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Abstract

Large Language Models (LLMs) have shown
remarkable advancements in specialized fields
such as finance, law, and medicine. However, in
cybersecurity, we have noticed a lack of open-
source datasets, with a particular lack of high-
quality cybersecurity pretraining corpora, even
though much research indicates that LLMs ac-
quire their knowledge during pretraining. To
address this, we present a comprehensive suite
of datasets covering all major training stages,
including pretraining, instruction fine-tuning,
and reasoning distillation with cybersecurity-
specific self-reflection data. Extensive abla-
tion studies demonstrate their effectiveness on
public cybersecurity benchmarks. In particu-
lar, continued pre-training on our dataset yields
a 15.9% improvement in the aggregate score,
while reasoning distillation leads to a 15.8%
gain in security certification (CISSP). We will
release all datasets and trained cybersecurity
LLMs under the ODC-BY and MIT licenses to
encourage further research in the community.

1 Introduction

Large Language Models (LLMs) have significantly
advanced artificial intelligence by leveraging mas-
sive data and sophisticated neural architectures,
such as ChatGPT (Ouyang et al., 2022), Llama
(Dubey et al., 2024) and DeepSeek (Guo et al.,
2025). These models excel at understanding and
generating human language (Wei et al., 2022; Mi-
naee et al., 2024) and adapt well when collaborat-
ing with domain experts (Ge et al., 2023), enabling
tailored applications in fields like medicine, law,
and education (Lai et al., 2024; Zhou et al., 2023;
Yan et al., 2024). Meanwhile, in cybersecurity,
as cyber threats continue to evolve (Li and Liu,
2021; Ghelani, 2022), traditional methods such as
signature- and rule-based systems are struggling
to keep up. Advances in Al, particularly through
LLMs, therefore offer promising new avenues for
enhancing cybersecurity (Ferrag et al., 2024).

O
BN )
Q -
N Ww 2
Qo 3
$ General LLM | Cybersecurity LLM =
& = e
Y Ay 2
§ ; 2
@ rsec‘“iw Wwe 2
R cybe ook =]
Q& Blog® ediﬂr\/ 3.
ikip >
w oY Q

Cybersecurity Instruction Following,
including alert explanation,

suspicious command analysis, and
security query generation...

Primus-lnstruct

Figure 1: Overview of our training pipeline. PRIMUS-
PRETRAINING, PRIMUS-INSTRUCT, and PRIMUS-
REASONING are the datasets of different training stages.

Common training methods for LLMs include
pre-training (PT) (Radford, 2018), supervised fine-
tuning (SFT) (Zhang et al., 2023b), and reinforce-
ment learning (RL) (Wang et al., 2024b). Recent
studies suggest LLMs acquire knowledge primarily
during PT, and continued pre-training (CPT) (Guru-
rangan et al., 2020), which further trains pre-trained
models on large amounts of domain-specific text,
can enhance their grasp of domain knowledge. In
contrast, SFT may introduce hallucinations as new
knowledge is learned (Gekhman et al., 2024). More
recently, collecting reflection data from reasoning
models for distillation has also become a trend
(Huang et al., 2024). Typically, obtaining a domain-
specific LLM may require applying multiple train-
ing methods, as in our pipeline (Fig.1).

The cybersecurity field has yet to fully ben-
efit from this transformative technology, which
requires domain expertise due to its broad and
complex nature. Our statistics on cybersecurity
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Figure 2: Motivation behind PRIMUS. Statistics of ex-
isting cybersecurity language models, where reasoning
means training models to reason via distillation or RL.

LLM survey papers (Zhang et al., 2024a; Xu et al.,
2024a) indicate that most existing research fo-
cuses on SFT to align model outputs, while PT or
CPT is largely performed on non-natural language
data such as assembly code (Jiang et al., 2023;
Wang et al., 2024a; Sun et al., 2023), as shown in
Fig.2. Clearly, these approaches have limited ef-
fectiveness in improving the general cybersecurity
knowledge of LLMs. On the other hand, models
pre-trained on cybersecurity knowledge (Park and
You, 2023; Ranade et al., 2021; Jackaduma, 2021;
Aghaei et al., 2022) are limited to small ones like
BERT (Devlin et al., 2019), and none of them have
released datasets. To the best of our knowledge,
LLMs pre-trained on cybersecurity knowledge or
distilled on reasoning data from cybersecurity tasks
remain unexplored.

To address this gap, we extend prior work on
domain-specific LLMs like medicine (Labrak et al.,
2024) and law (Colombo et al., 2024) to cyberse-
curity. Our contributions are as follows:

* A Collection of Cybersecurity Datasets. We cre-
ate a series of carefully curated datasets covering
multiple stages of LLM training, including pre-
training (PRIMUS-PRETRAINING), instruction fine-
tuning (PRIMUS-INSTRUCT), and reasoning fine-
tuning (PRIMUS-REASONING), as shown in Fig.1.
Extensive ablation studies and evaluations on cyber-
security benchmarks show that these datasets can
effectively improve cybersecurity capabilities. All
datasets will be released under the ODC-BY license
to encourage further research in the community.

* A Family of Cybersecurity LLMs. We present a
family of cybersecurity LLMs designed to tackle
domain-specific challenges, including Llama-
Primus-Base, a model further pre-trained with cy-
bersecurity knowledge based on Llama-3.1-8B-
Instruct, achieving a 15.9% improvement on aggre-
gated cybersecurity benchmarks; Llama-Primus-
Merged, an instruction-tuned variant merged with
Llama-3.1-8B-Instruct, which retains general
instruction-following capability while signifi-
cantly improving cybersecurity performance; and
Llama-Primus-Reasoning, which is distilled from
reasoning steps with reflection generated by a
larger reasoning LLLM on cybersecurity tasks, pro-
viding it long-thought capabilities and yielding a
15.8% gain on security certification. Likewise, all
models will be released under the MIT license.

2 Training Datasets

2.1 Overview

We build our dataset in multiple stages. First, we
collect high-quality cybersecurity texts from rep-
utable sources to form PRIMUS-SEED (Sec.2.2),
which is valuable but covers only a small fraction of
cybersecurity content on the web. To extend it, we
train a cybersecurity text classifier using PRIMUS-
SEED as positive samples and sampled data from
FineWeb (Penedo et al., 2024), a refined version of
Common Crawl (Common Crawl, 2008), as nega-
tive samples. This classifier filters cybersecurity-
related content from FineWeb, producing PRIMUS-
FINEWEB (Sec.2.3). By combining both datasets,
we derive PRIMUS-PRETRAINING. Next, we in-
troduce PRIMUS-INSTRUCT (Sec.2.4), which con-
tains about 1k carefully curated cybersecurity tasks
and general dialogues for instruction fine-tuning
(IFT). Finally, PRIMUS-REASONING (Sec.2.5) pro-
vides reasoning steps generated by a stronger rea-
soning LLM on cybersecurity tasks for distillation.

2.2 PRIMUS-SEED
2.2.1 Composition

We collect cybersecurity text through two main
approaches. First, we gather data from reputable
sources via official dumps or web crawling, con-
verting raw HTML to readable Markdown using
dom-to-semantic-markdown!. Second, we incor-
porate curated cyber threat intelligence (CTI) man-
ually collected by threat experts. The statistics of
PRIMUS-SEED are summarized in Tab.1.

! https://github.com/romansky/dom-to-semantic-markdown
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Category Samples Tokens  Avg.
Web Crawl / Official Dump

Cybersecurity Blogs/News 2,946 9,751,002 3,309.9
Cybersecurity Books 6,499 2910464 4478
Cybersecurity Companies 76,919 65,798,561 855.4
Websites

Cybersecurity Wikipedia 6,636 9,567,196 1,441.7
MITRE 3432 2435118 709.5

Expert Curation

Campaigns 136 37,106 272.8
Intrusion Sets 343 60,524 176.5
Malware 7,301 1,362,681 186.6
Reports 11,317 934,954  82.6
Threat Actors 27 2,264 83.9
Tools 238 19,926  83.7
Vulnerabilities 559,054 98,006,720 175.3
Total 674,848 190,886,516  282.9

Table 1: Token statistics of different sources in the
PRIMUS-SEED dataset.

Official Dump and Web Crawl. We specifi-
cally collect cybersecurity-related text from diverse
sources, including Blogs, News, Books, Websites,
Wikipedia, and MITRE, guided by prior pretraining
work (Aghaei et al., 2022). For Blogs and News,
we select content from government agencies, stan-
dards bodies, cybersecurity companies, media, and
forums. Meanwhile, Books cover a wide range of
cybersecurity topics, and we exclude covers, tables
of contents, and appendices while treating each ex-
tracted page as a separate sample. We also collect
Webpages from well-known cybersecurity compa-
nies, which may include product descriptions, com-
pany profiles, FAQs, and API documentation. In ad-
dition, Wikipedia does not provide a predefined cy-
bersecurity subset, so we perform a custom filtering
process. Each Wikipedia article is associated with
one or more category tags, which can be further
expanded into subcategory tags. Starting from the
root category "Computer Security", we recursively
traverse its subcategories, using GPT-4o0 to deter-
mine whether a category is cybersecurity-related?.
This process yields 375 relevant categories, from
which we extract corresponding Wikipedia articles.
For MITRE, we leverage obsidian-mitre-attack>,
which converts STIX data from the official reposi-
tory into readable Markdown.

Expert Curation. Another part of the data con-
sists of CTI manually collected by our threat ex-
perts, categorized into Campaigns, Intrusion Sets,

The prompt is provided in the Appx.E (Fig.8)

3hllps:// github.com/vincenzocaputo/obsidian-mitre-attack

Malware, Threat Actors, Tools, Vulnerabilities, and
Reports. Experts curate intelligence from open-
source intelligence (OSINT), underground forums,
and honeypots. OSINT includes public cyberse-
curity knowledge bases (e.g., MITRE ATT&CK,
CAPEC, CVE, CWE), government advisories (e.g.,
CISA, Europol), and threat intelligence sharing
platforms that provide structured insight into attack
patterns, vulnerabilities, and emerging threats. In
addition, experts monitor underground forums for
discussions of cybercriminal activity, while hon-
eypots capture real-world attack data to enhance
intelligence gathering.

2.2.2 Preprocessing Pipeline

Considering the varying quality of texts from dif-
ferent sources, we adopt a preprocessing pipeline
inspired by previous dataset works (Wenzek et al.,
2020; Penedo et al., 2024; Raffel et al., 2019). Each
source undergoes a dynamic combination of the fol-
lowing preprocessing steps.

LM Filtering. We use perplexity from a lan-
guage model trained on English Wikipedia as
a quality score. Specifically, we use a 5-gram
KenLLM language model (Heafield, 2011) due to
its efficiency in processing large amounts of data.
With this setup, we manually set an appropriate
perplexity threshold for each source, and remove
texts whose perplexity exceeds the threshold.

Deduplication. Deduplication has been cor-
related with improvements in model perfor-
mance (Lee et al., 2022). We adopt FineWeb’s
deduplication strategy, using a fuzzy hash-based
approach with MinHash. Specifically, we extract
5-grams from each document and compute Min-
Hashes using 112 hash functions, split into 14 buck-
ets of 8 hashes each to target documents at least
75% similar. Documents sharing the same 8 Min-
Hashes in any bucket are considered duplicates.

C4 Filtering. We also apply the quality filters
from the C4 dataset (Raffel et al., 2019). Although
being smaller than FineWeb, C4 performs well on
certain benchmarks and remains a common compo-
nent in the pretraining mix of recent models such as
LLaMAT1 (Touvron et al., 2023). Its filtering rules
include dropping lines without a terminal punc-
tuation mark, mentioning javascript, or contain-
ing "terms-of-use"/"cookie policy" statements, and
dropping documents that are too short or contain
"lorem ipsum" or a curly bracket ({). We apply all
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of these filters except for the terminal punctuation
and curly bracket filters.

Heuristic Filtering. In addition to the above fil-
ters, we manually inspect each source and develop
heuristic rules to further remove low-quality doc-
uments and outliers. For example, text containing
phrases such as "Your download will begin in a few
seconds" will be dropped.

2.2.3 Augmentation

We find that some web-scraped data contains valu-
able information but suffers from poor readability
due to irregular formatting, such as inconsistent
line breaks. To address this, we adopt a rewriting
approach inspired by Cosmopedia*, a reproduction
of the high-quality synthetic dataset used in phi-
1.5 (Li et al., 2023b). Specifically, we prompt an
LLM to rewrite the given text into a specific style,
including blog posts, textbooks, and Q&A for-
mats>. To increase diversity, the rewriting LLM is
randomly selected from GPT-40, Llama-3.1-405B-
Instruct, DBRX (Mosaic, 2024), and Claude 3.5
Sonnet (Anthropic, 2024).

2.3 PRIMUS-FINEWEB

2.3.1 Cybersecurity Classifier

Despite our efforts to collect as much cybersecu-
rity text as possible in PRIMUS-SEED, it likely
covers only a small fraction of the cybersecurity-
related content on the internet. To further ex-
pand our dataset, we train a binary classifier based
on TinyBERT (Jiao et al., 2020) to distinguish
cybersecurity-related text from non-cybersecurity
text and apply it to FineWeb, a cleaned dataset de-
rived from Common Crawl. Specifically, we use
PRIMUS-SEED as positive samples. Since cyber-
security text is only a small fraction of the web,
we randomly take ten times as many samples from
FineWeb and use them as negative samples to bal-
ance the dataset.

We then use the classifier to score all FineWeb
texts on a scale from O to 1, where higher scores
indicate greater cybersecurity relevance. The distri-
bution in Fig.3 shows that lower scores correspond
to a significant increase in text volume. To deter-
mine an appropriate threshold for filtering, we first
verify that whether texts with higher scores are
truly cybersecurity-related. To do this, we lever-
age GPT-4o for accurate evaluation by dividing

4htlps://github.com/huggingface/cosmopedia
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Figure 4: Ratio of cybersecurity-related text across dif-
ferent score bins in FINEWEB.

the scores into multiple bins, with dynamically ad-
justed bin sizes—smaller bins for lower scores—to
account for the increased volume of data in lower
score ranges. We randomly sample 50 texts from
each bin and prompt GPT-40° for classification. As
shown in Fig.4, relevant text proportions remain
above 60% at higher scores, but drop below 50%
when scores fall below 0.003. Although incorporat-
ing some general text can help mitigate catastrophic
forgetting (Sun et al., 2019), we prioritize maintain-
ing a majority of cybersecurity content. Therefore,
we set the final threshold at 0.003, which corre-
sponds to 15.3B of FineWeb data.

2.3.2 Deduplication Analysis

Upon inspecting the 15.3B dataset, we observed
a significant amount of duplicate content. This
occurs because FineWeb’s ablation study found
that deduplicating each Common Crawl snapshot
separately yields better results than global dedu-
plication, so FineWeb does not apply global dedu-
plication. However, since our filtered dataset is
much smaller, we conducted our own ablation

OThe prompt is provided in the Appx.E (Fig.10)
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Threshold Dedup. Samples Tokens Avg.
0.003 False 20,345,616 15.30B 751.88
0.003 True 3,386,733 2.57B  759.11

0.9 False 2,017,959 1.21B 600.37
0.9 True 393,154 0.23B  584.75

Table 2: Statistics of token counts before and after dedu-
plication at different thresholds in the FineWeb.
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Figure 5: Comparison of deduplication on FineWeb
cybersecurity data filtered at a classifier threshold 0.9.

study. Specifically, we extracted and deduplicated
1.21B tokens with a score above 0.9, reducing the
number to 0.23B (pre- and post-deduplication to-
ken counts are listed in Tab.2), and we also sampled
0.23B tokens directly from the 1.21B set as an und-
eduplicated control group. We pre-trained Llama-
3.1-8B-Instruct for two epochs on both datasets and
found that the deduplicated dataset significantly
outperformed the undeduplicated one on our aggre-
gate of multiple-choice question (MCQ) cyberse-
curity tasks (to be introduced in Sec.3.1), as shown
in Fig.5. Based on this observation, we finalized
PRIMUS-FINEWEB with 2.57B deduplicated to-
kens filtered at a threshold of 0.003.

2.4 PRIMUS-INSTRUCT

After pre-training, we use PRIMUS-INSTRUCT for
instruction fine-tuning to restore the instruction-
following capability of the model. To achieve this,
we design several hundred cybersecurity tasks cov-
ering common business scenarios, including ex-
plaining detected alerts, answering questions about
retrieved security documents, analyzing executed
suspicious commands, generating query languages
for retrieving security events, and providing secu-
rity recommendations and risk assessments for Ter-
raform configurations. Each example is answered
by GPT-40, and we further use Claude 3.5 Sonnet
as a judge’ to discard samples with insufficiently
helpful answers. In addition, we include several

"The judge prompt is provided in the Appx.E (Fig.11)

Task Samples
Cybersecurity-related Tasks
Alert Explanation 100
Retrieved Security Doc QA 100
Suspicious Command Analysis 100
Security Event Query Generation 100
Terraform Security Misconfiguration Fix 96
General (Multi-turn)
General Instruction Following 339

Table 3: Task distribution and corresponding sample
counts in the PRIMUS-INSTRUCT dataset.

Dataset Samples Accepted  Avg. Tokens
(ol-preview / DeepSeek-R1)
CTI-MCQ 1000 806 /768 6927672
CTI-RCM 1000 728 /721 761 /530
CTI-RCM-2021 1000 635/ 683 766 / 543
CTI-VSP 1000 231/312 1156/ 1395
CTI-ATE 60 2/5 1314 /1731

Table 4: Statistics of the PRIMUS-REASONING dataset,
distilled from ol-preview and DeepSeek-R1 on CTI-
Bench questions, with only accepted correct samples.

hundred multi-turn conversations on general top-
ics generated by GPT-40. As a result, these form
PRIMUS-INSTRUCT, with statistics in Tab.3.

2.5 PRIMUS-REASONING

With the release of OpenAl’s reasoning model ol,
an increasing number of studies have attempted to
replicate its reasoning capabilities. One widely rec-
ognized approach is distillation, where reasoning
samples with self-reflection from existing reason-
ing models are used to guide models in acquiring
long-thought capabilities (Huang et al., 2024; Liu
et al., 2024). To this end, we select cybersecu-
rity reasoning tasks from CTI-Bench® (Alam et al.,
2024) and prompt ol-preview one to two times per
question to generate solutions with reasoning steps
and reflection’, applying rejection sampling to re-
tain only the correctly answered samples. We also
include DeepSeek-R1, obtained by directly query-
ing its open-source model to access reasoning steps.
The dataset statistics are shown in Tab.4.

3 Evaluation Protocol

This section introduces the cybersecurity bench-
marks (Sec.3.1) and evaluation settings (Sec.3.2)
used to assess training performance.

A brief introduction to CTI-Bench is provided in Appx.C
The prompt is provided in the Appx.E (Fig.12)



3.1 Benchmarks

To assess the performance and training effective-
ness of PRIMUS models, we evaluate them against
seven cybersecurity benchmarks to measure their
robustness and comprehensive understanding of
security concepts, which we describe below.

CISSP. The Certified Information Systems Secu-
rity Professional (CISSP) is a widely recognized
cybersecurity certification that assesses both techni-
cal expertise and managerial competence. We con-
struct an evaluation set based on multiple-choice
questions from CISSP learning materials.

CTI-Bench. CTI-Bench is a benchmark for eval-
uating the reasoning and knowledge capabilities of
LLMs in CTI. It consists of several subtasks, in-
cluding CTI-RCM, CTI-VSP, CTI-ATE, and CTI-
MCQ, which assess a model’s ability to analyze
vulnerabilities, infer security risks, extract attack
techniques, and understand cybersecurity concepts.

CyberMetric. CyberMetric (Tihanyi et al., 2024)
is a benchmark of human-verified multiple-choice
questions designed to assess LLLMs’ cybersecurity
knowledge across domains such as cryptography,
network security, penetration testing, and compli-
ance. We select a 500-question subset for evalua-
tion as it is balanced and representative.

SecEval. SecEval (Li et al., 2023a) is a bench-
mark consisting of over 2,000 multiple-choice ques-
tions covering nine cybersecurity domains, includ-
ing software security, cryptography, and network
security. Generated by prompting GPT-4 with au-
thoritative sources such as textbooks and official
documentation, it provides a reliable measure of
LLMs’ cybersecurity proficiency.

3.2 Evaluation Settings

We integrate the above benchmarks into the
Im-evaluation-harness (Gao et al., 2024) to en-
sure a standardized evaluation process. All evalu-
ations are performed in the same environment to
ensure fairness. We adopt the following two evalu-
ation settings to evaluate models at different stages.

5-shot, w/o Chain-of-Thought (CoT). We
prepend the first five questions from the bench-
mark along with their answers as context before the
current question, guiding the model to output the
correct answer directly instead of generating free-
form responses. This setting is used to evaluate

models after pretraining, when output formatting
is more difficult to control.

0-shot, w/ CoT. We follow the evaluation setup
from the OpenAl technical report benchmarks with
simple-evall®, using a standardized prompt'!
that allows the model to articulate its reasoning
before producing the final answer. Due to the for-
matting variability of CoT responses, we use GPT-
4o-mini to extract the final answers before scoring.

4 Training and Results

4.1 Overview

In this section, we present the entire training
pipeline, which consists of four key stages. First,
we expand the model’s cybersecurity expertise
and understanding through continued pre-training
(Sec.4.2), which reinforces key cybersecurity con-
cepts and enables the model to provide accurate in-
formation on security threats and mitigation strate-
gies. Next, we restore its instruction-following
capability through instruction fine-tuning (Sec.4.3),
and further refine it through model merging to bal-
ance instruction-following and cybersecurity exper-
tise. Finally, we train the model to develop reason-
ing capabilities on cybersecurity tasks (Sec.4.4)!2.

4.2 Pre-Training

We use Llama-3.1-8B-Instruct as our base model
due to its wide community adoption and strong
performance at the same parameter scale. We
perform continued pre-training on two cyberse-
curity datasets: PRIMUS-SEED (Sec.2.2), which
consists of curated cybersecurity text, and PRIMUS-
FINEWEB (Sec.2.3), a filtered subset of cybersecu-
rity content from FineWeb, to expand the model’s
cybersecurity expertise and understanding. To as-
sess performance improvements, we evaluate the
model against the seven cybersecurity benchmarks
described in Sec.3.1 (5-shot, w/o CoT).

We train the model using the NeMo (NVIDIA,
2025) on four 8xH200 nodes, with training hy-
perparameters and details provided in Appx.D. To
analyze the impact of different datasets, we conduct
an ablation study by pre-training the model sepa-
rately on each dataset and jointly on both for two
epochs. The results in Tab.5 show that pre-training
on either dataset improves the cybersecurity perfor-
mance in the aggregate evaluation score. However,

1Ohttps://github.com/openai/simple—evals

11The prompt is provided in the Appx.E (Fig.13)
2 The training hyperparameters for each stage are provided in the Appx.D
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Model CISSP CTI-MCQ CTI-RCM CTI-VSP CTI-ATE CyberMetric SecEval Agg.
Llama-3.1-8B-Instruct 0.7073  0.6420 0.5910 1.2712  0.2721 0.8560 0.4966 2.29
+ PRIMUS-SEED 0.7132  0.6608 0.6100 1.2848 0.2829 0.8600 0.4998 2.3412.1%
+ PRIMUS-FINEWEB 0.7191  0.6600 0.6680 1.1499  0.3006 0.8620 0.4984 2.56111.5%
+ PRIMUS-SEED+FINEWEB 0.7230  0.6676 0.6780 1.0912  0.3140 0.8660 0.5007 2.66115.9%

Table 5: Performance of continued pretraining on Llama across cybersecurity benchmarks. The last three rows
indicate pretraining with PRIMUS-SEED, PRIMUS-FINEWEB, and their combination. CTI-VSP is scored using
Mean Absolute Deviation (lower is better), CTI-ATE uses F1 score, and the others use accuracy. The aggregate
score (Agg.) is the sum of all benchmarks, with CTI-VSP negated. The best results are highlighted in bold.

the largest improvement, 15.9%, is observed when
pre-training on the combined dataset, so we adopt
this model as the Llama-Primus-Base for subse-
quent training stages'>.

4.3 Instruction Fine-Tuning and Merge

While Llama-Primus-Base gains enhanced cyber-
security knowledge and understanding from pre-
training, it tends to perform text completion rather
than follow instructions. To address this, we fur-
ther fine-tune it using the LLaMA-Factory (Zheng
et al., 2024) on 4x A100 GPUs for two epochs with
PRIMUS-INSTRUCT (Sec.2.4), a carefully curated
mixed dataset of cybersecurity tasks and general
conversations, resulting in Llama-Primus-Instruct.
In addition to the cybersecurity benchmarks, we
also introduce MT-Bench (Zheng et al., 2023), a
multi-turn instruction-following evaluation bench-
mark spanning multiple domains using GPT-4 as a
judge, which scores helpfulness on a scale of 1 to
10, allowing us to evaluate the overall instruction-
following performance of the model. The results
are shown in Tab.6, where the MT-Bench score and
the aggregated cybersecurity benchmark score are
further aggregated with a weight of 30/70 in the
rightmost column.

Llama-Primus-Instruct maintains its advantage
in cybersecurity while achieving an MT-Bench
score of 7.91. However, this remains lower than
the 8.35 of Llama, resulting in a limited improve-
ment in the aggregated score (2.4%). To mitigate
this, we apply DARE-TIES (Yu et al., 2024; Yadav
et al., 2023), a model merging technique that bal-
ances diverse capabilities—specifically, instruction-
following and cybersecurity expertise in our case.
We conduct a grid search over the merging ra-
tio, setting Llama-Primus-Instruct:Llama-3.1-8B-
Instruct to (0.5+w):(0.5 —w) and varying w from
0 to 0.5 in steps of 0.05. The optimal ratio that
maximizes the aggregated score is found to be

13We also experimented with a 70B model in Q2 of Appx.A (FAQs)

0.75:0.25, with the merged model chosen as Llama-
Primus-Merged. Notably, this configuration retains
cybersecurity performance comparable to Llama-
Primus-Instruct while restoring the MT-Bench to
8.29, almost equal to Llama, resulting in a 5.4%

improvement in the aggregated score'*.

4.4 Reasoning Fine-Tuning

We further distill Llama-Primus-Merged using
PRIMUS-REASONING (Sec.2.5), a high-quality
dataset of cybersecurity task reasoning steps ob-
tained from ol-preview and DeepSeek-R1, to equip
it with reasoning and self-reflection capabilities.
This approach has been successfully demonstrated
in previous work such as S1 (Muennighoff et al.,
2025) and Sky-T1 (Team, 2025). Since PRIMUS-
REASONING is constructed from CTI-Bench tasks,
we exclude them from the evaluation and choose
CISSP as a representative metric, as it also empha-
sizes reasoning rather than just factual recall. The
results are presented in Tab.7.

As shown in the table, both Llama-3.1-8B-
Instruct and Llama-Primus-Merged improve with
CoT over direct answer generation. Notably,
Llama-Primus-Merged achieves the largest gain,
even outperforming DeepSeek-R1-Distill-Llama-
8B!5 (0.7603 vs. 0.7399) with the fewest tokens,
suggesting stronger cybersecurity knowledge ben-
efits reasoning. After fine-tuning on PRIMUS-
REASONING (rows starting with +), token us-
age increases while accuracy further improves;
distillation on the combined ol-preview and
DeepSeek-R1 data achieves the largest improve-
ment (15.8%). Interestingly, comparing DeepSeek-
R1-Distill-Llama-8B (0.7399) and Llama-3.1-8B-
Instruct after distillation (0.7583 / 0.7859 / 0.7780)
may suggest that domain-specific reasoning dis-
tillation yields better in-domain performance than
general-domain distillation.

14We provide more details in Q4 and Q5 of Appx.A (FAQs)
15https://huggingfaceAco/deepseek-ai/Def:pSeek—R1-Distill-Llama-8B


https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B

Model CISSP CTI-MCQ CTI-RCM CTI-VSP CTI-ATE CyberMetric SecEval MT-Bench  Agg.
Llama-3.1-8B-Instruct 0.7073  0.6420 0.5910 1.2712  0.2721 0.8560 0.4966  8.3491 4.11
Llama-Primus-Instruct 0.7132  0.6660 0.6660 1.1161 0.3348 0.8640 0.4943  7.9063 4.2112.4%
Llama-Primus-Merged 0.7191 0.6656 0.6620 1.1233  0.3387 0.8660 0.5062 8.2938 4.3315.4%

Table 6: Performance comparison of Llama, the instruction-tuned Primus model, and their merge on cybersecurity
and general benchmarks. The aggregated score (Agg.) is computed as 0.3x MT-Bench + 0.7x aggregated
cybersecurity score (sum of all benchmarks except MT-Bench, with CTI-VSP negated due to the use of Mean
Absolute Deviation, where lower is better). The best results are highlighted in bold.

Model CISSP  Avg. Tokens
w/o CoT, 5-shot
Llama-3.1-8B-Instruct 0.7073 1

Llama-Primus-Merged 0.7191 11.67% 1

w/ CoT, 0-shot

Llama-3.1-8B-Instruct 0.7288 13.03%  279.69
+ Distilled from ol-preview  0.7583 17.21% 646.94
+ Distilled from DeepSeek-R1 0.7859 111.1% 1667.56
+ Distilled from (ol + RI) 0.7780 110.0% 1615.54

Llama-Primus-Merged 0.7603 17.49%  241.92
+ Distilled from ol-preview  0.7780 110.0%  726.96
+ Distilled from DeepSeek-R1 0.8075 114.2% 1483.94
+ Distilled from (ol + RI) 0.8193 115.8% 1467.40

ol-preview 0.8035 1054.91

DeepSeek-R1 0.8212 1229.32

DeepSeek-R1-Distill-Llama-8B 0.7399 1542.10

Table 7: Effect of PRIMUS-REASONING fine-tuning
(on ol-preview, DeepSeek-R1, and their combination),
evaluated on CISSP. 1 indicates the percentage improve-
ment over Llama without CoT and in the 5-shot setting.
The best improvement is highlighted in bold.

S Domain Calibration Analysis

In cybersecurity applications, a model’s confidence
score is often a critical indicator for deciding
whether to escalate issues for human intervention,
such as sending alerts to security analysts. For this
to work, the confidence score must accurately re-
flect the true accuracy. After multi-stage training in
the cybersecurity domain, we found that our model
had a significantly lower Expected Calibration Er-
ror (ECE) (Guo et al., 2017) on cybersecurity-
related questions. This suggests our model’s confi-
dence is more aligned with its actual accuracy. The
ECE measures the average discrepancy between a
model’s confidence and its empirical accuracy.
Specifically, we re-evaluated the cybersecurity
multiple-choice tasks (CISSP, CTI-MCQ, and Cy-
berMetric). We took the token probability of the
output answer (A/B/C/D) as the confidence score
and calculated the ECE, as shown in Tab.8. The
ECE of our model on cybersecurity questions was

ECE (%)
Benchmark Llama-3.1- Llama-Primus- Llama-Primus-
8B-Instruct Base Merged
CISSP 7.22 4.59 4.55
CTI-MCQ 11.01 2.03 5.52
CyberMetric 4.11 341 2.57
Average 7.45 3.34155.17%  4.21143.49%

Table 8: Expected Calibration Error (ECE) across cy-
bersecurity benchmarks (with 10 bins).

Llama-3.1- Llama-Primus- Llama-Primus-

Metric 8B-Instruct Base Merged
Accuracy (%)  67.56 66.29 66.59
ECE (%) 5.99 6.07 5.56

Table 9: Accuracy and ECE across models on MMLU.

reduced by half, indicating that the model is bet-
ter calibrated and thus more reliable in practical
applications, especially those involving confidence
thresholds. Additionally, evaluation on general-
domain questions (e.g., MMLU) (Hendrycks et al.,
2021) showed no significant change (see Tab.9).
Recent work has sought to improve LLM calibra-
tion by reducing ECE through specialized training
methods (Xu et al., 2024b). However, leveraging
domain-specific data for this purpose remains un-
explored. We posit that our approach could provide
valuable insights into confidence calibration.

6 Conclusion

In this work, we explore adapting other successful
domain-specific LLM approaches to cybersecurity
and contribute a series of datasets covering differ-
ent stages of LLM training, including pre-training,
instruction fine-tuning, and reasoning distillation,
each of which has been validated to improve cyber-
security performance. To our knowledge, this is
the first study to systematically strengthen the cy-
bersecurity skills of an LLM across multiple stages
of training, and we will release all datasets and
models to encourage further community research.



Limitations

Although this work covers the various stages of
LLM training, it has the following limitations:

* Due to limited computational resources, our exper-
iments primarily focus on 8B-scale models, leaving
the effectiveness of scaling to larger models (e.g.,
405B or 671B) unknown.

* Our exploration of RL remains limited. Re-
cent work by DeepSeek-R1 has demonstrated that
GRPO (Zhang et al., 2024b) combined with only
rule-based rewards (e.g., correctness and format
compliance) can achieve performance comparable
to ol. We believe this is also a promising direction
for cybersecurity applications and leave it as future
work.

Ethics Statement

We used Garak (Derczynski et al., 2024), a toolkit
that probes for hallucination, data leakage, prompt
injection, misinformation, toxicity generation, jail-
breaks, and many other vulnerabilities, to evaluate
Llama-Primus-Merged. The results showed no sig-
nificant differences compared to Llama (Appx.F).
However, we still emphasize that the user is solely
responsible for the content generated with the
Primus model, as it lacks mechanisms to handle
the disclosure of harmful, biased, or toxic content.
Therefore, we strongly recommend that Primus be
used for research purposes only. If used in produc-
tion for natural language generation, users should
independently assess the risks and implement ap-
propriate safeguards.
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A  FAQs
* Q1: What are the implementation details, such
as the training hyperparameters and the prompts
used for the LLM during dataset construction?
These details are provided in the appendix. The
training hyperparameters are listed in Appx.D, and
the prompts used for dataset construction are in-
cluded in Appx.E.

* Q2: The experiments primarily target 8B mod-
els. A natural follow-up is whether these datasets
generalize to larger models, i.e., whether they can
also improve the cybersecurity performance of
larger models?

Yes, we extended our experiments to a 70B
model by further pre-training Llama-3.1-Nemotron-
70B-Instruct to obtain Llama-Primus-Nemotron-
70B-Base. In addition to the dataset used for the
8B model, we supplemented its pre-training corpus
with 7.6B tokens of cybersecurity content filtered
from Nemotron-CC (Su et al., 2024) (see Appx.B).
The results in Tab.10 show an 11.2% gain in the ag-
gregated cybersecurity benchmark score. We will
also release this model under the MIT license. Due
to its high computational cost, we did not conduct
the dataset-combination ablation study on the 70B
model that we performed on the 8B experiments.

* Q3: Since LLMs (e.g., Claude) were used dur-
ing dataset construction, has their reliability been
evaluated?

Yes, we conducted an experiment to measure
the discrepancy between human experts and LLM
judges under identical prompts. Specifically, in
Sec.2.4 we used Claude 3.5 Sonnet to rate the help-
fulness of responses in PRIMUS-INSTRUCT, dis-
carding those that were not helpful enough'6. To
validate Claude’s reliability as a judge, we ran-
domly selected ten examples per task for human
experts to score, then computed the differences
between human, GPT-40, and Claude ratings.

The discrepancies are reported in Tab.11. Since
PRIMUS-INSTRUCT’s responses were generated by
GPT-40, we found that it tended to favor its own
answers, which is consistent with findings in LLM-
as-a-Judge (Zheng et al., 2023). This resulted in
slightly larger discrepancies compared to Claude.
Based on these results, we found that the gap be-
tween LLM-based and human scoring remained
within an acceptable range.

15 The judge prompt is provided in the Appx.E (Fig.11)
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* Q4: What is the training objective of PRIMUS-
INSTRUCT?

We would like to clarify that our primary goal
with the SFT data was not to further improve the
model’s cybersecurity capabilities. Instead, our
goal was to help the model regain its instruction-
following ability without forgetting the cybersecu-
rity knowledge acquired during pre-training. This
can be viewed as a continual learning problem in-
volving two tasks: "retaining cybersecurity knowl-
edge" and "learning instruction following". Accord-
ing to LAMOL (Sun et al., 2019), language mod-
els often suffer from catastrophic forgetting when
trained sequentially on multiple tasks—Ilearning a
new task tends to overwrite knowledge from previ-
ous ones.

A common solution is to interleave data from
previous tasks into the new task to mitigate for-
getting. Inspired by this, we designed our cy-
bersecurity SFT data to combine both instruction-
following and domain-specific knowledge, hoping
that the model would learn instruction-following
while retaining its earlier cybersecurity understand-
ing. As shown in Tab.6, the results suggest that the
model was able to recover instruction-following
ability without significant loss in cybersecurity per-
formance.

* Q5: Why does PRIMUS-INSTRUCT appear to
have a relatively small number of samples (~1k)?

In fact, PRIMUS-INSTRUCT was selected from a
larger pool of data. For each task, we initially gen-
erated 300-400 samples and rated their helpfulness
(on a scale of 1 to 10) using the judge prompt in
Fig.11. Only the top 100 samples with scores of at
least 8 were retained (Tab.12).

Since we first performed SFT and then merged
the resulting model with Llama-3.1-8B-Instruct to
balance cybersecurity capabilities and instruction-
following ability (Sec.4.3), the SFT and merging
steps should be considered as a unified process.
We therefore evaluated the combined effect of both.
Specifically, we conducted SFT on Llama-Primus-
Base separately using both the unfiltered version
(2,239 samples) and the filtered high-quality ver-
sion (835 samples) from Tab.12. Each resulting
SFT model was then merged with Llama-3.1-8B-
Instruct for comparison.

The merging process involves subtracting each
model’s weights from the same base model (Llama-
3.1-8B) to obtain two task vectors: one represent-
ing cybersecurity knowledge, and the other repre-



Model CISSP CTI-MCQ CTI-RCM CTI-VSP CTI-ATE CyberMetric SecEval  Agg.
Llama-3.1-Nemotron-70B-Instruct  0.8527  0.6900 0.6590  1.1893  0.3905 0.9380 0.7177 3.06
Llama-Primus-Nemotron-70B-Base 0.8703 0.7148 0.7410 1.0281  0.4540 0.9280 0.7208 3.40111.2%

Table 10: Performance comparison of Llama-3.1-Nemotron-70B-Instruct and Llama-Primus-Nemotron-70B-Base
on cybersecurity benchmarks. CTI-VSP is scored using Mean Absolute Deviation (lower is better), CTI-ATE uses
F1 score, and the others use accuracy. The aggregate score (Agg.) is the sum of all benchmarks, with CTI-VSP

negated. The best results are highlighted in bold.

Task MAE MAE
s (Claude) (GPT-40)
Alert Explanation 0.8 1.0
Retrieved Security Doc QA 0.7 1.1
Suspicious Command Analysis 0.4 1.0
Security Event Query Generation 1.0 0.8
Terraform Security Misconfiguration Fix 1.1 0.4
Average 0.8 0.86

Table 11: Mean absolute error (MAE) between human
expert scores and LLM scores across different PRIMUS-
INSTRUCT tasks.

Task Samples Accepted
Alert Explanation 400 100
Retrieved Security Doc QA 400 100
Suspicious Command Analysis 400 100
Security Event Query Generation 400 100
Terraform Security Misconfiguration Fix 300 96
Total 1,900 496
+ General Instruction Following (339) 2,239 835

Table 12: Initially designed (unfiltered) and accepted
(filtered) sample counts per task, where accepted refers
to the top 100 samples with a judge score > 8.

senting instruction-following ability. The results
are shown in Tab.13. We found that applying SFT
with a small amount (835) of high-quality data on
Llama-Primus-Base before merging yields the best
results in both the Cybersecurity Aggregate Score
(2.63) and the MT-Bench score (8.29). This is
why we chose the filtered high-quality version as
PRIMUS-INSTRUCT.

* Q6: Were more baselines compared?

As shown in Fig.2, most existing cybersecurity-
specific LLMs are fine-tuned for narrow tasks, such
as password strength detection or malware detec-
tion from assembly code. Studies aimed at im-
proving general cybersecurity domain knowledge
in LL.Ms are relatively rare, and to the best of our
knowledge, we are the first to pursue this through
pre-training.

The primary goal of our comparisons is to
demonstrate the effectiveness of our dataset by
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showing the performance gains of the same base
model before and after training on it. Comparisons
with other cybersecurity LLMs are difficult to in-
terpret fairly due to differences in training meth-
ods and base models. However, to make our find-
ings more convincing, we also identified existing
models that incorporate domain knowledge into
LLMs via SFT or DPO, and conducted compar-
isons with them. As shown in Tab.14, our model
consistently outperforms these alternatives (Zhang
et al., 2023a).

B PRIMUS-NEMOTRON-CC

We further extracted cybersecurity-related text
from Nemotron-CC (Su et al., 2024), which claims
higher quality and more “unique” tokens than
FineWeb (i.e., tokens remaining after global fuzzy
deduplication). We scored each Nemotron-CC sam-
ple using the binary classifier trained in Sec.2.3
and partitioned the scores into multiple intervals.
For each score interval, we sampled 1,000 ex-
amples, grouped them by length, sent them to
GPT-40-mini!” to verify whether they were truly
cybersecurity-related, and then calculated the pro-
portion of confirmed samples. The results are
shown in Fig.6.

We observed that when sample length is under
500 or the score is below 0.003, the proportion
of cybersecurity-related samples falls below 50%
in most cases. Therefore, we only retain samples
that exceed 500 in length and have a score greater
than 0.003. Interestingly, the proportion of cyber-
security samples also declines when the score is
very high (> 0.9), likely because our classifier was
trained on FineWeb. Thus, we performed a finer-
grained analysis on the > 0.9 interval, as shown in
Fig.7. Once the score exceeds 0.98, the related pro-
portion drops below 50%, so we only keep samples
with scores under 0.98.

Due to computational constraints, we were un-
able to include all samples that met the above cri-

" The prompt is provided in Appx.E (Fig.10)



Base Model for Merge Model 1 Merge Model 2 Cybersecurity
Model Merge (Task Vector 1) (Task Vector 2) Agg. Score MT-Bench
Llama-Primus-Merged Llama-Primus-Base
(from unfiltered SFT) Llama-3.1-8b -> SFT (2,239 samples) Llama-3.1-8b-Instruct 2.44 7.97
Llama-Primus-Merged Llama-Primus-Base
(from filtered SFT) Llama-3.1-8b -> SFT (835 samples) Llama-3.1-8b-Instruct 2.63 8.29
Llama-3.1-8b-Instruct - - - 2.29 8.35

Table 13: Comparison of merged PRIMUS models using different versions of the SFT dataset on cybersecurity and
MT-Bench benchmarks. The first row refers to applying SFT on Llama-Primus-Base using the unfiltered 2,239

samples from Tab.12 before merging with Llama-3.1-8B-Ins
835-sample version for SFT prior to merging.

truct, while the second row uses the filtered high-quality

Benchmark ZySec-Al/ HackMentor/ HackMentor/ Llama-Primus-
SecurityLLM  Llama-7b-lora-iio Vicuna-7B-lora-iio Merged
CISSP 0.6012 0.2908 0.4519 0.7191
CTI-MCQ 0.5676 0.4184 0.5104 0.6656
CTI-RCM 0.4420 0.2770 0.2810 0.6620
CTI-ATE 0.0286 0.2671 0.1411 0.3387
CTI-VSP 1.3923 2.1172 1.6205 1.1233
CyberMetric 0.8140 0.3640 0.6760 0.8660
SecEval 0.4641 0.3640 0.3413 0.5062

Table 14: Performance comparison with existing cybersecurity LLMs across benchmarks. CTI-VSP is scored using

Mean Absolute Deviation (lower is better), CTI-ATE uses
are highlighted in bold.
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Figure 6: Ratio of cybersecurity-related text across dif-
ferent score bins in NEMOTRON-CC, grouped by sam-
ple length.

teria. Instead, we computed the total number of
tokens (for samples with length > 500) within dif-
ferent score ranges, as shown in Tab.15. Given
our computing budget, we aimed to limit the 70B
model’s pretraining dataset to approximately 10B
tokens. As a result, we selected the 0.98 ~ 0.175
score range, which contains 7.6B tokens, for inclu-
sion in PRIMUS-PRETRAINING. This dataset will
also be released.
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Figure 7: Ratio of cybersecurity-related text across
score bins in the 1.0 ~ 0.9 range in NEMOTRON-CC.

C CTI-Bench

CTI-Bench is a benchmark for evaluating the rea-
soning and knowledge capabilities of LLMs in CTL.
It consists of several subtasks, including CTI-RCM,
CTI-VSP, CTI-ATE, and CTI-MCQ, which assess
a model’s ability to analyze vulnerabilities, infer
security risks, extract attack techniques, and un-
derstand cybersecurity concepts. The following
paragraphs present a overview of each subtask.

CTI-RCM (Root Cause Mapping). This task
maps Common Vulnerabilities and Exposures
(CVE) descriptions to Common Weakness Enumer-



Cybersecurity Score Bin Filtered Tokens Dedup.
0.98 ~ 0.85 2.22B 2.05B
0.98 ~ 0.30 4.07B 3.75B
0.98 ~ 0.05 6.02B 5.53B
0.98 ~ 0.0175 8.31B 7.63B
0.98 ~0.015 8.89B 8.86B
0.98 ~0.01 10.97B 10.05B
0.98 ~ 0.0075 13.10B 11.98B

Table 15: Token counts before and after deduplication
for PRIMUS-NEMOTRON-CC samples (length > 500)
across different score bins.

ation (CWE) categories, essentially classifying vul-
nerabilities. CWE consists of over 900 categories,
often with subtle differences that make misclassifi-
cation highly likely. The model must reason about
the true root cause of the vulnerability and infer the
most appropriate weakness type rather than relying
on textual matches.

CTI-VSP (Vulnerability Severity Prediction).
Given a vulnerability description, the task is to
calculate its CVSS (Common Vulnerability Scor-
ing System) score, which assesses severity. CVSS
scoring dimensions include attack vectors (AV),
required privileges, impact scope, and more. How-
ever, CVE descriptions often do not explicitly pro-
vide this information. The model must understand
the vulnerability mechanism, infer possible ex-
ploitation methods and impact scope, and map
them to CVSS metrics.

CTI-ATE (Attack Technique Extraction). This
task extracts MITRE ATT&CK technique IDs from
a given threat behavior description. Threat de-
scriptions are often non-standardized and context-
dependent, using different terminology or embed-
ding multiple attack techniques. The model must
reason about the attack process, synthesizing scat-
tered information to identify possible tactics, tech-
niques, and procedures (TTPs) and map them to
the correct MITRE ATT&CK technique IDs.

CTI-MCQ. This task consists of multiple-choice
questions based on authoritative sources and stan-
dards such as NIST, MITRE, and GDPR, and cov-
ers key CTI concepts such as threat identification,
detection strategies, mitigation techniques, and best
practices. While some questions focus on factual re-
call, our review found many require cross-concept
reasoning, such as inferring applicable scenarios
for different attack techniques, evaluating the effec-
tiveness of security strategies, or understanding the
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potential impact of certain vulnerabilities.

D Training Hyperparameters

This section details the hyperparameters used in
each training stage of our experiments.

D.1 Pre-Training

[8B Model]

Provider: AWS

Framework: NeMo

Hardware: 4 nodes, each with 8 x H200
Training Time: 30 hours (Primus-Seed+ Primus-
FineWeb)

Epochs: 2

Learning Rate: /e-6

Pipeline Model Parallel Size: 4

Tensor Model Parallel Size: 8§

Context Parallel Size: /

Global Batch Size: 12

Micro Batch Size: 12

Warmup Ratio: 0.05

Scheduler: Cosine Annealing

Sequence Length: 16,384

[70B Model]

Provider: NVIDIA

Framework: NeMo

Hardware: 4 nodes, each with 8 x H100
Training Time: 175 hours
Epochs: 2

Learning Rate: /e-6

Pipeline Model Parallel Size: 4
Tensor Model Parallel Size: 8§
Context Parallel Size: /

Global Batch Size: 8

Micro Batch Size: /

Warmup Ratio: 0.05
Scheduler: Cosine Annealing
Sequence Length: 11,264

D.2 Instruction Fine-Tuning

Provider: Azure

Framework: LLaMA-Factory

Hardware: 4 x A100

Training Time: 2 hours

Epochs: 2

Learning Rate: /e-6

Deepspeed: ZeRO Stage-3 with CPU Offload
Per Device Train Batch Size: /

Warmup Ratio: 0.1/



Scheduler: Cosine
Cutoff Length: 16,384

D.3 Reasoning Fine-Tuning

Provider: Azure

Framework: LLaMA-Factory
Hardware: 4 x A100

Training Time: 2.5 hour
Epochs: 3

Learning Rate: /e-6
Deepspeed: ZeRO Stage-3 with CPU Offload
Per Device Train Batch Size: 3
Warmup Ratio: 0.1

Scheduler: Cosine

Cutoff Length: 8,192

E Prompts

All prompts used in this paper are summarized in
Tab.16.

F Safety & Toxicity

We list Garak’s test results in Tab.17.
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Prompt Description Ref.
Wiki Category Classifier Classifies Wikipedia category tags as cybersecurity-related or not. Fig.8
Style-Based Text Rewriting (Blog, Rewrites text into a specific style, such as blog post, textbook, or Q&A. Fig.9
Textbook, Q&A)

Cybersecurity Classifier Determines whether a given text is related to cybersecurity. Fig.10
Primus-Instruct Judge Evaluates response quality when generating PRIMUS-INSTRUCT samples. Fig.11
Step-by-Step Reasoning Generation Generates reasoning steps for a given query. Fig.12
Final Answer Generation Produces the final answer based on the generated reasoning steps. Fig.12
CoT Evaluation Evaluates model performance under CoT. Fig.13

Table 16: Summary of all prompts used in the study.

f[ System]

{{category-list}}
\_

You are a helpful assistant.

[User]
Help me identify and mark the categories related to "cybersecurity", "information
security"”, "data protection”, "cryptography”, "hacker activity", "cyber attack",

7

"cybercrime" from a list of categories | have.

For each category, provide a reason for marking it as 'Y’ (Yes) or 'N' (No) in relation to the
specified topics. Finally, output the results in JSON format with the fields: category,
reason, security.

J

Figure 8: Prompt for classifying Wikipedia category tags into cybersecurity or non-cybersecurity.

Metric Llama-3.1-8B-Instruct Llama-Primus-Merged
dan (Jailbreak) 28.98% 41.70%
encoding (Jailbreak) 100.00% 100.00%
goodside (Hallucination/Injection) 77.08% 72.10%
latentinjection (Injection) 75.55% 74.00%
leakreplay (Copyright) 95.71% 96.90%
malwaregen (Disallowed) 14.34% 29.00%
realtoxicityprompts (Disallowed) 90.03% 85.40%
snowball (Hallucination) 59.67% 84.20%
xss (Injection) 100.00% 98.30%

Table 17: Security and toxicity scores evaluated using Garak.
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([User]
Here is an extract from a webpage: "{{INSERT_EXTRACT}}".

Write an informative and insightful blog post that expands upon the extract above. Your
post should delve into the nuances of the topic, offering fresh perspectives and deeper
analysis. Aim to:

- Inform: Provide valuable, well-researched information that educates the reader.

- Engage: Write in a conversational tone that connects with the audience, making
complex ideas accessible.

- lllustrate: Use examples, anecdotes, or personal experiences to bring the topic to life.
Do not give a title and do not start with sentences like "Have you ever..." or "Hello dear
readers..", simply write the content without these introductory phrases.

J
([User] \

Here is an extract from a webpage: "{{INSERT_EXTRACT}}".

Write an extensive and detailed course unit suitable for a textbook targeted at college
students, related to the given extract. Do not just list concepts, but develop each one in
detail before moving to the next, as we prioritize depth of understanding and
comprehensive exploration of the subject matter over breadth. Focus on:

- Rigor: Ensure in-depth coverage of the concepts/sections.

- Engagement: Write with an academic, professional and engaging tone that captivates
interest.

- Application: Incorporate specific, practical examples, such as proofs in calculus or critical
dates and figures in history.

Do not include a title or an introduction, simply write the content without headlines and
\introductory phrases. Do not use images. )
4 N\
[User]

Here is an extract from a webpage: "{{INSERT_EXTRACT}}".

Re-write the above extract content into a set of 3 questions and answers. The questions
should be insightful and thought-provoking based on the content, while the answers

should be essential and easy to understand.
§ J

Figure 9: Prompts for augmenting text into different styles: blog post, textbook, and Q&A format.
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{[User] \

- Task:

You are a data analyst whose job is to analyze the data and determine if the content is
related to the cybersecutiry domain.

You should generate the reason why you think the content is related to the cybersecurity
domain, and at the end, you should provide a conclusion.

The reason should be a sentence within 100 characters.

The conclusion should be followed by a classification label, which is one of the following:
Cybersecurity, Other in the format [cls: Cybersecurity] or [cls: Other].

- Examples:

User: "A vulnerability refers to a flaw in the structure, execution, functioning, or internal
oversight of a computer or system that compromises its security. Most of the
vulnerabilities that have been discovered are documented in the Common Vulnerabilities
and Exposures (CVE) database."

Assistant: "The content is related to the cybersecurity domain because it discusses
vulnerabilities in computer systems and the Common Vulnerabilities and Exposures (CVE)
database, which is a widely used resource for tracking and documenting security
vulnerabilities. [cls: Cybersecurity]"

User: "For example, tall fencing, topped with barbed wire, razor wire or metal spikes are
often emplaced on the perimeter of a property, generally with some type of signage that
warns people not to attempt entry."

Assistant: "The content is not related to the cybersecurity domain because it discusses
physical security measures like tall fencing, barbed wire, and signage, which are used to
deter unauthorized entry to a property. [cls: Other]"

User: "{{text}}"
Assistant:

- /

Figure 10: Prompt for classifying whether a given text is related to cybersecurity.

[[System ] \

You are a helpful assistant.

[User]

Please act as an impartial judge and evaluate the quality of the response provided by an
Al assistant to the user question displayed below. Your evaluation should consider
correctness and helpfulness. You will be given the assistant's answer. Identify and correct
any mistakes. Be as objective as possible. After providing your explanation, you must rate
the response on a scale of 1 to 10 by strictly following this format: "[[rating]]", for
example: "Rating: [[5]]".

[Question]
{question}

[The Start of Assistant's Answer]
{{answer}}
\[The End of Assistant's Answer] /

Figure 11: Judge prompt for evaluating response quality during PRIMUS-INSTRUCT generation.
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(| [User] )
# Task

You are an expert-level cybersecurity Al assistant capable of analyzing complex security
scenarios step by step. You will receive a cybersecurity problem. Your task is to reconstruct
and demonstrate the complete reasoning path for resolving the security challenge.

Requirements:

1. Based on the difficulty of the problem, determine the number of reasoning steps
required to solve it

2. Explore multiple cybersecurity analysis methods

3. Validate findings through different approaches

4. Consider potential alternative solutions and explain their evaluation

5. Consider potential points of failure in your reasoning

6. Thoroughly test all possible security scenarios

7. When re-checking, use a genuinely different analytical approach

Respond in JSON format, including the following keys:
- 'title': Description of the current reasoning step

- 'content': Detailed explanation of the step

- 'next_action': 'continue’or 'final_answer’

Valid JSON response example:
[{ "title": "Initial Threat Assessment",
"content": "Analyzing the core security challenge...",

", n

"next_action": "continue"

2
{ "title": "..",
"content”: "...",
"next_action": "continue"
2
{ "title": "...",
"content”: "...",
"next_action": "final_answer"
H
# Cybersecurity Problem
{{problem}}
\Please output in JSON format: )
e \
[User]
{{problem}}
[Assistant]
{{reasoing-steps}}
[User]
Please provide a comprehensive final answer based on your reasoning above,
L summarizing key points and addressing any uncertainties. )

Figure 12: Prompts for step-by-step reasoning and final answer generation. The first prompt generates reasoning
steps, while the second produces the final answer based on those steps.
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GSystem ] \
You are a professional cybersecurity chatbot.

[User]

Answer the following multiple choice question. The last line of your response should be of
the following format: 'Answer: SLETTER' (without quotes) where LETTER is one of ABCD.
Think step by step before answering.

{Question}

A) (A}
B) {8}
0 {C}

\D) {D} )

Figure 13: Evaluation prompt for answering with CoT in OpenAl simple-evals and our paper.
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