CONSTRAINED MULTI-OBJECTIVE REINFORCEMENT LEARNING WITH MAX-MIN CRITERION

Anonymous authors

Paper under double-blind review

ABSTRACT

Multi-Objective Reinforcement Learning (MORL) extends standard RL by optimizing policies over multiple and often conflicting objectives. Although max-min scalarization has emerged as a powerful approach to promote fairness in MORL, it has limited applicability, especially when handling heterogeneous objectives or incorporating constraints. In this paper, we propose a unified framework for constrained MORL that combines the max-min criterion with constraint satisfaction and generalizes prior formulations such as unconstrained max-min MORL and constrained weighted-sum MORL. We establish a theoretical foundation for our framework and validate our algorithm through a formal convergence analysis and experiments in tabular environments. We further extend it to practical applications, including simulated edge computing resource allocation and locomotion control, demonstrating our framework's capability to address fairness and constraint handling in multi-objective decision-making.

1 Introduction

Reinforcement Learning (RL) is a powerful machine learning framework that enables an agent to learn optimal decision-making strategies through interaction with an environment. In recent years, Multi-Objective Reinforcement Learning (MORL) has gained significant interest because many real-world control problems inherently involve multiple, often conflicting objectives (Roijers et al., 2013; Yang et al., 2019; Hayes et al., 2022; Basaklar et al., 2023; Park et al., 2024; Park & Sung, 2025). MORL extends standard RL to handle simultaneous optimization of multiple objectives.

A common strategy in MORL involves optimizing a scalarized function defined over multiple objective returns (Roijers et al., 2013; Hayes et al., 2022). This framework seeks to identify a policy π that maximizes a scalarized value $f(J_1(\pi),\ldots,J_K(\pi))$, where each $J_k(\pi)$ represents the expected discounted return for the k-th objective among $K(\geq 2)$ objectives, and $f:\mathbb{R}^K\to\mathbb{R}$ is a non-decreasing scalarization function such that $J_k(\pi)\geq J_k(\pi'), 1\leq k\leq K\Rightarrow f(J(\pi))\geq f(J(\pi'))$. Thus, f plays a key role in imposing the designer's preference among multiple objectives.

Although much of the MORL literature employs a linear f (that is, the weighted sum: $\max_{\pi} \sum_{k=1}^K w_k J_k(\pi)$) due to its simplicity, the weighted sum does not always accurately represent the preference of a designer, especially regarding fairness among objectives (Hayes et al., 2022; Park et al., 2024). For instance, imagine a traffic light system managing an intersection where several roads converge with asymmetric arrival rates. Instead of simply aiming to reduce the total sum waiting time for all vehicles across the roads, the designer could prioritize fairness by minimizing the longest individual waiting time among the roads. This helps reduce localized congestion (Raeis & Leon-Garcia, 2021) and avoid severe delays for individual drivers.

Fairness-driven objectives frequently arise in real-world scenarios and are addressed using scalarization methods beyond the standard weighted sum, such as max-min optimization or proportionally fair optimization (Khan et al., 2016) in MORL. While proportionally fair optimization, expressed as $\max_{\pi} \sum_{k=1}^{K} w_k \log J_k(\pi)$, is relatively straightforward to solve due to the smoothness and differentiability of the log function, max-min optimization presents greater challenges because of its non-differentiability and non-linearity. Recently, Park et al. (2024) proposed an algorithm to explicitly address the max-min objective in MORL using Gaussian smoothing (Nesterov & Spokoiny, 2017).

Although max-min optimization in MORL is a powerful tool with broad applicability (Regan & Boutilier, 2010; Zehavi et al., 2013; Saifullah et al., 2014; Wang et al., 2019; Chakraborty et al., 2024), the standard framework lacks flexibility for diverse problem types. First, it is primarily designed to ensure fairness across homogeneous objectives, but applying max-min fairness to heterogeneous objectives, such as velocity and energy consumption in locomotion, is inappropriate due to their differing units and nature. In our context, two physical quantities are considered heterogeneous if they have different units. In such cases, one may maximize the minimum of homogeneous objectives while requiring other objectives to remain above certain thresholds. Second, many real-world problems inherently involve constraints that must be satisfied from the outset. For example, in resource allocation, a MORL-based scheduler may aim to maximize throughput and fairness across task queues under a strict power consumption constraint. Incorporating constraints into the max-min MORL framework thus significantly broadens its practical applicability.

In this paper, we propose a novel framework for constrained MORL that incorporates max-min fairness. Our approach is capable of satisfying constraints while simultaneously maximizing the max-min objective. We present a detailed theoretical basis for our algorithmic design. Moreover, our framework generalizes previous frameworks in MORL, including the original max-min MORL formulation (Park et al., 2024) and constrained weighted-sum MORL (Huang et al., 2021). Our main contributions are summarized as follows:

- We introduce a unified framework for constrained MORL that integrates the max-min criterion and establishes its theoretical foundations, including differentiability, twice-differentiability, and smoothness of our objective function.
- We propose an iterative algorithm for constrained max-min MORL, accompanied by a formal convergence analysis. We empirically assess its convergence in tabular environments.
- We further establish the practical relevance of our method by applying it to edge computing resource allocation and locomotion control, demonstrating its effectiveness in real-world inspired scenarios.

2 BACKGROUND

A multi-objective Markov decision process (MOMDP) is represented as $\langle \mathcal{S}, \mathcal{A}, T, \mu_0, r, \gamma \rangle$, where \mathcal{S} and \mathcal{A} are the sets of states and actions, respectively, T represents the transition probability distribution, μ_0 specifies the initial state distribution, and $\gamma \in [0,1)$ is the discount factor. The reward function $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}^{K+L}, \ K \geq 1, L \geq 0$ is vector-valued with its k-th element denoted by $r^{(k)}$ ($1 \leq k \leq K+L$) such that $|r^{(k)}| \leq r_{\max}^{(k)}$, where K+L is the total number of objectives. At each timestep, the agent selects an action a in the current state s according to its (stationary) policy $\pi: \mathcal{S} \to \mathcal{P}(\mathcal{A})$, where $\mathcal{P}(\mathcal{A})$ represents the set of probability distributions in the action space \mathcal{A} . The occupancy measure is defined as $\rho(s,a) := \sum_{s'} \mu_0(s') \sum_{t=0}^{\infty} \gamma^t \Pr(s_t = s, a_t = a | s_0 = s', \pi^{\rho})$ where π^{ρ} is the corresponding stationary policy induced by ρ , expressed as $\pi^{\rho}(a|s) = \frac{\rho(s,a)}{\sum_{a'} \rho(s,a')}$ (Puterman, 1994). Then, the vector return evaluated by π^{ρ} is given by

$$J(\pi^{\rho}) := [J_1(\pi^{\rho}), \cdots, J_{K+L}(\pi^{\rho})]^{\top} = \mathbb{E}_{\pi^{\rho}} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right] = \sum_{(s,a)} r(s,a) \rho(s,a) \in \mathbb{R}^{K+L}. \quad (1)$$

3 CONSTRAINED MAX-MIN MORL FRAMEWORK

3.1 Theoretical Foundation

We consider constrained MORL, where the last L of the total K + L objectives should satisfy certain constraints. For theoretical development in this section, we assume that S and A are finite. The problem is formulated as follows:

$$\max_{\pi^{\rho}} f(J_1(\pi^{\rho}), \cdots, J_K(\pi^{\rho})) + \beta \sum_{s} \mathcal{H}_{\rho}(s) \rho(s)$$
 (2)

s.t.
$$J_{K+l}(\pi^{\rho}) \ge C^{(l)}, \ l = 1, \dots, L$$
 (3)

where $\mathcal{H}_{\rho}(s) := -\sum_{a} \pi^{\rho}(a|s) \log \pi^{\rho}(a|s)$ is the entropy of $\pi^{\rho}(\cdot|s)$, $\rho(s) := \sum_{a} \rho(s,a)$ is the stationary state distribution in \mathcal{S} , $\beta > 0$ is a balancing coefficient, and $\{C^{(l)}\}_{l=1}^{L}$ is a set of threshold

values. We assume a mild condition that the set $\{C^{(l)}\}_{l=1}^L$ is chosen by the designer such that the optimization in equation 2 and equation 3 is feasible, an assumption commonly made in the constrained MDP literature (Tessler et al., 2018; Ha et al., 2020).

In this paper, we set f the minimum function, i.e., $f(J_1(\pi^\rho), \cdots, J_K(\pi^\rho)) = \min(J_1(\pi^\rho), \cdots, J_K(\pi^\rho))$. We note that the entropy term is included in equation 2 to promote exploration and eliminate the indeterminacy of the max-min solution without the entropy term (Park et al., 2024). The problem reduces to the unregularized formulation as $\beta \to 0$, with the optimality gap decreasing linearly:

Proposition 3.1. The gap between the optimal max-min value of the unregularized problem and that of the regularized problem in equation 2 and equation 3 with $f = \min$ is upper bounded by $\frac{\beta \log |\mathcal{A}|}{1-\gamma}$. (*Proof: See Appendix A.*)

Proposition 3.1 shows that the regularized problem is a valid approximation of the unregularized criterion. Since directly optimizing equation 2 and equation 3 with $f=\min$ and $J_k(\pi^\rho)=\mathbb{E}_{\pi^\rho}[\sum_{t=0}^\infty \gamma^t r_t^{(k)}]$ is non-trivial due to its non-differentiable and non-linear structure, we address this challenge using the occupancy measure (i.e., stationary distribution (Puterman, 1994)) formulation. The above optimization problem with $f=\min$ can be rewritten as

$$\max_{\rho \ge 0} \min_{1 \le k \le K} \left(\sum_{(s,a)} r^{(k)}(s,a) \rho(s,a) \right) + \beta \sum_{s} \mathcal{H}_{\rho}(s) \rho(s)$$
 (4)

$$\sum_{a'} \rho(s', a') = \mu_0(s') + \gamma \sum_{(s, a)} T(s'|s, a) \rho(s, a), \ \forall s'$$
 (5)

$$\sum_{(s,a)} c^{(l)}(s,a)\rho(s,a) \ge C^{(l)}, \quad l = 1, \dots, L$$
(6)

where equation 5 is the Bellman flow equation for the occupancy measure (Puterman, 1994). Here, we use the notation $c^{(l)}(s,a) := r^{(K+l)}(s,a), \ l=1,\cdots,L$ to explicitly represent the dimensions associated with the constraint. These quantities can be true rewards or negative of costs. Then the formulation in equation 4, equation 5, and equation 6 constitutes a convex optimization problem. Now we derive a convex optimization equivalent to the dual problem of equation 4, equation 5, and equation 6, which serves as the foundation for our subsequent model-free applications (Section 5.2), as stated in the following proposition.

Proposition 3.2. The dual problem of equation 4, equation 5, and equation 6 is equivalent to the following convex optimization problem:

$$\min_{u \in \mathbb{R}_{+}^{L}, w \in \Delta^{K}} \mathcal{L}(u, w) = \sum_{s} \mu_{0}(s) v_{u, w}^{*}(s) - \sum_{l=1}^{L} u_{l} C^{(l)}$$
(7)

where $\mathbb{R}_+^L := \{u \in \mathbb{R}^L | u_l \geq 0, \ 1 \leq l \leq L\}$, $\Delta^K := \{w \in \mathbb{R}^K | \sum_{k=1}^K w_k = 1; \ w_k \geq 0, \ 1 \leq k \leq K\}$, i.e., the (K-1)-dimensional simplex, and $v_{u,w}^*$ is the fixed point of the operator $\mathcal{T}_{u,w}$:

$$[\mathcal{T}_{u,w}v](s) = \beta \log \sum_{a} \exp\left[\frac{1}{\beta} \left\{ \sum_{l=1}^{L} u_l c^{(l)}(s,a) + \sum_{k=1}^{K} w_k r^{(k)}(s,a) + \gamma \sum_{s'} T(s'|s,a) v(s') \right\} \right], \ \forall s. \ (8)$$

(Proof: See Appendix B.)

Strong duality holds if there exists an occupancy measure ρ such that $\rho(s, a) > 0$, $\forall (s, a)$ and the constraints in equation 6 are satisfied with strict inequalities, assumptions commonly used in RL (Lee et al., 2021) and constrained RL settings (Tessler et al., 2018; Ha et al., 2020).

Proposition 3.2 hints that $v_{u,w}^*$ can be obtained via soft value iteration in equation 8 and the weights u and w can be obtained by minimizing the loss $\mathcal{L}(u,w)$ in equation 7 by some method. In addition, in equation 8, we observe that the constrained reward $c^{(l)}$, $l=1,\cdots,L$ can be handled without distinction from the unconstrained reward $r^{(k)}$, $k=1,\cdots,K$. Note that both rewards appear as a weighted sum in equation 8, enabling a unified framework for constrained and unconstrained MORL.

However, solving the optimization problem equation 7 directly is non-trivial because the fixed point $v_{u,w}^*$ in equation 8 does not have a closed-form expression in terms of (u,w). To address this issue, we derive the key properties of $v_{u,w}^*$. For given (u,w), we define

$$Q_{u,w}^{*}(s,a) := \sum_{l=1}^{L} u_{l} c^{(l)}(s,a) + \sum_{k=1}^{K} w_{k} r^{(k)}(s,a) + \gamma \sum_{s'} T(s'|s,a) v_{u,w}^{*}(s'), \tag{9}$$

and define a policy $\pi_{u,w}^*$ as

$$\pi_{u,w}^*(a|s) = \frac{\exp(\frac{1}{\beta}Q_{u,w}^*(s,a))}{\sum_{a'} \exp(\frac{1}{\beta}Q_{u,w}^*(s,a'))}.$$
 (10)

Then, $\pi^*_{u,w}$ is an optimal policy for the entropy-regularized RL (Haarnoja et al., 2017) with a scalar reward function $\sum_{l=1}^L u_l c^{(l)}(s,a) + \sum_{k=1}^K w_k r^{(k)}(s,a)$. Furthermore, regarding the relationship between $\pi^*_{u,w}$ and the gradient of $v^*_{u,w}$, we have the following theorem:

Theorem 3.3. For each $s, v_{u,w}^*(s)$ is differentiable w.r.t. $(u, w) \in \mathbb{R}^{L+K}$, and its gradient $\nabla v_{u,w}^*(s) = [\nabla_u v_{u,w}^*(s)^\top, \nabla_w v_{u,w}^*(s)^\top]^\top$ has the form of

$$\nabla_u v_{u,w}^*(s) = v_c^{\pi_{u,w}^*}(s) \text{ and } \nabla_w v_{u,w}^*(s) = v_r^{\pi_{u,w}^*}(s), \tag{11}$$

where $v_c^{\pi_{u,w}^*}(s) \in \mathbb{R}^L$ and $v_r^{\pi_{u,w}^*}(s) \in \mathbb{R}^K$ are the value functions evaluated with the policy $\pi_{u,w}^*$ for the constrained reward $c^{(l)}$ and the unconstrained reward $r^{(k)}$, respectively. (Proof: See Appendix C.)

Theorem 3.3 implies that the objective function $\mathcal{L}(u,w)$ in equation 7 is differentiable with respect to (w.r.t.) (u,w), and enables us to apply gradient descent to solve the optimization with the gradient $(\nabla_v v_{u,w}^*(s), \nabla_w v_{u,w}^*(s))$ combined with value iteration.

It is surprising but makes sense that the gradient $\nabla v_{u,w}^*(s)$ is expressed as the value function (which is a vector quantity) evaluated with the policy $\pi_{u,w}^*$. First, consider the constrained part. Due to Theorem

3.3, the derivative of $\mathcal{L}(u,w)$ in equation 7 is given by $\sum_s \mu_0(s) v_c^{\pi_u^*,w}(s) - [C^{(1)},\cdots,C^{(L)}]^{\top}$. Hence, if the value of the l-th constrained dimension is larger than $C^{(l)}$, then the l-th component of the gradient is positive, gradient descent will decrease the weight u_l , and hence $c^{(l)}$ is less weighted in the value iteration in equation 8. Otherwise, the opposite happens. In this way, the constraints on the constrained dimensions are satisfied with gradient descent.

Regarding the unconstrained reward part, the gradient is given by $\sum_s \mu_0(s) v_r^{\pi_u^*}(s)$. Hence, for the dimension of a smaller value, we have a smaller reduction in w_k by gradient descent to yield a larger w_k . Therefore, the dimensions with smaller values are weighted more in the value iteration in equation 8 to realize the max-min principle.

We now establish the twice-differentiability of $v_{u,w}^*$ to derive its Hessian. This step is crucial for establishing the smoothness of the objective function, which in turn is critical for analyzing the convergence of our algorithm in Section 3.2.

Theorem 3.4. For each $s, v_{u,w}^*(s)$ is twice-differentiable w.r.t. $(u, w) \in \mathbb{R}^{L+K}$. Let $|\mathcal{S}| = p$, and suppose the states are enumerated as $\{s_1, \cdots, s_p\}$. Then, the $(L+K) \times (L+K)$ Hessian matrix $H[v_{u,w}^*(s_k)], 1 \le k \le p$, has the form of

$$H[v_{u,w}^*(s_k)] = \frac{1}{\beta} \sum_{l=1}^p [(I_p - \gamma T^{\pi_{u,w}^*})^{-1}]_{kl} B^{\pi_{u,w}^*}(s_l).$$
 (12)

Here, I_p is the $p \times p$ identity matrix; $T^{\pi^*_{u,w}}$ is a $p \times p$ matrix of which i-th row and j-th column element is given by $[T^{\pi^*_{u,w}}]_{ij} = \mathbb{E}_{a \sim \pi^*_{u,w}(\cdot|s_i)}[T(s_j|s_i,a)]$ $(1 \leq i,j \leq p)$; $[(I_p - \gamma T^{\pi^*_{u,w}})^{-1}]_{kl}$ denotes the

k-th row and l-th column element of
$$(I_p - \gamma T^{\pi_{u,w}^*})^{-1}$$
; $B^{\pi_{u,w}^*}(s) = \mathbb{E}_{a \sim \pi_{u,w}^*(\cdot|s)} \left[(Q^{\pi_{u,w}^*}(s,a) - Q^{\pi_{u,w}^*}(s)) \right]$

$$\mathbb{E}_{a' \sim \pi_{u,w}^*(\cdot|s)}[Q^{\pi_{u,w}^*}(s,a')])(Q^{\pi_{u,w}^*}(s,a) - \mathbb{E}_{a' \sim \pi_{u,w}^*(\cdot|s)}[Q^{\pi_{u,w}^*}(s,a')])^{\top} \bigg] \in \mathbb{R}^{(L+K)\times(L+K)}; \text{ and } x \in \mathbb{R}^{(L+K)\times(L+K)\times(L+K)}; \text{ and } x \in \mathbb{R}^{(L+K)\times(L+K)\times(L+K)\times(L+K)}; \text{ and } x \in \mathbb{R}^{(L+K)\times(L+K)\times(L+K)\times(L+K)\times(L+K)\times(L+K)\times(L+K)}; \text{ and } x \in \mathbb{R}^{(L+K)\times(L+K)\times(L+K)\times(L+K)\times(L+K)\times(L+K)\times(L+K)\times(L+K)\times(L$$

 $Q^{\pi_{u,w}^*}(s,a) \in \mathbb{R}^{L+K}$ is the value function evaluated with the policy $\pi_{u,w}^*$. (Proof: See Appendix D.)

Due to Theorem 3.4, the objective function $\mathcal{L}(u,w)$ in equation 7 is twice-differentiable w.r.t. (u,w). Note that $Q^{\pi^*_{u,w}}(s,a)$ in Theorem 3.4 is different from $Q^*_{u,w}(s,a)$ in equation 9. By definition in the entropy-regularized RL, $Q^*_{u,w}(s,a) \in \mathbb{R}$ is the cumulative scalarized return plus the cumulative entropy sum from $\pi^*_{u,w}$. On the other hand, $Q^{\pi^*_{u,w}}(s,a) \in \mathbb{R}^{L+K}$ is a vector-valued cumulative sum of unconstrained rewards and constrained rewards from $\pi^*_{u,w}$ without the entropy sum. Therefore, $[u;w]^\top Q^{\pi^*_{u,w}}(s,a)$ equals to $Q^*_{u,w}(s,a)$ minus the cumulative entropy sum of $\pi^*_{u,w}$.

A natural approach to solving the convex optimization problem in equation 7 is projected gradient descent, since the variables (u,w) lie in the convex set $\mathbb{R}^L_+ \times \Delta^K$. The convergence of projected gradient descent depends on the smoothness of the objective function (Boyd & Vandenberghe, 2004; Bubeck, 2015). In our case, $\mathcal{L}(u,w)$ satisfies the following smoothness property:

Theorem 3.5. For each $s, v_{u,w}^*(s)$ is smooth w.r.t. (u,w) on \mathbb{R}^{L+K} . In other words, $\nabla v_{u,w}^*(s)$ is Lipschitz continuous in $\|\cdot\|_2$. Furthermore, $\mathcal{L}(u,w)$ is α -smooth w.r.t. (u,w) on \mathbb{R}^{L+K} with $\alpha := \frac{1}{\beta(1-\gamma)} \sum_{m=1}^{L+K} \left(\frac{r_{\max}^{(m)}}{1-\gamma}\right)^2$. (Proof: See Appendix E.)

3.2 ALGORITHM AND CONVERGENCE ANALYSIS

Based on the foundation built in the previous section, we propose an algorithm for constrained MORL with max-min fairness. Note that we need to jointly update the weights (u,w) and the value function, which approximates $v_{u,w}^*$. We adopt the following update method alternating between update of the value function and the weights (u,w).

First, given a weight (u,w), we update the value function to realize equation 8. For this, we use an action value function Q, which approximates $Q_{u,w}^*$. Using the soft Bellman equation (Haarnoja et al., 2017), the action value function $Q_{u,w}^*$ in equation 9 is written as $Q_{u,w}^*(s,a) = \sum_{l=1}^L u_l c^{(l)}(s,a) + \sum_{k=1}^K w_k r^{(k)}(s,a) + \gamma \sum_{s'} T(s'|s,a) v_{u,w}^*(s'), \forall (s,a).$ If we plug this equation into the right-hand side of equation 8, we have $v_{u,w}^*(s) = [\mathcal{T}_{u,w} v_{u,w}^*](s) = \beta \log \sum_a \exp\left(\frac{Q_{u,w}^*(s,a)}{\beta}\right)$ for each s. Using this form of $v_{u,w}^*(s)$, we implement applying $\mathcal{T}_{u,w}$ as updating the Q-function with the following:

$$Q(s,a) \leftarrow [u;w]^{\top}[c;r] + \gamma \sum_{s'} T(s'|s,a)\beta \log \sum_{a'} \exp\left(\frac{Q(s',a')}{\beta}\right), \forall (s,a).$$
 (13)

We have shown that $\nabla_u v_{u,w}^*(s) = v_c^{\pi_{u,w}^*}(s)$, $\nabla_w v_{u,w}^*(s) = v_r^{\pi_{u,w}^*}(s)$ for each s, where we denote $v_c^{\pi_{u,w}^*}(s) \in \mathbb{R}^L$, $v_r^{\pi_{u,w}^*}(s) \in \mathbb{R}^K$ as the value functions evaluated with the policy $\pi_{u,w}^*$ for constrained reward c and unconstrained reward c, respectively. We compute an estimated gradient of $\nabla_{(u,w)}\mathcal{L}(u,w)$ at the current weight $(u,w)=(u^m,w^m)$ where $m=1,2,\cdots$ is the iteration index. Note that the policy is extracted from the Q-function based on the form equation 10. We then update (u,w) using projected gradient descent:

$$(u^{m+1}, w^{m+1}) = \mathcal{P}_{K,L}[(u^m, w^m) - l_w \nabla_{(u,w)} \mathcal{L}(u^m, w^m)]$$
(14)

where $l_{\rm w}$ is a learning rate for (u,w) and $\mathcal{P}_{K,L}[\cdot]$ is the projection onto the $\mathbb{R}^L_+ \times \Delta^K_-$. We use the convex optimization method from Wang & Carreira-Perpiñán (2013) to project onto the simplex Δ^K_- , and apply non-negativity clipping for projection onto \mathbb{R}^L_+ . Note that the projection onto Δ^K_- is numerically stable as it is fully deterministic and avoids randomized procedures. In addition, its complexity is $O(K\log K)$ (Wang & Carreira-Perpiñán, 2013) which is relatively lightweight compared to other components, due to the sublinear growth of the logarithmic term.

We iterate this process for each m, and the pseudocode of our algorithm is shown in Algorithm 1. We now provide our convergence analysis of Algorithm 1 under the following assumption.

Assumption There exists at least one state $s \in \mathcal{S}$ such that the centered action-value vectors in the set $S_{\text{center}}(s) := \left\{ \left. Q^{\pi_{u,w}^*}(s,a) - \mathbb{E}_{a' \sim \pi_{u,w}^*(\cdot|s)} [\left. Q^{\pi_{u,w}^*}(s,a') \right.] \right. : \ a \in \mathcal{A} \right\} \text{ span } \mathbb{R}^{K+L}.$

This condition fails only in degenerate multi-objective settings when for *every* state $s \in \mathcal{S}$, the set $S_{\text{center}}(s)$ lies entirely within an affine subspace of dimension less than K + L. Under this assumption,

Algorithm 1 Constrained Max-Min MORL Algorithm

```
271
             1: Q^0 \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|}: initialized Q-function, ITER: total iteration number, l_w: learning rate for the
272
                 update of weights (u, w)
273
             2: Initialize weights u^0 \in \mathbb{R}^L_+ and w^0 \in \Delta^K.
274
             3: for m=1,2,\cdots, ITER do
275
                    Q = Q^{m-1}
             4:
276
             5:
                    while not terminated do
277
             6:
                       Update Q in equation 13 with [u; w] = [u^m; w^m].
278
             7:
279
             8:
                    Q^m = Q
                    Compute \tilde{\nabla}_{(u,w)}\mathcal{L}(u^m,v^m), an estimated gradient of \nabla_{(u,w)}\mathcal{L}(u^m,w^m) using \pi^m(\cdot|s)=
             9:
281
                    softmax\{Q^m(s,\cdot)/\beta\} based on equation 11.
                    (u^{m+1}, w^{m+1}) = \mathcal{P}_{K,L}[(u^m, w^m) - l_w \tilde{\nabla}_{(u,w)} \mathcal{L}(u^m, w^m)].
283
           11: end for
           12: Return \pi(\cdot|s) = \operatorname{softmax}\{Q^{\text{ITER}}(s,\cdot)/\beta\}, \forall s.
284
285
```

the Hessian $H[\mathcal{L}(u,w)]$ is positive definite. (See Appendix F.1 for more details.) Let λ denote the minimum eigenvalue of $H[\mathcal{L}(u,w)]$, which satisfies $0 < \lambda \le \alpha$ (Bubeck, 2015). Theorem 3.6 provides a formal guarantee of convergence for Algorithm 1 under approximate Q-updates.

Theorem 3.6. Let (u^*, w^*) denote the optimal solution to equation 7. For each outer-loop index $m \geq 1$ in Algorithm 1, let $Q^*_{u^m,w^m}$ denote the fixed point of equation 13 with $[u;w] = [u^m;w^m]$, and let Q^m denote the Q-function after completing the m-th inner-loop update. For each m, assume $\|Q^m - Q^*_{u^m,w^m}\|_{\infty} < \epsilon$ for some $\epsilon > 0$. Then for $m \geq 1$,

$$||[u^m;w^m] - [u^*;w^*]||_2 \le (1 - \frac{\lambda}{\alpha})^m ||[u^0;w^0] - [u^*;w^*]||_2 + \frac{\sqrt{|\mathcal{S}|}}{\lambda} \sqrt{\sum_{i=1}^{K+L} \{r_{max}^{(i)}\}^2} \frac{1 + \gamma}{(1 - \gamma)^2} \epsilon.$$
 (15)

(Proof: See Appendix F.2.)

Theorem 3.6 establishes that the error decreases geometrically at rate $O\left((1-\frac{\lambda}{\alpha})^m\right)$, up to $O(\epsilon)$. (For completeness, Appendix F.3 provides the analysis of the degenerate case without *Assumption*.)

3.3 DISCUSSION

	w fixed	w learned
L=0	Unconst. weight-sum (Yang et al., 2019)	Unconst. max-min (Park et al., 2024)
$L \ge 1$	Const. weight-sum (Huang et al., 2021)	Const. max-min

Table 1: Generalizability of our framework to previous MORL settings

Our new framework is general enough to unify many existing MORL formulations. Note that we have two major design choices: (i) scalarization strategy: whether the preference vector w on K objectives used in the scalarization function is fixed or learned/adaptive, and (ii) whether constraints are present. Table 1 shows four different setups of our framework. Our framework covers unconstrained weightsum MORL with L=0 and fixed w, constrained weighted-sum MORL with $L\geq 1$ and fixed w, unconstrained max-min MORL with $L\geq 1$ and w learning.

4 RELATED WORK

The dominant approach in MORL is utility-based (Roijers et al., 2013; Hayes et al., 2022), where the goal is to determine an optimal policy $\pi^* = \arg\max_{\pi} f(J(\pi))$ given a non-decreasing scalarization function $f: \mathbb{R}^K \to \mathbb{R}$. For a linear scalarization function, each non-negative weight vector induces a scalarized MDP (Boutilier et al., 1999), leading to research efforts focused on learning a single

network capable of generating multiple optimal policies across the weight space (Abels et al., 2019; Yang et al., 2019; Basaklar et al., 2023; Hung et al., 2023; Lu et al., 2023; Park & Sung, 2025). For non-linear scalarization functions, formulating Bellman optimality equations becomes more complex due to the loss of linearity (Roijers et al., 2013; Hayes et al., 2022). The most relevant work to this paper is Park et al. (2024), which proposed a tractable approach to max-min MORL using Gaussian smoothing for gradient estimation. However, this method requires multiple network copies, which leads to an increased computational cost. Moreover, this method produces inexact gradients since Gaussian smoothing of a convex function yields a convex upper bound (Nesterov & Spokoiny, 2017). In contrast, our method provides direct, theoretically grounded gradient estimates and extends naturally to constrained MORL.

Many approaches to constrained MDPs reformulate the problem with a scalar reward (i.e., a special case of equation 2 and equation 3 with K=1 and without f) into an unconstrained one by augmenting the objective with a weighted sum of constraint violations, typically via a Lagrangian formulation (Achiam et al., 2017; Tessler et al., 2018; Paternain et al., 2019; Ha et al., 2020; Vaswani et al., 2022; Calvo-Fullana et al., 2023; Müller et al., 2024). The motivation for this line of work is that the Lagrangian relaxation exhibits no duality gap, even when the original problem is non-convex with respect to the policy (Paternain et al., 2019). Most methods in this category, therefore, rely on alternating updates between the policy and the Lagrange multipliers. However, these approaches do not consider the multi-objective reward setting in equation 2 and equation 3 with $K \geq 2$. Moreover, applying them directly to our setting is non-trivial, since $f = \min$ introduces non-differentiability in equation 2. To resolve this, we reformulate our problem as a convex program using occupancy measures and then derive another convex program equivalent to the dual problem, which serves as the basis for our MORL algorithm. In particular, we show that both the max-min criterion and the constraints can be satisfied by jointly updating the weights u and w, a simple yet effective approach that to our knowledge has not been explored in the constrained MDP literature.

Several recent works have incorporated constraints into MORL (Huang et al., 2021; Lin et al., 2024; Liu et al., 2025), but under settings different from our framework, which explicitly integrates max-min optimization. See Appendix G for details of these works.

5 EXPERIMENTS

In this section, we present experimental validations of our theoretical analysis and algorithm. Section 5.1 examines the convergence properties of our method in tabular settings. In Section 5.2, we further demonstrate the practical relevance of our approach through applications to edge computing resource allocation and multi-objective locomotion control.

5.1 TABULAR SETTINGS

We conducted experiments in tabular settings to evaluate the convergence of our algorithm. Constrained MOMDPs were randomly generated, after a feasibility check, within two widely used classes of structured MDPs. (See Appendix H.1 for details on the feasibility check.) First, bipartite state graphs partition the state space into two disjoint subsets, enforcing transitions between them at alternating time steps. This structure captures temporal dynamics in systems with role alternation or interleaving phases (Littman, 1994). Second, hierarchical MDPs organize the state space into multiple levels or stages, where transitions flow sequentially from one level to the next. This reflects tasks with subgoals or temporal abstraction (Dietterich, 2000).

The optimal value for each MOMDP was computed by solving equation 4, equation 5, and equation 6 with $\beta=0$ via linear programming (LP), and performance was evaluated as the error relative to these LP-optimal values. We compared our method, which computes $\nabla_u v_{u,w}^*(s)$ and $\nabla_w v_{u,w}^*(s)$ using Theorem 3.3, against a modified version of the Gaussian smoothing method from Park et al. (2024). We adapted this baseline to incorporate both max-min weights (w) and constraint weights (u). Importantly, we selected this baseline because Park et al. (2024) is, to our knowledge, the only prior work that explicitly tackles max-min MORL. Both methods follow the same alternating update scheme: (i) updating the policy using equation 13 and (ii) updating the weight vectors using projected gradient descent, until convergence with respect to (u,w). (See Appendix H.2 for further details on the baseline and experimental setup.)

	Bipartite	Hierarchical
Gaussian Smoothing	0.125 ± 0.003	0.101 ± 0.008
Ours	0.005 ± 0.003	0.003 ± 0.001

Table 2: Comparison of optimal value errors between algorithms

β	1.0	0.3	0.1	0.03	0.01	0.003	0.001
Bipartite	3.187	0.650	0.086	0.005	0.015	0.027	0.030
Hierarchical	1.559	0.295	0.037	0.004	0.003	0.013	0.013

Table 3: Optimal value errors of our algorithm across different values of β

Table 2 shows that our method consistently outperforms Gaussian smoothing, achieving substantially smaller errors across both structured MOMDPs. This improvement stems from the fact that Gaussian smoothing of a convex function produces another convex function that serves as an upper bound to the original. As discussed in Appendix H.3, the Gaussian smoothing baseline also incurs about N+1 times higher computational cost per weight update compared to our method, where N is the number of perturbed Q-tables used for smoothing. We further analyzed the effect of β on convergence. Table 3 shows that values of $\beta < 0.1$ produce stable convergence with relatively low sensitivity. In summary, our method is superior in accuracy and computation for constrained max-min optimization compared to Gaussian smoothing in tabular settings.

5.2 EXTENSION TO APPLICATIONS

In this section, we extend our algorithm to practical applications, specifically simulated edge computing resource allocation and locomotion control. To ensure stable gradient estimation of our algorithm in continuous state spaces, we parameterize a gradient network $g_{\theta}(s) \in \mathbb{R}^{L+K}$ to estimate $\nabla_u v_{u,w}^*(s)$ and $\nabla_w v_{u,w}^*(s)$, following Theorem 3.3. Implementation details, including gradient estimation and our constrained max-min algorithm for applications, are provided in Appendix I.1.

5.2.1 EDGE COMPUTING RESOURCE ALLOCATION

We consider a simulated edge computing resource allocation environment (Bae et al., 2020). The system includes $N_{\rm type}$ distinct user application types, and multiple mobile devices generate tasks according to these types and send them to an edge computing node. The edge computing node is equipped with multi-core CPUs and maintains $N_{\rm type}$ separate task queues, each associated with a specific application type. Incoming tasks from the mobile devices are sorted into these queues accordingly. Once tasks arrive, the edge computing node either processes them locally or offloads a portion to a cloud computing node through a dedicated communication link.

The unconstrained reward is an $N_{\rm type}$ -dimensional vector, where each entry corresponds to the negative value of the current queue length for a given application type to encourage queue minimization. Minimizing the delay of the worst-performing user group is crucial for maintaining smooth system operation (Zehavi et al., 2013; Saifullah et al., 2014; Wang et al., 2019). The cost is the total power consumption of the system, normalized by the environment. The goal is to control the system to minimize the maximum cumulative discounted sum of queue length across application types within each episode, while satisfying the system's power consumption constraint with its designed threshold value $C_{th} = 5.6$. (Additional details of the environment are given in Appendix I.2.)

We compare our algorithm against four baselines: (i) randomly selects one queue for allocation at each timestep (Random), (ii) unconstrained max-average SAC (MA-SAC) (Haarnoja et al., 2018), (iii) max-average SAC with a Lagrangian relaxation (MA-SAC-L) (Ha et al., 2020; Yang et al., 2021), and (iv) unconstrained max-min MORL algorithm adapted from Park et al. (2024) (Max-min). Notably, each of the baselines lacks either max-min fairness ((iii)), constraint handling ((iv)), or both ((i), (ii)). We report the mean performance computed across twelve random seeds. (See Appendices I.3 and I.4 for the implementation of the Max-min baseline and hyperparameter settings, respectively.)

Table 4 presents the cumulative cost sum and the total maximum queue length with $N_{\rm type}=3$. Compared to the Random baseline, MA-SAC reduces the total maximum queue length but still fails

Algorithm	Cost sum $(C_{th} = 5.6)$	$\begin{array}{c} \text{Maximum} \\ \text{queue length} \ (\downarrow) \end{array}$
Random MA-SAC	$5.9 \\ 5.8$	$72.4 \\ 46.5$
MA-SAC-L	$\underline{5.6}$	52.9
Ours Max-min	$\frac{5.6}{5.8}$	$\frac{37.9}{23.7}$

Table 4: Cumulative cost sum and total maximum queue length with $N_{\rm type}=3$: top two underlined

Figure 1: Comparison of queue length sums across queues for each algorithm

to satisfy the power consumption constraint, with its cost sum exceeding the threshold $C_{th}=5.6$. While MA-SAC-L satisfies the power constraint, it does so at the cost of a higher total maximum queue length compared to MA-SAC. As shown in Figure 1, our method substantially reduces the total maximum queue length relative to MA-SAC-L, while still adhering to the power constraint. We note that the Max-min algorithm violates the power constraint.

Table 5 shows that ablating the constraint-related u update causes constraint violations, while removing the max-min-related w update substantially increases the total maximum queue length. These results confirm that our method effectively balances max-min performance with constraint satisfaction.

Algorithm	Cost sum $(C_{th} = 5.6)$	$\begin{array}{c} \text{Maximum} \\ \text{queue length} \; (\downarrow) \end{array}$
Ours	5.6	37.9
w/o u update	5.8	33.7
w/o w update	5.5	52.7
w/o (u, w) upd.	5.8	44.7

In Appendix I.5, we scale the resource allocation environment to $N_{\text{type}} = 8$ task queues and

Table 5: Ablation study with $N_{\rm type}=3$

demonstrate that our method consistently balances max-min performance with constraint satisfaction.

5.2.2 Multi-objective Locomotion Control

We include MoAnt-v5 environment (Felten et al., 2023), where the agent learns locomotion to maximize x and y velocities while keeping energy consumption under a threshold. We consider an asymmetric case where movement in the x direction is attenuated by friction at rate 0.3. The velocities (v_x, v_y) , combined with bonus terms, constitute a 2-D reward, while the control cost is treated as a constraint. (See Appendix I.6 for details on hyperparameters.)

Table 6 shows that both our method and MA-SAC-L satisfy the constraints, but our method achieves superior max-min performance. In contrast, the other three

Algorithm	$\begin{array}{c} \text{Cost sum} \\ (C_{th} = 50) \end{array}$	Minimum return (↑)
Random	146.5	48.2
MA-SAC	275.3	98.8
MA-SAC-L	47.8	83.0
Ours	28.3	92.2
Max-min	111.7	92.7

Table 6: MoAnt-v5 results over five seeds with the two constraint-satisfying algorithms highlighted in **bold**

algorithms severely violate the constraints, as they do not explicitly account for constraint satisfaction. Overall, our algorithm balances constraint satisfaction and max-min fairness.

6 CONCLUSION

We have proposed a unified framework for constrained MORL that integrates max-min fairness with constraint satisfaction. Our approach offers flexibility in modeling problems that satisfy fairness and operational constraints. We established a theoretical foundation and developed an algorithm that demonstrates strong performance in both tabular settings and practical applications. By jointly addressing fairness and resource constraints, our work contributes to advancing sustainable AI, offering a compelling alternative to conventional approaches that focus solely on performance, often at the expense of equity and resource constraints. A broader impact of our work is discussed in Appendix J, and a discussion of limitations and future directions is provided in Appendix K.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our algorithm in Section 3.2 and Appendix I.1. Appendices H and I contain the experimental setup, fine-tuned hyperparameters, and infrastructure details. To ensure accessibility and reproducibility, we provide the source code for the resource allocation environment in the supplementary material. Furthermore, all theorems are presented in a self-contained manner, making it straightforward to verify the theoretical results.

REFERENCES

- Axel Abels, Diederik M. Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckelmacher. Dynamic weights in multi-objective deep reinforcement learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA*, volume 97 of *Proceedings of Machine Learning Research*, pp. 11–20. PMLR, 2019. URL http://proceedings.mlr.press/v97/abels19a.html.
- Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In *International conference on machine learning*, pp. 22–31. PMLR, 2017.
- Sohee Bae, Seungyul Han, and Youngchul Sung. A reinforcement learning formulation of the lyapunov optimization: Application to edge computing systems with queue stability. *CoRR*, abs/2012.07279, 2020. URL https://arxiv.org/abs/2012.07279.
- Toygun Basaklar, Suat Gumussoy, and Ümit Y. Ogras. PD-MORL: preference-driven multi-objective reinforcement learning algorithm. In *The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.* OpenReview.net, 2023. URL https://openreview.net/pdf?id=zS9sRyaPFlJ.
- Craig Boutilier, Thomas L. Dean, and Steve Hanks. Decision-theoretic planning: Structural assumptions and computational leverage. *J. Artif. Intell. Res.*, 11:1–94, 1999. doi: 10.1613/JAIR.575. URL https://doi.org/10.1613/jair.575.
- Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.
- Sébastien Bubeck. Convex optimization: Algorithms and complexity. 2015. URL https://arxiv.org/abs/1405.4980.
- Miguel Calvo-Fullana, Santiago Paternain, Luiz FO Chamon, and Alejandro Ribeiro. State augmented constrained reinforcement learning: Overcoming the limitations of learning with rewards. *IEEE Transactions on Automatic Control*, 69(7):4275–4290, 2023.
- Souradip Chakraborty, Jiahao Qiu, Hui Yuan, Alec Koppel, Dinesh Manocha, Furong Huang, Amrit S. Bedi, and Mengdi Wang. Maxmin-rlhf: Alignment with diverse human preferences. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024. URL https://openreview.net/forum?id=8tzjEMF0Vq.
- Fengdi Che, Chenjun Xiao, Jincheng Mei, Bo Dai, Ramki Gummadi, Oscar A. Ramirez, Christopher K. Harris, A. Rupam Mahmood, and Dale Schuurmans. Target networks and overparameterization stabilize off-policy bootstrapping with function approximation. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.*OpenReview.net, 2024. URL https://openreview.net/forum?id=R6GT1UDcOW.
- Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value function decomposition. *Journal of artificial intelligence research*, 13:227–303, 2000.
- Florian Felten, Lucas N. Alegre, Ann Nowé, Ana L. C. Bazzan, El Ghazali Talbi, Grégoire Danoy, and Bruno Castro da Silva. A toolkit for reliable benchmarking and research in multi-objective reinforcement learning. In *Proceedings of the 37th Conference on Neural Information Processing Systems (NeurIPS 2023)*, 2023.

Roy Fox, Ari Pakman, and Naftali Tishby. Taming the noise in reinforcement learning via soft updates. In Alexander Ihler and Dominik Janzing (eds.), *Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence, UAI 2016, June 25-29, 2016, New York City, NY, USA*. AUAI Press, 2016. URL http://auai.org/uai2016/proceedings/papers/219.pdf.

- Sehoon Ha, Peng Xu, Zhenyu Tan, Sergey Levine, and Jie Tan. Learning to walk in the real world with minimal human effort. *arXiv preprint arXiv:2002.08550*, 2020.
- Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with deep energy-based policies. In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017*, volume 70 of *Proceedings of Machine Learning Research*, pp. 1352–1361. PMLR, 2017. URL http://proceedings.mlr.press/v70/haarnoja17a.html.
- Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer G. Dy and Andreas Krause (eds.), *Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018*, volume 80 of *Proceedings of Machine Learning Research*, pp. 1856–1865. PMLR, 2018. URL http://proceedings.mlr.press/v80/haarnoja18b.html.
- Conor F. Hayes, Roxana Radulescu, Eugenio Bargiacchi, Johan Källström, Matthew Macfarlane, Mathieu Reymond, Timothy Verstraeten, Luisa M. Zintgraf, Richard Dazeley, Fredrik Heintz, Enda Howley, Athirai A. Irissappane, Patrick Mannion, Ann Nowé, Gabriel de Oliveira Ramos, Marcello Restelli, Peter Vamplew, and Diederik M. Roijers. A practical guide to multi-objective reinforcement learning and planning. *Auton. Agents Multi Agent Syst.*, 36(1):26, 2022. doi: 10.1007/S10458-022-09552-Y. URL https://doi.org/10.1007/s10458-022-09552-y.
- Roger A Horn and Charles R Johnson. *Matrix analysis*. Cambridge university press, 2012.
- Sandy H. Huang, Abbas Abdolmaleki, Giulia Vezzani, Philemon Brakel, Daniel J. Mankowitz, Michael Neunert, Steven Bohez, Yuval Tassa, Nicolas Heess, Martin A. Riedmiller, and Raia Hadsell. A constrained multi-objective reinforcement learning framework. In Aleksandra Faust, David Hsu, and Gerhard Neumann (eds.), *Conference on Robot Learning*, 8-11 November 2021, London, UK, volume 164 of Proceedings of Machine Learning Research, pp. 883–893. PMLR, 2021. URL https://proceedings.mlr.press/v164/huang22a.html.
- Wei Hung, Bo-Kai Huang, Ping-Chun Hsieh, and Xi Liu. Q-pensieve: Boosting sample efficiency of multi-objective RL through memory sharing of q-snapshots. In *The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL https://openreview.net/pdf?id=AwWaBXLIJE.
- Whiyoung Jung, Myungsik Cho, Jongeui Park, and Youngchul Sung. Quantile constrained reinforcement learning: A reinforcement learning framework constraining outage probability. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/2a07348a6a7b2c208ab5cblee0e78ab5-Abstract-Conference.html.
- Ubaid Ullah Khan, Naqqash Dilshad, Mubashir Husain Rehmani, and Tariq Umer. Fairness in cognitive radio networks: Models, measurement methods, applications, and future research directions. *J. Netw. Comput. Appl.*, 73:12–26, 2016. doi: 10.1016/J.JNCA.2016.07.008. URL https://doi.org/10.1016/j.jnca.2016.07.008.
- Jongmin Lee, Wonseok Jeon, Byung-Jun Lee, Joelle Pineau, and Kee-Eung Kim. Optidice: Offline policy optimization via stationary distribution correction estimation. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event*, volume 139 of *Proceedings of Machine Learning Research*, pp. 6120–6130. PMLR, 2021. URL http://proceedings.mlr.press/v139/lee21f.html.

- Qian Lin, Zongkai Liu, Danying Mo, and Chao Yu. An offline adaptation framework for constrained multi-objective reinforcement learning. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10-15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/fdb11be1acf5e3724737dd585e590146-Abstract-Conference.html.
- Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In *Machine learning proceedings 1994*, pp. 157–163. Elsevier, 1994.
- Ruohong Liu, Yuxin Pan, Linjie Xu, Lei Song, Pengcheng You, Yize Chen, and Jiang Bian. Efficient discovery of pareto front for multi-objective reinforcement learning. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=fDGPIuCdGi.
- Haoye Lu, Daniel Herman, and Yaoliang Yu. Multi-objective reinforcement learning: Convexity, stationarity and pareto optimality. In *The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.* OpenReview.net, 2023. URL https://openreview.net/pdf?id=TjEzIsyEsQ6.
- Adrian Müller, Pragnya Alatur, Volkan Cevher, Giorgia Ramponi, and Niao He. Truly no-regret learning in constrained MDPs. In *Forty-first International Conference on Machine Learning*, 2024. URL https://openreview.net/forum?id=hrWte3nlzr.
- Yurii E. Nesterov and Vladimir G. Spokoiny. Random gradient-free minimization of convex functions. *Found. Comput. Math.*, 17(2):527–566, 2017. doi: 10.1007/S10208-015-9296-2. URL https://doi.org/10.1007/s10208-015-9296-2.
- Giseung Park and Youngchul Sung. Reward dimension reduction for scalable multi-objective reinforcement learning. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=ssRdQimeUI.
- Giseung Park, Woohyeon Byeon, Seongmin Kim, Elad Havakuk, Amir Leshem, and Youngchul Sung. The max-min formulation of multi-objective reinforcement learning: From theory to a model-free algorithm. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.* OpenReview.net, 2024. URL https://openreview.net/forum?id=cY9q0bwiZx.
- Santiago Paternain, Luiz Chamon, Miguel Calvo-Fullana, and Alejandro Ribeiro. Constrained reinforcement learning has zero duality gap. *Advances in Neural Information Processing Systems*, 32, 2019.
- Martin L. Puterman. *Markov Decision Processes: Discrete Stochastic Dynamic Programming*. Wiley Series in Probability and Statistics. Wiley, 1994. ISBN 978-0-47161977-2. doi: 10.1002/9780470316887. URL https://doi.org/10.1002/9780470316887.
- Majid Raeis and Alberto Leon-Garcia. A deep reinforcement learning approach for fair traffic signal control. In 2021 IEEE international intelligent transportation systems conference (ITSC), pp. 2512–2518. IEEE, 2021.
- Kevin Regan and Craig Boutilier. Robust policy computation in reward-uncertain mdps using nondominated policies. In Maria Fox and David Poole (eds.), *Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010*, pp. 1127–1133. AAAI Press, 2010. doi: 10.1609/AAAI.V24I1.7740. URL https://doi.org/10.1609/aaai.v24i1.7740.
- Diederik M. Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-objective sequential decision-making. *J. Artif. Intell. Res.*, 48:67–113, 2013. doi: 10.1613/JAIR. 3987. URL https://doi.org/10.1613/jair.3987.
- Abusayeed Saifullah, David Ferry, Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher D. Gill. Parallel real-time scheduling of dags. *IEEE Trans. Parallel Distributed Syst.*, 25(12):3242–3252, 2014. doi: 10.1109/TPDS.2013.2297919.

- Mark Schmidt, Nicolas Le Roux, and Francis Bach. Convergence rates of inexact proximal-gradient methods for convex optimization. 2011. URL https://arxiv.org/abs/1109.2415.
 - David Silver. Lectures on reinforcement learning. URL: https://www.davidsilver.uk/teaching/, 2015.
 - Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
 - Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. *arXiv* preprint arXiv:1805.11074, 2018.
 - Sharan Vaswani, Lin Yang, and Csaba Szepesvari. Near-optimal sample complexity bounds for constrained MDPs. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL https://openreview.net/forum?id=ZJ7Lrtd12x_.
 - Kankan Wang, Xu Jiang, Nan Guan, Di Liu, Weichen Liu, and Qingxu Deng. Real-time scheduling of DAG tasks with arbitrary deadlines. *ACM Trans. Design Autom. Electr. Syst.*, 24(6):66:1–66:22, 2019. doi: 10.1145/3358603.
 - Weiran Wang and Miguel Á. Carreira-Perpiñán. Projection onto the probability simplex: An efficient algorithm with a simple proof, and an application. *CoRR*, abs/1309.1541, 2013. URL http://arxiv.org/abs/1309.1541.
 - Qisong Yang, Thiago D. Simão, Simon H. Tindemans, and Matthijs T. J. Spaan. WCSAC: worst-case soft actor critic for safety-constrained reinforcement learning. In *Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021*, pp. 10639–10646. AAAI Press, 2021. doi: 10.1609/AAAI.V35I12.17272. URL https://doi.org/10.1609/aaai.v35i12.17272.
 - Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective reinforcement learning and policy adaptation. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d'Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 14610–14621, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/4a46fbfca3f1465a27b210f4bdfe6ab3-Abstract.html.
 - Tong Yang, Shicong Cen, Yuting Wei, Yuxin Chen, and Yuejie Chi. Federated natural policy gradient and actor critic methods for multi-task reinforcement learning. 2024. URL https://arxiv.org/abs/2311.00201.
 - Ephraim Zehavi, Amir Leshem, Ronny Levanda, and Zhu Han. Weighted max-min resource allocation for frequency selective channels. *IEEE Trans. Signal Process.*, 61(15):3723–3732, 2013. doi: 10.1109/TSP.2013.2262278. URL https://doi.org/10.1109/TSP.2013.2262278.

A PROOF ON OPTIMALITY GAP

Proof. With a slight abuse of notation, let $J(\pi) := [J_1(\pi), \cdots, J_K(\pi)]^\top \in \mathbb{R}^K$ and let $\mathcal{H}(\pi)$ denote the expected cumulative entropy of π . We express the optimization of equation 2 and equation 3 with $f = \min$ as follows:

$$\max_{\pi \in \Pi_{\text{feas}}} \min_{1 \le k \le K} J_k(\pi) + \beta \mathcal{H}(\pi)$$
 (16)

where $\Pi_{\text{feas}} := \left\{\pi \left| \mathbb{E}_{\mu_0,\pi} \left[\sum_{t=0}^{\infty} \gamma^t c_t^{(l)} \right] \geq C^{(l)}, \quad \forall l=1,\ldots,L \right\} \right.$ and it is assumed to be non-empty under the typical assumption in constrained RL (Tessler et al., 2018; Ha et al., 2020).

Let the optimal solution to the regularized problem in equation 16 be $\pi_r^* := \arg\max_{\pi \in \Pi_{\text{feas}}} \min_{1 \le k \le K} J_k(\pi) + \beta \mathcal{H}(\pi) = \arg\max_{\pi \in \Pi_{\text{feas}}} \min_w \langle w, J(\pi) \rangle + \beta \mathcal{H}(\pi)$ where $\min_{w \in \Delta^K}$ is abbreviated as \min_w for brevity. Let $w^*(\pi) := \arg\min_w \langle w, J(\pi) \rangle$ and $w_r^* := w^*(\pi_r^*)$.

Let the optimal solution to the unregularized problem be $\pi^* := \arg\max_{\pi \in \Pi_{\text{feas}}} \min_w \langle w, J(\pi) \rangle$ and $w^* = w^*(\pi^*)$. Let the optimal max-min value of the unregularized problem be $V_{w^*}^{\pi^*} := \langle w^*, J(\pi^*) \rangle$. Similarly, let the optimal value of the regularized problem be $V_{w^*_r}^{\pi^*} := \langle w^*_r, J(\pi^*_r) \rangle$. For simplicity,

we abbreviate $\max_{\pi \in \Pi_{\text{feas}}}$ as \max_{π} below.

719
720 First, a lower bound is derived as follows:

$$V_{w^*}^{\pi_r^*} + \beta \mathcal{H}(\pi_r^*)$$

$$= \max_{\pi} \min_{w} \langle w, J(\pi) \rangle + \beta \mathcal{H}(\pi)$$

$$\geq \min_{w} \langle w, J(\pi^*) \rangle + \beta \mathcal{H}(\pi^*)$$

$$= \langle w^*, J(\pi^*) \rangle + \beta \mathcal{H}(\pi^*).$$

Since
$$0 \le \mathcal{H}(\pi) \le \frac{\log |\mathcal{A}|}{1-\gamma}$$
 for any π , we obtain $V_{w_r^*}^{\pi_r^*} - V_{w^*}^{\pi^*} \ge -\frac{\beta \log |\mathcal{A}|}{1-\gamma}$.

Next, an upper bound is derived as follows:

$$V_{w^*}^{730}$$

732
$$= \max_{\pi} \min_{w} \langle w, J(\pi) \rangle$$

$$\geq \min_{w} \langle w, J(\pi_r^*) \rangle$$

734
$$=\langle w_r^*, J(\pi_r^*) \rangle$$
.

736 Thus,
$$V_{w_r^*}^{\pi_r^*} - V_{w^*}^{\pi^*} \le 0$$
.

Combining these two bounds, we obtain the optimality value gap ranges as $0 \leq V_{w^*}^{\pi^*} - V_{w_r^*}^{\pi_r^*} \leq \frac{\beta \log |\mathcal{A}|}{1-\gamma}$.

B PROOF ON EQUIVALENT OPTIMIZATION

Proof. The dual problem of equation 4, equation 5, and equation 6 is rewritten as follows:

$$\min_{u \ge 0} \min_{w \ge 0, v} \min_{\xi \ge 0} \max_{\rho, b} \left[b(1 - \sum_{k=1}^{K} w_k) - \beta \sum_{s, a} \rho(s, a) \log \frac{\rho(s, a)}{\sum_{a'} \rho(s, a')} + \sum_{s} \mu_0(s) v(s) + \sum_{s, a} \xi(s, a) \rho(s, a) - \sum_{l=1}^{L} u_l C^{(l)} + \sum_{s, a} \rho(s, a) \left[\sum_{k=1}^{K} w_k r^{(k)}(s, a) + \sum_{l=1}^{L} u_l c^{(l)}(s, a) + \gamma \sum_{s'} T(s'|s, a) v(s') - v(s) \right] \right].$$
(17)

Here b is an auxiliary variable satisfying $\sum_{s,a} r^{(k)}(s,a) \rho(s,a) \geq b, \ 1 \leq k \leq K.$ Let $\eta_{u,v,w}(s,a) := \sum_{k=1}^K w_k r^{(k)}(s,a) + \sum_{l=1}^L u_l c^{(l)}(s,a) + \gamma \sum_{s'} T(s'|s,a) v(s') - v(s).$ We apply KKT conditions.

1. Stationarity condition gives

$$\forall (s, a), -\beta \log \frac{\rho(s, a)}{\sum_{a'} \rho(s, a')} + \xi(s, a) + \eta_{u, v, w}(s, a) = 0$$
(18)

and

$$1 - \sum_{k=1}^{K} w_k = 0. (19)$$

2. Complementary slackness condition gives

$$\forall (s, a), \ \xi(s, a)\rho(s, a) = 0. \tag{20}$$

From equation 18, we derive

$$\forall (s, a), \quad \frac{\rho(s, a)}{\sum_{a'} \rho(s, a')} = \exp\left(\frac{\xi(s, a) + \eta_{u, v, w}(s, a)}{\beta}\right) \tag{21}$$

so $\rho(s,a)>0$ and $\xi(s,a)=0$ from equation 20. Therefore

$$\forall (s, a), \ \frac{\rho(s, a)}{\sum_{a'} \rho(s, a')} = \exp\left(\frac{\eta_{u, v, w}(s, a)}{\beta}\right). \tag{22}$$

Inserting equation 19 and equation 22, we obtain:

$$\min_{u \in \mathbb{R}_{+}^{L}} \min_{v,w} \sum_{s} \mu_{0}(s)v(s) - \sum_{l=1}^{L} u_{l}C^{(l)}$$
(23)

$$\forall s, \ v(s) = \beta \log \sum_{a} \exp\left[\frac{1}{\beta} \left\{ \sum_{k=1}^{K} w_k r^{(k)}(s, a) + \sum_{l=1}^{L} u_l c^{(l)}(s, a) + \gamma \sum_{s'} T(s'|s, a) v(s') \right\} \right] := \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|s, a) v(s') \right] = \left[\mathcal{T}_{u,w} v(s) - \gamma \sum_{s'} T(s'|$$

$$\sum_{k=1}^{K} w_k = 1; \ w_k \ge 0 \ \forall 1 \le k \le K.$$
 (25)

where equation 24 is derived from $\sum_a \exp\left(\frac{\eta_{u,v,w}(s,a)}{\beta}\right) = 1$, $\forall s$, and strong duality holds under Slater condition (Boyd & Vandenberghe, 2004). Since $\mathcal{T}_{u,w}$ is a contraction mapping (Haarnoja et al., 2017; Fox et al., 2016), it has the unique fixed point $v_{u,w}^*$. Therefore, $v=v_{u,w}^*$ is the only feasible solution that satisfies equation 24 and we have the following:

$$\min_{u \in \mathbb{R}_{+}^{L}, w \in \Delta^{K}} \mathcal{L}(u, w) = \sum_{s} \mu_{0}(s) v_{u, w}^{*}(s) - \sum_{l=1}^{L} u_{l} C^{(l)}.$$
 (26)

Under Slater condition, this optimization attains the same optimal value as in the original convex optimization. Lastly, the convexity of this optimization is directly obtained from Theorem 4.1. in Park et al. (2024).

C PROOF OF DIFFERENTIABILITY

Proof. We first note that for the simplicity of notation, it is enough to show the theorem for the case of L=0 (i.e., with no constraints). This holds because, given $(u,w) \in \mathbb{R}^{L+K}$, the mapping $\mathcal{T}_{u,w}$ is defined by $[\mathcal{T}_{u,w}v](s) = \beta \log \sum_a \exp[\frac{1}{\beta} \{\sum_{l=1}^L u_l c^{(l)}(s,a) + \sum_{k=1}^K w_k r^{(k)}(s,a) + \sum_{s'} T(s'|s,a)v(s')\}], \forall s$, and we can regard the concatenation of c(s,a) and r(s,a) as a new vector reward of size L+K with its weight (u,w). Therefore, we use the notation of the following mapping $[\mathcal{T}_w v](s) = \beta \log \sum_a \exp[\frac{1}{\beta} \{\sum_{k=1}^K w_k r^{(k)}(s,a) + \gamma \sum_{s'} T(s'|s,a)v(s')\}], \forall s$.

Let $|\mathcal{S}|=p$. We define $F(w,v):=v-\mathcal{T}_wv$, $F:\mathbb{R}^K\times\mathbb{R}^p\to\mathbb{R}^p$. Let v_w^* be the unique fixed point of \mathcal{T}_w . Then $F(w,v_w^*)=v_w^*-\mathcal{T}_wv_w^*=0$. Here v_w^* is implicitly expressed w.r.t. w, and we aim to analyze v_w^* using implicit function theorem.

First of all, $F: \mathbb{R}^K \times \mathbb{R}^p \to \mathbb{R}^p$ is a continuously differentiable function. For each s, $F(w,v)(s) = v(s) - [\mathcal{T}_w v](s) = v(s) - \beta \log \sum_a \exp[\frac{1}{\beta} \{\sum_{k=1}^K w_k r^{(k)}(s,a) + \gamma \sum_{s'} T(s'|s,a) v(s')\}]$ which is a composition of linear, logarithm, summation, exponential, and linear functions.

Now we fix w and check whether the Jacobian matrix $\partial_v F(w,v)|_{v=v_w^*} \in \mathbb{R}^{p \times p}$ is invertible where $[\partial_v F(w,v)|_{v=v_w^*}]_{ij} = \frac{\partial F(w,v)(s_i)}{\partial v(s_j)}|_{v=v_w^*}$. We have $\partial_v F(w,v) = I_p - \partial_v [\mathcal{T}_w v]$ where I_p is the $p \times p$ identity matrix. Then

$$\frac{\partial [\mathcal{T}_w v](s_i)}{\partial v(s_i)}|_{v=v_w^*} = \gamma \mathbb{E}_{a \sim \pi_w^*(\cdot|s_i)}[T(s_j|s_i, a)]$$
(27)

where

$$\pi_w^*(a|s) = \frac{\exp\left[\frac{1}{\beta}\left\{\sum_{k=1}^K w_k r^{(k)}(s, a) + \gamma \sum_{s'} T(s'|s, a) v_w^*(s')\right\}\right]}{\sum_{a'} \exp\left[\frac{1}{\beta}\left\{\sum_{k=1}^K w_k r^{(k)}(s, a') + \gamma \sum_{s'} T(s'|s, a') v_w^*(s')\right\}\right]}.$$
 (28)

If we denote $T(\cdot|s,a) := [T(s_1|s,a) \cdots T(s_p|s,a)]$, we have

$$\partial_{v}F(w,v)|_{v=v_{w}^{*}} = I_{p} - \gamma \begin{bmatrix} \mathbb{E}_{a \sim \pi_{w}^{*}(\cdot|s_{1})}[T(\cdot|s_{1},a)] \\ \vdots \\ \mathbb{E}_{a \sim \pi_{w}^{*}(\cdot|s_{p})}[T(\cdot|s_{p},a)] \end{bmatrix} =: I_{p} - \gamma \begin{bmatrix} T^{\pi_{w}^{*}}(\cdot|s_{1}) \\ \vdots \\ T^{\pi_{w}^{*}}(\cdot|s_{p}) \end{bmatrix}$$
(29)

where $T^{\pi_w^*}(s_j|s_i) = \mathbb{E}_{a \sim \pi_w^*(\cdot|s_i)}[T(s_j|s_i,a)] =: [T^{\pi_w^*}]_{ij}$. Then $I_p - \gamma T^{\pi_w^*}$ is invertible since $T^{\pi_w^*}$ is a row-stochastic square matrix (Horn & Johnson, 2012).

Therefore, $\partial_v F(w,v)|_{v=v_w^*}$ is invertible. By implicit function theorem, there exists an open set $U\subset\mathbb{R}^K$ containing w such that there exists a unique continuously differentiable function $h:U\to\mathbb{R}^p$ such that $h(w)=v_w^*$ and F(w',h(w'))=0, i.e., $h(w')=\mathcal{T}_{w'}h(w')$ for all $w'\in U$. Since h(w') is the unique fixed point of $\mathcal{T}_{w'}$, $h(w')=v_{w'}^*$, $\forall w'\in U$. If we use the implicit function theorem for all $w\in\mathbb{R}^K$, we can conclude that $v=v_w^*$ is a unique continuously differentiable function in $w\in\mathbb{R}^K$ that satisfies $v=\mathcal{T}_w v$.

Moreover, for $1 \le k \le K$,

$$\frac{\partial [\mathcal{T}_w v](s_i)}{\partial w_{\iota}}|_{v=v_w^*} = \mathbb{E}_{a \sim \pi_w^*(\cdot|s_i)}[r^{(k)}(s_i, a)]. \tag{30}$$

With a slight abuse of notation, if we denote $r(s, a) := [r^{(1)}(s, a) \cdots r^{(K)}(s, a)]$, we have

$$\partial_w F(w,v)|_{v=v_w^*} = -\begin{bmatrix} \mathbb{E}_{a \sim \pi_w^*(\cdot|s_1)}[r(s_1,a)] \\ \vdots \\ \mathbb{E}_{a \sim \pi_w^*(\cdot|s_p)}[r(s_p,a)] \end{bmatrix} =: -\begin{bmatrix} r^{\pi_w^*}(s_1) \\ \vdots \\ r^{\pi_w^*}(s_p) \end{bmatrix}$$
(31)

where $r^{\pi_w^*}(s) = \mathbb{E}_{a \sim \pi_w^*(\cdot|s)}[r(s,a)] \in \mathbb{R}^{1 \times K}$. By implicit function theorem, we have

$$\begin{bmatrix} \nabla_w v_w^*(s_1)^{\top} \\ \vdots \\ \nabla_w v_w^*(s_p)^{\top} \end{bmatrix} = -[\partial_v F(w, v)|_{v = v_w^*}]^{-1} \partial_w F(w, v)|_{v = v_w^*} = (I_p - \gamma T^{\pi_w^*})^{-1} r^{\pi_w^*}. \tag{32}$$

Note that the k-th $(1 \le k \le K)$ column of equation 32 is equivalent to the policy evaluation of π_w^* considering a scalar reward function $r^{(k)}$ (Silver, 2015; Sutton & Barto, 2018). We denote the value function as $v_k^{\pi_w^*} \in \mathbb{R}^p$. Then

$$\frac{\partial v_w^*(s)}{\partial w_k} = v_k^{\pi_w^*}(s), \ \forall s. \tag{33}$$

If we denote $v^{\pi_w^*}(s) = [v_1^{\pi_w^*}(s), \cdots, v_K^{\pi_w^*}(s)]^{\top} \in \mathbb{R}^K$ for all s, then $v^{\pi_w^*}(s)$ is the value function evaluated with the policy π_w^* in a given MOMDP. We have

$$\nabla_w v_w^*(s) = v^{\pi_w^*}(s), \ \forall s. \tag{34}$$

For the case of L>0, the only difference is that π_w^* is changed to

$$\pi_{u,w}^{*}(a|s) = \frac{\exp\left[\frac{1}{\beta}\left\{\sum_{l=1}^{L} u_{l} c^{(l)}(s, a) + \sum_{k=1}^{K} w_{k} r^{(k)}(s, a) + \gamma \sum_{s'} T(s'|s, a) v_{u,w}^{*}(s')\right\}\right]}{\sum_{a'} \exp\left[\frac{1}{\beta}\left\{\sum_{l=1}^{L} u_{l} c^{(l)}(s, a') + \sum_{k=1}^{K} w_{k} r^{(k)}(s, a') + \gamma \sum_{s'} T(s'|s, a') v_{u,w}^{*}(s')\right\}\right]}$$
(35)

where $v_{u,w}^*$ is the fixed point of the operator $\mathcal{T}_{u,w}$:

$$\forall s, [\mathcal{T}_{u,w}v](s) = \beta \log \sum_{a} \exp\left[\frac{1}{\beta} \left\{ \sum_{l=1}^{L} u_{l} c^{(l)}(s, a) + \sum_{k=1}^{K} w_{k} r^{(k)}(s, a) + \gamma \sum_{s'} T(s'|s, a) v(s') \right\} \right]$$
(36)

and the column size of $r^{\pi_{u,w}^*}$ is L+K, not K. We denote $v_c^{\pi_{u,w}^*}(s) \in \mathbb{R}^L$, $v_r^{\pi_{u,w}^*}(s) \in \mathbb{R}^K$ as the value functions evaluated with the policy $\pi_{u,w}^*$ for constrained reward c and unconstrained reward r, respectively. Finally, we have

$$\nabla_u v_{u,w}^*(s) = v_c^{\pi_{u,w}^*}(s), \ \nabla_w v_{u,w}^*(s) = v_r^{\pi_{u,w}^*}(s), \ \forall s.$$
 (37)

D PROOF OF TWICE-DIFFERENTIABILITY

Proof. Here we also use the implicit function theorem and follow a similar logic in the proof of differentiability in Appendix C. Let $|\mathcal{S}|=p$. We show the theorem for the case of L=0 to guarantee notational simplicity. For each $1\leq i\leq K$, we want to show that $\frac{\partial v_w^*}{\partial w_i}:=[\frac{\partial v_w^*(s_1)}{\partial w_i},\cdots,\frac{\partial v_w^*(s_p)}{\partial w_i}]^\top\in\mathbb{R}^p$ is differentiable in $w\in\mathbb{R}^K$. From the result in Appendix C, we have

$$\frac{\partial v_w^*}{\partial w_i} = v_i^{\pi_w^*} \tag{38}$$

where $v_i^{\pi_w^*} \in \mathbb{R}^p$ is the value function evaluated with the policy π_w^* in equation 28 with the i-th reward $r^{(i)}$. Let $r_i^{\pi_w^*}(s) = \mathbb{E}_{a \sim \pi_w^*(\cdot|s)}[r^{(i)}(s,a)] \in \mathbb{R}$. From equation 32, we have

$$v_i^{\pi_w^*} = (I_p - \gamma T^{\pi_w^*})^{-1} r_i^{\pi_w^*}$$
(39)

or equivalently,

$$v_i^{\pi_w^*} = r_i^{\pi_w^*} + \gamma T^{\pi_w^*} v_i^{\pi_w^*} =: \mathcal{T}_w^* v_i^{\pi_w^*}. \tag{40}$$

We define $F(w,v) := v - \mathcal{T}_w^* v$, $F : \mathbb{R}^K \times \mathbb{R}^p \to \mathbb{R}^p$. Then $F(w,v_i^{\pi_w^*}) = v_i^{\pi_w^*} - \mathcal{T}_w v_i^{\pi_w^*} = 0$. Here $v_i^{\pi_w^*}$ is the unique fixed point of \mathcal{T}_w^* and is implicitly expressed w.r.t. w, and we aim to analyze $v_i^{\pi_w^*}$ using implicit function theorem.

First of all, $F: \mathbb{R}^K \times \mathbb{R}^p \to \mathbb{R}^p$ is a continuously differentiable function. For each s, $F(w,v)(s) = v(s) - [\mathcal{T}_w^*v](s) = v(s) - [r_i^{\pi_w^*}(s) + \gamma \sum_{s'} T^{\pi_w^*}(s'|s)v(s')] = v(s) - \sum_a \pi_w^*(a|s)[r^{(i)}(s,a) + \gamma \sum_{s'} T(s'|s,a)v(s')]$. As seen in equation 28, π_w^* contains v_w^* which is continuously differentiable in w (as a result of the proof in Appendix C), and π_w^* is a composition of quotient, exponential, summation and linear functions of w and v_w^* .

Now we fix w and check whether the Jacobian matrix $\partial_v F(w,v)|_{v=v_i^{\pi_w^*}} \in \mathbb{R}^{p \times p}$ is invertible where $[\partial_v F(w,v)|_{v=v_i^{\pi_w^*}}]_{ij} = \frac{\partial F(w,v)(s_i)}{\partial v(s_j)}|_{v=v_i^{\pi_w^*}}$. We have $\partial_v F(w,v) = I_p - \partial_v [\mathcal{T}_w^* v]$ where I_p is the $p \times p$ identity matrix. Then

$$\frac{\partial [\mathcal{T}_w^* v](s_i)}{\partial v(s_j)}\Big|_{v=v_i^{\pi_w^*}} = \gamma \mathbb{E}_{a \sim \pi_w^*(\cdot|s_i)}[T(s_j|s_i, a)]. \tag{41}$$

If we denote $T(\cdot|s,a) := [T(s_1|s,a) \cdots T(s_p|s,a)]$, we have

$$\left. \partial_{v} F(w,v) \right|_{v=v_{i}^{\pi_{w}^{*}}} = I_{p} - \gamma \begin{bmatrix} \mathbb{E}_{a \sim \pi_{w}^{*}(\cdot|s_{1})}[T(\cdot|s_{1},a)] \\ \vdots \\ \mathbb{E}_{a \sim \pi_{w}^{*}(\cdot|s_{p})}[T(\cdot|s_{p},a)] \end{bmatrix} =: I_{p} - \gamma \begin{bmatrix} T^{\pi_{w}^{*}}(\cdot|s_{1}) \\ \vdots \\ T^{\pi_{w}^{*}}(\cdot|s_{p}) \end{bmatrix}$$
(42)

where $T^{\pi_w^*}(s_j|s_i) = \mathbb{E}_{a \sim \pi_w^*(\cdot|s_i)}[T(s_j|s_i,a)] =: [T^{\pi_w^*}]_{ij}$. Then $I_p - \gamma T^{\pi_w^*}$ is invertible since $T^{\pi_w^*}$ is a row-stochastic square matrix (Horn & Johnson, 2012).

Therefore, $\partial_v F(w,v)|_{v=v_i^{\pi_w^*}}$ is invertible. By implicit function theorem, there exists an open set $U\subset\mathbb{R}^K$ containing w such that there exists a unique continuously differentiable function $h:U\to\mathbb{R}^p$ such that $h(w)=v_i^{\pi_w^*}$ and F(w',h(w'))=0, i.e., $h(w')=\mathcal{T}_{w'}^*h(w')$ for all $w'\in U$. Since h(w') is the unique fixed point of $\mathcal{T}_{w'}^*$, $h(w')=v_i^{\pi_w^*}$, $\forall w'\in U$. If we use the implicit function theorem for all $w\in\mathbb{R}^K$, we can conclude that $v=v_i^{\pi_w^*}$ is a unique continuously differentiable function in $w\in\mathbb{R}^K$ that satisfies $v=\mathcal{T}_w^*v$.

Now, for $1 \leq j \leq K$, we aim to calculate $\frac{\partial [\mathcal{T}_w^* v](s)}{\partial w_j}\big|_{v=v_i^{\pi_w^*}}$. For notational simplicity, let $Q_w^*(s,a) := \sum_{k=1}^K w_k r^{(k)}(s,a) + \gamma \sum_{s'} T(s'|s,a) v_w^*(s')$. Then we express π_w^* as follows:

$$\pi_w^*(a|s) = \frac{\exp\left[\frac{1}{\beta} \{Q_w^*(s, a)\}\right]}{\sum_{a'} \exp\left[\frac{1}{\beta} \{Q_w^*(s, a')\}\right]}.$$
(43)

We also have

$$\frac{\partial Q_w^*(s,a)}{\partial w_j} = r^{(j)}(s,a) + \gamma \sum_{s'} T(s'|s,a) \frac{\partial v_w^*(s')}{\partial w_j} = r^{(j)}(s,a) + \gamma \sum_{s'} T(s'|s,a) v_j^{\pi_w^*}(s') := Q_j^{\pi_w^*}(s,a). \tag{44}$$

In other words, we denote $Q_j^{\pi_w^*}$ as the action-value function evaluated with π_w^* for a scalar reward function $r^{(j)}$. Then

$$\frac{\partial [\mathcal{T}_w^* v](s)}{\partial w_j} \Big|_{v=v_i^{\pi_w^*}} = \sum_a Q_i^{\pi_w^*}(s, a) \frac{\partial \pi_w^*(a|s)}{\partial w_j}$$

$$\tag{45}$$

which is equivalent to

$$\frac{\partial [\mathcal{T}_{w}^{*}v](s)}{\partial w_{j}}\big|_{v=v_{i}^{\pi_{w}^{*}}} = \frac{1}{\beta} \sum_{a} Q_{i}^{\pi_{w}^{*}}(s,a) \left[\pi_{w}^{*}(a|s) Q_{j}^{\pi_{w}^{*}}(s,a) - \pi_{w}^{*}(a|s) \sum_{a'} \{\pi_{w}^{*}(a'|s) Q_{j}^{\pi_{w}^{*}}(s,a')\} \right]$$
(46)

and we have

$$\frac{\partial [\mathcal{T}_{w}^{*}v](s)}{\partial w_{j}}\big|_{v=v_{i}^{\pi_{w}^{*}}} = \frac{1}{\beta} \left[\mathbb{E}_{a \sim \pi_{w}^{*}(\cdot|s)}[Q_{i}^{\pi_{w}^{*}}(s,a)Q_{j}^{\pi_{w}^{*}}(s,a)] - \mathbb{E}_{a \sim \pi_{w}^{*}(\cdot|s)}[Q_{i}^{\pi_{w}^{*}}(s,a)]\mathbb{E}_{a \sim \pi_{w}^{*}(\cdot|s)}[Q_{j}^{\pi_{w}^{*}}(s,a)] \right] \right]. \tag{47}$$

By implicit function theorem, we have

$$\begin{bmatrix} \nabla_{w} \frac{\partial v_{w}^{*}(s_{1})}{\partial w_{i}}^{\top} \\ \vdots \\ \nabla_{w} \frac{\partial v_{w}^{*}(s_{p})}{\partial w_{i}}^{\top} \end{bmatrix} = -[\partial_{v} F(w, v)|_{v = v_{i}^{\pi_{w}^{*}}}]^{-1} \partial_{w} F(w, v)|_{v = v_{i}^{\pi_{w}^{*}}} = \frac{1}{\beta} (I_{p} - \gamma T^{\pi_{w}^{*}})^{-1} E_{i}^{\pi_{w}^{*}}$$
(48)

where $E_i^{\pi_w^*}$ is a $p \times K$ matrix where for each row corresponding to s, the j-th element is $\mathbb{E}_{a \sim \pi_w^*(\cdot|s)}[Q_i^{\pi_w^*}(s,a)Q_j^{\pi_w^*}(s,a)] - \mathbb{E}_{a \sim \pi_w^*(\cdot|s)}[Q_i^{\pi_w^*}(s,a)]\mathbb{E}_{a \sim \pi_w^*(\cdot|s)}[Q_j^{\pi_w^*}(s,a)]\}$. This formulation holds for each $1 \le i \le K$.

Therefore, we construct a $p \times K \times K$ tensor, say $B^{\pi_w^*}$, by stacking $\{E_i^{\pi_w^*}\}_i$ along the new (third) dimension. Then along the first dimension of size p, for each s, let $B^{\pi_w^*}(s) \in \mathbb{R}^{K \times K}$ be the corresponding slice of B. Let $Q^{\pi_w^*}(s,a) = [Q_1^{\pi_w^*}(s,a),\cdots,Q_K^{\pi_w^*}(s,a)]^{\top} \in \mathbb{R}^K$ be the action-value function evaluated with π_w^* for vector reward r. Then we have

$$B^{\pi_w^*}(s) = \mathbb{E}_{a \sim \pi_w^*(\cdot|s)} \left[(Q^{\pi_w^*}(s, a) - \mathbb{E}_{a' \sim \pi_w^*(\cdot|s)} [Q^{\pi_w^*}(s, a')]) (Q^{\pi_w^*}(s, a) - \mathbb{E}_{a' \sim \pi_w^*(\cdot|s)} [Q^{\pi_w^*}(s, a')])^\top \right]$$
(49)

which is the covariance matrix of $Q^{\pi_w^*}(s,\cdot)$ over the probability distribution $\pi_w^*(\cdot|s)$. Let s_k correspond to the k-th row of $T^{\pi_w^*}$ $(1 \le k \le p)$. Then we have the following Hessian formulation for s_k :

$$H[v_w^*(s_k)] = \frac{1}{\beta} \sum_{l=1}^{P} [(I_p - \gamma T^{\pi_w^*})^{-1}]_{kl} B^{\pi_w^*}(s_l).$$
 (50)

For the case of L>0, the only difference is that π_w^* is changed to

$$\pi_{u,w}^*(a|s) = \frac{\exp\left[\frac{1}{\beta}\left\{\sum_{l=1}^L u_l c^{(l)}(s,a) + \sum_{k=1}^K w_k r^{(k)}(s,a) + \gamma \sum_{s'} T(s'|s,a) v_{u,w}^*(s')\right\}\right]}{\sum_{a'} \exp\left[\frac{1}{\beta}\left\{\sum_{l=1}^L u_l c^{(l)}(s,a') + \sum_{k=1}^K w_k r^{(k)}(s,a') + \gamma \sum_{s'} T(s'|s,a') v_{u,w}^*(s')\right\}\right]}$$

where $v_{u,w}^*$ is the fixed point of the operator $\mathcal{T}_{u,w}$:

$$\forall s, \ [\mathcal{T}_{u,w}v](s) = \beta \log \sum_{a} \exp\left[\frac{1}{\beta} \left\{ \sum_{l=1}^{L} u_{l} c^{(l)}(s,a) + \sum_{k=1}^{K} w_{k} r^{(k)}(s,a) + \gamma \sum_{s'} T(s'|s,a) v(s') \right\} \right]$$
(52)

and the size of $B^{\pi^*_{u,w}}(s)$ is $(L+K)\times (L+K)$, not $K\times K$, defined by $Q^{\pi^*_{u,w}}(s,a)\in \mathbb{R}^{L+K}$ which is the action-value function evaluated with $\pi^*_{u,w}$ for the concatenated vector function of constrained reward c and unconstrained reward r. Finally, we have

$$H[v_{u,w}^*(s_k)] = \frac{1}{\beta} \sum_{l=1}^p [(I_p - \gamma T^{\pi_{u,w}^*})^{-1}]_{kl} B^{\pi_{u,w}^*}(s_l).$$
 (53)

E PROOF OF SMOOTHNESS

Proof. Let a=(u',w') and b=(u'',w'') in \mathbb{R}^{L+K} . By the differentiability of $\nabla v_{u,w}^*(s)$ proved in Theorem 3.4, we use generalized mean value inequality in Banach spaces and have

$$\|\nabla v_{u,w}^*(s)|_{(u,w)=b} - \nabla v_{u,w}^*(s)|_{(u,w)=a}\|_2 \le \sup_{t \in [0,1]} \|H[v_{u,w}^*(s)]|_{(u,w)=a+t(b-a)}\|_2 \|b-a\|_2$$
 (54)

Let $\lambda_{\max}(A)$ be the maximum eigenvalue of a real symmetric matrix A. For each s_k $(1 \le k \le p)$, the eigenvalues of $H[v_{u,w}^*(s_k)]$ are nonnegative. Since trace operator is additive, we have

$$||H[v_{u,w}^*(s_k)]||_2 = \lambda_{\max}(H[v_{u,w}^*(s_k)]) \le \text{Tr}(H[v_{u,w}^*(s_k)]) = \frac{1}{\beta} \sum_{l=1}^p [(I_p - \gamma T^{\pi_{u,w}^*})^{-1}]_{kl} \text{Tr}(B^{\pi_{u,w}^*}(s_l)).$$
(55)

For each s, we also have

$$\operatorname{Tr}(B^{\pi_{u,w}^*}(s)) = \sum_{k=1}^{L+K} \operatorname{Var}(Q_k^{\pi_{u,w}^*}(s,a)) \leq \sum_{k=1}^{L+K} \mathbb{E}[|Q_k^{\pi_{u,w}^*}(s,\cdot)|^2] \leq \sum_{k=1}^{L+K} \left(\frac{r_{\max}^{(k)}}{1-\gamma}\right)^2. \tag{56}$$

Since $(I_p - \gamma T^{\pi^*_{u,w}})^{-1} = \sum_{i=0}^{\infty} (\gamma T^{\pi^*_{u,w}})^i$ and each $(T^{\pi^*_{u,w}})^i$ is a probability transition matrix,

$$||H[v_{u,w}^*(s_k)]||_2 \le \frac{1}{\beta} \sum_{m=1}^{L+K} \left(\frac{r_{\max}^{(m)}}{1-\gamma}\right)^2 \left(\sum_{i=0}^{\infty} \gamma^i \sum_{l=1}^p (T^{\pi_{u,w}^*})_{kl}^i\right) = \frac{1}{\beta(1-\gamma)} \sum_{m=1}^{L+K} \left(\frac{r_{\max}^{(m)}}{1-\gamma}\right)^2.$$
(57)

It should be noted that $||H[v_{u,w}^*(s_k)]||_2$ is uniformly bounded regardless of s_k and (u,w). Therefore, $\nabla v_{u,w}^*(s)$ is Lipschitz continuous in $||\cdot||_2$ from equation 54.

F CONVERGENCE ANALYSIS

F.1 ASSUMPTION FOR ACTION-VALUE NONDEGENERACY

Assumption There exists at least one state $s \in \mathcal{S}$ such that the centered action-value vectors $\{Q^{\pi_{u,w}^*}(s,a) - \mathbb{E}_{a' \sim \pi_{u,w}^*(\cdot|s)}[Q^{\pi_{u,w}^*}(s,a')] : a \in \mathcal{A}\}$ span \mathbb{R}^{K+L} .

This condition fails only in degenerate multi-objective settings when for *every* state $s \in \mathcal{S}$, the set $\left\{Q^{\pi_{u,w}^*}(s,a) - \mathbb{E}_{a' \sim \pi_{u,w}^*(\cdot|s)}[Q^{\pi_{u,w}^*}(s,a')] : a \in \mathcal{A}\right\}$ lies entirely within an affine subspace of dimension less than K + L (e.g., the size of an action set is smaller than the number of objectives).

Then
$$B^{\pi_{u,w}^*}(s) = \mathbb{E}_{a \sim \pi_{u,w}^*(\cdot|s)} \Big[(Q^{\pi_{u,w}^*}(s,a) - \mathbb{E}_{a' \sim \pi_{u,w}^*(\cdot|s)} [Q^{\pi_{u,w}^*}(s,a')]) (Q^{\pi_{u,w}^*}(s,a) - \mathbb{E}_{a' \sim \pi_{u,w}^*(s)} [Q^{\pi_{u,w}^*}(s,a')] \Big] \Big] \Big] \Big] + \mathbb{E}_{a \sim \pi_{u,w}^*(s)} \Big[(Q^{\pi_{u,w}^*}(s,a) - \mathbb{E}_{a' \sim \pi_{u,w}^*(s)} [Q^{\pi_{u,w}^*}(s,a')] + \mathbb{E}_{a' \sim \pi_{u,w}^*(s)} [Q^{\pi_{u,w}^*}(s,a')] \Big] \Big[(Q^{\pi_{u,w}^*}(s,a) - \mathbb{E}_{a' \sim \pi_{u,w}^*(s)} [Q^{\pi_{u,w}^*}(s,a')] + \mathbb{E}_{a' \sim \pi_{u,w}^*(s)} [Q^{\pi_{u,w}^*}(s,a')] \Big] \Big] \Big] \Big] \Big] \Big] \Big] \Big] \Big] \Big[(Q^{\pi_{u,w}^*}(s,a) - \mathbb{E}_{a' \sim \pi_{u,w}^*(s)} [Q^{\pi_{u,w}^*}(s,a')] + \mathbb{E}_{a' \sim \pi_{u,w}^*(s)} [Q^{\pi_{u,w}^*(s)}(s,a')] \Big] \Big] \Big] \Big] \Big] \Big] \Big] \Big] \Big] \Big[(Q^{\pi_{u,w}^*}(s,a') - \mathbb{E}_{a' \sim \pi_{u,w}^*(s)} [Q^{\pi_{u,w}^*(s)}(s,a')] \Big] \Big] \Big] \Big] \Big] \Big] \Big] \Big[(Q^{\pi_{u,w}^*(s)}(s,a') - \mathbb{E}_{a' \sim \pi_{u,w}^*(s)} [Q^{\pi_{u,w}^*(s)}(s,a')] \Big] \Big] \Big] \Big] \Big] \Big] \Big[(Q^{\pi_{u,w}^*(s)}(s,a') - \mathbb{E}_{a' \sim \pi_{u,w}^*(s)} [Q^{\pi_{u,w}^*(s)}(s,a')] \Big] \Big] \Big] \Big] \Big[(Q^{\pi_{u,w}^*(s)}(s,a') - \mathbb{E}_{a' \sim \pi_{u,w}^*(s)} [Q^{\pi_{u,w}^*(s)}(s,a')] \Big] \Big] \Big] \Big] \Big[(Q^{\pi_{u,w}^*(s)}(s,a') - \mathbb{E}_{a' \sim \pi_{u,w}^*(s)} [Q^{\pi_{u,w}^*(s)}(s,a')] \Big] \Big] \Big] \Big] \Big[(Q^{\pi_{u,w}^*(s)}(s,a') - \mathbb{E}_{a' \sim \pi_{u,w}^*(s)} [Q^{\pi_{u,w}^*(s)}(s,a')] \Big] \Big] \Big] \Big[(Q^{\pi_{u,w}^*(s)}(s,a') - \mathbb{E}_{a' \sim \pi_{u,w}^*(s)} [Q^{\pi_{u,w}^*(s)}(s,a')] \Big] \Big] \Big] \Big[(Q^{\pi_{u,w}^*(s)}(s,a') - \mathbb{E}_{a' \sim \pi_{u,w}^*(s)} [Q^{\pi_{u,w}^*(s)}(s,a')] \Big] \Big] \Big] \Big] \Big[(Q^{\pi_{u,w}^*(s)}(s,a') - \mathbb{E}_{a' \sim \pi_{u,w}^*(s)} \Big] \Big[(Q^{\pi_{u,w}^*(s)}(s,a') - \mathbb{E}_{a' \sim \pi_{u,w}^*(s)} \Big] \Big] \Big[(Q^{\pi_{u,w}^*(s)}(s,a') - \mathbb{E}_{a' \sim \pi_{u,w}^*(s)} \Big] \Big[(Q^{\pi_{u,w}^*(s)}(s,a') - \mathbb{E}_{a' \sim \pi_{u,w}^*(s)} \Big] \Big] \Big[(Q^{\pi_{u,w}^*(s)}(s,a') - \mathbb{E}_{a' \sim \pi_{u,w}^*(s)} \Big] \Big[(Q^{\pi_{u,w}^*(s)}(s,a') - \mathbb{E}_{a' \sim \pi_{u,w}^*(s)} \Big] \Big] \Big[(Q^{\pi_{u,w}^*(s)}(s,a') - \mathbb{E}_{a' \sim \pi_{u,w}^*(s)} \Big] \Big] \Big[(Q^{\pi_{u,w}^*(s)}(s,a') - \mathbb{E}_{a'$$

 $\mathbb{E}_{a' \sim \pi_{u,w}^*(\cdot|s)}[Q^{\pi_{u,w}^*}(s,a')])^{\top}$ $\in \mathbb{R}^{(L+K)\times(L+K)}$ is positive definite. This is because (i) $\pi_{u,w}^*(a|s) > 0$ for all a (equation 10, which has this favorable property that facilitate analysis),

and (ii) for any
$$y \in \mathbb{R}^{K+L}$$
 with $y \neq \mathbf{0}$, $y^{\top}B^{\pi_{u,w}^{*}}(s)y = \sum_{a} \pi_{u,w}^{*}(a|s) \bigg(y^{\top}(Q^{\pi_{u,w}^{*}}(s,a) - Q^{\pi_{u,w}^{*}}(s)) \bigg) \bigg)$

$$\mathbb{E}_{a' \sim \pi_{u,w}^*(\cdot|s)}[Q^{\pi_{u,w}^*}(s,a')]) \bigg)^2 > 0 \text{ as at least one } a \text{ should satisfy } y^\top (Q^{\pi_{u,w}^*}(s,a) - \mathbb{E}_{a' \sim \pi_{u,w}^*(\cdot|s)}[Q^{\pi_{u,w}^*}(s,a')]) \neq 0.$$

By Theorem 3.4, we have the Hessian of $\mathcal{L}(u,w)$ as $H[\mathcal{L}(u,w)] = \frac{1}{\beta} \sum_{l=1}^{p} [\mu_0^\top (I_p - \gamma T^{\pi_{u,w}^*})^{-1}]_l B^{\pi_{u,w}^*}(s_l) = \frac{1}{\beta} \sum_s \rho^{\pi_{u,w}^*}(s) B^{\pi_{u,w}^*}(s)$ where $p = |\mathcal{S}|$ and $\rho^{\pi_{u,w}^*}(s) = \sum_{t=0}^{\infty} \gamma^t \Pr(s_t = s | \pi_{u,w}^*, \mu_0)$, and $\rho^{\pi_{u,w}^*}(s) > 0$ by the reachability assumption (Lee et al., 2021). Therefore, $H[\mathcal{L}(u,w)]$ is positive definite under the assumption.

F.2 PROOF OF CONVERGENCE ANALYSIS

Let $\lambda_{\min}(A)$ be the minimum eigenvalue of a real symmetric matrix A. For simplicity, we denote $\lambda := \lambda_{\min}(H[\mathcal{L}(u,w)])$. Then $0 < \lambda \leq \alpha$ (Bubeck, 2015) and $\mathcal{L}(u,w)$ is λ -strongly convex.

Theorem 3.6 Let (u^*, w^*) denote the optimal solution to equation 7. For each outer-loop index $m \geq 1$ in Algorithm 1, let $Q^*_{u^m,w^m}$ denote the fixed point of equation 13 with $[u;w] = [u^m;w^m]$, and let Q^m denote the Q-function after completing the m-th inner-loop update. For each m, assume $\|Q^m - Q^*_{u^m,w^m}\|_{\infty} < \epsilon$ for some $\epsilon > 0$. Then for $m \geq 1$,

$$||[u^m; w^m] - [u^*; w^*]||_2 \le (1 - \frac{\lambda}{\alpha})^m ||[u^0; w^0] - [u^*; w^*]||_2 + \frac{\sqrt{|\mathcal{S}|}}{\lambda} \sqrt{\sum_{i=1}^{K+L} \{r_{\max}^{(i)}\}^2} \frac{1 + \gamma}{(1 - \gamma)^2} \epsilon.$$
 (58)

Proof. By the definition in equation 10, we have the optimal policy $\pi^*_{u^m,w^m}(a|s) = \frac{\exp(\frac{1}{\beta}Q^*_{u^m,w^m}(s,a))}{\sum_{a'}\exp(\frac{1}{\beta}Q^*_{u^m,w^m}(s,a'))}$ when $(u,w) = (u^m,w^m)$. According to Theorem 3.3, we have $\nabla_{(u,w)}\mathcal{L}(u^m,v^m) = [\sum_s \mu_0(s)v_c^{\pi^*_{u^m},v^m}(s) - [C^{(1)},\cdots,C^{(L)}]^\top; \sum_s \mu_0(s)v_r^{\pi^*_{u^m},v^m}(s)] \in \mathbb{R}^{L+K}$.

We also have
$$\tilde{\nabla}_{(u,w)}\mathcal{L}(u^m,v^m) := [\sum_s \mu_0(s)v_c^{\pi^m}(s) - [C^{(1)},\cdots,C^{(L)}]^\top;\sum_s \mu_0(s)v_r^{\pi^m}(s)] \in \mathbb{R}^{L+K}$$
, an estimated gradient of $\nabla_{(u,w)}\mathcal{L}(u^m,w^m)$ using π^m where $\pi^m(a|s) = \frac{\exp(\frac{1}{\beta}Q^m(s,a))}{\sum_{a'}\exp(\frac{1}{\beta}Q^m(s,a'))}$.

Let $e_m := \tilde{\nabla}_{(u,w)} \mathcal{L}(u^m, v^m) - \nabla_{(u,w)} \mathcal{L}(u^m, w^m)$. For each s, let $v_{r,i}^{\pi}(s)$ $(1 \leq i \leq K)$ and $v_{c,j}^{\pi}(s)$ $(1 \leq j \leq L)$ denote the elements of the i-th dimension of $v_r^{\pi}(s) \in \mathbb{R}^K$ and the j-th

dimension of $v_c^{\pi}(s) \in \mathbb{R}^L$, respectively. Then we have

$$||e_{m}||_{2}^{2} = ||[\sum_{s} \mu_{0}(s)(v_{c}^{\pi^{m}}(s) - v_{c}^{\pi_{u}^{*}m,v^{m}}(s)); \sum_{s} \mu_{0}(s)(v_{r}^{\pi^{m}}(s) - v_{r}^{\pi_{u}^{*}m,v^{m}}(s))]||_{2}^{2}$$

$$= \sum_{i=1}^{K} \left(\sum_{s} \mu_{0}(s)(v_{r,i}^{\pi^{m}}(s) - v_{r,i}^{\pi_{u}^{*}m,w^{m}}(s))\right)^{2} + \sum_{j=1}^{L} \left(\sum_{s} \mu_{0}(s)(v_{c,j}^{\pi^{m}}(s) - v_{c,j}^{\pi_{u}^{*}m,w^{m}}(s))\right)^{2}$$

$$\leq ||\mu_{0}||_{2}^{2} \sum_{s} \left[\sum_{i=1}^{K} (v_{r,i}^{\pi^{m}}(s) - v_{r,i}^{\pi_{u}^{*}m,w^{m}}(s))^{2} + \sum_{i=1}^{L} (v_{c,j}^{\pi^{m}}(s) - v_{c,j}^{\pi_{u}^{*}m,w^{m}}(s))^{2}\right]$$

$$(59)$$

where $\|\mu_0\|_2^2 = \sum_s (\mu_0(s))^2$ and the inequality holds by Cauchy-Schwarz.

Since both π^m and $\pi^*_{u^m,w^m}$ use softmax parameterization with Q^m and $Q^*_{u^m,w^m}$, respectively, we have

$$\forall s, \ |v_{r,i}^{\pi^m}(s) - v_{r,i}^{\pi^*_{u^m,w^m}}(s)| \le \frac{(1+\gamma)r_{\max}^{(i)}}{(1-\gamma)^2} \|Q^m - Q^*_{u^m,w^m}\|_{\infty} \ (1 \le i \le K)$$
 (60)

and

$$\forall s, \ |v_{c,j}^{\pi^m}(s) - v_{c,j}^{\pi^*_{u^m,w^m}}(s)| \le \frac{(1+\gamma)r_{\max}^{(K+j)}}{(1-\gamma)^2} \|Q^m - Q^*_{u^m,w^m}\|_{\infty} \ (1 \le j \le L)$$
 (61)

according to the property of equation (261) in Yang et al. (2024). Combining equation 60, equation 61, and $\|\mu_0\|_2 \le 1$ with equation 59 gives

$$||e_{m}||_{2} \leq \sqrt{|\mathcal{S}|} \sqrt{\sum_{i=1}^{K+L} \{r_{\max}^{(i)}\}^{2}} \frac{1+\gamma}{(1-\gamma)^{2}} ||Q^{m} - Q_{u^{m},w^{m}}^{*}||_{\infty}$$

$$< \sqrt{|\mathcal{S}|} \sqrt{\sum_{i=1}^{K+L} \{r_{\max}^{(i)}\}^{2}} \frac{1+\gamma}{(1-\gamma)^{2}} \epsilon.$$
(62)

Next, we view the projected gradient descent for each outer loop as a proximal gradient descent. We reformulate the optimization in equation 7 of

$$\min_{u \in \mathbb{R}^L_{\perp}, w \in \Delta^K} \mathcal{L}(u, w) \tag{63}$$

as follows:

$$\min_{(u,w)\in\mathbb{R}^{L+K}} \mathcal{L}(u,w) + I_{\mathbb{R}^L_+ \times \Delta^K}(u,w)$$
(64)

where $I_{\mathbb{R}^L_+ \times \Delta^K}(u,w)$ is the indicator function with its value 0 if $(u,w) \in \mathbb{R}^L_+ \times \Delta^K$ and $+\infty$ otherwise. $I_{\mathbb{R}^L_+ \times \Delta^K}$ is convex because its epigraph $\{(u,w,t_e)|t_e \geq 0, (u,w) \in \mathbb{R}^L_+ \times \Delta^K\}$ is convex. We note that according to Theorem 3.5, the smoothness of $\mathcal{L}(u,w)$ is satisfied on \mathbb{R}^{L+K} , which makes equation 64 valid. We also note that we computed the smoothness coefficient $\alpha = \frac{1}{\beta(1-\gamma)} \sum_{i=1}^{K+L} \left(\frac{r_{\max}^{(i)}}{1-\gamma}\right)^2$ of \mathcal{L} in Appendix E.

Applying the error bound in equation 62 to the analysis of inexact proximal gradient method (Schmidt et al., 2011), we have

$$||[u^{m}; w^{m}] - [u^{*}; w^{*}]||_{2} \leq (1 - \frac{\lambda}{\alpha})^{m} ||[u^{0}; w^{0}] - [u^{*}; w^{*}]||_{2} + \frac{1}{\alpha} \sum_{i=1}^{m} (1 - \frac{\lambda}{\alpha})^{m-i} ||e_{i}||_{2}$$

$$\leq (1 - \frac{\lambda}{\alpha})^{m} ||[u^{0}; w^{0}] - [u^{*}; w^{*}]||_{2} + \frac{\sqrt{|\mathcal{S}|}}{\lambda} \sqrt{\sum_{i=1}^{K+L} \{r_{\max}^{(i)}\}^{2} \frac{1 + \gamma}{(1 - \gamma)^{2}} \epsilon}.$$

$$(65)$$

This is achieved because we use the convex optimization method from Wang & Carreira-Perpiñán (2013) for projection onto the simplex Δ^K , and apply non-negativity clipping for projection onto \mathbb{R}^L_+ ,

 both of them induce zero error in each phase of proximal objective update as it is fully deterministic and avoids randomized procedures.

It remains to check whether $I_{\mathbb{R}^L_+ \times \Delta^K}$ in equation 64 is a lower semi-continuous proper convex function (Schmidt et al., 2011). $I_{\mathbb{R}^L_+ \times \Delta^K}$ is lower semi-continuous because $\mathbb{R}^L_+ \times \Delta^K$ is closed, and it is also proper convex since $I_{\mathbb{R}^L_+ \times \Delta^K}$ never attains $-\infty$ and $\mathbb{R}^L_+ \times \Delta^K$ is non-empty.

F.3 CONVERGENCE ANALYSIS FOR DEGENERATE CASE

Theorem F.1. Let (u^*, w^*) denote an optimal solution to equation 7. For each outer-loop index $m \geq 1$ in Algorithm 1, let $Q^*_{u^m,w^m}$ denote the fixed point of equation 13 with $[u;w] = [u^m;w^m]$, and let Q^m denote the Q-function after completing the m-th inner-loop update. For each m, assume $\|Q^m - Q^*_{u^m,w^m}\|_{\infty} < \epsilon_m$ for some $\epsilon_m > 0$. Then for $m \geq 1$,

$$\mathcal{L}(\frac{1}{m}\sum_{i=1}^{m}(u^{i},w^{i})) - \mathcal{L}(u^{*},w^{*}) \leq \frac{\alpha}{2m}(\|[u^{0};w^{0}] - [u^{*};w^{*}]\|_{2} + \frac{2M}{\alpha}\sum_{i=1}^{m}\epsilon_{i})^{2}$$
 (66)

where
$$M=\sqrt{|\mathcal{S}|}\sqrt{\sum_{j=1}^{K+L}\{r_{max}^{(j)}\}^2}\frac{1+\gamma}{(1-\gamma)^2}$$

Proof. Using an analysis of inexact proximal gradient method (Schmidt et al., 2011) using the same logic in the proof of Theorem 3.6 (Appendix F.2), we have

$$\mathcal{L}(\frac{1}{m}\sum_{i=1}^{m}(u^{i},w^{i})) - \mathcal{L}(u^{*},w^{*}) \leq \frac{\alpha}{2m}(\|[u^{0};w^{0}] - [u^{*};w^{*}]\|_{2} + \frac{2}{\alpha}\sum_{i=1}^{m}\|e_{i}\|_{2})^{2}$$
(67)

where $e_i := \tilde{\nabla}_{(u,w)} \mathcal{L}(u^i,w^i) - \nabla_{(u,w)} \mathcal{L}(u^i,w^i)$ is the i-th gradient error and

$$||e_i||_2 < \sqrt{|S|} \sqrt{\sum_{j=1}^{K+L} \{r_{\max}^{(j)}\}^2} \frac{1+\gamma}{(1-\gamma)^2} \epsilon_i = M\epsilon_i$$
 (68)

from equation 62. \Box

We note that the error of $\mathcal{L}(\frac{1}{m}\sum_{i=1}^m(u^i,w^i))-\mathcal{L}(u^*,w^*)$ decreases at rate $O(\frac{1}{m})$ when $\{\epsilon_i\}_{i=1}^\infty$ is summable (e.g., $\epsilon_m=O(\frac{1}{m^{1+\delta}})$ with $\delta>0$).

G ADDITIONAL RELATED WORK

Several recent works have introduced constraints into MORL, but under different settings from our framework, which explicitly incorporates max-min optimization. For example, Huang et al. (2021) reformulated constrained RL as a MOMDP by treating costs as an additional reward dimension, generating policies that satisfy constraints while exploring preference trade-offs. However, their framework is limited to weighted-sum scalarization, whereas ours covers both constrained and unconstrained max-min MORL, offering broader generalization. More recently, Lin et al. (2024) studied offline constrained MORL, where policies are trained on offline data and later adapted to target preferences using additional demonstrations. In contrast, our work focuses on online learning and does not assume access to additional demonstration data. Liu et al. (2025) train multiple policies in parallel to approximate the Pareto front, improving coverage by solving constrained optimizations in underexplored regions. Their method targets standard MORL with linear scalarization, enhancing it via constrained optimization rather than directly tackling constrained MORL.

EXPERIMENTAL DETAILS: TABULAR SETTINGS Η

FEASIBILITY CHECK H.1

When generating structured MOMDPs randomly, we first verify whether the generated instances are feasible. To do this, We first consider the following unregularized convex optimization:

$$\max_{\rho \ge 0} \min_{1 \le k \le K} \left(\sum_{(s,a)} r^{(k)}(s,a) \rho(s,a) \right) \tag{69}$$

$$\sum_{a'} \rho(s', a') = \mu_0(s') + \gamma \sum_{(s, a)} T(s'|s, a) \rho(s, a), \ \forall s'$$
 (70)

$$\sum_{(s,a)} c^{(l)}(s,a)\rho(s,a) \ge C^{(l)}, \quad l = 1, \dots, L$$
(71)

which is equivalently expressed as the following LP by using additional scalar variable $\tilde{c} \in \mathbb{R}$:

$$\max_{\rho > 0, \tilde{c}} \tilde{c} \tag{72}$$

$$\sum_{a'} \rho(s', a') = \mu_0(s') + \gamma \sum_{(s, a)} T(s'|s, a) \rho(s, a), \ \forall s'$$
 (73)

$$\sum_{(s,a)} r^{(k)}(s,a)\rho(s,a) \ge \tilde{c}, \ k = 1, \cdots, K, \tag{74}$$

$$\sum_{(s,a)} c^{(l)}(s,a)\rho(s,a) \ge C^{(l)}, \quad l = 1, \cdots, L.$$
(75)

We want to generate μ_0, T, r , and c in structured MOMDPs to satisfy feasibility and Slater condition by solving the following LP using the pywraplp function from the OR-Tools library:

$$\max_{a \ge \epsilon_{1...}} 0 \tag{76}$$

$$\max_{\rho \ge \epsilon_{\text{low}}} 0 \tag{76}$$

$$\sum_{a'} \rho(s', a') = \mu_0(s') + \gamma \sum_{(s, a)} T(s'|s, a)\rho(s, a), \forall s' \tag{77}$$

$$\sum_{(s,a)} r^{(k)}(s,a)\rho(s,a) \ge \tilde{c} + \epsilon_{\text{low}}, \quad k = 1, \dots, K,$$

$$(78)$$

$$\sum_{(s,a)} c^{(l)}(s,a)\rho(s,a) \ge C^{(l)} + \epsilon_{\text{low}}, \quad l = 1, \dots, L$$
(79)

where ϵ_{low} is used to guarantee the strict feasibility for Slater condition, and we set $\epsilon_{low} = 10^{-4}$. If the LP solver does not find a feasible solution, we regenerate the constrained MOMDP until a feasible instance is found. Once any feasible solution is found, we solve the LP of equation 72, equation 73, equation 74, and equation 75 by using LP solver to acquire the optimal max-min value \tilde{c}^* .

H.2 EXPERIMENTAL SETUP

 In the Gaussian smoothing method, we create N copies $\{\tilde{Q}_i\}_{i=1}^N$ of the current Q-function and update each \tilde{Q}_i using scalarization with N perturbed weights $\{(\tilde{u}_i, \tilde{w}_i)\}_{i=1}^N$, sampled from a Gaussian distribution centered at the current weight vector (u, w). Specifically, we compute $\tilde{Q}_i(s, a) \leftarrow [\tilde{u}_i; \tilde{w}_i]^\top [c; r] + \gamma \sum_{s'} T(s'|s, a) \beta \log \sum_{a'} \exp\left(\frac{\tilde{Q}_i(s', a')}{\beta}\right)$ until convergence, given the perturbed weights $\{(\tilde{u}_i, \tilde{w}_i)\}_{i=1}^N$. The gradient w.r.t. (u, w) is then estimated by computing the slope of a linear regression over the pairs $[\{(\tilde{u}_i, \tilde{w}_i)\}_{i=1}^N, \{\tilde{Q}_i\}_{i=1}^N]$.

The update of our algorithm is applied iteratively for each (u,w) pair until the maximum change in the Q-function between successive iterations falls below 10^{-4} . We use the following setting: $\gamma=0.8$, $l_{\rm w}=0.001$, and ITER = 3000. u was initialized as all-one vector while w is initialized as the uniform vector on the simplex. For Gaussian smoothing, we set N=24 and use a Gaussian distribution with a standard deviation 0.01. We tuned N to prevent unstable divergence in the Gaussian smoothing method when N is too small, while also avoiding excessive computational overhead. Both algorithms used $\beta=0.03$ for the bipartite setting and $\beta=0.01$ for the hierarchical setting, respectively. Each algorithm was evaluated over three seeds, and all experiments were conducted on an Intel Core i9-10900X CPU @ 3.70GHz.

H.3 COMPARISON OF ALGORITHMIC COMPLEXITY

We now include a comparison of the algorithmic complexity per weight update (u, w) in tabular settings. Let $S = |\mathcal{S}|, A = |\mathcal{A}|,$ and d = K + L. Although each update of equation 13 given weight (u, w) theoretically requires infinitely many steps for convergence, we denote the practical number of steps as T_{soft} for our complexity analysis.

First, the per-iteration complexity of our method is given by $O(T_{\text{soft}}S^2A + SAd + S^3 + S^2d)$. Here, $T_{\text{soft}}S^2A$ is the cost of update in equation 13, and the remaining part is the cost of computing the gradient via dynamic programming based on Theorem 3.3. If T_{soft} is large enough, the update of equation 13 dominates the computation: $O(T_{\text{soft}}S^2A + SAd + S^3 + S^2d) \approx O(T_{\text{soft}}S^2A)$.

Regarding the Gaussian smoothing method, let N denote the number of perturbed Q-tables used for smoothing. Then the complexity per iteration is $O((N+1)T_{\text{soft}}S^2A + d^3 + Nd^2)$ where $(N+1)T_{\text{soft}}S^2A$ is the computation of equation 13 for the current Q-table and its N copies. The other terms are related to gradient estimation using linear regression (Park et al., 2024). Again, equation 13 dominates the computation and $O((N+1)T_{\text{soft}}S^2A + d^3 + Nd^2) \approx O((N+1)T_{\text{soft}}S^2A)$ if T_{soft} is large enough.

In summary, the Gaussian smoothing baseline incurs approximately N+1 times more computational cost per weight update compared to our method. Note that the complexity of the projection onto Δ^K is $O(K\log K)$ (Wang & Carreira-Perpiñán, 2013) which is relatively lightweight compared to other components, due to the sublinear growth of the logarithmic term.

I EXPERIMENTAL DETAILS: APPLICATIONS

I.1 IMPLEMENTATION OF OUR ALGORITHM FOR APPLICATIONS

We now leverage the usage of neural network for our algorithm. If we differentiate the both side of $v_{u,w}^*(s) = [\mathcal{T}_{u,w}v_{u,w}^*](s)$ w.r.t. u and w for all s, then we have the following formula:

$$\forall s, \ \nabla_w v_{u,w}^*(s) = \sum_a \pi_{u,w}^*(a|s) \left(r(s,a) + \gamma \sum_{s'} T(s'|s,a) \nabla_w v_{u,w}^*(s') \right). \tag{80}$$

$$\forall s, \ \nabla_u v_{u,w}^*(s) = \sum_a \pi_{u,w}^*(a|s) \left(c(s,a) + \gamma \sum_{s'} T(s'|s,a) \nabla_u v_{u,w}^*(s') \right). \tag{81}$$

Here, $\pi^*_{u,w}(a|s)$ is defined as in equation 10. To ensure stable gradient estimation in continuous state spaces, we parameterize a gradient network to estimate $\nabla_u v^*_{u,w}(s)$ and $\nabla_w v^*_{u,w}(s)$. Since each action is also continuous, we employ an actor network π_θ and implement Algorithm 2. To further stabilize the estimation of the gradient, we add an additional linear layer after the penultimate layer of the actor network π_θ , and use its (L+K)-dimensional output as the gradient network $g_\theta(s)$. We use the notation g_θ to indicate that the actor network and the gradient network share parameters and jointly update their lower-layer weights.

Algorithm 2 Proposed Constrained Max-min Algorithm for Applications

- 1: π_{θ} : actor, Q_{ϕ} : critic, $Q_{\overline{\phi}}$: target critic, g_{θ} : gradient network, $g_{\overline{\theta}}$: target gradient network, \mathcal{D} : replay buffer, T_{init} : initial iteration number, τ : target update ratio, U: main iteration number, U_s : gradient step for critic update, l_g : learning rate of the gradient network, l_0 : initial learning rate of the weight (u, w), K: unconstrained reward dimension, L: the number of constraints, $C_{th} \in \mathbb{R}^L$: threshold vector for the constraints
- 2: Initialize target critic $\overline{\phi} \leftarrow \phi$, target gradient network $\overline{\theta} \leftarrow \theta$, and weights $u^0 \in \mathbb{R}^L_+$, $w^0 \in \Delta^K$.
- 3: **for** $j = 0, \dots, T_{\text{init}} 1$ **do**
 - 4: Rollout sample from π_{θ} and save it in \mathcal{D} . Sample a batch of data $\mathcal{B} \subset \mathcal{D}$.
 - 5: $Q_{\phi} \leftarrow \mathbf{Critic} \ \mathbf{Update}(Q_{\phi}, Q_{\overline{\phi}}, \pi_{\theta}, (u^0, w^0), \mathcal{B}) \ (\mathbf{Algorithm} \ 3)$
 - 6: Update target critic parameter $\overline{\phi} \leftarrow \tau \phi + (1 \tau) \overline{\phi}$.
 - 7: $\pi_{\theta} \leftarrow \mathbf{Actor\ Update}(Q_{\phi}, \pi_{\theta}, \mathcal{D})$ (Algorithm 4)
 - 8: end for

1350

1351 1352

1353 1354

1355 1356

1357

1358 1359

1363

1364

1365

1367

1368

1369

1370 1371

1372

1373

1374

1375

1376

1380

1381

1386

1387

1388 1389

1390

1391

1392

1393 1394

- 9: **for** $m = 0, 1, 2, \cdots, U 1$ **do**
- 10: Rollout sample from π_{θ} and save $(s, a, r, c, s', \pi_{\theta_{\text{old}}}(a|s))$ in \mathcal{D} where $\pi_{\theta_{\text{old}}}(a|s) = \pi_{\theta}(a|s)$.
- 11: Update the gradient network g_{θ} as follows:

$$\theta \leftarrow \theta - l_g \nabla_{\theta} \mathbb{E}_{(s, a, r, c, s', \pi_{\theta_{\text{old}}}(a|s)) \sim \mathcal{D}} \left[\left\| \frac{\pi_{\theta_m}(a|s)}{\pi_{\theta_{\text{old}}}(a|s)} ([c; r] + \gamma g_{\overline{\theta}}(s')) - g_{\theta}(s) \right\|^2 \right]$$

where θ_m is a frozen copy of the current parameter θ .

- 12: Update target gradient network parameter $\theta \leftarrow \tau \theta + (1 \tau)\overline{\theta}$.
- 13: Update $(u, w) = (u^m, w^m)$ using the projected gradient descent:

$$(u^{m+1}, w^{m+1}) = \mathcal{P}_{K,L} \left[(u^m, w^m) - l_m(\mathbb{E}_{s \sim u_0} [g_{\theta}(s)] - [C_{th}; \mathbf{0}_K]) \right].$$

- 1395 14: Schedule current learning rate of the weight l_m .
- 396 15: **for** $j = 0, \dots, U_s 1$ **do**
 - 16: Sample a batch of data $\mathcal{B} \subset \mathcal{D}$.
- 17: $Q_{\phi} \leftarrow \text{Critic Update}(Q_{\phi}, Q_{\overline{\phi}}, \pi_{\theta}, (u^{m+1}, w^{m+1}), \mathcal{B})$
- 1399 18: end for
- 1400 19: Update target critic parameter $\overline{\phi} \leftarrow \tau \phi + (1 \tau) \overline{\phi}$.
- 1401 20: $\pi_{\theta} \leftarrow \mathbf{Actor} \ \mathbf{Update}(Q_{\phi}, \pi_{\theta}, \mathcal{D})$
- 1402 21: end for
- 1403 22: Return π_{θ} .

Algorithm 3 Critic Update

Input: critic Q_{ϕ} , target critic $Q_{\overline{\phi}}$, actor π_{θ} , weight (u, w), sample batch \mathcal{B}

2: Update the critic parameter ϕ as follows:

$$\phi \leftarrow \phi - l_c \nabla_{\phi} \frac{1}{|\mathcal{B}|} \sum_{(s, a, r, s') \in \mathcal{B}} \left(\sum_{k=1}^{K} w_k r^{(k)}(s, a) + \sum_{l=1}^{L} u_l c^{(l)}(s, a) + \gamma \beta \log \mathbb{E}_{a' \sim \pi_{\theta}} \left[\frac{\exp\left(Q_{\overline{\phi}}(s', a') / \beta\right)}{\pi_{\theta}(a'|s')} \right] - Q_{\phi}(s, a) \right)^2$$
(82)

where l_c is a critic learning rate.

Output: Updated critic Q_{ϕ}

Algorithm 4 Actor Update

Input: critic Q_{ϕ} , actor π_{θ} , replay buffer \mathcal{D}

Sample a batch of data $\mathcal{B} \subset \mathcal{D}$ and find the actor satisfying the following:

$$\theta \leftarrow \arg\min_{a} \mathbb{E}_{s \sim \mathcal{B}} \mathbb{E}_{a \sim \pi_{\theta}(\cdot|s)} \left[\beta \log \pi_{\theta}(a|s) - Q_{\phi}(s,a) \right]. \tag{83}$$

3: **Output**: Updated actor π_{θ}

I.2 Environmental Details: Resource Allocation

We modified the source code of the edge computing simulator (Bae et al., 2020) uploaded to https://github.com/sosam002/KAIST_MEC_simulator, implemented with $N_{\rm type}=3$ and 8. Here, $K=N_{\rm type}$ and L=1.

At each timestep, the system observes a state containing the current length of each task queue. Based on this state, it selects a $2(N_{\text{type}}+1)$ -dimensional nonnegative continuous action $a_t=[a_e^{(1)}(t),\cdots,a_e^{(N_{\text{type}}+1)}(t),a_c^{(1)}(t),\cdots,a_c^{(N_{\text{type}}+1)}(t)]$. Here, $\{a_e^{(i)}(t)\}_{i=1}^{N_{\text{type}}}$ denotes the CPU core allocation ratios across task queues at the edge node, subject to the constraint $\sum_{i=1}^{N_{\text{type}}+1}a_e^{(i)}(t)=1$. Similarly, $\{a_c^{(i)}(t)\}_{i=1}^{N_{\text{type}}}$ denotes the bandwidth allocation ratios at the cloud node, with the constraint $\sum_{i=1}^{N_{\text{type}}+1}a_c^{(i)}(t)=1$.

Each state is represented by a 16-dimensional vector that captures both dynamic and static characteristics. The edge device contributes 15 dimensions, derived from three application queues, each described by five features: (1) average task arrivals over the most recent 10 timesteps, (2) task arrivals at the current timestep, (3) current queue lengths, (4) CPU utilization ratios, and (5) fixed workload values per application. The remaining dimension represents the current CPU utilization ratio of the cloud server. Among these features, the workload values per application are static, defined as fixed CPU cycles per bit, while all other dimensions vary dynamically over time.

Table 7: Parameters for Each Application Types ($K = N_{\text{type}} = 3$)

Application	Workload	Popularity	Min Bits	Max Bits
SPEECH RECOGNITION NATURAL LANGUAGE PROCESSING VIRTUAL REALITY	10435	0.5	40 KB	300 KB
	25346	0.8	4 KB	100 KB
	40305	0.1	0.1 MB	3 MB

Table 7 and 8 summarize the key parameters for each application (Bae et al., 2020). The *workload* (CPU cycles/bit) indicates the computational load per application. The *popularity* represents the average arrival rate of incoming tasks modeled by a Poisson distribution. Each application's input data size follows a normal distribution, bounded between the specified *minimum* and *maximum bits*, reflecting diverse and practical scenarios.

Table 8: Parameters for Each Application Types ($K = N_{\text{type}} = 8$, Appendix I.5)

Application	Workload	Popularity	Min Bits	Max Bits
SPEECH RECOGNITION	10435	0.5	40 KB	300 KB
NATURAL LANGUAGE PROCESSING	25346	0.8	4 KB	100 KB
VIRTUAL REALITY	40305	0.1	0.1 MB	3 MB
SEARCH REQUEST	8405	10	2 B	100 B
LANGUAGE TRANSLATION	34252	1	2 B	5000 B
3D GAME PROCESSING	54633	0.1	0.1 MB	3 MB
FACE RECOGNITION	45043	0.4	10 KB	100 KB
AUGMENTED REALITY	34532	0.1	0.1 MB	3 MB

Each episode consists of 1,000 timesteps. The total training spans 2 million timesteps, with evaluations conducted at the end of every episode, resulting in 2,000 evaluation points. An episode is run during each evaluation and the cumulative discounted sum of the (L+K)-dimensional vector reward is computed. These experiments were conducted using an NVIDIA TITAN X GPU (12GB) across twelve random seeds.

1561

1564 1565 27: Return π_{θ} .

1512 UNCONSTRAINED MAX-MIN MORL ALGORITHM 1513 1514 Algorithm 5 Gaussian-smoothing-based Max-min Algorithm for Continuous Action (Our modifica-1515 tion from Park et al. (2024)) 1516 1: π_{θ} : actor, Q_{ϕ} : critic, $Q_{\overline{\phi}}$: target critic, \mathcal{D} : replay buffer, T_{init} : initial iteration number, τ : target 1517 update ratio, U: main iteration number, U_s : gradient step for critic update, N_s : number of 1518 perturbed samples, μ : perturbation parameter, l_0 : initial learning rate of the weight w, K: reward 1519 dimension 1520 2: Initialize target critic $\overline{\phi} \leftarrow \phi$ and weight $w^0 \in \Delta^K$. 1521 3: **for** $j = 0, \dots, T_{\text{init}} - 1$ **do** 1522 Rollout sample from π_{θ} and save it in \mathcal{D} . Sample a batch of data $\mathcal{B} \subset \mathcal{D}$. 1523 $Q_{\phi} \leftarrow \mathbf{Critic} \ \mathbf{Update}(Q_{\phi}, Q_{\overline{\phi}}, \pi_{\theta}, w^0, \mathcal{B}) \ (\mathbf{Algorithm} \ \mathbf{3} \ \mathbf{without} \ \mathbf{the} \ \mathbf{term} \ \mathbf{of} \ \sum_{l=1}^L u_l c^{(l)}(s, a))$ 5: 1524 1525 Update target critic parameter $\overline{\phi} \leftarrow \tau \phi + (1 - \tau) \overline{\phi}$. 6: 1526 7: $\pi_{\theta} \leftarrow \mathbf{Actor} \ \mathbf{Update}(Q_{\phi}, \pi_{\theta}, \mathcal{D}) \ (\mathbf{Algorithm} \ 4)$ 1527 8: end for 9: **for** $m = 0, 1, 2, \dots, U - 1$ **do** Rollout sample from π_{θ} and save it in \mathcal{D} . 10: Generate N_s perturbed weights $\{w^m + \mu u_n^m\}_{n=1}^{N_s}, u_n^m \sim \mathcal{N}(0, I_K)$. 11: Make N_s copies of $Q_{\phi}: \{\hat{Q}_{\phi, \text{copy}, n}\}_{n=1}^{N_s}$. Sample a common batch of data $\mathcal{B}_c \subset \mathcal{D}$. 1531 12: 13: for $n=1,\cdots,N_s$ do 1532 $\hat{Q}_{w^m + \mu u_n^m, \operatorname{copy}, n} \leftarrow \operatorname{Critic} \operatorname{Update}(\hat{Q}_{\phi, \operatorname{copy}, n}, Q_{\overline{\phi}}, \pi_{\theta}, w^m + \mu u_n^m, \mathcal{B}_c)$ 1533 14: 1534 15: end for Calculate $\hat{L}(w^m + \mu u_n^m) = \mathbb{E}_{s \sim \mu_0} \left[\beta \log \mathbb{E}_{a \sim \pi_\theta} \left[\frac{\exp[\hat{Q}_{w^m + \mu u_n^m, \text{copy}, n}(s, a)/\beta]}{\pi_\theta(a|s)} \right] \right].$ 1535 16: 1536 Conduct linear regression using $\{w^m + \mu u_n^m, \hat{L}(w^m + \mu u_n^m)\}_{n=1}^{N_s}$ and calculate the linear 17: 1537 weight a_m . Discard $\{\hat{Q}_{w^m + \mu u_n^m, \text{copy}, n}\}_{n=1}^{N_s}$. 1538 18: Update $w = w^m$ using the projected gradient descent: 1539 1540 $w^{m+1} = \operatorname{proj}_{\Lambda^K} (w^m - l_m a_m).$ 1541 1542 19: Schedule current learning rate of the weight l_m . 1543 20: for $j = 0, \dots, U_s - 1$ do 21: Sample a batch of data $\mathcal{B} \subset \mathcal{D}$. 1545 $Q_{\phi} \leftarrow \mathbf{Critic}\ \mathbf{Update}(Q_{\phi},\,Q_{\overline{\phi}},\,\pi_{\theta},\,w^{m+1},\,\mathcal{B})$ 22: 1546 23: 1547 Update target critic parameter $\overline{\phi} \leftarrow \tau \phi + (1 - \tau)\overline{\phi}$. 1548 $\pi_{\theta} \leftarrow \mathbf{Actor} \ \mathbf{Update}(Q_{\phi}, \pi_{\theta}, \mathcal{D})$ 25: 1549 **26**: **end for**

I.4 HYPERPARAMETERS FOR RESOURCE ALLOCATION

Table 9: Hyperparameters for Algorithms ($K=N_{\mathrm{type}}$)

569	71 1	E (type)
570	Parameter	Value
571		
1572	Shared	
1573	optimizer	Adam (Kingma & Ba, 2015)
1574	discount (γ)	0.99
1575	target update interval	1
1576	target smoothing ratio (τ)	0.001
1577	gradient steps	1
1578	reward dimension	3 or 8
1579	max episode step	1000
1580	replay buffer size	2×10^6
1581	hidden layers	2
1582	hidden units per layer minibatch size	64 32
1583	activation function	ReLU
1584	entropy coefficient	0.05
1585	weight learning rate	0.01
1586	weight scheduling	$1/\sqrt{t}$
1587		
1588	Constrained Max-min MORL (Ours)
1589	constraint type	maximize
1590	constraint dimension	1
	constraint epsilon	1.0
1591	constraint threshold	-5.6
1592	main learning rate	7.5×10^{-4}
1593	gradient steps for critic update	3
1594	gradient estimation learning rate	$1 \times 10^{-5} (N_{\text{type}} = 3), 1.25 \times 10^{-5} (N_{\text{type}} = 8)$
1595	gradient estimation steps	1
1596	gradient target smoothing ratio	0.001
1597 1598	Unconstrained Max-min MORI	L
1599	main learning rate	7.5×10^{-4}
1600	perturbation q learning rate	0.073
1601	perturbation gradient steps	1
1602	gradient steps for critic update	3
1603	perturbation q-copies	10
	perturbation noise std-dev	0.01
1604 1605	Max-average SAC with a Lagra	ngian Relaxation
1606	constraint type	minimize
1607	initial lambda	1.0
1608	main learning rate (actor/critic)	3×10^{-4}
1609	constraint threshold	5.6
1610	entropy coefficient	0.05
1611	lambda learning rate	0.001
1612	Unconstrained Max-average SA	.C
1613	main learning rate (actor/critic)	3×10^{-4}
1614		<u> </u>

I.5 LARGE-SCALE EXTENSION IN RESOURCE ALLOCATION

We further extend the resource allocation environment to a larger scale with $N_{\rm type}=8$ task queues. We note that benchmark environments for MORL with more than four objectives remain scarce (Hayes et al., 2022; Felten et al., 2023). As shown in Table 10, both our method and MA-SAC-L satisfy the constraints, but our method achieves better performance in terms of the total maximum queue length. These results demonstrate that our algorithm effectively balances constraint satisfaction with max-min fairness, even as the number of objectives increases.

Algorithm $(N_{\text{type}} = 8)$	Cost sum $(C_{th} = 5.6)$	$\begin{array}{c} \text{Maximum} \\ \text{queue length} \; (\downarrow) \end{array}$
Random	5.9	106.8
MA-SAC	5.9	105.3
MA-SAC-L	<u>5.5</u>	105.2
Ours	<u>5.6</u>	<u>97.7</u>
Max-min	5.9	99.9

Table 10: Cumulative cost sum and total maximum queue length with $N_{\rm type}=8$: top two underlined

I.6 HYPERPARAMETERS FOR LOCOMOTION CONTROL

Table 11: Hyperparameters for Algorithms

Parameter	Value
Shared	
optimizer	Adam (Kingma & Ba, 2015)
discount (γ)	0.99
target update interval	1
target smoothing ratio (τ)	0.001
gradient steps	1
reward dimension	2
max episode step	1000
replay buffer size	1×10^{6}
hidden layers	2
hidden units per layer	64
minibatch size	32
activation function	ReLU
entropy coefficient	0.05
weight learning rate	0.001
weight scheduling	$1/\sqrt{t}$
Constrained Max-min MORL (Ours)
constraint type	maximize
constraint dimension	1
constraint epsilon	1.0
constraint threshold	-50
main learning rate	7.5×10^{-4}
gradient steps for critic update	3
gradient estimation learning rate	2.5×10^{-5}
gradient estimation steps	1
gradient target smoothing ratio	0.001
Unconstrained Max-min MORI	Ĺ
main learning rate	7.5×10^{-4}
perturbation q learning rate	0.073
perturbation gradient steps	1
gradient steps for critic update	3
perturbation q-copies	10
perturbation noise std-dev	0.01
Max-average SAC with a Lagra	
constraint type	minimize
initial lambda	1.0
main learning rate (actor/critic)	3×10^{-4}
constraint threshold	50
entropy coefficient	0.05
lambda learning rate	0.001
Unconstrained Max-average SA	
main learning rate (actor/critic)	3×10^{-4}

J BROADER IMPACT

In this work, we propose an algorithm for constrained MORL based on the max-min criterion. First, max-min MORL plays a critical role in promoting fairness across objectives in domains such as traffic management and resource allocation. Unfair results can lead to user dissatisfaction and, in turn, degrade overall system performance, for example, by contributing to traffic congestion (Raeis & Leon-Garcia, 2021). Second, incorporating constraints into RL is essential for the responsible development of AI systems, especially given real-world limitations on resources such as electricity, power consumption, and fossil fuels.

Our work advances the goal of **sustainable AI** by simultaneously incorporating fairness and resource constraints into decision-making. This contrasts to traditional methods that prioritize performance alone, often overlooking concerns of equity and efficient resource use. We believe our framework has the potential to make a meaningful and positive impact on the broader AI community, not only in resource allocation but also in emerging areas such as fair and safe alignment of large language models.

K LIMITATION AND FUTURE WORK

In this section, we discuss several limitations of our work and related future research avenues, although our method offers a promising direction for developing constrained MORL algorithms.

First, there is a lack of well-established benchmarks for MORL compared to standard RL settings (Hayes et al., 2022), and even fewer environments are specifically designed for constrained MORL. Additionally, most existing MORL environments have low-dimensional reward spaces (typically fewer than four dimensions) (Park & Sung, 2025), which limits the ability to evaluate our algorithm in high-dimensional settings. Developing practical benchmarks for both MORL and constrained MORL is therefore a critical research direction for the community.

Second, while it is common in the constrained MDP literature to assume that feasibility is ensured by appropriately chosen thresholds (Tessler et al., 2018; Ha et al., 2020), determining such thresholds, that is, setting the constraint set $\{C^{(l)}\}_{l=1}^L$, is non-trivial in practice outside of simple or tabular domains. Unlike trial-and-error reward design, constraint threshold design is often infeasible or unsafe due to the potential risks and costs involved. Leveraging external sources of information, such as human demonstrations or natural language descriptions, offers a promising path for setting constraint thresholds in constrained RL and MORL.

Third, while our resource allocation setting clearly distinguishes rewards from costs, this distinction may be ambiguous in other domains. Determining which objectives should be treated as constraints versus unconstrained rewards can be challenging. As with constraint threshold design, incorporating external guidance could help better structure constrained MORL problems.

Fourth, several constrained RL studies have explored more conservative formulations than those based on expected cumulative cost, for example, using outage probability or quantile-based constraints to manage rare but critical failures in domains such as finance or insurance (Yang et al., 2021; Jung et al., 2022). While our current framework and analysis rely on expected cumulative cost, extending it to support such conservative constraint formulations presents a valuable direction for future work.

Lastly, although we assume the convergence of the (action) value function for each weight pair (u,w), it is well known that the combination of function approximation, bootstrapped updates, and off-policy learning can lead to instability and even divergence during training (Sutton & Barto, 2018; Che et al., 2024). A theoretical investigation into this so-called *deadly triad*, along with additional convergence guarantees, would further improve the robustness of our algorithm in the resource allocation experiment and broaden its applicability to other domains.