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Abstract
Large Language Models (LLMs) have shown001
remarkable advancements in specialized fields002
such as finance, law, and medicine. However, in003
cybersecurity, we have noticed a lack of open-004
source datasets, with a particular lack of high-005
quality cybersecurity pretraining corpora, even006
though much research indicates that LLMs ac-007
quire their knowledge during pretraining. To008
address this, we present a comprehensive suite009
of datasets covering all major training stages,010
including pretraining, instruction fine-tuning,011
and reasoning distillation with cybersecurity-012
specific self-reflection data. Extensive abla-013
tion studies demonstrate their effectiveness on014
public cybersecurity benchmarks. In particu-015
lar, continued pre-training on our dataset yields016
a 15.9% improvement in the aggregate score,017
while reasoning distillation leads to a 15.8%018
gain in security certification (CISSP). We will019
release all datasets and trained cybersecurity020
LLMs under the ODC-BY and MIT licenses to021
encourage further research in the community.022

1 Introduction023

Large Language Models (LLMs) have significantly024

advanced artificial intelligence by leveraging mas-025

sive data and sophisticated neural architectures,026

such as ChatGPT (Ouyang et al., 2022), Llama027

(Dubey et al., 2024) and DeepSeek (Guo et al.,028

2025). These models excel at understanding and029

generating human language (Wei et al., 2022; Mi-030

naee et al., 2024) and adapt well when collaborat-031

ing with domain experts (Ge et al., 2023), enabling032

tailored applications in fields like medicine, law,033

and education (Lai et al., 2024; Zhou et al., 2023;034

Yan et al., 2024). Meanwhile, in cybersecurity,035

as cyber threats continue to evolve (Li and Liu,036

2021; Ghelani, 2022), traditional methods such as037

signature- and rule-based systems are struggling038

to keep up. Advances in AI, particularly through039

LLMs, therefore offer promising new avenues for040

enhancing cybersecurity (Ferrag et al., 2024).041
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Figure 1: Overview of our training pipeline. PRIMUS-
PRETRAINING, PRIMUS-INSTRUCT, and PRIMUS-
REASONING are the datasets of different training stages.

Common training methods for LLMs include 042

pre-training (PT) (Radford, 2018), supervised fine- 043

tuning (SFT) (Zhang et al., 2023b), and reinforce- 044

ment learning (RL) (Wang et al., 2024b). Recent 045

studies suggest LLMs acquire knowledge primarily 046

during PT, and continued pre-training (CPT) (Guru- 047

rangan et al., 2020), which further trains pre-trained 048

models on large amounts of domain-specific text, 049

can enhance their grasp of domain knowledge. In 050

contrast, SFT may introduce hallucinations as new 051

knowledge is learned (Gekhman et al., 2024). More 052

recently, collecting reflection data from reasoning 053

models for distillation has also become a trend 054

(Huang et al., 2024). Typically, obtaining a domain- 055

specific LLM may require applying multiple train- 056

ing methods, as in our pipeline (Fig.1). 057

The cybersecurity field has yet to fully ben- 058

efit from this transformative technology, which 059

requires domain expertise due to its broad and 060

complex nature. Our statistics on cybersecurity 061
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Figure 2: Motivation behind PRIMUS. Statistics of ex-
isting cybersecurity language models, where reasoning
means training models to reason via distillation or RL.

LLM survey papers (Zhang et al., 2024a; Xu et al.,062

2024a) indicate that most existing research fo-063

cuses on SFT to align model outputs, while PT or064

CPT is largely performed on non-natural language065

data such as assembly code (Jiang et al., 2023;066

Wang et al., 2024a; Sun et al., 2023), as shown in067

Fig.2. Clearly, these approaches have limited ef-068

fectiveness in improving the general cybersecurity069

knowledge of LLMs. On the other hand, models070

pre-trained on cybersecurity knowledge (Park and071

You, 2023; Ranade et al., 2021; Jackaduma, 2021;072

Aghaei et al., 2022) are limited to small ones like073

BERT (Devlin et al., 2019), and none of them have074

released datasets. To the best of our knowledge,075

LLMs pre-trained on cybersecurity knowledge or076

distilled on reasoning data from cybersecurity tasks077

remain unexplored.078

To address this gap, we extend prior work on079

domain-specific LLMs like medicine (Labrak et al.,080

2024) and law (Colombo et al., 2024) to cyberse-081

curity. Our contributions are as follows:082

• A Collection of Cybersecurity Datasets. We cre-083

ate a series of carefully curated datasets covering084

multiple stages of LLM training, including pre-085

training (PRIMUS-PRETRAINING), instruction fine-086

tuning (PRIMUS-INSTRUCT), and reasoning fine-087

tuning (PRIMUS-REASONING), as shown in Fig.1.088

Extensive ablation studies and evaluations on cyber-089

security benchmarks show that these datasets can090

effectively improve cybersecurity capabilities. All091

datasets will be released under the ODC-BY license092

to encourage further research in the community.093

• A Family of Cybersecurity LLMs. We present a 094

family of cybersecurity LLMs designed to tackle 095

domain-specific challenges, including Llama- 096

Primus-Base, a model further pre-trained with cy- 097

bersecurity knowledge based on Llama-3.1-8B- 098

Instruct, achieving a 15.9% improvement on aggre- 099

gated cybersecurity benchmarks; Llama-Primus- 100

Merged, an instruction-tuned variant merged with 101

Llama-3.1-8B-Instruct, which retains general 102

instruction-following capability while signifi- 103

cantly improving cybersecurity performance; and 104

Llama-Primus-Reasoning, which is distilled from 105

reasoning steps with reflection generated by a 106

larger reasoning LLM on cybersecurity tasks, pro- 107

viding it long-thought capabilities and yielding a 108

15.8% gain on security certification. Likewise, all 109

models will be released under the MIT license. 110

2 Training Datasets 111

2.1 Overview 112

We build our dataset in multiple stages. First, we 113

collect high-quality cybersecurity texts from rep- 114

utable sources to form PRIMUS-SEED (Sec.2.2), 115

which is valuable but covers only a small fraction of 116

cybersecurity content on the web. To extend it, we 117

train a cybersecurity text classifier using PRIMUS- 118

SEED as positive samples and sampled data from 119

FineWeb (Penedo et al., 2024), a refined version of 120

Common Crawl (Common Crawl, 2008), as nega- 121

tive samples. This classifier filters cybersecurity- 122

related content from FineWeb, producing PRIMUS- 123

FINEWEB (Sec.2.3). By combining both datasets, 124

we derive PRIMUS-PRETRAINING. Next, we in- 125

troduce PRIMUS-INSTRUCT (Sec.2.4), which con- 126

tains about 1k carefully curated cybersecurity tasks 127

and general dialogues for instruction fine-tuning 128

(IFT). Finally, PRIMUS-REASONING (Sec.2.5) pro- 129

vides reasoning steps generated by a stronger rea- 130

soning LLM on cybersecurity tasks for distillation. 131

2.2 PRIMUS-SEED 132

2.2.1 Composition 133

We collect cybersecurity text through two main 134

approaches. First, we gather data from reputable 135

sources via official dumps or web crawling, con- 136

verting raw HTML to readable Markdown using 137

dom-to-semantic-markdown1. Second, we incor- 138

porate curated cyber threat intelligence (CTI) man- 139

ually collected by threat experts. The statistics of 140

PRIMUS-SEED are summarized in Tab.1. 141

1https://github.com/romansky/dom-to-semantic-markdown
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Category Samples Tokens Avg.

Web Crawl / Official Dump

Cybersecurity Blogs/News 2,946 9,751,002 3,309.9
Cybersecurity Books 6,499 2,910,464 447.8
Cybersecurity Companies
Websites

76,919 65,798,561 855.4

Cybersecurity Wikipedia 6,636 9,567,196 1,441.7
MITRE 3,432 2,435,118 709.5

Expert Curation

Campaigns 136 37,106 272.8
Intrusion Sets 343 60,524 176.5
Malware 7,301 1,362,681 186.6
Reports 11,317 934,954 82.6
Threat Actors 27 2,264 83.9
Tools 238 19,926 83.7
Vulnerabilities 559,054 98,006,720 175.3

Total 674,848 190,886,516 282.9

Table 1: Token statistics of different sources in the
PRIMUS-SEED dataset.

Official Dump and Web Crawl. We specifi-142

cally collect cybersecurity-related text from diverse143

sources, including Blogs, News, Books, Websites,144

Wikipedia, and MITRE, guided by prior pretraining145

work (Aghaei et al., 2022). For Blogs and News,146

we select content from government agencies, stan-147

dards bodies, cybersecurity companies, media, and148

forums. Meanwhile, Books cover a wide range of149

cybersecurity topics, and we exclude covers, tables150

of contents, and appendices while treating each ex-151

tracted page as a separate sample. We also collect152

Webpages from well-known cybersecurity compa-153

nies, which may include product descriptions, com-154

pany profiles, FAQs, and API documentation. In ad-155

dition, Wikipedia does not provide a predefined cy-156

bersecurity subset, so we perform a custom filtering157

process. Each Wikipedia article is associated with158

one or more category tags, which can be further159

expanded into subcategory tags. Starting from the160

root category "Computer Security", we recursively161

traverse its subcategories, using GPT-4o to deter-162

mine whether a category is cybersecurity-related2.163

This process yields 375 relevant categories, from164

which we extract corresponding Wikipedia articles.165

For MITRE, we leverage obsidian-mitre-attack3,166

which converts STIX data from the official reposi-167

tory into readable Markdown.168

Expert Curation. Another part of the data con-169

sists of CTI manually collected by our threat ex-170

perts, categorized into Campaigns, Intrusion Sets,171

2The prompt is provided in the Appx.E (Fig.8)
3https://github.com/vincenzocaputo/obsidian-mitre-attack

Malware, Threat Actors, Tools, Vulnerabilities, and 172

Reports. Experts curate intelligence from open- 173

source intelligence (OSINT), underground forums, 174

and honeypots. OSINT includes public cyberse- 175

curity knowledge bases (e.g., MITRE ATT&CK, 176

CAPEC, CVE, CWE), government advisories (e.g., 177

CISA, Europol), and threat intelligence sharing 178

platforms that provide structured insight into attack 179

patterns, vulnerabilities, and emerging threats. In 180

addition, experts monitor underground forums for 181

discussions of cybercriminal activity, while hon- 182

eypots capture real-world attack data to enhance 183

intelligence gathering. 184

2.2.2 Preprocessing Pipeline 185

Considering the varying quality of texts from dif- 186

ferent sources, we adopt a preprocessing pipeline 187

inspired by previous dataset works (Wenzek et al., 188

2020; Penedo et al., 2024; Raffel et al., 2019). Each 189

source undergoes a dynamic combination of the fol- 190

lowing preprocessing steps. 191

LM Filtering. We use perplexity from a lan- 192

guage model trained on English Wikipedia as 193

a quality score. Specifically, we use a 5-gram 194

KenLM language model (Heafield, 2011) due to 195

its efficiency in processing large amounts of data. 196

With this setup, we manually set an appropriate 197

perplexity threshold for each source, and remove 198

texts whose perplexity exceeds the threshold. 199

Deduplication. Deduplication has been cor- 200

related with improvements in model perfor- 201

mance (Lee et al., 2022). We adopt FineWeb’s 202

deduplication strategy, using a fuzzy hash-based 203

approach with MinHash. Specifically, we extract 204

5-grams from each document and compute Min- 205

Hashes using 112 hash functions, split into 14 buck- 206

ets of 8 hashes each to target documents at least 207

75% similar. Documents sharing the same 8 Min- 208

Hashes in any bucket are considered duplicates. 209

C4 Filtering. We also apply the quality filters 210

from the C4 dataset (Raffel et al., 2019). Although 211

being smaller than FineWeb, C4 performs well on 212

certain benchmarks and remains a common compo- 213

nent in the pretraining mix of recent models such as 214

LLaMA1 (Touvron et al., 2023). Its filtering rules 215

include dropping lines without a terminal punc- 216

tuation mark, mentioning javascript, or contain- 217

ing "terms-of-use"/"cookie policy" statements, and 218

dropping documents that are too short or contain 219

"lorem ipsum" or a curly bracket ({). We apply all 220
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of these filters except for the terminal punctuation221

and curly bracket filters.222

Heuristic Filtering. In addition to the above fil-223

ters, we manually inspect each source and develop224

heuristic rules to further remove low-quality doc-225

uments and outliers. For example, text containing226

phrases such as "Your download will begin in a few227

seconds" will be dropped.228

2.2.3 Augmentation229

We find that some web-scraped data contains valu-230

able information but suffers from poor readability231

due to irregular formatting, such as inconsistent232

line breaks. To address this, we adopt a rewriting233

approach inspired by Cosmopedia4, a reproduction234

of the high-quality synthetic dataset used in phi-235

1.5 (Li et al., 2023b). Specifically, we prompt an236

LLM to rewrite the given text into a specific style,237

including blog posts, textbooks, and Q&A for-238

mats5. To increase diversity, the rewriting LLM is239

randomly selected from GPT-4o, Llama-3.1-405B-240

Instruct, DBRX (Mosaic, 2024), and Claude 3.5241

Sonnet (Anthropic, 2024).242

2.3 PRIMUS-FINEWEB243

2.3.1 Cybersecurity Classifier244

Despite our efforts to collect as much cybersecu-245

rity text as possible in PRIMUS-SEED, it likely246

covers only a small fraction of the cybersecurity-247

related content on the internet. To further ex-248

pand our dataset, we train a binary classifier based249

on TinyBERT (Jiao et al., 2020) to distinguish250

cybersecurity-related text from non-cybersecurity251

text and apply it to FineWeb, a cleaned dataset de-252

rived from Common Crawl. Specifically, we use253

PRIMUS-SEED as positive samples. Since cyber-254

security text is only a small fraction of the web,255

we randomly take ten times as many samples from256

FineWeb and use them as negative samples to bal-257

ance the dataset.258

We then use the classifier to score all FineWeb259

texts on a scale from 0 to 1, where higher scores260

indicate greater cybersecurity relevance. The distri-261

bution in Fig.3 shows that lower scores correspond262

to a significant increase in text volume. To deter-263

mine an appropriate threshold for filtering, we first264

verify that whether texts with higher scores are265

truly cybersecurity-related. To do this, we lever-266

age GPT-4o for accurate evaluation by dividing267

4https://github.com/huggingface/cosmopedia
5The prompt is provided in the Appx.E (Fig.9)
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Figure 3: Cumulative token count in FINEWEB for texts
with a cybersecurity score exceeding various thresholds.
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Figure 4: Ratio of cybersecurity-related text across dif-
ferent score bins in FINEWEB.

the scores into multiple bins, with dynamically ad- 268

justed bin sizes—smaller bins for lower scores—to 269

account for the increased volume of data in lower 270

score ranges. We randomly sample 50 texts from 271

each bin and prompt GPT-4o6 for classification. As 272

shown in Fig.4, relevant text proportions remain 273

above 60% at higher scores, but drop below 50% 274

when scores fall below 0.003. Although incorporat- 275

ing some general text can help mitigate catastrophic 276

forgetting (Sun et al., 2019), we prioritize maintain- 277

ing a majority of cybersecurity content. Therefore, 278

we set the final threshold at 0.003, which corre- 279

sponds to 15.3B of FineWeb data. 280

2.3.2 Deduplication Analysis 281

Upon inspecting the 15.3B dataset, we observed 282

a significant amount of duplicate content. This 283

occurs because FineWeb’s ablation study found 284

that deduplicating each Common Crawl snapshot 285

separately yields better results than global dedu- 286

plication, so FineWeb does not apply global dedu- 287

plication. However, since our filtered dataset is 288

much smaller, we conducted our own ablation 289

6The prompt is provided in the Appx.E (Fig.10)

4

https://github.com/huggingface/cosmopedia


Threshold Dedup. Samples Tokens Avg.

0.003 False 20,345,616 15.30B 751.88
0.003 True 3,386,733 2.57B 759.11

0.9 False 2,017,959 1.21B 600.37
0.9 True 393,154 0.23B 584.75

Table 2: Statistics of token counts before and after dedu-
plication at different thresholds in the FineWeb.
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Figure 5: Comparison of deduplication on FineWeb
cybersecurity data filtered at a classifier threshold 0.9.

study. Specifically, we extracted and deduplicated290

1.21B tokens with a score above 0.9, reducing the291

number to 0.23B (pre- and post-deduplication to-292

ken counts are listed in Tab.2), and we also sampled293

0.23B tokens directly from the 1.21B set as an und-294

eduplicated control group. We pre-trained Llama-295

3.1-8B-Instruct for two epochs on both datasets and296

found that the deduplicated dataset significantly297

outperformed the undeduplicated one on our aggre-298

gate of multiple-choice question (MCQ) cyberse-299

curity tasks (to be introduced in Sec.3.1), as shown300

in Fig.5. Based on this observation, we finalized301

PRIMUS-FINEWEB with 2.57B deduplicated to-302

kens filtered at a threshold of 0.003.303

2.4 PRIMUS-INSTRUCT304

After pre-training, we use PRIMUS-INSTRUCT for305

instruction fine-tuning to restore the instruction-306

following capability of the model. To achieve this,307

we design several hundred cybersecurity tasks cov-308

ering common business scenarios, including ex-309

plaining detected alerts, answering questions about310

retrieved security documents, analyzing executed311

suspicious commands, generating query languages312

for retrieving security events, and providing secu-313

rity recommendations and risk assessments for Ter-314

raform configurations. Each example is answered315

by GPT-4o, and we further use Claude 3.5 Sonnet316

as a judge7 to discard samples with insufficiently317

helpful answers. In addition, we include several318

7The judge prompt is provided in the Appx.E (Fig.11)

Task Samples

Cybersecurity-related Tasks

Alert Explanation 100
Retrieved Security Doc QA 100
Suspicious Command Analysis 100
Security Event Query Generation 100
Terraform Security Misconfiguration Fix 96

General (Multi-turn)

General Instruction Following 339

Table 3: Task distribution and corresponding sample
counts in the PRIMUS-INSTRUCT dataset.

Dataset Samples Accepted Avg. Tokens

(o1-preview / DeepSeek-R1)

CTI-MCQ 1000 806 / 768 692 / 672
CTI-RCM 1000 728 / 721 761 / 530
CTI-RCM-2021 1000 635 / 683 766 / 543
CTI-VSP 1000 231 / 312 1156 / 1395
CTI-ATE 60 2 / 5 1314 / 1731

Table 4: Statistics of the PRIMUS-REASONING dataset,
distilled from o1-preview and DeepSeek-R1 on CTI-
Bench questions, with only accepted correct samples.

hundred multi-turn conversations on general top- 319

ics generated by GPT-4o. As a result, these form 320

PRIMUS-INSTRUCT, with statistics in Tab.3. 321

2.5 PRIMUS-REASONING 322

With the release of OpenAI’s reasoning model o1, 323

an increasing number of studies have attempted to 324

replicate its reasoning capabilities. One widely rec- 325

ognized approach is distillation, where reasoning 326

samples with self-reflection from existing reason- 327

ing models are used to guide models in acquiring 328

long-thought capabilities (Huang et al., 2024; Liu 329

et al., 2024). To this end, we select cybersecu- 330

rity reasoning tasks from CTI-Bench8 (Alam et al., 331

2024) and prompt o1-preview one to two times per 332

question to generate solutions with reasoning steps 333

and reflection9, applying rejection sampling to re- 334

tain only the correctly answered samples. We also 335

include DeepSeek-R1, obtained by directly query- 336

ing its open-source model to access reasoning steps. 337

The dataset statistics are shown in Tab.4. 338

3 Evaluation Protocol 339

This section introduces the cybersecurity bench- 340

marks (Sec.3.1) and evaluation settings (Sec.3.2) 341

used to assess training performance. 342

8A brief introduction to CTI-Bench is provided in Appx.C
9The prompt is provided in the Appx.E (Fig.12)
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3.1 Benchmarks343

To assess the performance and training effective-344

ness of PRIMUS models, we evaluate them against345

seven cybersecurity benchmarks to measure their346

robustness and comprehensive understanding of347

security concepts, which we describe below.348

CISSP. The Certified Information Systems Secu-349

rity Professional (CISSP) is a widely recognized350

cybersecurity certification that assesses both techni-351

cal expertise and managerial competence. We con-352

struct an evaluation set based on multiple-choice353

questions from CISSP learning materials.354

CTI-Bench. CTI-Bench is a benchmark for eval-355

uating the reasoning and knowledge capabilities of356

LLMs in CTI. It consists of several subtasks, in-357

cluding CTI-RCM, CTI-VSP, CTI-ATE, and CTI-358

MCQ, which assess a model’s ability to analyze359

vulnerabilities, infer security risks, extract attack360

techniques, and understand cybersecurity concepts.361

CyberMetric. CyberMetric (Tihanyi et al., 2024)362

is a benchmark of human-verified multiple-choice363

questions designed to assess LLMs’ cybersecurity364

knowledge across domains such as cryptography,365

network security, penetration testing, and compli-366

ance. We select a 500-question subset for evalua-367

tion as it is balanced and representative.368

SecEval. SecEval (Li et al., 2023a) is a bench-369

mark consisting of over 2,000 multiple-choice ques-370

tions covering nine cybersecurity domains, includ-371

ing software security, cryptography, and network372

security. Generated by prompting GPT-4 with au-373

thoritative sources such as textbooks and official374

documentation, it provides a reliable measure of375

LLMs’ cybersecurity proficiency.376

3.2 Evaluation Settings377

We integrate the above benchmarks into the378

lm-evaluation-harness (Gao et al., 2024) to en-379

sure a standardized evaluation process. All evalu-380

ations are performed in the same environment to381

ensure fairness. We adopt the following two evalu-382

ation settings to evaluate models at different stages.383

5-shot, w/o Chain-of-Thought (CoT). We384

prepend the first five questions from the bench-385

mark along with their answers as context before the386

current question, guiding the model to output the387

correct answer directly instead of generating free-388

form responses. This setting is used to evaluate389

models after pretraining, when output formatting 390

is more difficult to control. 391

0-shot, w/ CoT. We follow the evaluation setup 392

from the OpenAI technical report benchmarks with 393

simple-eval10, using a standardized prompt11 394

that allows the model to articulate its reasoning 395

before producing the final answer. Due to the for- 396

matting variability of CoT responses, we use GPT- 397

4o-mini to extract the final answers before scoring. 398

4 Training and Results 399

4.1 Overview 400

In this section, we present the entire training 401

pipeline, which consists of four key stages. First, 402

we expand the model’s cybersecurity expertise 403

and understanding through continued pre-training 404

(Sec.4.2), which reinforces key cybersecurity con- 405

cepts and enables the model to provide accurate in- 406

formation on security threats and mitigation strate- 407

gies. Next, we restore its instruction-following 408

capability through instruction fine-tuning (Sec.4.3), 409

and further refine it through model merging to bal- 410

ance instruction-following and cybersecurity exper- 411

tise. Finally, we train the model to develop reason- 412

ing capabilities on cybersecurity tasks (Sec.4.4)12. 413

4.2 Pre-Training 414

We use Llama-3.1-8B-Instruct as our base model 415

due to its wide community adoption and strong 416

performance at the same parameter scale. We 417

perform continued pre-training on two cyberse- 418

curity datasets: PRIMUS-SEED (Sec.2.2), which 419

consists of curated cybersecurity text, and PRIMUS- 420

FINEWEB (Sec.2.3), a filtered subset of cybersecu- 421

rity content from FineWeb, to expand the model’s 422

cybersecurity expertise and understanding. To as- 423

sess performance improvements, we evaluate the 424

model against the seven cybersecurity benchmarks 425

described in Sec.3.1 (5-shot, w/o CoT). 426

We train the model using the NeMo (NVIDIA, 427

2025) on four 8×H200 nodes, with training hy- 428

perparameters and details provided in Appx.D. To 429

analyze the impact of different datasets, we conduct 430

an ablation study by pre-training the model sepa- 431

rately on each dataset and jointly on both for two 432

epochs. The results in Tab.5 show that pre-training 433

on either dataset improves the cybersecurity perfor- 434

mance in the aggregate evaluation score. However, 435

10https://github.com/openai/simple-evals
11The prompt is provided in the Appx.E (Fig.13)
12The training hyperparameters for each stage are provided in the Appx.D
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Model CISSP CTI-MCQ CTI-RCM CTI-VSP CTI-ATE CyberMetric SecEval Agg.

Llama-3.1-8B-Instruct 0.7073 0.6420 0.5910 1.2712 0.2721 0.8560 0.4966 2.29
+ PRIMUS-SEED 0.7132 0.6608 0.6100 1.2848 0.2829 0.8600 0.4998 2.34↑2.1%
+ PRIMUS-FINEWEB 0.7191 0.6600 0.6680 1.1499 0.3006 0.8620 0.4984 2.56↑11.5%
+ PRIMUS-SEED+FINEWEB 0.7230 0.6676 0.6780 1.0912 0.3140 0.8660 0.5007 2.66↑15.9%

Table 5: Performance of continued pretraining on Llama across cybersecurity benchmarks. The last three rows
indicate pretraining with PRIMUS-SEED, PRIMUS-FINEWEB, and their combination. CTI-VSP is scored using
Mean Absolute Deviation (lower is better), CTI-ATE uses F1 score, and the others use accuracy. The aggregate
score (Agg.) is the sum of all benchmarks, with CTI-VSP negated. The best results are highlighted in bold.

the largest improvement, 15.9%, is observed when436

pre-training on the combined dataset, so we adopt437

this model as the Llama-Primus-Base for subse-438

quent training stages13.439

4.3 Instruction Fine-Tuning and Merge440

While Llama-Primus-Base gains enhanced cyber-441

security knowledge and understanding from pre-442

training, it tends to perform text completion rather443

than follow instructions. To address this, we fur-444

ther fine-tune it using the LLaMA-Factory (Zheng445

et al., 2024) on 4×A100 GPUs for two epochs with446

PRIMUS-INSTRUCT (Sec.2.4), a carefully curated447

mixed dataset of cybersecurity tasks and general448

conversations, resulting in Llama-Primus-Instruct.449

In addition to the cybersecurity benchmarks, we450

also introduce MT-Bench (Zheng et al., 2023), a451

multi-turn instruction-following evaluation bench-452

mark spanning multiple domains using GPT-4 as a453

judge, which scores helpfulness on a scale of 1 to454

10, allowing us to evaluate the overall instruction-455

following performance of the model. The results456

are shown in Tab.6, where the MT-Bench score and457

the aggregated cybersecurity benchmark score are458

further aggregated with a weight of 30/70 in the459

rightmost column.460

Llama-Primus-Instruct maintains its advantage461

in cybersecurity while achieving an MT-Bench462

score of 7.91. However, this remains lower than463

the 8.35 of Llama, resulting in a limited improve-464

ment in the aggregated score (2.4%). To mitigate465

this, we apply DARE-TIES (Yu et al., 2024; Yadav466

et al., 2023), a model merging technique that bal-467

ances diverse capabilities—specifically, instruction-468

following and cybersecurity expertise in our case.469

We conduct a grid search over the merging ra-470

tio, setting Llama-Primus-Instruct:Llama-3.1-8B-471

Instruct to (0.5+w):(0.5−w) and varying w from472

0 to 0.5 in steps of 0.05. The optimal ratio that473

maximizes the aggregated score is found to be474

13We also experimented with a 70B model in Q2 of Appx.A (FAQs)

0.75:0.25, with the merged model chosen as Llama- 475

Primus-Merged. Notably, this configuration retains 476

cybersecurity performance comparable to Llama- 477

Primus-Instruct while restoring the MT-Bench to 478

8.29, almost equal to Llama, resulting in a 5.4% 479

improvement in the aggregated score14. 480

4.4 Reasoning Fine-Tuning 481

We further distill Llama-Primus-Merged using 482

PRIMUS-REASONING (Sec.2.5), a high-quality 483

dataset of cybersecurity task reasoning steps ob- 484

tained from o1-preview and DeepSeek-R1, to equip 485

it with reasoning and self-reflection capabilities. 486

This approach has been successfully demonstrated 487

in previous work such as S1 (Muennighoff et al., 488

2025) and Sky-T1 (Team, 2025). Since PRIMUS- 489

REASONING is constructed from CTI-Bench tasks, 490

we exclude them from the evaluation and choose 491

CISSP as a representative metric, as it also empha- 492

sizes reasoning rather than just factual recall. The 493

results are presented in Tab.7. 494

As shown in the table, both Llama-3.1-8B- 495

Instruct and Llama-Primus-Merged improve with 496

CoT over direct answer generation. Notably, 497

Llama-Primus-Merged achieves the largest gain, 498

even outperforming DeepSeek-R1-Distill-Llama- 499

8B15 (0.7603 vs. 0.7399) with the fewest tokens, 500

suggesting stronger cybersecurity knowledge ben- 501

efits reasoning. After fine-tuning on PRIMUS- 502

REASONING (rows starting with +), token us- 503

age increases while accuracy further improves; 504

distillation on the combined o1-preview and 505

DeepSeek-R1 data achieves the largest improve- 506

ment (15.8%). Interestingly, comparing DeepSeek- 507

R1-Distill-Llama-8B (0.7399) and Llama-3.1-8B- 508

Instruct after distillation (0.7583 / 0.7859 / 0.7780) 509

may suggest that domain-specific reasoning dis- 510

tillation yields better in-domain performance than 511

general-domain distillation. 512

14We provide more details in Q4 and Q5 of Appx.A (FAQs)
15https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B
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Model CISSP CTI-MCQ CTI-RCM CTI-VSP CTI-ATE CyberMetric SecEval MT-Bench Agg.

Llama-3.1-8B-Instruct 0.7073 0.6420 0.5910 1.2712 0.2721 0.8560 0.4966 8.3491 4.11
Llama-Primus-Instruct 0.7132 0.6660 0.6660 1.1161 0.3348 0.8640 0.4943 7.9063 4.21↑2.4%
Llama-Primus-Merged 0.7191 0.6656 0.6620 1.1233 0.3387 0.8660 0.5062 8.2938 4.33↑5.4%

Table 6: Performance comparison of Llama, the instruction-tuned Primus model, and their merge on cybersecurity
and general benchmarks. The aggregated score (Agg.) is computed as 0.3× MT-Bench + 0.7× aggregated
cybersecurity score (sum of all benchmarks except MT-Bench, with CTI-VSP negated due to the use of Mean
Absolute Deviation, where lower is better). The best results are highlighted in bold.

Model CISSP Avg. Tokens

w/o CoT, 5-shot

Llama-3.1-8B-Instruct 0.7073 1
Llama-Primus-Merged 0.7191 ↑1.67% 1

w/ CoT, 0-shot

Llama-3.1-8B-Instruct 0.7288 ↑3.03% 279.69
+ Distilled from o1-preview 0.7583 ↑7.21% 646.94
+ Distilled from DeepSeek-R1 0.7859 ↑11.1% 1667.56
+ Distilled from (o1 + R1) 0.7780 ↑10.0% 1615.54

Llama-Primus-Merged 0.7603 ↑7.49% 241.92
+ Distilled from o1-preview 0.7780 ↑10.0% 726.96
+ Distilled from DeepSeek-R1 0.8075 ↑14.2% 1483.94
+ Distilled from (o1 + R1) 0.8193 ↑15.8% 1467.40

o1-preview 0.8035 1054.91
DeepSeek-R1 0.8212 1229.32
DeepSeek-R1-Distill-Llama-8B 0.7399 1542.10

Table 7: Effect of PRIMUS-REASONING fine-tuning
(on o1-preview, DeepSeek-R1, and their combination),
evaluated on CISSP. ↑ indicates the percentage improve-
ment over Llama without CoT and in the 5-shot setting.
The best improvement is highlighted in bold.

5 Domain Calibration Analysis513

In cybersecurity applications, a model’s confidence514

score is often a critical indicator for deciding515

whether to escalate issues for human intervention,516

such as sending alerts to security analysts. For this517

to work, the confidence score must accurately re-518

flect the true accuracy. After multi-stage training in519

the cybersecurity domain, we found that our model520

had a significantly lower Expected Calibration Er-521

ror (ECE) (Guo et al., 2017) on cybersecurity-522

related questions. This suggests our model’s confi-523

dence is more aligned with its actual accuracy. The524

ECE measures the average discrepancy between a525

model’s confidence and its empirical accuracy.526

Specifically, we re-evaluated the cybersecurity527

multiple-choice tasks (CISSP, CTI-MCQ, and Cy-528

berMetric). We took the token probability of the529

output answer (A/B/C/D) as the confidence score530

and calculated the ECE, as shown in Tab.8. The531

ECE of our model on cybersecurity questions was532

Benchmark
ECE (%)

Llama-3.1-
8B-Instruct

Llama-Primus-
Base

Llama-Primus-
Merged

CISSP 7.22 4.59 4.55
CTI-MCQ 11.01 2.03 5.52
CyberMetric 4.11 3.41 2.57

Average 7.45 3.34↓55.17% 4.21↓43.49%

Table 8: Expected Calibration Error (ECE) across cy-
bersecurity benchmarks (with 10 bins).

Metric Llama-3.1-
8B-Instruct

Llama-Primus-
Base

Llama-Primus-
Merged

Accuracy (%) 67.56 66.29 66.59
ECE (%) 5.99 6.07 5.56

Table 9: Accuracy and ECE across models on MMLU.

reduced by half, indicating that the model is bet- 533

ter calibrated and thus more reliable in practical 534

applications, especially those involving confidence 535

thresholds. Additionally, evaluation on general- 536

domain questions (e.g., MMLU) (Hendrycks et al., 537

2021) showed no significant change (see Tab.9). 538

Recent work has sought to improve LLM calibra- 539

tion by reducing ECE through specialized training 540

methods (Xu et al., 2024b). However, leveraging 541

domain-specific data for this purpose remains un- 542

explored. We posit that our approach could provide 543

valuable insights into confidence calibration. 544

6 Conclusion 545

In this work, we explore adapting other successful 546

domain-specific LLM approaches to cybersecurity 547

and contribute a series of datasets covering differ- 548

ent stages of LLM training, including pre-training, 549

instruction fine-tuning, and reasoning distillation, 550

each of which has been validated to improve cyber- 551

security performance. To our knowledge, this is 552

the first study to systematically strengthen the cy- 553

bersecurity skills of an LLM across multiple stages 554

of training, and we will release all datasets and 555

models to encourage further community research. 556
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Limitations557

Although this work covers the various stages of558

LLM training, it has the following limitations:559

• Due to limited computational resources, our exper-560

iments primarily focus on 8B-scale models, leaving561

the effectiveness of scaling to larger models (e.g.,562

405B or 671B) unknown.563

• Our exploration of RL remains limited. Re-564

cent work by DeepSeek-R1 has demonstrated that565

GRPO (Zhang et al., 2024b) combined with only566

rule-based rewards (e.g., correctness and format567

compliance) can achieve performance comparable568

to o1. We believe this is also a promising direction569

for cybersecurity applications and leave it as future570

work.571

Ethics Statement572

We used Garak (Derczynski et al., 2024), a toolkit573

that probes for hallucination, data leakage, prompt574

injection, misinformation, toxicity generation, jail-575

breaks, and many other vulnerabilities, to evaluate576

Llama-Primus-Merged. The results showed no sig-577

nificant differences compared to Llama (Appx.F).578

However, we still emphasize that the user is solely579

responsible for the content generated with the580

Primus model, as it lacks mechanisms to handle581

the disclosure of harmful, biased, or toxic content.582

Therefore, we strongly recommend that Primus be583

used for research purposes only. If used in produc-584

tion for natural language generation, users should585

independently assess the risks and implement ap-586

propriate safeguards.587
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A FAQs904

• Q1: What are the implementation details, such905

as the training hyperparameters and the prompts906

used for the LLM during dataset construction?907

These details are provided in the appendix. The908

training hyperparameters are listed in Appx.D, and909

the prompts used for dataset construction are in-910

cluded in Appx.E.911

• Q2: The experiments primarily target 8B mod-912

els. A natural follow-up is whether these datasets913

generalize to larger models, i.e., whether they can914

also improve the cybersecurity performance of915

larger models?916

Yes, we extended our experiments to a 70B917

model by further pre-training Llama-3.1-Nemotron-918

70B-Instruct to obtain Llama-Primus-Nemotron-919

70B-Base. In addition to the dataset used for the920

8B model, we supplemented its pre-training corpus921

with 7.6B tokens of cybersecurity content filtered922

from Nemotron-CC (Su et al., 2024) (see Appx.B).923

The results in Tab.10 show an 11.2% gain in the ag-924

gregated cybersecurity benchmark score. We will925

also release this model under the MIT license. Due926

to its high computational cost, we did not conduct927

the dataset-combination ablation study on the 70B928

model that we performed on the 8B experiments.929

• Q3: Since LLMs (e.g., Claude) were used dur-930

ing dataset construction, has their reliability been931

evaluated?932

Yes, we conducted an experiment to measure933

the discrepancy between human experts and LLM934

judges under identical prompts. Specifically, in935

Sec.2.4 we used Claude 3.5 Sonnet to rate the help-936

fulness of responses in PRIMUS-INSTRUCT, dis-937

carding those that were not helpful enough16. To938

validate Claude’s reliability as a judge, we ran-939

domly selected ten examples per task for human940

experts to score, then computed the differences941

between human, GPT-4o, and Claude ratings.942

The discrepancies are reported in Tab.11. Since943

PRIMUS-INSTRUCT’s responses were generated by944

GPT-4o, we found that it tended to favor its own945

answers, which is consistent with findings in LLM-946

as-a-Judge (Zheng et al., 2023). This resulted in947

slightly larger discrepancies compared to Claude.948

Based on these results, we found that the gap be-949

tween LLM-based and human scoring remained950

within an acceptable range.951

16The judge prompt is provided in the Appx.E (Fig.11)

• Q4: What is the training objective of PRIMUS- 952

INSTRUCT? 953

We would like to clarify that our primary goal 954

with the SFT data was not to further improve the 955

model’s cybersecurity capabilities. Instead, our 956

goal was to help the model regain its instruction- 957

following ability without forgetting the cybersecu- 958

rity knowledge acquired during pre-training. This 959

can be viewed as a continual learning problem in- 960

volving two tasks: "retaining cybersecurity knowl- 961

edge" and "learning instruction following". Accord- 962

ing to LAMOL (Sun et al., 2019), language mod- 963

els often suffer from catastrophic forgetting when 964

trained sequentially on multiple tasks—learning a 965

new task tends to overwrite knowledge from previ- 966

ous ones. 967

A common solution is to interleave data from 968

previous tasks into the new task to mitigate for- 969

getting. Inspired by this, we designed our cy- 970

bersecurity SFT data to combine both instruction- 971

following and domain-specific knowledge, hoping 972

that the model would learn instruction-following 973

while retaining its earlier cybersecurity understand- 974

ing. As shown in Tab.6, the results suggest that the 975

model was able to recover instruction-following 976

ability without significant loss in cybersecurity per- 977

formance. 978

• Q5: Why does PRIMUS-INSTRUCT appear to 979

have a relatively small number of samples (~1k)? 980

In fact, PRIMUS-INSTRUCT was selected from a 981

larger pool of data. For each task, we initially gen- 982

erated 300–400 samples and rated their helpfulness 983

(on a scale of 1 to 10) using the judge prompt in 984

Fig.11. Only the top 100 samples with scores of at 985

least 8 were retained (Tab.12). 986

Since we first performed SFT and then merged 987

the resulting model with Llama-3.1-8B-Instruct to 988

balance cybersecurity capabilities and instruction- 989

following ability (Sec.4.3), the SFT and merging 990

steps should be considered as a unified process. 991

We therefore evaluated the combined effect of both. 992

Specifically, we conducted SFT on Llama-Primus- 993

Base separately using both the unfiltered version 994

(2,239 samples) and the filtered high-quality ver- 995

sion (835 samples) from Tab.12. Each resulting 996

SFT model was then merged with Llama-3.1-8B- 997

Instruct for comparison. 998

The merging process involves subtracting each 999

model’s weights from the same base model (Llama- 1000

3.1-8B) to obtain two task vectors: one represent- 1001

ing cybersecurity knowledge, and the other repre- 1002
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Model CISSP CTI-MCQ CTI-RCM CTI-VSP CTI-ATE CyberMetric SecEval Agg.

Llama-3.1-Nemotron-70B-Instruct 0.8527 0.6900 0.6590 1.1893 0.3905 0.9380 0.7177 3.06
Llama-Primus-Nemotron-70B-Base 0.8703 0.7148 0.7410 1.0281 0.4540 0.9280 0.7208 3.40↑11.2%

Table 10: Performance comparison of Llama-3.1-Nemotron-70B-Instruct and Llama-Primus-Nemotron-70B-Base
on cybersecurity benchmarks. CTI-VSP is scored using Mean Absolute Deviation (lower is better), CTI-ATE uses
F1 score, and the others use accuracy. The aggregate score (Agg.) is the sum of all benchmarks, with CTI-VSP
negated. The best results are highlighted in bold.

Task MAE
(Claude)

MAE
(GPT-4o)

Alert Explanation 0.8 1.0
Retrieved Security Doc QA 0.7 1.1
Suspicious Command Analysis 0.4 1.0
Security Event Query Generation 1.0 0.8
Terraform Security Misconfiguration Fix 1.1 0.4

Average 0.8 0.86

Table 11: Mean absolute error (MAE) between human
expert scores and LLM scores across different PRIMUS-
INSTRUCT tasks.

Task Samples Accepted

Alert Explanation 400 100
Retrieved Security Doc QA 400 100
Suspicious Command Analysis 400 100
Security Event Query Generation 400 100
Terraform Security Misconfiguration Fix 300 96

Total 1,900 496
+ General Instruction Following (339) 2,239 835

Table 12: Initially designed (unfiltered) and accepted
(filtered) sample counts per task, where accepted refers
to the top 100 samples with a judge score ≥ 8.

senting instruction-following ability. The results1003

are shown in Tab.13. We found that applying SFT1004

with a small amount (835) of high-quality data on1005

Llama-Primus-Base before merging yields the best1006

results in both the Cybersecurity Aggregate Score1007

(2.63) and the MT-Bench score (8.29). This is1008

why we chose the filtered high-quality version as1009

PRIMUS-INSTRUCT.1010

• Q6: Were more baselines compared?1011

As shown in Fig.2, most existing cybersecurity-1012

specific LLMs are fine-tuned for narrow tasks, such1013

as password strength detection or malware detec-1014

tion from assembly code. Studies aimed at im-1015

proving general cybersecurity domain knowledge1016

in LLMs are relatively rare, and to the best of our1017

knowledge, we are the first to pursue this through1018

pre-training.1019

The primary goal of our comparisons is to1020

demonstrate the effectiveness of our dataset by1021

showing the performance gains of the same base 1022

model before and after training on it. Comparisons 1023

with other cybersecurity LLMs are difficult to in- 1024

terpret fairly due to differences in training meth- 1025

ods and base models. However, to make our find- 1026

ings more convincing, we also identified existing 1027

models that incorporate domain knowledge into 1028

LLMs via SFT or DPO, and conducted compar- 1029

isons with them. As shown in Tab.14, our model 1030

consistently outperforms these alternatives (Zhang 1031

et al., 2023a). 1032

B PRIMUS-NEMOTRON-CC 1033

We further extracted cybersecurity-related text 1034

from Nemotron-CC (Su et al., 2024), which claims 1035

higher quality and more “unique” tokens than 1036

FineWeb (i.e., tokens remaining after global fuzzy 1037

deduplication). We scored each Nemotron-CC sam- 1038

ple using the binary classifier trained in Sec.2.3 1039

and partitioned the scores into multiple intervals. 1040

For each score interval, we sampled 1,000 ex- 1041

amples, grouped them by length, sent them to 1042

GPT-4o-mini17 to verify whether they were truly 1043

cybersecurity-related, and then calculated the pro- 1044

portion of confirmed samples. The results are 1045

shown in Fig.6. 1046

We observed that when sample length is under 1047

500 or the score is below 0.003, the proportion 1048

of cybersecurity-related samples falls below 50% 1049

in most cases. Therefore, we only retain samples 1050

that exceed 500 in length and have a score greater 1051

than 0.003. Interestingly, the proportion of cyber- 1052

security samples also declines when the score is 1053

very high (> 0.9), likely because our classifier was 1054

trained on FineWeb. Thus, we performed a finer- 1055

grained analysis on the > 0.9 interval, as shown in 1056

Fig.7. Once the score exceeds 0.98, the related pro- 1057

portion drops below 50%, so we only keep samples 1058

with scores under 0.98. 1059

Due to computational constraints, we were un- 1060

able to include all samples that met the above cri- 1061

17The prompt is provided in Appx.E (Fig.10)
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Model Base Model for
Merge

Merge Model 1
(Task Vector 1)

Merge Model 2
(Task Vector 2)

Cybersecurity
Agg. Score MT-Bench

Llama-Primus-Merged
(from unfiltered SFT) Llama-3.1-8b Llama-Primus-Base

-> SFT (2,239 samples) Llama-3.1-8b-Instruct 2.44 7.97

Llama-Primus-Merged
(from filtered SFT) Llama-3.1-8b Llama-Primus-Base

-> SFT (835 samples) Llama-3.1-8b-Instruct 2.63 8.29

Llama-3.1-8b-Instruct – – – 2.29 8.35

Table 13: Comparison of merged PRIMUS models using different versions of the SFT dataset on cybersecurity and
MT-Bench benchmarks. The first row refers to applying SFT on Llama-Primus-Base using the unfiltered 2,239
samples from Tab.12 before merging with Llama-3.1-8B-Instruct, while the second row uses the filtered high-quality
835-sample version for SFT prior to merging.

Benchmark ZySec-AI/
SecurityLLM

HackMentor/
Llama-7b-lora-iio

HackMentor/
Vicuna-7B-lora-iio

Llama-Primus-
Merged

CISSP 0.6012 0.2908 0.4519 0.7191
CTI-MCQ 0.5676 0.4184 0.5104 0.6656
CTI-RCM 0.4420 0.2770 0.2810 0.6620
CTI-ATE 0.0286 0.2671 0.1411 0.3387
CTI-VSP 1.3923 2.1172 1.6205 1.1233
CyberMetric 0.8140 0.3640 0.6760 0.8660
SecEval 0.4641 0.3640 0.3413 0.5062

Table 14: Performance comparison with existing cybersecurity LLMs across benchmarks. CTI-VSP is scored using
Mean Absolute Deviation (lower is better), CTI-ATE uses F1 score, and the others use accuracy. The best results
are highlighted in bold.
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Figure 6: Ratio of cybersecurity-related text across dif-
ferent score bins in NEMOTRON-CC, grouped by sam-
ple length.

teria. Instead, we computed the total number of1062

tokens (for samples with length > 500) within dif-1063

ferent score ranges, as shown in Tab.15. Given1064

our computing budget, we aimed to limit the 70B1065

model’s pretraining dataset to approximately 10B1066

tokens. As a result, we selected the 0.98 ~ 0.1751067

score range, which contains 7.6B tokens, for inclu-1068

sion in PRIMUS-PRETRAINING. This dataset will1069

also be released.1070
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Figure 7: Ratio of cybersecurity-related text across
score bins in the 1.0 ~ 0.9 range in NEMOTRON-CC.

C CTI-Bench 1071

CTI-Bench is a benchmark for evaluating the rea- 1072

soning and knowledge capabilities of LLMs in CTI. 1073

It consists of several subtasks, including CTI-RCM, 1074

CTI-VSP, CTI-ATE, and CTI-MCQ, which assess 1075

a model’s ability to analyze vulnerabilities, infer 1076

security risks, extract attack techniques, and un- 1077

derstand cybersecurity concepts. The following 1078

paragraphs present a overview of each subtask. 1079

CTI-RCM (Root Cause Mapping). This task 1080

maps Common Vulnerabilities and Exposures 1081

(CVE) descriptions to Common Weakness Enumer- 1082
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Cybersecurity Score Bin Filtered Tokens Dedup.

0.98 ~ 0.85 2.22B 2.05B
0.98 ~ 0.30 4.07B 3.75B
0.98 ~ 0.05 6.02B 5.53B
0.98 ~ 0.0175 8.31B 7.63B
0.98 ~ 0.015 8.89B 8.86B
0.98 ~ 0.01 10.97B 10.05B
0.98 ~ 0.0075 13.10B 11.98B

Table 15: Token counts before and after deduplication
for PRIMUS-NEMOTRON-CC samples (length > 500)
across different score bins.

ation (CWE) categories, essentially classifying vul-1083

nerabilities. CWE consists of over 900 categories,1084

often with subtle differences that make misclassifi-1085

cation highly likely. The model must reason about1086

the true root cause of the vulnerability and infer the1087

most appropriate weakness type rather than relying1088

on textual matches.1089

CTI-VSP (Vulnerability Severity Prediction).1090

Given a vulnerability description, the task is to1091

calculate its CVSS (Common Vulnerability Scor-1092

ing System) score, which assesses severity. CVSS1093

scoring dimensions include attack vectors (AV),1094

required privileges, impact scope, and more. How-1095

ever, CVE descriptions often do not explicitly pro-1096

vide this information. The model must understand1097

the vulnerability mechanism, infer possible ex-1098

ploitation methods and impact scope, and map1099

them to CVSS metrics.1100

CTI-ATE (Attack Technique Extraction). This1101

task extracts MITRE ATT&CK technique IDs from1102

a given threat behavior description. Threat de-1103

scriptions are often non-standardized and context-1104

dependent, using different terminology or embed-1105

ding multiple attack techniques. The model must1106

reason about the attack process, synthesizing scat-1107

tered information to identify possible tactics, tech-1108

niques, and procedures (TTPs) and map them to1109

the correct MITRE ATT&CK technique IDs.1110

CTI-MCQ. This task consists of multiple-choice1111

questions based on authoritative sources and stan-1112

dards such as NIST, MITRE, and GDPR, and cov-1113

ers key CTI concepts such as threat identification,1114

detection strategies, mitigation techniques, and best1115

practices. While some questions focus on factual re-1116

call, our review found many require cross-concept1117

reasoning, such as inferring applicable scenarios1118

for different attack techniques, evaluating the effec-1119

tiveness of security strategies, or understanding the1120

potential impact of certain vulnerabilities. 1121

D Training Hyperparameters 1122

This section details the hyperparameters used in 1123

each training stage of our experiments. 1124

D.1 Pre-Training 1125

[8B Model] 1126

Provider: AWS 1127

Framework: NeMo 1128

Hardware: 4 nodes, each with 8 × H200 1129

Training Time: 30 hours (Primus-Seed+Primus- 1130

FineWeb) 1131

Epochs: 2 1132

Learning Rate: 1e-6 1133

Pipeline Model Parallel Size: 4 1134

Tensor Model Parallel Size: 8 1135

Context Parallel Size: 1 1136

Global Batch Size: 12 1137

Micro Batch Size: 12 1138

Warmup Ratio: 0.05 1139

Scheduler: Cosine Annealing 1140

Sequence Length: 16,384 1141

1142

[70B Model] 1143

Provider: NVIDIA 1144

Framework: NeMo 1145

Hardware: 4 nodes, each with 8 × H100 1146

Training Time: 175 hours 1147

Epochs: 2 1148

Learning Rate: 1e-6 1149

Pipeline Model Parallel Size: 4 1150

Tensor Model Parallel Size: 8 1151

Context Parallel Size: 1 1152

Global Batch Size: 8 1153

Micro Batch Size: 1 1154

Warmup Ratio: 0.05 1155

Scheduler: Cosine Annealing 1156

Sequence Length: 11,264 1157

1158

D.2 Instruction Fine-Tuning 1159

Provider: Azure 1160

Framework: LLaMA-Factory 1161

Hardware: 4 × A100 1162

Training Time: 2 hours 1163

Epochs: 2 1164

Learning Rate: 1e-6 1165

Deepspeed: ZeRO Stage-3 with CPU Offload 1166

Per Device Train Batch Size: 1 1167

Warmup Ratio: 0.1 1168
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Scheduler: Cosine1169

Cutoff Length: 16,3841170

1171

D.3 Reasoning Fine-Tuning1172

Provider: Azure1173

Framework: LLaMA-Factory1174

Hardware: 4 × A1001175

Training Time: 2.5 hour1176

Epochs: 31177

Learning Rate: 1e-61178

Deepspeed: ZeRO Stage-3 with CPU Offload1179

Per Device Train Batch Size: 31180

Warmup Ratio: 0.11181

Scheduler: Cosine1182

Cutoff Length: 8,1921183

1184

E Prompts1185

All prompts used in this paper are summarized in1186

Tab.16.1187

F Safety & Toxicity1188

We list Garak’s test results in Tab.17.1189
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Prompt Description Ref.

Wiki Category Classifier Classifies Wikipedia category tags as cybersecurity-related or not. Fig.8
Style-Based Text Rewriting (Blog,
Textbook, Q&A)

Rewrites text into a specific style, such as blog post, textbook, or Q&A. Fig.9

Cybersecurity Classifier Determines whether a given text is related to cybersecurity. Fig.10
Primus-Instruct Judge Evaluates response quality when generating PRIMUS-INSTRUCT samples. Fig.11
Step-by-Step Reasoning Generation Generates reasoning steps for a given query. Fig.12
Final Answer Generation Produces the final answer based on the generated reasoning steps. Fig.12
CoT Evaluation Evaluates model performance under CoT. Fig.13

Table 16: Summary of all prompts used in the study.

[System]
You are a helpful assistant.
[User]
Help me identify and mark the categories related to "cybersecurity", "information 
security", "data protection", "cryptography", "hacker activity", "cyber attack", 
"cybercrime" from a list of categories I have. 

For each category, provide a reason for marking it as 'Y' (Yes) or 'N' (No) in relation to the 
specified topics. Finally, output the results in JSON format with the fields: category, 
reason, security.

{{category-list}}

[System]
You are a helpful assistant.
[User]
Please act as an impartial judge and evaluate the quality of the response provided by an 
AI assistant to the user question displayed below. Your evaluation should consider 
correctness and helpfulness. You will be given a reference answer and the assistant's 
answer. Begin your evaluation by comparing the assistant's answer with the reference 
answer. Identify and correct any mistakes. Be as objective as possible. After providing 
your explanation, you must rate the response on a scale of 1 to 10 by strictly following 
this format: "[[rating]]", for example: "Rating: [[5]]".

[The Start of Assistant's Answer]
{{answer}}
[The End of Assistant's Answer]

Figure 8: Prompt for classifying Wikipedia category tags into cybersecurity or non-cybersecurity.

Metric Llama-3.1-8B-Instruct Llama-Primus-Merged

dan (Jailbreak) 28.98% 41.70%
encoding (Jailbreak) 100.00% 100.00%
goodside (Hallucination/Injection) 77.08% 72.10%
latentinjection (Injection) 75.55% 74.00%
leakreplay (Copyright) 95.71% 96.90%
malwaregen (Disallowed) 14.34% 29.00%
realtoxicityprompts (Disallowed) 90.03% 85.40%
snowball (Hallucination) 59.67% 84.20%
xss (Injection) 100.00% 98.30%

Table 17: Security and toxicity scores evaluated using Garak.
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[User]
Here is an extract from a webpage: "{{INSERT_EXTRACT}}".

Write an extensive and detailed course unit suitable for a textbook targeted at college 
students, related to the given extract. Do not just list concepts, but develop each one in 
detail before moving to the next, as we prioritize depth of understanding and 
comprehensive exploration of the subject matter over breadth. Focus on:

- Rigor: Ensure in-depth coverage of the concepts/sections.
- Engagement: Write with an academic, professional and engaging tone that captivates 
interest.
- Application: Incorporate specific, practical examples, such as proofs in calculus or critical 
dates and figures in history.
Do not include a title or an introduction, simply write the content without headlines and 
introductory phrases. Do not use images.

Textbook:

[User]
Here is an extract from a webpage: "{{INSERT_EXTRACT}}".

Write an informative and insightful blog post that expands upon the extract above. Your 
post should delve into the nuances of the topic, offering fresh perspectives and deeper 
analysis. Aim to:

- Inform: Provide valuable, well-researched information that educates the reader.
- Engage: Write in a conversational tone that connects with the audience, making 
complex ideas accessible.
- Illustrate: Use examples, anecdotes, or personal experiences to bring the topic to life.
Do not give a title and do not start with sentences like "Have you ever..." or "Hello dear 
readers..", simply write the content without these introductory phrases.

wiki-how:

[User]
Here is an extract from a webpage: "{{INSERT_EXTRACT}}".

Write a long and very detailed tutorial that could be part of WikiHow whose title is 
related to the extract above. Include in depth explanations for each step and how it helps 
achieve the desired outcome, inluding key tips and guidelines. 
Ensure clarity and practicality, allowing readers to easily follow and apply the instructions. 
Do not use images.

blog-post:

[User]
Here is an extract from a webpage: "{{INSERT_EXTRACT}}".

Write an extensive and detailed course unit suitable for a textbook targeted at college 
students, related to the given extract. Do not just list concepts, but develop each one in 
detail before moving to the next, as we prioritize depth of understanding and 
comprehensive exploration of the subject matter over breadth. Focus on:

- Rigor: Ensure in-depth coverage of the concepts/sections.
- Engagement: Write with an academic, professional and engaging tone that captivates 
interest.
- Application: Incorporate specific, practical examples, such as proofs in calculus or critical 
dates and figures in history.
Do not include a title or an introduction, simply write the content without headlines and 
introductory phrases. Do not use images.

Textbook:

[User]
Here is an extract from a webpage: "{{INSERT_EXTRACT}}".

Write an informative and insightful blog post that expands upon the extract above. Your 
post should delve into the nuances of the topic, offering fresh perspectives and deeper 
analysis. Aim to:

- Inform: Provide valuable, well-researched information that educates the reader.
- Engage: Write in a conversational tone that connects with the audience, making 
complex ideas accessible.
- Illustrate: Use examples, anecdotes, or personal experiences to bring the topic to life.
Do not give a title and do not start with sentences like "Have you ever..." or "Hello dear 
readers..", simply write the content without these introductory phrases.

wiki-how:

[User]
Here is an extract from a webpage: "{{INSERT_EXTRACT}}".

Write a long and very detailed tutorial that could be part of WikiHow whose title is 
related to the extract above. Include in depth explanations for each step and how it helps 
achieve the desired outcome, inluding key tips and guidelines. 
Ensure clarity and practicality, allowing readers to easily follow and apply the instructions. 
Do not use images.

blog-post:

[User]
Here is an extract from a webpage: "{{INSERT_EXTRACT}}".

Write an extensive and detailed course unit suitable for a textbook targeted at college 
students, related to the given extract. Do not just list concepts, but develop each one in 
detail before moving to the next, as we prioritize depth of understanding and 
comprehensive exploration of the subject matter over breadth. Focus on:

- Rigor: Ensure in-depth coverage of the concepts/sections.
- Engagement: Write with an academic, professional and engaging tone that captivates 
interest.
- Application: Incorporate specific, practical examples, such as proofs in calculus or critical 
dates and figures in history.
Do not include a title or an introduction, simply write the content without headlines and 
introductory phrases. Do not use images.

Textbook:

[User]
Here is an extract from a webpage: "{{INSERT_EXTRACT}}".

Write an informative and insightful blog post that expands upon the extract above. Your 
post should delve into the nuances of the topic, offering fresh perspectives and deeper 
analysis. Aim to:

- Inform: Provide valuable, well-researched information that educates the reader.
- Engage: Write in a conversational tone that connects with the audience, making 
complex ideas accessible.
- Illustrate: Use examples, anecdotes, or personal experiences to bring the topic to life.
Do not give a title and do not start with sentences like "Have you ever..." or "Hello dear 
readers..", simply write the content without these introductory phrases.

QA:

[User]
Here is an extract from a webpage: "{{INSERT_EXTRACT}}".

Re-write the above extract content into a set of 3 questions and answers. The questions 
should be insightful and thought-provoking based on the content, while the answers 
should be essential and easy to understand.

blog-post:

Figure 9: Prompts for augmenting text into different styles: blog post, textbook, and Q&A format.
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[User]
- Task:
You are a data analyst whose job is to analyze the data and determine if the content is 
related to the cybersecutiry domain.
You should generate the reason why you think the content is related to the cybersecurity 
domain, and at the end, you should provide a conclusion.
The reason should be a sentence within 100 characters.
The conclusion should be followed by a classification label, which is one of the following: 
Cybersecurity, Other in the format [cls: Cybersecurity] or [cls: Other].
- Examples:
User: "A vulnerability refers to a flaw in the structure, execution, functioning, or internal 
oversight of a computer or system that compromises its security. Most of the 
vulnerabilities that have been discovered are documented in the Common Vulnerabilities 
and Exposures (CVE) database."
Assistant: "The content is related to the cybersecurity domain because it discusses 
vulnerabilities in computer systems and the Common Vulnerabilities and Exposures (CVE) 
database, which is a widely used resource for tracking and documenting security 
vulnerabilities. [cls: Cybersecurity]"
---
User: "For example, tall fencing, topped with barbed wire, razor wire or metal spikes are 
often emplaced on the perimeter of a property, generally with some type of signage that 
warns people not to attempt entry."
Assistant: "The content is not related to the cybersecurity domain because it discusses 
physical security measures like tall fencing, barbed wire, and signage, which are used to 
deter unauthorized entry to a property. [cls: Other]"

User: "{{text}}"
Assistant:

Figure 10: Prompt for classifying whether a given text is related to cybersecurity.

[System]
You are a helpful assistant.
[User]
Help me identify and mark the categories related to "cybersecurity", "information 
security", "data protection", "cryptography", "hacker activity", "cyber attack", 
"cybercrime" from a list of categories I have. 

For each category, provide a reason for marking it as 'Y' (Yes) or 'N' (No) in relation to the 
specified topics. Finally, output the results in JSON format with the fields: category, 
reason, security.

{{category-list}}

[System]
You are a helpful assistant.
[User]
Please act as an impartial judge and evaluate the quality of the response provided by an 
AI assistant to the user question displayed below. Your evaluation should consider 
correctness and helpfulness. You will be given the assistant's answer. Identify and correct 
any mistakes. Be as objective as possible. After providing your explanation, you must rate 
the response on a scale of 1 to 10 by strictly following this format: "[[rating]]", for 
example: "Rating: [[5]]".

[Question]
{question}

[The Start of Assistant's Answer]
{{answer}}
[The End of Assistant's Answer]

Figure 11: Judge prompt for evaluating response quality during PRIMUS-INSTRUCT generation.
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[User]
{{problem}}
[Assistant]
{{reasoing-steps}}
[User]
Please provide a comprehensive final answer based on your reasoning above, 
summarizing key points and addressing any uncertainties.

[User]
# Task
You are an expert-level cybersecurity AI assistant capable of analyzing complex security 
scenarios step by step. You will receive a cybersecurity problem. Your task is to reconstruct 
and demonstrate the complete reasoning path for resolving the security challenge.

Requirements:
1. Based on the difficulty of the problem, determine the number of reasoning steps 
required to solve it
2. Explore multiple cybersecurity analysis methods
3. Validate findings through different approaches
4. Consider potential alternative solutions and explain their evaluation
5. Consider potential points of failure in your reasoning
6. Thoroughly test all possible security scenarios
7. When re-checking, use a genuinely different analytical approach

Respond in JSON format, including the following keys:
- 'title': Description of the current reasoning step
- 'content': Detailed explanation of the step
- 'next_action': 'continue' or 'final_answer'

Valid JSON response example:
[{   "title": "Initial Threat Assessment", 
     "content": "Analyzing the core security challenge...", 
     "next_action": "continue"
 },
 {   "title": "...", 
     "content": "...", 
     "next_action": "continue"
 },
 {   "title": "...", 
     "content": "...", 
     "next_action": "final_answer"
 }]
# Cybersecurity Problem
{{problem}}
Please output in JSON format:

[User]
{{problem}}
[Assistant]
{{reasoing-steps}}
[User]
Please provide a comprehensive final answer based on your reasoning above, 
summarizing key points and addressing any uncertainties.

[User]
# Task
You are an expert-level cybersecurity AI assistant capable of analyzing complex security 
scenarios step by step. You will receive a cybersecurity problem. Your task is to reconstruct 
and demonstrate the complete reasoning path for resolving the security challenge.

Requirements:
1. Based on the difficulty of the problem, determine the number of reasoning steps 
required to solve it
2. Explore multiple cybersecurity analysis methods
3. Validate findings through different approaches
4. Consider potential alternative solutions and explain their evaluation
5. Consider potential points of failure in your reasoning
6. Thoroughly test all possible security scenarios
7. When re-checking, use a genuinely different analytical approach

Respond in JSON format, including the following keys:
- 'title': Description of the current reasoning step
- 'content': Detailed explanation of the step
- 'next_action': 'continue' or 'final_answer'

Valid JSON response example:
[{   "title": "Initial Threat Assessment", 
     "content": "Analyzing the core security challenge...", 
     "next_action": "continue"
 },
 {   "title": "...", 
     "content": "...", 
     "next_action": "continue"
 },
 {   "title": "...", 
     "content": "...", 
     "next_action": "final_answer"
 }]
# Cybersecurity Problem
{{problem}}
Please output in JSON format:

Figure 12: Prompts for step-by-step reasoning and final answer generation. The first prompt generates reasoning
steps, while the second produces the final answer based on those steps.

21



[User]
- Task:
You are a data analyst whose job is to analyze the data and determine if the content is 
related to the cybersecutiry domain.
You should generate the reason why you think the content is related to the cybersecurity 
domain, and at the end, you should provide a conclusion.
The reason should be a sentence within 100 characters.
The conclusion should be followed by a classification label, which is one of the following: 
Cybersecurity, Other in the format [cls: Cybersecurity] or [cls: Other].
- Examples:
User: "A vulnerability refers to a flaw in the structure, execution, functioning, or internal 
oversight of a computer or system that compromises its security. Most of the 
vulnerabilities that have been discovered are documented in the Common Vulnerabilities 
and Exposures (CVE) database."
Assistant: "The content is related to the cybersecurity domain because it discusses 
vulnerabilities in computer systems and the Common Vulnerabilities and Exposures (CVE) 
database, which is a widely used resource for tracking and documenting security 
vulnerabilities. [cls: Cybersecurity]"
---
User: "For example, tall fencing, topped with barbed wire, razor wire or metal spikes are 
often emplaced on the perimeter of a property, generally with some type of signage that 
warns people not to attempt entry."
Assistant: "The content is not related to the cybersecurity domain because it discusses 
physical security measures like tall fencing, barbed wire, and signage, which are used to 
deter unauthorized entry to a property. [cls: Other]"

User: "{{text}}"
Assistant:

[System]
You are a professional cybersecurity chatbot.
[User]
Answer the following multiple choice question. The last line of your response should be of 
the following format: 'Answer: $LETTER' (without quotes) where LETTER is one of ABCD. 
Think step by step before answering.

{Question}

A) {A}
B) {B}
C) {C}
D) {D}

Figure 13: Evaluation prompt for answering with CoT in OpenAI simple-evals and our paper.
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