min

Table 1: Generalizability of our framework to previous MORL settings

Our new framework is general enough to unify many existing MORL formulations. Note that we have
two major design choices: (i) scalarization strategy: whether the preference vector w on K objectives
used in the scalarization function is fixed or learned/adaptive, and (ii) whether constraints are present.
Table 1 shows four different setups of our framework. Our framework covers unconstrained weight-
sum MORL with L = 0 and fixed w, constrained weighted-sum MORL with L ≥ 1 and fixed w,
unconstrained max-min MORL with L = 0 and w learning, and finally constrained max-min MORL
with L ≥ 1 and w learning.

4 RELATED WORK

The dominant approach in MORL is utility-based (Roijers et al., 2013; Hayes et al., 2022), where the
goal is to determine an optimal policy π∗ = argmaxπ f(J(π)) given a non-decreasing scalarization
function f : RK → R. For a linear scalarization function, each non-negative weight vector induces
a scalarized MDP (Boutilier et al., 1999), leading to research efforts focused on learning a single

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

network capable of generating multiple optimal policies across the weight space (Abels et al., 2019;
Yang et al., 2019; Basaklar et al., 2023; Hung et al., 2023; Lu et al., 2023; Park & Sung, 2025).
For non-linear scalarization functions, formulating Bellman optimality equations becomes more
complex due to the loss of linearity (Roijers et al., 2013; Hayes et al., 2022). The most relevant work
to this paper is Park et al. (2024), which proposed a tractable approach to max-min MORL using
Gaussian smoothing for gradient estimation. However, this method requires multiple network copies,
which leads to an increased computational cost. Moreover, this method produces inexact gradients
since Gaussian smoothing of a convex function yields a convex upper bound (Nesterov & Spokoiny,
2017). In contrast, our method provides direct, theoretically grounded gradient estimates and extends
naturally to constrained MORL.

Many approaches to constrained MDPs reformulate the problem with a scalar reward (i.e., a special
case of equation 2 and equation 3 with K = 1 and without f) into an unconstrained one by augmenting
the objective with a weighted sum of constraint violations, typically via a Lagrangian formulation
(Achiam et al., 2017; Tessler et al., 2018; Paternain et al., 2019; Ha et al., 2020; Vaswani et al.,
2022; Calvo-Fullana et al., 2023; Müller et al., 2024). The motivation for this line of work is that
the Lagrangian relaxation exhibits no duality gap, even when the original problem is non-convex
with respect to the policy (Paternain et al., 2019). Most methods in this category, therefore, rely on
alternating updates between the policy and the Lagrange multipliers. However, these approaches do
not consider the multi-objective reward setting in equation 2 and equation 3 with K ≥ 2. Moreover,
applying them directly to our setting is non-trivial, since f = min introduces non-differentiability
in equation 2. To resolve this, we reformulate our problem as a convex program using occupancy
measures and then derive another convex program equivalent to the dual problem, which serves as
the basis for our MORL algorithm. In particular, we show that both the max-min criterion and the
constraints can be satisfied by jointly updating the weights u and w, a simple yet effective approach
that to our knowledge has not been explored in the constrained MDP literature.

Several recent works have incorporated constraints into MORL (Huang et al., 2021; Lin et al., 2024;
Liu et al., 2025), but under settings different from our framework, which explicitly integrates max-min
optimization. See Appendix G for details of these works.

5 EXPERIMENTS

In this section, we present experimental validations of our theoretical analysis and algorithm. Section
5.1 examines the convergence properties of our method in tabular settings. In Section 5.2, we further
demonstrate the practical relevance of our approach through applications to edge computing resource
allocation and multi-objective locomotion control.

5.1 TABULAR SETTINGS

We conducted experiments in tabular settings to evaluate the convergence of our algorithm. Con-
strained MOMDPs were randomly generated, after a feasibility check, within two widely used classes
of structured MDPs. (See Appendix H.1 for details on the feasibility check.) First, bipartite state
graphs partition the state space into two disjoint subsets, enforcing transitions between them at
alternating time steps. This structure captures temporal dynamics in systems with role alternation
or interleaving phases (Littman, 1994). Second, hierarchical MDPs organize the state space into
multiple levels or stages, where transitions flow sequentially from one level to the next. This reflects
tasks with subgoals or temporal abstraction (Dietterich, 2000).

The optimal value for each MOMDP was computed by solving equation 4, equation 5, and equation 6
with β = 0 via linear programming (LP), and performance was evaluated as the error relative to
these LP-optimal values. We compared our method, which computes ∇uv

∗
u,w(s) and ∇wv

∗
u,w(s)

using Theorem 3.3, against a modified version of the Gaussian smoothing method from Park et al.
(2024). We adapted this baseline to incorporate both max-min weights (w) and constraint weights
(u). Importantly, we selected this baseline because Park et al. (2024) is, to our knowledge, the only
prior work that explicitly tackles max-min MORL. Both methods follow the same alternating update
scheme: (i) updating the policy using equation 13 and (ii) updating the weight vectors using projected
gradient descent, until convergence with respect to (u,w). (See Appendix H.2 for further details on
the baseline and experimental setup.)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Bipartite Hierarchical
Gaussian Smoothing 0.125± 0.003 0.101± 0.008

Ours 0.005± 0.003 0.003± 0.001

Table 2: Comparison of optimal value errors between algorithms

β 1.0 0.3 0.1 0.03 0.01 0.003 0.001
Bipartite 3.187 0.650 0.086 0.005 0.015 0.027 0.030

Hierarchical 1.559 0.295 0.037 0.004 0.003 0.013 0.013

Table 3: Optimal value errors of our algorithm across different values of β

Table 2 shows that our method consistently outperforms Gaussian smoothing, achieving substantially
smaller errors across both structured MOMDPs. This improvement stems from the fact that Gaussian
smoothing of a convex function produces another convex function that serves as an upper bound
to the original. As discussed in Appendix H.3, the Gaussian smoothing baseline also incurs about
N + 1 times higher computational cost per weight update compared to our method, where N is the
number of perturbed Q-tables used for smoothing. We further analyzed the effect of β on convergence.
Table 3 shows that values of β < 0.1 produce stable convergence with relatively low sensitivity. In
summary, our method is superior in accuracy and computation for constrained max-min optimization
compared to Gaussian smoothing in tabular settings.

5.2 EXTENSION TO APPLICATIONS

In this section, we extend our algorithm to practical applications, specifically simulated edge comput-
ing resource allocation and locomotion control. To ensure stable gradient estimation of our algorithm
in continuous state spaces, we parameterize a gradient network gθ(s) ∈ RL+K to estimate∇uv

∗
u,w(s)

and∇wv
∗
u,w(s), following Theorem 3.3. Implementation details, including gradient estimation and

our constrained max-min algorithm for applications, are provided in Appendix I.1.

5.2.1 EDGE COMPUTING RESOURCE ALLOCATION

We consider a simulated edge computing resource allocation environment (Bae et al., 2020). The
system includes Ntype distinct user application types, and multiple mobile devices generate tasks
according to these types and send them to an edge computing node. The edge computing node
is equipped with multi-core CPUs and maintains Ntype separate task queues, each associated with
a specific application type. Incoming tasks from the mobile devices are sorted into these queues
accordingly. Once tasks arrive, the edge computing node either processes them locally or offloads a
portion to a cloud computing node through a dedicated communication link.

The unconstrained reward is an Ntype-dimensional vector, where each entry corresponds to the negative
value of the current queue length for a given application type to encourage queue minimization.
Minimizing the delay of the worst-performing user group is crucial for maintaining smooth system
operation (Zehavi et al., 2013; Saifullah et al., 2014; Wang et al., 2019). The cost is the total power
consumption of the system, normalized by the environment. The goal is to control the system to
minimize the maximum cumulative discounted sum of queue length across application types within
each episode, while satisfying the system’s power consumption constraint with its designed threshold
value Cth = 5.6. (Additional details of the environment are given in Appendix I.2.)

We compare our algorithm against four baselines: (i) randomly selects one queue for allocation at
each timestep (Random), (ii) unconstrained max-average SAC (MA-SAC) (Haarnoja et al., 2018), (iii)
max-average SAC with a Lagrangian relaxation (MA-SAC-L) (Ha et al., 2020; Yang et al., 2021), and
(iv) unconstrained max-min MORL algorithm adapted from Park et al. (2024) (Max-min). Notably,
each of the baselines lacks either max-min fairness ((iii)), constraint handling ((iv)), or both ((i), (ii)).
We report the mean performance computed across twelve random seeds. (See Appendices I.3 and I.4
for the implementation of the Max-min baseline and hyperparameter settings, respectively.)

Table 4 presents the cumulative cost sum and the total maximum queue length with Ntype = 3.
Compared to the Random baseline, MA-SAC reduces the total maximum queue length but still fails

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Algorithm Cost sum Maximum
(Cth = 5.6) queue length (↓)

Random 5.9 72.4
MA-SAC 5.8 46.5
MA-SAC-L 5.6 52.9
Ours 5.6 37.9
Max-min 5.8 23.7

Table 4: Cumulative cost sum and total max-
imum queue length with Ntype = 3: top two
underlined

Figure 1: Comparison of queue length sums
across queues for each algorithm

to satisfy the power consumption constraint, with its cost sum exceeding the threshold Cth = 5.6.
While MA-SAC-L satisfies the power constraint, it does so at the cost of a higher total maximum
queue length compared to MA-SAC. As shown in Figure 1, our method substantially reduces the
total maximum queue length relative to MA-SAC-L, while still adhering to the power constraint. We
note that the Max-min algorithm violates the power constraint.

Algorithm Cost sum Maximum
(Cth = 5.6) queue length (↓)

Ours 5.6 37.9
w/o u update 5.8 33.7
w/o w update 5.5 52.7
w/o (u,w) upd. 5.8 44.7

Table 5: Ablation study with Ntype = 3

Table 5 shows that ablating the constraint-
related u update causes constraint violations,
while removing the max-min-related w update
substantially increases the total maximum queue
length. These results confirm that our method
effectively balances max-min performance with
constraint satisfaction.

In Appendix I.5, we scale the resource alloca-
tion environment to Ntype = 8 task queues and
demonstrate that our method consistently balances max-min performance with constraint satisfaction.

5.2.2 MULTI-OBJECTIVE LOCOMOTION CONTROL

Algorithm Cost sum Minimum
(Cth = 50) return (↑)

Random 146.5 48.2
MA-SAC 275.3 98.8
MA-SAC-L 47.8 83.0
Ours 28.3 92.2
Max-min 111.7 92.7

Table 6: MoAnt-v5 results over five seeds
with the two constraint-satisfying

algorithms highlighted in bold

We include MoAnt-v5 environment (Felten et al.,
2023), where the agent learns locomotion to maximize
x and y velocities while keeping energy consumption
under a threshold. We consider an asymmetric case
where movement in the x direction is attenuated by
friction at rate 0.3. The velocities (vx, vy), combined
with bonus terms, constitute a 2-D reward, while the
control cost is treated as a constraint. (See Appendix
I.6 for details on hyperparameters.)

Table 6 shows that both our method and MA-SAC-L
satisfy the constraints, but our method achieves supe-
rior max-min performance. In contrast, the other three
algorithms severely violate the constraints, as they do not explicitly account for constraint satisfaction.
Overall, our algorithm balances constraint satisfaction and max-min fairness.

6 CONCLUSION

We have proposed a unified framework for constrained MORL that integrates max-min fairness with
constraint satisfaction. Our approach offers flexibility in modeling problems that satisfy fairness
and operational constraints. We established a theoretical foundation and developed an algorithm
that demonstrates strong performance in both tabular settings and practical applications. By jointly
addressing fairness and resource constraints, our work contributes to advancing sustainable AI,
offering a compelling alternative to conventional approaches that focus solely on performance, often
at the expense of equity and resource constraints. A broader impact of our work is discussed in
Appendix J, and a discussion of limitations and future directions is provided in Appendix K.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our algorithm in Section 3.2 and Appendix I.1. Appendices H and
I contain the experimental setup, fine-tuned hyperparameters, and infrastructure details. To ensure
accessibility and reproducibility, we provide the source code for the resource allocation environment
in the supplementary material. Furthermore, all theorems are presented in a self-contained manner,
making it straightforward to verify the theoretical results.

REFERENCES

Axel Abels, Diederik M. Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckelmacher. Dynamic
weights in multi-objective deep reinforcement learning. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine
Learning Research, pp. 11–20. PMLR, 2019. URL http://proceedings.mlr.press/
v97/abels19a.html.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning, pp. 22–31. PMLR, 2017.

Sohee Bae, Seungyul Han, and Youngchul Sung. A reinforcement learning formulation of the
lyapunov optimization: Application to edge computing systems with queue stability. CoRR,
abs/2012.07279, 2020. URL https://arxiv.org/abs/2012.07279.

Toygun Basaklar, Suat Gumussoy, and Ümit Y. Ogras. PD-MORL: preference-driven multi-
objective reinforcement learning algorithm. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/pdf?id=zS9sRyaPFlJ.

Craig Boutilier, Thomas L. Dean, and Steve Hanks. Decision-theoretic planning: Structural assump-
tions and computational leverage. J. Artif. Intell. Res., 11:1–94, 1999. doi: 10.1613/JAIR.575.
URL https://doi.org/10.1613/jair.575.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Sébastien Bubeck. Convex optimization: Algorithms and complexity. 2015. URL https://
arxiv.org/abs/1405.4980.

Miguel Calvo-Fullana, Santiago Paternain, Luiz FO Chamon, and Alejandro Ribeiro. State augmented
constrained reinforcement learning: Overcoming the limitations of learning with rewards. IEEE
Transactions on Automatic Control, 69(7):4275–4290, 2023.

Souradip Chakraborty, Jiahao Qiu, Hui Yuan, Alec Koppel, Dinesh Manocha, Furong Huang, Amrit S.
Bedi, and Mengdi Wang. Maxmin-rlhf: Alignment with diverse human preferences. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=8tzjEMF0Vq.

Fengdi Che, Chenjun Xiao, Jincheng Mei, Bo Dai, Ramki Gummadi, Oscar A. Ramirez, Christo-
pher K. Harris, A. Rupam Mahmood, and Dale Schuurmans. Target networks and over-
parameterization stabilize off-policy bootstrapping with function approximation. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=R6GT1UDcOW.

Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value function decomposi-
tion. Journal of artificial intelligence research, 13:227–303, 2000.

Florian Felten, Lucas N. Alegre, Ann Nowé, Ana L. C. Bazzan, El Ghazali Talbi, Grégoire Danoy,
and Bruno Castro da Silva. A toolkit for reliable benchmarking and research in multi-objective
reinforcement learning. In Proceedings of the 37th Conference on Neural Information Processing
Systems (NeurIPS 2023), 2023.

10

http://proceedings.mlr.press/v97/abels19a.html
http://proceedings.mlr.press/v97/abels19a.html
https://arxiv.org/abs/2012.07279
https://openreview.net/pdf?id=zS9sRyaPFlJ
https://doi.org/10.1613/jair.575
https://arxiv.org/abs/1405.4980
https://arxiv.org/abs/1405.4980
https://openreview.net/forum?id=8tzjEMF0Vq
https://openreview.net/forum?id=R6GT1UDcOW

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Roy Fox, Ari Pakman, and Naftali Tishby. Taming the noise in reinforcement learning via soft updates.
In Alexander Ihler and Dominik Janzing (eds.), Proceedings of the Thirty-Second Conference on
Uncertainty in Artificial Intelligence, UAI 2016, June 25-29, 2016, New York City, NY, USA. AUAI
Press, 2016. URL http://auai.org/uai2016/proceedings/papers/219.pdf.

Sehoon Ha, Peng Xu, Zhenyu Tan, Sergey Levine, and Jie Tan. Learning to walk in the real world
with minimal human effort. arXiv preprint arXiv:2002.08550, 2020.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, volume 70 of Proceedings of Machine Learning Research, pp. 1352–1361. PMLR, 2017.
URL http://proceedings.mlr.press/v70/haarnoja17a.html.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer G. Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pp. 1856–1865. PMLR, 2018. URL http://proceedings.
mlr.press/v80/haarnoja18b.html.

Conor F. Hayes, Roxana Radulescu, Eugenio Bargiacchi, Johan Källström, Matthew Macfarlane,
Mathieu Reymond, Timothy Verstraeten, Luisa M. Zintgraf, Richard Dazeley, Fredrik Heintz,
Enda Howley, Athirai A. Irissappane, Patrick Mannion, Ann Nowé, Gabriel de Oliveira Ramos,
Marcello Restelli, Peter Vamplew, and Diederik M. Roijers. A practical guide to multi-objective
reinforcement learning and planning. Auton. Agents Multi Agent Syst., 36(1):26, 2022. doi: 10.1007/
S10458-022-09552-Y. URL https://doi.org/10.1007/s10458-022-09552-y.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Sandy H. Huang, Abbas Abdolmaleki, Giulia Vezzani, Philemon Brakel, Daniel J. Mankowitz,
Michael Neunert, Steven Bohez, Yuval Tassa, Nicolas Heess, Martin A. Riedmiller, and Raia
Hadsell. A constrained multi-objective reinforcement learning framework. In Aleksandra Faust,
David Hsu, and Gerhard Neumann (eds.), Conference on Robot Learning, 8-11 November 2021,
London, UK, volume 164 of Proceedings of Machine Learning Research, pp. 883–893. PMLR,
2021. URL https://proceedings.mlr.press/v164/huang22a.html.

Wei Hung, Bo-Kai Huang, Ping-Chun Hsieh, and Xi Liu. Q-pensieve: Boosting sample efficiency of
multi-objective RL through memory sharing of q-snapshots. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023. URL https://openreview.net/pdf?id=AwWaBXLIJE.

Whiyoung Jung, Myungsik Cho, Jongeui Park, and Youngchul Sung. Quantile constrained rein-
forcement learning: A reinforcement learning framework constraining outage probability. In
Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
2a07348a6a7b2c208ab5cb1ee0e78ab5-Abstract-Conference.html.

Ubaid Ullah Khan, Naqqash Dilshad, Mubashir Husain Rehmani, and Tariq Umer. Fairness in
cognitive radio networks: Models, measurement methods, applications, and future research di-
rections. J. Netw. Comput. Appl., 73:12–26, 2016. doi: 10.1016/J.JNCA.2016.07.008. URL
https://doi.org/10.1016/j.jnca.2016.07.008.

Jongmin Lee, Wonseok Jeon, Byung-Jun Lee, Joelle Pineau, and Kee-Eung Kim. Optidice: Offline
policy optimization via stationary distribution correction estimation. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research,
pp. 6120–6130. PMLR, 2021. URL http://proceedings.mlr.press/v139/lee21f.
html.

11

http://auai.org/uai2016/proceedings/papers/219.pdf
http://proceedings.mlr.press/v70/haarnoja17a.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
https://doi.org/10.1007/s10458-022-09552-y
https://proceedings.mlr.press/v164/huang22a.html
https://openreview.net/pdf?id=AwWaBXLIJE
http://papers.nips.cc/paper_files/paper/2022/hash/2a07348a6a7b2c208ab5cb1ee0e78ab5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/2a07348a6a7b2c208ab5cb1ee0e78ab5-Abstract-Conference.html
https://doi.org/10.1016/j.jnca.2016.07.008
http://proceedings.mlr.press/v139/lee21f.html
http://proceedings.mlr.press/v139/lee21f.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qian Lin, Zongkai Liu, Danying Mo, and Chao Yu. An offline adaptation framework for con-
strained multi-objective reinforcement learning. In Amir Globersons, Lester Mackey, Danielle
Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Ad-
vances in Neural Information Processing Systems 38: Annual Conference on Neural Infor-
mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
fdb11be1acf5e3724737dd585e590146-Abstract-Conference.html.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pp. 157–163. Elsevier, 1994.

Ruohong Liu, Yuxin Pan, Linjie Xu, Lei Song, Pengcheng You, Yize Chen, and Jiang Bian. Efficient
discovery of pareto front for multi-objective reinforcement learning. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=fDGPIuCdGi.

Haoye Lu, Daniel Herman, and Yaoliang Yu. Multi-objective reinforcement learning: Convex-
ity, stationarity and pareto optimality. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/pdf?id=TjEzIsyEsQ6.

Adrian Müller, Pragnya Alatur, Volkan Cevher, Giorgia Ramponi, and Niao He. Truly no-regret
learning in constrained MDPs. In Forty-first International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=hrWte3nlzr.

Yurii E. Nesterov and Vladimir G. Spokoiny. Random gradient-free minimization of convex functions.
Found. Comput. Math., 17(2):527–566, 2017. doi: 10.1007/S10208-015-9296-2. URL https:
//doi.org/10.1007/s10208-015-9296-2.

Giseung Park and Youngchul Sung. Reward dimension reduction for scalable multi-objective
reinforcement learning. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=ssRdQimeUI.

Giseung Park, Woohyeon Byeon, Seongmin Kim, Elad Havakuk, Amir Leshem, and Youngchul
Sung. The max-min formulation of multi-objective reinforcement learning: From theory to a
model-free algorithm. In Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/
forum?id=cY9g0bwiZx.

Santiago Paternain, Luiz Chamon, Miguel Calvo-Fullana, and Alejandro Ribeiro. Constrained
reinforcement learning has zero duality gap. Advances in Neural Information Processing Systems,
32, 2019.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Statistics. Wiley, 1994. ISBN 978-0-47161977-2. doi: 10.1002/
9780470316887. URL https://doi.org/10.1002/9780470316887.

Majid Raeis and Alberto Leon-Garcia. A deep reinforcement learning approach for fair traffic signal
control. In 2021 IEEE international intelligent transportation systems conference (ITSC), pp.
2512–2518. IEEE, 2021.

Kevin Regan and Craig Boutilier. Robust policy computation in reward-uncertain mdps using
nondominated policies. In Maria Fox and David Poole (eds.), Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010,
pp. 1127–1133. AAAI Press, 2010. doi: 10.1609/AAAI.V24I1.7740. URL https://doi.
org/10.1609/aaai.v24i1.7740.

Diederik M. Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-
objective sequential decision-making. J. Artif. Intell. Res., 48:67–113, 2013. doi: 10.1613/JAIR.
3987. URL https://doi.org/10.1613/jair.3987.

Abusayeed Saifullah, David Ferry, Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher D. Gill.
Parallel real-time scheduling of dags. IEEE Trans. Parallel Distributed Syst., 25(12):3242–3252,
2014. doi: 10.1109/TPDS.2013.2297919.

12

http://papers.nips.cc/paper_files/paper/2024/hash/fdb11be1acf5e3724737dd585e590146-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/fdb11be1acf5e3724737dd585e590146-Abstract-Conference.html
https://openreview.net/forum?id=fDGPIuCdGi
https://openreview.net/forum?id=fDGPIuCdGi
https://openreview.net/pdf?id=TjEzIsyEsQ6
https://openreview.net/forum?id=hrWte3nlzr
https://doi.org/10.1007/s10208-015-9296-2
https://doi.org/10.1007/s10208-015-9296-2
https://openreview.net/forum?id=ssRdQimeUI
https://openreview.net/forum?id=cY9g0bwiZx
https://openreview.net/forum?id=cY9g0bwiZx
https://doi.org/10.1002/9780470316887
https://doi.org/10.1609/aaai.v24i1.7740
https://doi.org/10.1609/aaai.v24i1.7740
https://doi.org/10.1613/jair.3987

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Convergence rates of inexact proximal-gradient
methods for convex optimization. 2011. URL https://arxiv.org/abs/1109.2415.

David Silver. Lectures on reinforcement learning. URL: https://www.davidsilver.uk/
teaching/, 2015.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. arXiv
preprint arXiv:1805.11074, 2018.

Sharan Vaswani, Lin Yang, and Csaba Szepesvari. Near-optimal sample complexity bounds for
constrained MDPs. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=ZJ7Lrtd12x_.

Kankan Wang, Xu Jiang, Nan Guan, Di Liu, Weichen Liu, and Qingxu Deng. Real-time scheduling
of DAG tasks with arbitrary deadlines. ACM Trans. Design Autom. Electr. Syst., 24(6):66:1–66:22,
2019. doi: 10.1145/3358603.

Weiran Wang and Miguel Á. Carreira-Perpiñán. Projection onto the probability simplex: An
efficient algorithm with a simple proof, and an application. CoRR, abs/1309.1541, 2013. URL
http://arxiv.org/abs/1309.1541.

Qisong Yang, Thiago D. Simão, Simon H. Tindemans, and Matthijs T. J. Spaan. WCSAC: worst-case
soft actor critic for safety-constrained reinforcement learning. In Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of
Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial
Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pp. 10639–10646. AAAI Press, 2021.
doi: 10.1609/AAAI.V35I12.17272. URL https://doi.org/10.1609/aaai.v35i12.
17272.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective
reinforcement learning and policy adaptation. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
14610–14621, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
4a46fbfca3f1465a27b210f4bdfe6ab3-Abstract.html.

Tong Yang, Shicong Cen, Yuting Wei, Yuxin Chen, and Yuejie Chi. Federated natural policy
gradient and actor critic methods for multi-task reinforcement learning. 2024. URL https:
//arxiv.org/abs/2311.00201.

Ephraim Zehavi, Amir Leshem, Ronny Levanda, and Zhu Han. Weighted max-min resource allocation
for frequency selective channels. IEEE Trans. Signal Process., 61(15):3723–3732, 2013. doi:
10.1109/TSP.2013.2262278. URL https://doi.org/10.1109/TSP.2013.2262278.

13

https://arxiv.org/abs/1109.2415
https://www.davidsilver.uk/teaching/
https://www.davidsilver.uk/teaching/
https://openreview.net/forum?id=ZJ7Lrtd12x_
https://openreview.net/forum?id=ZJ7Lrtd12x_
http://arxiv.org/abs/1309.1541
https://doi.org/10.1609/aaai.v35i12.17272
https://doi.org/10.1609/aaai.v35i12.17272
https://proceedings.neurips.cc/paper/2019/hash/4a46fbfca3f1465a27b210f4bdfe6ab3-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4a46fbfca3f1465a27b210f4bdfe6ab3-Abstract.html
https://arxiv.org/abs/2311.00201
https://arxiv.org/abs/2311.00201
https://doi.org/10.1109/TSP.2013.2262278

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PROOF ON OPTIMALITY GAP

Proof. With a slight abuse of notation, let J(π) := [J1(π), · · · , JK(π)]⊤ ∈ RK and letH(π) denote
the expected cumulative entropy of π. We express the optimization of equation 2 and equation 3 with
f = min as follows:

max
π∈Πfeas

min
1≤k≤K

Jk(π) + βH(π) (16)

where Πfeas :=
{
π
∣∣∣Eµ0,π

[∑∞
t=0 γ

tc
(l)
t

]
≥ C(l), ∀l = 1, . . . , L

}
and it is assumed to be non-

empty under the typical assumption in constrained RL (Tessler et al., 2018; Ha et al., 2020).

Let the optimal solution to the regularized problem in equation 16 be π∗
r :=

argmaxπ∈Πfeas min1≤k≤K Jk(π) + βH(π) = argmaxπ∈Πfeas minw⟨w, J(π)⟩ + βH(π) where
minw∈∆K is abbreviated as minw for brevity. Let w∗(π) := argminw⟨w, J(π)⟩ and w∗

r := w∗(π∗
r).

Let the optimal solution to the unregularized problem be π∗ := argmaxπ∈Πfeas minw⟨w, J(π)⟩ and
w∗ = w∗(π∗). Let the optimal max-min value of the unregularized problem be V π∗

w∗ := ⟨w∗, J(π∗)⟩.
Similarly, let the optimal value of the regularized problem be V

π∗
r

w∗
r
:= ⟨w∗

r , J(π
∗
r)⟩. For simplicity,

we abbreviate maxπ∈Πfeas as maxπ below.

First, a lower bound is derived as follows:

V
π∗
r

w∗
r
+ βH(π∗

r)

= maxπ minw⟨w, J(π)⟩+ βH(π)
≥ minw⟨w, J(π∗)⟩+ βH(π∗)

= ⟨w∗, J(π∗)⟩+ βH(π∗).

Since 0 ≤ H(π) ≤ log |A|
1−γ for any π, we obtain V

π∗
r

w∗
r
− V π∗

w∗ ≥ −β log |A|
1−γ .

Next, an upper bound is derived as follows:

V π∗

w∗

= maxπ minw⟨w, J(π)⟩
≥ minw⟨w, J(π∗

r)⟩
= ⟨w∗

r , J(π
∗
r)⟩.

Thus, V π∗
r

w∗
r
− V π∗

w∗ ≤ 0.

Combining these two bounds, we obtain the optimality value gap ranges as 0 ≤ V π∗

w∗ − V
π∗
r

w∗
r
≤

β log |A|
1−γ .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B PROOF ON EQUIVALENT OPTIMIZATION

Proof. The dual problem of equation 4, equation 5, and equation 6 is rewritten as follows:

min
u≥0

min
w≥0,v

min
ξ≥0

max
ρ,b

[
b(1−

K∑
k=1

wk)−β
∑
s,a

ρ(s, a)log
ρ(s, a)∑
a′ ρ(s, a′)

+
∑
s

µ0(s)v(s) +
∑
s,a

ξ(s, a)ρ(s, a)−
L∑

l=1

ulC
(l)

+
∑
s,a

ρ(s, a)[

K∑
k=1

wkr
(k)(s, a)+

L∑
l=1

ulc
(l)(s, a) +γ

∑
s′

T (s′|s, a)v(s′)−v(s)]

]
. (17)

Here b is an auxiliary variable satisfying
∑

s,a r
(k)(s, a)ρ(s, a) ≥ b, 1 ≤ k ≤ K. Let ηu,v,w(s, a) :=∑K

k=1 wkr
(k)(s, a) +

∑L
l=1 ulc

(l)(s, a) + γ
∑

s′ T (s
′|s, a)v(s′)− v(s). We apply KKT conditions.

1. Stationarity condition gives

∀(s, a), −β log
ρ(s, a)∑
a′ ρ(s, a′)

+ ξ(s, a) + ηu,v,w(s, a) = 0 (18)

and

1−
K∑

k=1

wk = 0. (19)

2. Complementary slackness condition gives
∀(s, a), ξ(s, a)ρ(s, a) = 0. (20)

From equation 18, we derive

∀(s, a), ρ(s, a)∑
a′ ρ(s, a′)

= exp

(
ξ(s, a) + ηu,v,w(s, a)

β

)
(21)

so ρ(s, a) > 0 and ξ(s, a) = 0 from equation 20. Therefore,

∀(s, a), ρ(s, a)∑
a′ ρ(s, a′)

= exp

(
ηu,v,w(s, a)

β

)
. (22)

Inserting equation 19 and equation 22, we obtain:

min
u∈RL

+

min
v,w

∑
s

µ0(s)v(s)−
L∑

l=1

ulC
(l) (23)

∀s, v(s)=β log
∑
a

exp[
1

β
{

K∑
k=1

wkr
(k)(s, a)+

L∑
l=1

ulc
(l)(s, a)+γ

∑
s′

T (s′|s, a)v(s′)}] := [Tu,wv](s)

(24)
K∑

k=1

wk = 1; wk ≥ 0 ∀1 ≤ k ≤ K. (25)

where equation 24 is derived from
∑

a exp
(

ηu,v,w(s,a)
β

)
= 1, ∀s, and strong duality holds under

Slater condition (Boyd & Vandenberghe, 2004). Since Tu,w is a contraction mapping (Haarnoja et al.,
2017; Fox et al., 2016), it has the unique fixed point v∗u,w. Therefore, v = v∗u,w is the only feasible
solution that satisfies equation 24 and we have the following:

min
u∈RL

+,w∈∆K
L(u,w) =

∑
s

µ0(s)v
∗
u,w(s)−

L∑
l=1

ulC
(l). (26)

Under Slater condition, this optimization attains the same optimal value as in the original convex
optimization. Lastly, the convexity of this optimization is directly obtained from Theorem 4.1. in
Park et al. (2024).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C PROOF OF DIFFERENTIABILITY

Proof. We first note that for the simplicity of notation, it is enough to show the theorem for the
case of L = 0 (i.e., with no constraints). This holds because, given (u,w) ∈ RL+K , the map-
ping Tu,w is defined by [Tu,wv](s) = β log

∑
a exp[

1
β {
∑L

l=1 ulc
(l)(s, a) +

∑K
k=1 wkr

(k)(s, a) +

γ
∑

s′T (s
′|s, a)v(s′)}], ∀s, and we can regard the concatenation of c(s, a) and r(s, a) as a new vector

reward of size L+K with its weight (u,w). Therefore, we use the notation of the following mapping
[Twv](s) = β log

∑
a exp[

1
β {
∑K

k=1 wkr
(k)(s, a) + γ

∑
s′T (s

′|s, a)v(s′)}], ∀s.

Let |S| = p. We define F (w, v) := v − Twv, F : RK × Rp → Rp. Let v∗w be the unique fixed point
of Tw. Then F (w, v∗w) = v∗w − Twv∗w = 0. Here v∗w is implicitly expressed w.r.t. w, and we aim to
analyze v∗w using implicit function theorem.

First of all, F : RK × Rp → Rp is a continuously differentiable function. For each s, F (w, v)(s) =

v(s)− [Twv](s) = v(s)− β log
∑

a exp[
1
β {
∑K

k=1 wkr
(k)(s, a) + γ

∑
s′T (s

′|s, a)v(s′)}] which is a
composition of linear, logarithm, summation, exponential, and linear functions.

Now we fix w and check whether the Jacobian matrix ∂vF (w, v)|v=v∗
w
∈ Rp×p is invertible where

[∂vF (w, v)|v=v∗
w
]ij =

∂F (w,v)(si)
∂v(sj)

|v=v∗
w

. We have ∂vF (w, v) = Ip − ∂v[Twv] where Ip is the p× p

identity matrix. Then
∂[Twv](si)
∂v(sj)

|v=v∗
w
= γEa∼π∗

w(·|si)[T (sj |si, a)] (27)

where

π∗
w(a|s) =

exp[1β {
∑K

k=1 wkr
(k)(s, a) + γ

∑
s′T (s

′|s, a)v∗w(s′)}]∑
a′ exp[1β {

∑K
k=1 wkr(k)(s, a′) + γ

∑
s′T (s

′|s, a′)v∗w(s′)}]
. (28)

If we denote T (·|s, a) := [T (s1|s, a) · · ·T (sp|s, a)], we have

∂vF (w, v)|v=v∗
w
= Ip − γ

Ea∼π∗
w(·|s1)[T (·|s1, a)]

...
Ea∼π∗

w(·|sp)[T (·|sp, a)]

 =: Ip − γ

T
π∗
w(·|s1)

...
Tπ∗

w(·|sp)

 (29)

where Tπ∗
w(sj |si) = Ea∼π∗

w(·|si)[T (sj |si, a)] =: [Tπ∗
w]ij . Then Ip − γTπ∗

w is invertible since Tπ∗
w

is a row-stochastic square matrix (Horn & Johnson, 2012).

Therefore, ∂vF (w, v)|v=v∗
w

is invertible. By implicit function theorem, there exists an open set U ⊂
RK containing w such that there exists a unique continuously differentiable function h : U → Rp

such that h(w) = v∗w and F (w′, h(w′)) = 0, i.e., h(w′) = Tw′h(w′) for all w′ ∈ U . Since h(w′) is
the unique fixed point of Tw′ , h(w′) = v∗w′ , ∀w′ ∈ U . If we use the implicit function theorem for all
w ∈ RK , we can conclude that v = v∗w is a unique continuously differentiable function in w ∈ RK

that satisfies v = Twv.

Moreover, for 1 ≤ k ≤ K,

∂[Twv](si)
∂wk

|v=v∗
w
= Ea∼π∗

w(·|si)[r
(k)(si, a)]. (30)

With a slight abuse of notation, if we denote r(s, a) := [r(1)(s, a) · · · r(K)(s, a)], we have

∂wF (w, v)|v=v∗
w
= −

Ea∼π∗
w(·|s1)[r(s1, a)]

...
Ea∼π∗

w(·|sp)[r(sp, a)]

 =: −

r
π∗
w(s1)

...
rπ

∗
w(sp)

 (31)

where rπ
∗
w(s) = Ea∼π∗

w(·|s)[r(s, a)] ∈ R1×K . By implicit function theorem, we have∇wv
∗
w(s1)

⊤

...
∇wv

∗
w(sp)

⊤

 = −[∂vF (w, v)|v=v∗
w
]−1∂wF (w, v)|v=v∗

w
= (Ip − γTπ∗

w)−1rπ
∗
w . (32)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Note that the k-th (1 ≤ k ≤ K) column of equation 32 is equivalent to the policy evaluation of π∗
w

considering a scalar reward function r(k) (Silver, 2015; Sutton & Barto, 2018). We denote the value
function as vπ

∗
w

k ∈ Rp. Then
∂v∗w(s)

∂wk
= v

π∗
w

k (s), ∀s. (33)

If we denote vπ
∗
w(s) = [v

π∗
w

1 (s), · · · , vπ
∗
w

K (s)]⊤ ∈ RK for all s, then vπ
∗
w(s) is the value function

evaluated with the policy π∗
w in a given MOMDP. We have

∇wv
∗
w(s) = vπ

∗
w(s), ∀s. (34)

For the case of L > 0, the only difference is that π∗
w is changed to

π∗
u,w(a|s) =

exp[1β {
∑L

l=1 ulc
(l)(s, a) +

∑K
k=1 wkr

(k)(s, a) + γ
∑

s′T (s
′|s, a)v∗u,w(s′)}]∑

a′ exp[1β {
∑L

l=1 ulc(l)(s, a′) +
∑K

k=1 wkr(k)(s, a′) + γ
∑

s′T (s
′|s, a′)v∗u,w(s′)}]

(35)
where v∗u,w is the fixed point of the operator Tu,w:

∀s, [Tu,wv](s) = β log
∑
a

exp[
1

β
{

L∑
l=1

ulc
(l)(s, a)+

K∑
k=1

wkr
(k)(s, a)+γ

∑
s′

T (s′|s, a)v(s′)}] (36)

and the column size of rπ
∗
u,w is L +K, not K. We denote v

π∗
u,w

c (s) ∈ RL, v
π∗
u,w

r (s) ∈ RK as the
value functions evaluated with the policy π∗

u,w for constrained reward c and unconstrained reward r,
respectively. Finally, we have

∇uv
∗
u,w(s) = v

π∗
u,w

c (s), ∇wv
∗
u,w(s) = v

π∗
u,w

r (s), ∀s. (37)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D PROOF OF TWICE-DIFFERENTIABILITY

Proof. Here we also use the implicit function theorem and follow a similar logic in the proof of
differentiability in Appendix C. Let |S| = p. We show the theorem for the case of L = 0 to guarantee
notational simplicity. For each 1 ≤ i ≤ K, we want to show that ∂v∗

w

∂wi
:= [

∂v∗
w(s1)
∂wi

, · · · , ∂v∗
w(sp)
∂wi

]⊤ ∈
Rp is differentiable in w ∈ RK . From the result in Appendix C, we have

∂v∗w
∂wi

= v
π∗
w

i (38)

where v
π∗
w

i ∈ Rp is the value function evaluated with the policy π∗
w in equation 28 with the i-th

reward r(i). Let rπ
∗
w

i (s) = Ea∼π∗
w(·|s)[r

(i)(s, a)] ∈ R. From equation 32, we have

v
π∗
w

i = (Ip − γTπ∗
w)−1r

π∗
w

i (39)

or equivalently,
v
π∗
w

i = r
π∗
w

i + γTπ∗
wv

π∗
w

i =: T ∗
wv

π∗
w

i . (40)

We define F (w, v) := v − T ∗
wv, F : RK × Rp → Rp. Then F (w, v

π∗
w

i) = v
π∗
w

i − Twv
π∗
w

i = 0. Here
v
π∗
w

i is the unique fixed point of T ∗
w and is implicitly expressed w.r.t. w, and we aim to analyze v

π∗
w

i
using implicit function theorem.

First of all, F : RK × Rp → Rp is a continuously differentiable function. For each s, F (w, v)(s) =

v(s) − [T ∗
wv](s) = v(s) − [r

π∗
w

i (s) + γ
∑

s′ T
π∗
w(s′|s)v(s′)] = v(s) −

∑
a π

∗
w(a|s)[r(i)(s, a) +

γ
∑

s′ T (s
′|s, a)v(s′)]. As seen in equation 28, π∗

w contains v∗w which is continuously differentiable
in w (as a result of the proof in Appendix C), and π∗

w is a composition of quotient, exponential,
summation and linear functions of w and v∗w.

Now we fix w and check whether the Jacobian matrix ∂vF (w, v)|
v=v

π∗
w

i

∈ Rp×p is invertible where

[∂vF (w, v)|
v=v

π∗
w

i

]ij = ∂F (w,v)(si)
∂v(sj)

|
v=v

π∗
w

i

. We have ∂vF (w, v) = Ip − ∂v[T ∗
wv] where Ip is the

p× p identity matrix. Then

∂[T ∗
wv](si)

∂v(sj)
|
v=v

π∗
w

i

= γEa∼π∗
w(·|si)[T (sj |si, a)]. (41)

If we denote T (·|s, a) := [T (s1|s, a) · · ·T (sp|s, a)], we have

∂vF (w, v)|
v=v

π∗
w

i

= Ip − γ

Ea∼π∗
w(·|s1)[T (·|s1, a)]

...
Ea∼π∗

w(·|sp)[T (·|sp, a)]

 =: Ip − γ

T
π∗
w(·|s1)

...
Tπ∗

w(·|sp)

 (42)

where Tπ∗
w(sj |si) = Ea∼π∗

w(·|si)[T (sj |si, a)] =: [Tπ∗
w]ij . Then Ip − γTπ∗

w is invertible since Tπ∗
w

is a row-stochastic square matrix (Horn & Johnson, 2012).

Therefore, ∂vF (w, v)|
v=v

π∗
w

i

is invertible. By implicit function theorem, there exists an open set U ⊂
RK containing w such that there exists a unique continuously differentiable function h : U → Rp

such that h(w) = v
π∗
w

i and F (w′, h(w′)) = 0, i.e., h(w′) = T ∗
w′h(w′) for all w′ ∈ U . Since h(w′)

is the unique fixed point of T ∗
w′ , h(w′) = v

π∗
w′

i , ∀w′ ∈ U . If we use the implicit function theorem
for all w ∈ RK , we can conclude that v = v

π∗
w

i is a unique continuously differentiable function in
w ∈ RK that satisfies v = T ∗

wv.

Now, for 1 ≤ j ≤ K, we aim to calculate ∂[T ∗
wv](s)
∂wj

|
v=v

π∗
w

i

. For notational simplicity, let Q∗
w(s, a) :=∑K

k=1 wkr
(k)(s, a) + γ

∑
s′T (s

′|s, a)v∗w(s′). Then we express π∗
w as follows:

π∗
w(a|s) =

exp[1β {Q
∗
w(s, a)}]∑

a′ exp[1β {Q∗
w(s, a

′)}]
. (43)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

We also have

∂Q∗
w(s, a)

∂wj
= r(j)(s, a) + γ

∑
s′

T (s′|s, a)∂v
∗
w(s

′)

∂wj
= r(j)(s, a) + γ

∑
s′

T (s′|s, a)vπ
∗
w

j (s′) := Q
π∗
w

j (s, a).

(44)

In other words, we denote Q
π∗
w

j as the action-value function evaluated with π∗
w for a scalar reward

function r(j). Then
∂[T ∗

wv](s)

∂wj
|
v=v

π∗
w

i

=
∑
a

Q
π∗
w

i (s, a)
∂π∗

w(a|s)
∂wj

(45)

which is equivalent to

∂[T ∗
wv](s)

∂wj
|
v=v

π∗
w

i

=
1

β

∑
a

Q
π∗
w

i (s, a)

[
π∗
w(a|s)Q

π∗
w

j (s, a)− π∗
w(a|s)

∑
a′

{π∗
w(a

′|s)Qπ∗
w

j (s, a′)}
]

(46)
and we have

∂[T ∗
wv](s)

∂wj
|
v=v

π∗
w

i

=
1

β

[
Ea∼π∗

w(·|s)[Q
π∗
w

i (s, a)Q
π∗
w

j (s, a)]−Ea∼π∗
w(·|s)[Q

π∗
w

i (s, a)]Ea∼π∗
w(·|s)[Q

π∗
w

j (s, a)]}
]
.

(47)

By implicit function theorem, we have
∇w

∂v∗
w(s1)
∂wi

⊤

...

∇w
∂v∗

w(sp)
∂wi

⊤

 = −[∂vF (w, v)|
v=v

π∗
w

i

]−1∂wF (w, v)|
v=v

π∗
w

i

=
1

β
(Ip − γTπ∗

w)−1E
π∗
w

i (48)

where E
π∗
w

i is a p × K matrix where for each row corresponding to s, the j-th element is
Ea∼π∗

w(·|s)[Q
π∗
w

i (s, a)Q
π∗
w

j (s, a)]−Ea∼π∗
w(·|s)[Q

π∗
w

i (s, a)]Ea∼π∗
w(·|s)[Q

π∗
w

j (s, a)]}. This formulation
holds for each 1 ≤ i ≤ K.

Therefore, we construct a p×K ×K tensor, say Bπ∗
w , by stacking {Eπ∗

w
i }i along the new (third)

dimension. Then along the first dimension of size p, for each s, let Bπ∗
w(s) ∈ RK×K be the

corresponding slice of B. Let Qπ∗
w(s, a) = [Q

π∗
w

1 (s, a), · · · , Qπ∗
w

K (s, a)]⊤ ∈ RK be the action-value
function evaluated with π∗

w for vector reward r. Then we have

Bπ∗
w (s) = Ea∼π∗

w(·|s)

[
(Qπ∗

w (s, a)− Ea′∼π∗
w(·|s)[Q

π∗
w (s, a′)])(Qπ∗

w (s, a)− Ea′∼π∗
w(·|s)[Q

π∗
w (s, a′)])⊤

]
(49)

which is the covariance matrix of Qπ∗
w(s, ·) over the probability distribution π∗

w(·|s). Let sk corre-
spond to the k-th row of Tπ∗

w (1 ≤ k ≤ p). Then we have the following Hessian formulation for
sk:

H[v∗w(sk)] =
1

β

p∑
l=1

[(Ip − γTπ∗
w)−1]klB

π∗
w(sl). (50)

For the case of L > 0, the only difference is that π∗
w is changed to

π∗
u,w(a|s) =

exp[1β {
∑L

l=1 ulc
(l)(s, a) +

∑K
k=1 wkr

(k)(s, a) + γ
∑

s′T (s
′|s, a)v∗u,w(s′)}]∑

a′ exp[1β {
∑L

l=1 ulc(l)(s, a′) +
∑K

k=1 wkr(k)(s, a′) + γ
∑

s′T (s
′|s, a′)v∗u,w(s′)}]

(51)
where v∗u,w is the fixed point of the operator Tu,w:

∀s, [Tu,wv](s) = β log
∑
a

exp[
1

β
{

L∑
l=1

ulc
(l)(s, a)+

K∑
k=1

wkr
(k)(s, a)+γ

∑
s′

T (s′|s, a)v(s′)}] (52)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

and the size of Bπ∗
u,w(s) is (L+K)× (L+K), not K×K, defined by Qπ∗

u,w(s, a) ∈ RL+K which
is the action-value function evaluated with π∗

u,w for the concatenated vector function of constrained
reward c and unconstrained reward r. Finally, we have

H[v∗u,w(sk)] =
1

β

p∑
l=1

[(Ip − γTπ∗
u,w)−1]klB

π∗
u,w(sl). (53)

E PROOF OF SMOOTHNESS

Proof. Let a = (u′, w′) and b = (u′′, w′′) in RL+K . By the differentiability of ∇v∗u,w(s) proved in
Theorem 3.4, we use generalized mean value inequality in Banach spaces and have

∥∇v∗u,w(s)|(u,w)=b −∇v∗u,w(s)|(u,w)=a∥2 ≤ sup
t∈[0,1]

∥H[v∗u,w(s)]|(u,w)=a+t(b−a)∥2∥b− a∥2 (54)

Let λmax(A) be the maximum eigenvalue of a real symmetric matrix A. For each sk (1 ≤ k ≤ p),
the eigenvalues of H[v∗u,w(sk)] are nonnegative. Since trace operator is additive, we have

∥H[v∗u,w(sk)]∥2 = λmax(H[v∗u,w(sk)]) ≤ Tr(H[v∗u,w(sk)]) =
1

β

p∑
l=1

[(Ip−γTπ∗
u,w)−1]klTr(Bπ∗

u,w(sl)).

(55)
For each s, we also have

Tr(Bπ∗
u,w(s)) =

L+K∑
k=1

Var(Q
π∗
u,w

k (s, a)) ≤
L+K∑
k=1

E[|Qπ∗
u,w

k (s, ·)|2] ≤
L+K∑
k=1

(
r
(k)
max

1− γ

)2

. (56)

Since (Ip − γTπ∗
u,w)−1 =

∑∞
i=0(γT

π∗
u,w)i and each (Tπ∗

u,w)i is a probability transition matrix,

∥H[v∗u,w(sk)]∥2 ≤
1

β

L+K∑
m=1

(
r
(m)
max

1− γ

)2(∞∑
i=0

γi

p∑
l=1

(Tπ∗
u,w)ikl

)
=

1

β(1− γ)

L+K∑
m=1

(
r
(m)
max

1− γ

)2

.

(57)
It should be noted that ∥H[v∗u,w(sk)]∥2 is uniformly bounded regardless of sk and (u,w). Therefore,
∇v∗u,w(s) is Lipschitz continuous in ∥ · ∥2 from equation 54.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F CONVERGENCE ANALYSIS

F.1 ASSUMPTION FOR ACTION-VALUE NONDEGENERACY

Assumption There exists at least one state s ∈ S such that the centered action-value vectors{
Qπ∗

u,w(s, a)− Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′)] : a ∈ A

}
span RK+L.

This condition fails only in degenerate multi-objective settings when for every state s ∈ S, the set{
Qπ∗

u,w(s, a) − Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′)] : a ∈ A

}
lies entirely within an affine subspace of

dimension less than K + L (e.g., the size of an action set is smaller than the number of objectives).

Then Bπ∗
u,w(s) = Ea∼π∗

u,w(·|s)

[
(Qπ∗

u,w(s, a) − Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′)])(Qπ∗

u,w(s, a) −

Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′)])⊤

]
∈ R(L+K)×(L+K) is positive definite. This is because (i)

π∗
u,w(a|s) > 0 for all a (equation 10, which has this favorable property that facilitate analysis),

and (ii) for any y ∈ RK+L with y ̸= 0, y⊤Bπ∗
u,w(s)y =

∑
a π

∗
u,w(a|s)

(
y⊤(Qπ∗

u,w(s, a) −

Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′)])

)2

> 0 as at least one a should satisfy y⊤(Qπ∗
u,w(s, a) −

Ea′∼π∗
u,w(·|s)[Q

π∗
u,w(s, a′)]) ̸= 0.

By Theorem 3.4, we have the Hessian of L(u,w) as H[L(u,w)] = 1
β

∑p
l=1[µ

⊤
0 (Ip −

γTπ∗
u,w)−1]lB

π∗
u,w(sl) =

1
β

∑
s ρ

π∗
u,w(s)Bπ∗

u,w(s) where p = |S| and ρπ
∗
u,w(s) =

∑∞
t=0 γ

tPr(st =

s|π∗
u,w, µ0), and ρπ

∗
u,w(s) > 0 by the reachability assumption (Lee et al., 2021). Therefore,

H[L(u,w)] is positive definite under the assumption.

F.2 PROOF OF CONVERGENCE ANALYSIS

Let λmin(A) be the minimum eigenvalue of a real symmetric matrix A. For simplicity, we denote
λ := λmin(H[L(u,w)]). Then 0 < λ ≤ α (Bubeck, 2015) and L(u,w) is λ-strongly convex.

Theorem 3.6 Let (u∗, w∗) denote the optimal solution to equation 7. For each outer-loop index
m ≥ 1 in Algorithm 1, let Q∗

um,wm denote the fixed point of equation 13 with [u;w] = [um;wm],
and let Qm denote the Q-function after completing the m-th inner-loop update. For each m, assume
∥Qm −Q∗

um,wm∥∞ < ϵ for some ϵ > 0. Then for m ≥ 1,

∥[um;wm]−[u∗;w∗]∥2 ≤ (1− λ

α
)m∥[u0;w0]−[u∗;w∗]∥2+

√
|S|
λ

√√√√K+L∑
i=1

{r(i)max}2
1 + γ

(1− γ)2
ϵ. (58)

Proof. By the definition in equation 10, we have the optimal policy π∗
um,wm(a|s) =

exp(1
βQ∗

um,wm (s,a))∑
a′ exp(1

βQ∗
um,wm (s,a′))

when (u,w) = (um, wm). According to Theorem 3.3, we have

∇(u,w)L(um, vm) = [
∑

s µ0(s)v
π∗
um,vm

c (s)− [C(1), · · · , C(L)]⊤;
∑

s µ0(s)v
π∗
um,vm

r (s)] ∈ RL+K .

We also have ∇̃(u,w)L(um, vm) := [
∑

s µ0(s)v
πm

c (s) − [C(1), · · · , C(L)]⊤;
∑

s µ0(s)v
πm

r (s)] ∈
RL+K , an estimated gradient of∇(u,w)L(um, wm) using πm where πm(a|s) = exp(1

βQm(s,a))∑
a′ exp(1

βQm(s,a′))
.

Let em := ∇̃(u,w)L(um, vm) − ∇(u,w)L(um, wm). For each s, let vπr,i(s) (1 ≤ i ≤ K) and
vπc,j(s) (1 ≤ j ≤ L) denote the elements of the i-th dimension of vπr (s) ∈ RK and the j-th

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

dimension of vπc (s) ∈ RL, respectively. Then we have

∥em∥22 = ∥[
∑
s

µ0(s)(v
πm

c (s)− v
π∗
um,vm

c (s));
∑
s

µ0(s)(v
πm

r (s)− v
π∗
um,vm

r (s))]∥22

=

K∑
i=1

(∑
s

µ0(s)(v
πm

r,i (s)− v
π∗
um,wm

r,i (s))

)2

+

L∑
j=1

(∑
s

µ0(s)(v
πm

c,j (s)− v
π∗
um,wm

c,j (s))

)2

≤ ∥µ0∥22
∑
s

[K∑
i=1

(vπ
m

r,i (s)− v
π∗
um,wm

r,i (s))2 +

L∑
j=1

(vπ
m

c,j (s)− v
π∗
um,wm

c,j (s))2
]

(59)

where ∥µ0∥22 =
∑

s(µ0(s))
2 and the inequality holds by Cauchy-Schwarz.

Since both πm and π∗
um,wm use softmax parameterization with Qm and Q∗

um,wm , respectively, we
have

∀s, |vπ
m

r,i (s)− v
π∗
um,wm

r,i (s)| ≤ (1 + γ)r
(i)
max

(1− γ)2
∥Qm −Q∗

um,wm∥∞ (1 ≤ i ≤ K) (60)

and

∀s, |vπ
m

c,j (s)− v
π∗
um,wm

c,j (s)| ≤ (1 + γ)r
(K+j)
max

(1− γ)2
∥Qm −Q∗

um,wm∥∞ (1 ≤ j ≤ L) (61)

according to the property of equation (261) in Yang et al. (2024). Combining equation 60, equation 61,
and ∥µ0∥2 ≤ 1 with equation 59 gives

∥em∥2 ≤
√
|S|

√√√√K+L∑
i=1

{r(i)max}2
1 + γ

(1− γ)2
∥Qm −Q∗

um,wm∥∞

<
√
|S|

√√√√K+L∑
i=1

{r(i)max}2
1 + γ

(1− γ)2
ϵ. (62)

Next, we view the projected gradient descent for each outer loop as a proximal gradient descent. We
reformulate the optimization in equation 7 of

min
u∈RL

+,w∈∆K
L(u,w) (63)

as follows:
min

(u,w)∈RL+K
L(u,w) + IRL

+×∆K (u,w) (64)

where IRL
+×∆K (u,w) is the indicator function with its value 0 if (u,w) ∈ RL

+ × ∆K and +∞
otherwise. IRL

+×∆K is convex because its epigraph {(u,w, te)|te ≥ 0, (u,w) ∈ RL
+ × ∆K} is

convex. We note that according to Theorem 3.5, the smoothness of L(u,w) is satisfied on RL+K ,
which makes equation 64 valid. We also note that we computed the smoothness coefficient α =

1
β(1−γ)

∑K+L
i=1

(
r(i)max
1−γ

)2
of L in Appendix E.

Applying the error bound in equation 62 to the analysis of inexact proximal gradient method (Schmidt
et al., 2011), we have

∥[um;wm]− [u∗;w∗]∥2 ≤ (1− λ

α
)m∥[u0;w0]− [u∗;w∗]∥2 +

1

α

m∑
i=1

(1− λ

α
)m−i∥ei∥2

≤ (1− λ

α
)m∥[u0;w0]− [u∗;w∗]∥2 +

√
|S|
λ

√√√√K+L∑
i=1

{r(i)max}2
1 + γ

(1− γ)2
ϵ.

(65)

This is achieved because we use the convex optimization method from Wang & Carreira-Perpiñán
(2013) for projection onto the simplex ∆K , and apply non-negativity clipping for projection onto RL

+,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

both of them induce zero error in each phase of proximal objective update as it is fully deterministic
and avoids randomized procedures.

It remains to check whether IRL
+×∆K in equation 64 is a lower semi-continuous proper convex

function (Schmidt et al., 2011). IRL
+×∆K is lower semi-continuous because RL

+ ×∆K is closed, and
it is also proper convex since IRL

+×∆K never attains −∞ and RL
+ ×∆K is non-empty.

F.3 CONVERGENCE ANALYSIS FOR DEGENERATE CASE

Theorem F.1. Let (u∗, w∗) denote an optimal solution to equation 7. For each outer-loop index
m ≥ 1 in Algorithm 1, let Q∗

um,wm denote the fixed point of equation 13 with [u;w] = [um;wm],
and let Qm denote the Q-function after completing the m-th inner-loop update. For each m, assume
∥Qm −Q∗

um,wm∥∞ < ϵm for some ϵm > 0. Then for m ≥ 1,

L(1
m

m∑
i=1

(ui, wi))− L(u∗, w∗) ≤ α

2m
(∥[u0;w0]− [u∗;w∗]∥2 +

2M

α

m∑
i=1

ϵi)
2 (66)

where M =
√
|S|
√∑K+L

j=1 {r
(j)
max}2 1+γ

(1−γ)2 .

Proof. Using an analysis of inexact proximal gradient method (Schmidt et al., 2011) using the same
logic in the proof of Theorem 3.6 (Appendix F.2), we have

L(1
m

m∑
i=1

(ui, wi))− L(u∗, w∗) ≤ α

2m
(∥[u0;w0]− [u∗;w∗]∥2 +

2

α

m∑
i=1

∥ei∥2)2 (67)

where ei := ∇̃(u,w)L(ui, wi)−∇(u,w)L(ui, wi) is the i-th gradient error and

∥ei∥2 <
√
|S|

√√√√K+L∑
j=1

{r(j)max}2
1 + γ

(1− γ)2
ϵi = Mϵi (68)

from equation 62.

We note that the error of L(1
m

∑m
i=1(u

i, wi))− L(u∗, w∗) decreases at rate O(1
m) when {ϵi}∞i=1 is

summable (e.g., ϵm = O(1
m1+δ) with δ > 0).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

G ADDITIONAL RELATED WORK

Several recent works have introduced constraints into MORL, but under different settings from our
framework, which explicitly incorporates max-min optimization. For example, Huang et al. (2021)
reformulated constrained RL as a MOMDP by treating costs as an additional reward dimension,
generating policies that satisfy constraints while exploring preference trade-offs. However, their
framework is limited to weighted-sum scalarization, whereas ours covers both constrained and
unconstrained max-min MORL, offering broader generalization. More recently, Lin et al. (2024)
studied offline constrained MORL, where policies are trained on offline data and later adapted to
target preferences using additional demonstrations. In contrast, our work focuses on online learning
and does not assume access to additional demonstration data. Liu et al. (2025) train multiple policies
in parallel to approximate the Pareto front, improving coverage by solving constrained optimizations
in underexplored regions. Their method targets standard MORL with linear scalarization, enhancing
it via constrained optimization rather than directly tackling constrained MORL.

H EXPERIMENTAL DETAILS: TABULAR SETTINGS

H.1 FEASIBILITY CHECK

When generating structured MOMDPs randomly, we first verify whether the generated instances are
feasible. To do this, We first consider the following unregularized convex optimization:

max
ρ≥0

min
1≤k≤K

(∑
(s,a)

r(k)(s, a)ρ(s, a)

)
(69)

∑
a′

ρ(s′, a′) = µ0(s
′) + γ

∑
(s,a)

T (s′|s, a)ρ(s, a), ∀s′ (70)

∑
(s,a)

c(l)(s, a)ρ(s, a) ≥ C(l), l = 1, · · · , L (71)

which is equivalently expressed as the following LP by using additional scalar variable c̃ ∈ R:
max
ρ≥0,c̃

c̃ (72)∑
a′

ρ(s′, a′) = µ0(s
′) + γ

∑
(s,a)

T (s′|s, a)ρ(s, a), ∀s′ (73)

∑
(s,a)

r(k)(s, a)ρ(s, a) ≥ c̃, k = 1, · · · ,K, (74)

∑
(s,a)

c(l)(s, a)ρ(s, a) ≥ C(l), l = 1, · · · , L. (75)

We want to generate µ0, T, r, and c in structured MOMDPs to satisfy feasibility and Slater condition
by solving the following LP using the pywraplp function from the OR-Tools library:

max
ρ≥ϵlow

0 (76)∑
a′

ρ(s′, a′) = µ0(s
′) + γ

∑
(s,a)

T (s′|s, a)ρ(s, a), ∀s′ (77)

∑
(s,a)

r(k)(s, a)ρ(s, a) ≥ c̃+ ϵlow, k = 1, · · · ,K, (78)

∑
(s,a)

c(l)(s, a)ρ(s, a) ≥ C(l) + ϵlow, l = 1, · · · , L (79)

where ϵlow is used to guarantee the strict feasibility for Slater condition, and we set ϵlow = 10−4. If
the LP solver does not find a feasible solution, we regenerate the constrained MOMDP until a feasible
instance is found. Once any feasible solution is found, we solve the LP of equation 72, equation 73,
equation 74, and equation 75 by using LP solver to acquire the optimal max-min value c̃∗.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

H.2 EXPERIMENTAL SETUP

In the Gaussian smoothing method, we create N copies {Q̃i}Ni=1 of the current Q-function and update
each Q̃i using scalarization with N perturbed weights {(ũi, w̃i)}Ni=1, sampled from a Gaussian
distribution centered at the current weight vector (u,w). Specifically, we compute Q̃i(s, a) ←
[ũi; w̃i]

⊤[c; r] + γ
∑

s′ T (s
′|s, a)β log

∑
a′ exp

(
Q̃i(s

′,a′)
β

)
until convergence, given the perturbed

weights {(ũi, w̃i)}Ni=1. The gradient w.r.t. (u,w) is then estimated by computing the slope of a linear
regression over the pairs [{(ũi, w̃i)}Ni=1, {Q̃i}Ni=1].

The update of our algorithm is applied iteratively for each (u,w) pair until the maximum change in
the Q-function between successive iterations falls below 10−4. We use the following setting: γ = 0.8,
lw = 0.001, and ITER = 3000. u was initialized as all-one vector while w is initialized as the uniform
vector on the simplex. For Gaussian smoothing, we set N = 24 and use a Gaussian distribution with
a standard deviation 0.01. We tuned N to prevent unstable divergence in the Gaussian smoothing
method when N is too small, while also avoiding excessive computational overhead. Both algorithms
used β = 0.03 for the bipartite setting and β = 0.01 for the hierarchical setting, respectively. Each
algorithm was evaluated over three seeds, and all experiments were conducted on an Intel Core
i9-10900X CPU @ 3.70GHz.

H.3 COMPARISON OF ALGORITHMIC COMPLEXITY

We now include a comparison of the algorithmic complexity per weight update (u,w) in tabular
settings. Let S = |S|, A = |A|, and d = K + L. Although each update of equation 13 given weight
(u,w) theoretically requires infinitely many steps for convergence, we denote the practical number of
steps as Tsoft for our complexity analysis.

First, the per-iteration complexity of our method is given by O(TsoftS
2A+ SAd+ S3 + S2d). Here,

TsoftS
2A is the cost of update in equation 13, and the remaining part is the cost of computing the

gradient via dynamic programming based on Theorem 3.3. If Tsoft is large enough, the update of
equation 13 dominates the computation: O(TsoftS

2A+ SAd+ S3 + S2d) ≈ O(TsoftS
2A).

Regarding the Gaussian smoothing method, let N denote the number of perturbed Q-tables used
for smoothing. Then the complexity per iteration is O((N + 1)TsoftS

2A + d3 + Nd2) where
(N+1)TsoftS

2A is the computation of equation 13 for the current Q-table and its N copies. The other
terms are related to gradient estimation using linear regression (Park et al., 2024). Again, equation 13
dominates the computation and O((N + 1)TsoftS

2A+ d3 +Nd2) ≈ O((N + 1)TsoftS
2A) if Tsoft is

large enough.

In summary, the Gaussian smoothing baseline incurs approximately N +1 times more computational
cost per weight update compared to our method. Note that the complexity of the projection onto ∆K

is O(K logK) (Wang & Carreira-Perpiñán, 2013) which is relatively lightweight compared to other
components, due to the sublinear growth of the logarithmic term.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

I EXPERIMENTAL DETAILS: APPLICATIONS

I.1 IMPLEMENTATION OF OUR ALGORITHM FOR APPLICATIONS

We now leverage the usage of neural network for our algorithm. If we differentiate the both side of
v∗u,w(s) = [Tu,wv∗u,w](s) w.r.t. u and w for all s, then we have the following formula:

∀s, ∇wv
∗
u,w(s) =

∑
a

π∗
u,w(a|s)

(
r(s, a) + γ

∑
s′

T (s′|s, a)∇wv
∗
u,w(s

′)

)
. (80)

∀s, ∇uv
∗
u,w(s) =

∑
a

π∗
u,w(a|s)

(
c(s, a) + γ

∑
s′

T (s′|s, a)∇uv
∗
u,w(s

′)

)
. (81)

Here, π∗
u,w(a|s) is defined as in equation 10. To ensure stable gradient estimation in continuous

state spaces, we parameterize a gradient network to estimate ∇uv
∗
u,w(s) and∇wv

∗
u,w(s). Since each

action is also continuous, we employ an actor network πθ and implement Algorithm 2. To further
stabilize the estimation of the gradient, we add an additional linear layer after the penultimate layer
of the actor network πθ, and use its (L+K)-dimensional output as the gradient network gθ(s). We
use the notation gθ to indicate that the actor network and the gradient network share parameters and
jointly update their lower-layer weights.

Algorithm 2 Proposed Constrained Max-min Algorithm for Applications

1: πθ: actor, Qϕ: critic, Qϕ: target critic, gθ: gradient network, gθ: target gradient network, D:
replay buffer, Tinit: initial iteration number, τ : target update ratio, U : main iteration number, Us:
gradient step for critic update, lg: learning rate of the gradient network, l0: initial learning rate of
the weight (u,w), K: unconstrained reward dimension, L: the number of constraints, Cth ∈ RL:
threshold vector for the constraints

2: Initialize target critic ϕ← ϕ, target gradient network θ̄ ← θ, and weights u0 ∈ RL
+, w0 ∈ ∆K .

3: for j = 0, · · · , Tinit − 1 do
4: Rollout sample from πθ and save it in D. Sample a batch of data B ⊂ D.
5: Qϕ← Critic Update(Qϕ, Qϕ, πθ, (u0, w0), B) (Algorithm 3)
6: Update target critic parameter ϕ← τϕ+ (1− τ)ϕ.
7: πθ ← Actor Update(Qϕ, πθ,D) (Algorithm 4)
8: end for
9: for m = 0, 1, 2, · · · , U − 1 do

10: Rollout sample from πθ and save (s, a, r, c, s′, πθold(a|s)) in D where πθold(a|s) = πθ(a|s).
11: Update the gradient network gθ as follows:

θ ← θ − lg∇θE(s,a,r,c,s′,πθold (a|s))∼D

[∥∥∥πθm (a|s)
πθold (a|s)

([c; r] + γgθ(s
′))− gθ(s)

∥∥∥2]
where θm is a frozen copy of the current parameter θ.

12: Update target gradient network parameter θ ← τθ + (1− τ)θ.
13: Update (u,w) = (um, wm) using the projected gradient descent:

(um+1, wm+1) = PK,L [(um, wm)− lm(Es∼µ0
[gθ(s)]− [Cth;0K])] .

14: Schedule current learning rate of the weight lm.
15: for j = 0, · · · , Us − 1 do
16: Sample a batch of data B ⊂ D.
17: Qϕ← Critic Update(Qϕ, Qϕ, πθ, (um+1, wm+1), B)
18: end for
19: Update target critic parameter ϕ← τϕ+ (1− τ)ϕ.
20: πθ ← Actor Update(Qϕ, πθ,D)
21: end for
22: Return πθ.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Algorithm 3 Critic Update

Input: critic Qϕ, target critic Qϕ, actor πθ, weight (u,w), sample batch B
2: Update the critic parameter ϕ as follows:

ϕ← ϕ− lc∇ϕ
1

|B|
∑

(s,a,r,s′)∈B

(K∑
k=1

wkr
(k)(s, a) +

L∑
l=1

ulc
(l)(s, a)

+γβ logEa′∼πθ

exp
(
Qϕ(s

′, a′)/β
)

πθ(a′|s′)

−Qϕ(s, a)

)2
(82)

where lc is a critic learning rate.
Output: Updated critic Qϕ

Algorithm 4 Actor Update

Input: critic Qϕ, actor πθ, replay buffer D
Sample a batch of data B ⊂ D and find the actor satisfying the following:

θ ← argmin
θ

Es∼BEa∼πθ(·|s) [β log πθ(a|s)−Qϕ(s, a)] . (83)

3: Output: Updated actor πθ

I.2 ENVIRONMENTAL DETAILS: RESOURCE ALLOCATION

We modified the source code of the edge computing simulator (Bae et al., 2020) uploaded to https:
//github.com/sosam002/KAIST_MEC_simulator, implemented with Ntype = 3 and 8.
Here, K = Ntype and L = 1.

At each timestep, the system observes a state containing the current length of each task queue.
Based on this state, it selects a 2(Ntype + 1)-dimensional nonnegative continuous action at =

[a
(1)
e (t), · · · , a(Ntype+1)

e (t), a
(1)
c (t), · · · , a(Ntype+1)

c (t)]. Here, {a(i)e (t)}Ntype
i=1 denotes the CPU core al-

location ratios across task queues at the edge node, subject to the constraint
∑Ntype+1

i=1 a
(i)
e (t) = 1.

Similarly, {a(i)c (t)}Ntype
i=1 denotes the bandwidth allocation ratios at the cloud node, with the constraint∑Ntype+1

i=1 a
(i)
c (t) = 1.

Each state is represented by a 16-dimensional vector that captures both dynamic and static charac-
teristics. The edge device contributes 15 dimensions, derived from three application queues, each
described by five features: (1) average task arrivals over the most recent 10 timesteps, (2) task arrivals
at the current timestep, (3) current queue lengths, (4) CPU utilization ratios, and (5) fixed workload
values per application. The remaining dimension represents the current CPU utilization ratio of the
cloud server. Among these features, the workload values per application are static, defined as fixed
CPU cycles per bit, while all other dimensions vary dynamically over time.

Table 7: Parameters for Each Application Types (K = Ntype = 3)

Application Workload Popularity Min Bits Max Bits
SPEECH RECOGNITION 10435 0.5 40 KB 300 KB

NATURAL LANGUAGE PROCESSING 25346 0.8 4 KB 100 KB
VIRTUAL REALITY 40305 0.1 0.1 MB 3 MB

Table 7 and 8 summarize the key parameters for each application (Bae et al., 2020). The workload
(CPU cycles/bit) indicates the computational load per application. The popularity represents the
average arrival rate of incoming tasks modeled by a Poisson distribution. Each application’s input
data size follows a normal distribution, bounded between the specified minimum and maximum bits,
reflecting diverse and practical scenarios.

27

https://github.com/sosam002/KAIST_MEC_simulator
https://github.com/sosam002/KAIST_MEC_simulator

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 8: Parameters for Each Application Types (K = Ntype = 8, Appendix I.5)

Application Workload Popularity Min Bits Max Bits
SPEECH RECOGNITION 10435 0.5 40 KB 300 KB

NATURAL LANGUAGE PROCESSING 25346 0.8 4 KB 100 KB
VIRTUAL REALITY 40305 0.1 0.1 MB 3 MB
SEARCH REQUEST 8405 10 2 B 100 B

LANGUAGE TRANSLATION 34252 1 2 B 5000 B
3D GAME PROCESSING 54633 0.1 0.1 MB 3 MB

FACE RECOGNITION 45043 0.4 10 KB 100 KB
AUGMENTED REALITY 34532 0.1 0.1 MB 3 MB

Each episode consists of 1,000 timesteps. The total training spans 2 million timesteps, with evaluations
conducted at the end of every episode, resulting in 2,000 evaluation points. An episode is run during
each evaluation and the cumulative discounted sum of the (L +K)-dimensional vector reward is
computed. These experiments were conducted using an NVIDIA TITAN X GPU (12GB) across
twelve random seeds.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

I.3 UNCONSTRAINED MAX-MIN MORL ALGORITHM

Algorithm 5 Gaussian-smoothing-based Max-min Algorithm for Continuous Action (Our modifica-
tion from Park et al. (2024))

1: πθ: actor, Qϕ: critic, Qϕ: target critic, D: replay buffer, Tinit: initial iteration number, τ : target
update ratio, U : main iteration number, Us: gradient step for critic update, Ns: number of
perturbed samples, µ: perturbation parameter, l0: initial learning rate of the weight w, K: reward
dimension

2: Initialize target critic ϕ← ϕ and weight w0 ∈ ∆K .
3: for j = 0, · · · , Tinit − 1 do
4: Rollout sample from πθ and save it in D. Sample a batch of data B ⊂ D.
5: Qϕ← Critic Update(Qϕ, Qϕ, πθ, w0, B) (Algorithm 3 without the term of

∑L
l=1 ulc

(l)(s, a))

6: Update target critic parameter ϕ← τϕ+ (1− τ)ϕ.
7: πθ ← Actor Update(Qϕ, πθ,D) (Algorithm 4)
8: end for
9: for m = 0, 1, 2, · · · , U − 1 do

10: Rollout sample from πθ and save it in D.
11: Generate Ns perturbed weights {wm + µum

n }
Ns
n=1, um

n ∼ N (0, IK).
12: Make Ns copies of Qϕ : {Q̂ϕ,copy,n}Ns

n=1. Sample a common batch of data Bc ⊂ D.
13: for n = 1, · · · , Ns do
14: Q̂wm+µum

n ,copy,n← Critic Update(Q̂ϕ,copy,n, Qϕ, πθ, wm + µum
n , Bc)

15: end for
16: Calculate L̂(wm + µum

n) = Es∼µ0

[
β logEa∼πθ

[
exp[Q̂wm+µum

n ,copy,n(s,a)/β]

πθ(a|s)

]]
.

17: Conduct linear regression using {wm + µum
n , L̂(wm + µum

n)}Ns
n=1 and calculate the linear

weight am. Discard {Q̂wm+µum
n ,copy,n}Ns

n=1.
18: Update w = wm using the projected gradient descent:

wm+1 = proj∆K (wm − lmam) .

19: Schedule current learning rate of the weight lm.
20: for j = 0, · · · , Us − 1 do
21: Sample a batch of data B ⊂ D.
22: Qϕ← Critic Update(Qϕ, Qϕ, πθ, wm+1, B)
23: end for
24: Update target critic parameter ϕ← τϕ+ (1− τ)ϕ.
25: πθ ← Actor Update(Qϕ, πθ,D)
26: end for
27: Return πθ.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

I.4 HYPERPARAMETERS FOR RESOURCE ALLOCATION

Table 9: Hyperparameters for Algorithms (K = Ntype)

Parameter Value
Shared
optimizer Adam (Kingma & Ba, 2015)
discount (γ) 0.99
target update interval 1
target smoothing ratio (τ) 0.001
gradient steps 1
reward dimension 3 or 8
max episode step 1000
replay buffer size 2× 106

hidden layers 2
hidden units per layer 64
minibatch size 32
activation function ReLU
entropy coefficient 0.05
weight learning rate 0.01
weight scheduling 1/

√
t

Constrained Max-min MORL (Ours)
constraint type maximize
constraint dimension 1
constraint epsilon 1.0
constraint threshold −5.6
main learning rate 7.5× 10−4

gradient steps for critic update 3
gradient estimation learning rate 1× 10−5(Ntype = 3), 1.25× 10−5(Ntype = 8)
gradient estimation steps 1
gradient target smoothing ratio 0.001

Unconstrained Max-min MORL

main learning rate 7.5× 10−4

perturbation q learning rate 0.073
perturbation gradient steps 1
gradient steps for critic update 3
perturbation q-copies 10
perturbation noise std-dev 0.01

Max-average SAC with a Lagrangian Relaxation
constraint type minimize
initial lambda 1.0
main learning rate (actor/critic) 3× 10−4

constraint threshold 5.6
entropy coefficient 0.05
lambda learning rate 0.001

Unconstrained Max-average SAC

main learning rate (actor/critic) 3× 10−4

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

I.5 LARGE-SCALE EXTENSION IN RESOURCE ALLOCATION

Algorithm Cost sum Maximum
(Ntype = 8) (Cth = 5.6) queue length (↓)
Random 5.9 106.8
MA-SAC 5.9 105.3
MA-SAC-L 5.5 105.2
Ours 5.6 97.7
Max-min 5.9 99.9

Table 10: Cumulative cost sum and total
maximum queue length with Ntype = 8: top

two underlined

We further extend the resource allocation environment
to a larger scale with Ntype = 8 task queues. We
note that benchmark environments for MORL with
more than four objectives remain scarce (Hayes et al.,
2022; Felten et al., 2023). As shown in Table 10, both
our method and MA-SAC-L satisfy the constraints,
but our method achieves better performance in terms
of the total maximum queue length. These results
demonstrate that our algorithm effectively balances
constraint satisfaction with max-min fairness, even as
the number of objectives increases.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

I.6 HYPERPARAMETERS FOR LOCOMOTION CONTROL

Table 11: Hyperparameters for Algorithms

Parameter Value
Shared
optimizer Adam (Kingma & Ba, 2015)
discount (γ) 0.99
target update interval 1
target smoothing ratio (τ) 0.001
gradient steps 1
reward dimension 2
max episode step 1000
replay buffer size 1× 106

hidden layers 2
hidden units per layer 64
minibatch size 32
activation function ReLU
entropy coefficient 0.05
weight learning rate 0.001
weight scheduling 1/

√
t

Constrained Max-min MORL (Ours)
constraint type maximize
constraint dimension 1
constraint epsilon 1.0
constraint threshold −50
main learning rate 7.5× 10−4

gradient steps for critic update 3
gradient estimation learning rate 2.5× 10−5

gradient estimation steps 1
gradient target smoothing ratio 0.001

Unconstrained Max-min MORL

main learning rate 7.5× 10−4

perturbation q learning rate 0.073
perturbation gradient steps 1
gradient steps for critic update 3
perturbation q-copies 10
perturbation noise std-dev 0.01

Max-average SAC with a Lagrangian Relaxation
constraint type minimize
initial lambda 1.0
main learning rate (actor/critic) 3× 10−4

constraint threshold 50
entropy coefficient 0.05
lambda learning rate 0.001

Unconstrained Max-average SAC

main learning rate (actor/critic) 3× 10−4

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

J BROADER IMPACT

In this work, we propose an algorithm for constrained MORL based on the max-min criterion. First,
max-min MORL plays a critical role in promoting fairness across objectives in domains such as
traffic management and resource allocation. Unfair results can lead to user dissatisfaction and, in
turn, degrade overall system performance, for example, by contributing to traffic congestion (Raeis
& Leon-Garcia, 2021). Second, incorporating constraints into RL is essential for the responsible
development of AI systems, especially given real-world limitations on resources such as electricity,
power consumption, and fossil fuels.

Our work advances the goal of sustainable AI by simultaneously incorporating fairness and resource
constraints into decision-making. This contrasts to traditional methods that prioritize performance
alone, often overlooking concerns of equity and efficient resource use. We believe our framework
has the potential to make a meaningful and positive impact on the broader AI community, not only
in resource allocation but also in emerging areas such as fair and safe alignment of large language
models.

K LIMITATION AND FUTURE WORK

In this section, we discuss several limitations of our work and related future research avenues,
although our method offers a promising direction for developing constrained MORL algorithms.

First, there is a lack of well-established benchmarks for MORL compared to standard RL settings
(Hayes et al., 2022), and even fewer environments are specifically designed for constrained MORL.
Additionally, most existing MORL environments have low-dimensional reward spaces (typically
fewer than four dimensions) (Park & Sung, 2025), which limits the ability to evaluate our algorithm
in high-dimensional settings. Developing practical benchmarks for both MORL and constrained
MORL is therefore a critical research direction for the community.

Second, while it is common in the constrained MDP literature to assume that feasibility is ensured by
appropriately chosen thresholds (Tessler et al., 2018; Ha et al., 2020), determining such thresholds,
that is, setting the constraint set {C(l)}Ll=1, is non-trivial in practice outside of simple or tabular
domains. Unlike trial-and-error reward design, constraint threshold design is often infeasible or
unsafe due to the potential risks and costs involved. Leveraging external sources of information,
such as human demonstrations or natural language descriptions, offers a promising path for setting
constraint thresholds in constrained RL and MORL.

Third, while our resource allocation setting clearly distinguishes rewards from costs, this distinction
may be ambiguous in other domains. Determining which objectives should be treated as constraints
versus unconstrained rewards can be challenging. As with constraint threshold design, incorporating
external guidance could help better structure constrained MORL problems.

Fourth, several constrained RL studies have explored more conservative formulations than those based
on expected cumulative cost, for example, using outage probability or quantile-based constraints to
manage rare but critical failures in domains such as finance or insurance (Yang et al., 2021; Jung
et al., 2022). While our current framework and analysis rely on expected cumulative cost, extending
it to support such conservative constraint formulations presents a valuable direction for future work.

Lastly, although we assume the convergence of the (action) value function for each weight pair
(u,w), it is well known that the combination of function approximation, bootstrapped updates, and
off-policy learning can lead to instability and even divergence during training (Sutton & Barto, 2018;
Che et al., 2024). A theoretical investigation into this so-called deadly triad, along with additional
convergence guarantees, would further improve the robustness of our algorithm in the resource
allocation experiment and broaden its applicability to other domains.

33

	Introduction
	Background
	Constrained Max-Min MORL Framework
	Theoretical Foundation
	Algorithm and Convergence Analysis
	Discussion

	Related Work
	Experiments
	Tabular Settings
	Extension to Applications
	Edge Computing Resource Allocation
	Multi-objective Locomotion Control

	Conclusion
	 Proof on Optimality Gap
	Proof on Equivalent Optimization
	 Proof of Differentiability
	 Proof of Twice-Differentiability
	 Proof of Smoothness
	Convergence Analysis
	Assumption for Action-value Nondegeneracy
	Proof of Convergence Analysis
	Convergence Analysis for Degenerate Case

	Additional Related Work
	Experimental Details: Tabular Settings
	Feasibility Check
	Experimental Setup
	Comparison of Algorithmic Complexity

	Experimental Details: Applications
	Implementation of Our Algorithm for Applications
	Environmental Details: Resource Allocation
	Unconstrained Max-min MORL Algorithm
	Hyperparameters for Resource Allocation
	Large-scale Extension in Resource Allocation
	Hyperparameters for Locomotion Control

	Broader Impact
	Limitation and Future Work

