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ABSTRACT

Transformers are very effective in capturing both global and local correlations
within high-energy particle collisions, but they present deployment challenges
in high-data-throughput environments, such as the CERN LHC. The quadratic
complexity of transformer models demands substantial resources and increases
latency during inference. In order to address these issues, we introduce the Spa-
tially Aware Linear Transformer (SAL-T), a physics-inspired enhancement of the
linformer architecture that maintains linear attention. Our method incorporates
spatially aware partitioning of particles based on kinematic features, thereby com-
puting attention between regions of physical significance. Additionally, we em-
ploy convolutional layers to capture local correlations, informed by insights from
jet physics. In addition to outperforming the standard linformer in jet classifica-
tion tasks, SAL-T also achieves classification results comparable to full-attention
transformers, while using considerably fewer resources with lower latency during
inference. Experiments on a generic point cloud classification dataset (Model-
Net10) further confirm this trend. Our code is available here.

1 INTRODUCTION

Attention-based transformers (1) are ubiquitous in machine learning applications from natural lan-
guage processing to computer vision. Given their prominence and state-of-the-art (SOTA) perfor-
mance, they have also been applied in the physical sciences, including high energy physics, where
they have usurped the previous SOTA architectures like convolutional, recurrent, and graph neu-
ral networks. Cutting-edge scientific experiments like those at the CERN Large Hadron Collider
(LHC) (2) address fundamental questions in particle physics and rely on transformers to maximize
insights from the data collected. The data produced by these experiments contain information about
the particles produced in proton-proton collisions and can be represented as point clouds. Trans-
formers can discern the intricate correlations in particle showers, known as jets, caused by the
decay of heavy particles, allowing physicists to identify these particles (a task known as jet tag-
ging), search for new particles or interactions, and measure the properties of known particles and
interactions (3; 4).

Despite this success, one major drawback of transformers is their computational complexity. The
attention mechanism requires O(n2) operations for n input tokens. Typically, the size of each layer
and the number of heads are also large, resulting in a large number of floating-point operations
(FLOPs). One of the critical applications of neural network-based jet tagging is in the real-time
online collision event filter known as the trigger (5; 6). The LHC collides protons 40 million times
per second, forming point clouds of detector measurements. Due to storage limitations, only about
1 in 40 000 events are stored for further analysis using real-time algorithms suitable for high data
throughput (7; 8). Due to their computational complexity, transformers cannot be readily employed
in this online data filtering process.

In recent years, several works have explored reducing the computational complexity of transformers.
This includes replacing the attention mechanism with low-rank (9) approximations. The low-rank
approximations decrease computation complexity, but this could come at the cost of performance.
However, designing a linear attention method utilizing the underlying structure could improve per-
formance while reducing the computation cost.
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Looking ahead, the High-Luminosity LHC (HL-LHC), expected to begin collisions in 2031, will
provide an unprecedented environment to develop and deploy advanced machine learning algorithms
at trigger level. With increased luminosity and correspondingly higher event rates, more sophisti-
cated real-time filtering will be essential. The availability of Particle Flow (PF) (10)candidates,
including their azimuthal angle and pseudorapidity relative to the jet axis, as early-stage features in
the firmware pipeline, offers new opportunities for designing efficient and physics-aware algorithms.
These experimental conditions motivate research into architectures that can balance accuracy with
stringent computational and memory constraints, paving the way for next-generation approaches to
jet tagging at the HL-LHC.

Related Work State-of-the-art deep learning efficient models for sequence processing—such as
the longformer (11), performer (12), linformer, and reformer (13)—are primarily optimized to han-
dle very long input lengths (tens of thousands of tokens) by sparsifying or approximating full self-
attention. While these methods achieve sub-quadratic complexity in n, they introduce specialized
kernels and overhead that often outweigh their benefits when applied to moderate-length inputs
(n ≈ 100 tokens) that are common in particle physics scientific workflows.

Particle transformer (3) is a SOTA jet tagging model, which introduces a modified attention mecha-
nism, called particle multi-head attention (P-MHA), that considers pairwise features as an attention
bias. A similar architecture has been developed using only pairwise features for attention, which
reduces the computational resources, but maintains the O(n2) scaling (14). A locality-sensitive
hashing-based efficient point transformer (HEPT) has also been developed and applied to charged
particle tracking and pileup mitigation in high energy physics, with improvements demonstrated for
token lengths between 6 000 and 60 000 (15). Transformers based on induced self-attention (16)
have also been explored for generative modeling of jets (17; 18). Despite their SOTA performance
on particle physics tasks, the latency and resource restrictions in the trigger prevent deployment of
these models. In this paper, we address this gap by introducing a spatially-aware attention model
that learns geometric relations and spatial features, while lowering compute cost when compared to
transformer.

2 SPATIALLY AWARE LINEAR TRANSFORMER

We propose the spatially aware linear transformer (SAL-T) as an efficient and physics informed
alternative to traditional transformers for jet tagging. In the context of LHC physics, jets are colli-
mated sprays of particles resulting from the hadronization of quarks or gluons. To characterize these
jets, we use a Cartesian coordinate system with the z axis oriented along the beam axis, the x axis
on the horizontal plane, and the y axis oriented upward. The azimuthal angle ϕ is computed with
respect to the x axis. The polar angle θ is used to compute the pseudorapidity η = − log(tan(θ/2)).
The transverse momentum (pT) is the projection of the particle momentum on the (x, y) plane. For
each particle in the jet, we compute the relative angular coordinates ∆η and ∆ϕ relative to the jet
axis. Jets exhibit spatial structure in the detector, characterized by the distribution of particles in ∆η
and ∆ϕ. In addition, the particles with the greatest pT are generally the most directly related to the
original decaying particle.

Linformer encodes no spatial information making it indifferent to the substructure of jets, limiting
its effectiveness where spatial correlations carry critical information. To overcome this, SAL-T in-
troduces spatial awareness through three modifications to linformer: In our approach, we (1) sort
the input particles by spatial proximity in the (∆η,∆ϕ) plane, weighted by transverse momentum
pT, to ensure that physically relevant, nearby particles are close to one another in the sequence, (2)
partition the key and value projections into p groups so that each projection head attends only to
its own subset of particles, and (3) enhance the attention map by applying a small depthwise 2D
convolution over each head’s raw attention scores to incorporate local neighbor interactions with-
out reintroducing quadratic complexity. These yield our core attention module: linear partitioned
particle multi-head attention (LPP-MHA).
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2.1 LINEAR PARTITIONED PARTICLE MULTI-HEAD ATTENTION

Let X ∈ Rn×d represent the input sequence of n particles, each with d-dimensional features. We
compute the standard query, key, and value matrices:

Q = XWQ ∈ Rn×dk , K = XWK ∈ Rn×dk , V = XWV ∈ Rn×dk , (1)
where WQ,WK ,WV ∈ Rd×dk are learnable projections.

Locality Aware Sorting and Partitioning To ensure each projection focuses on a physically co-
herent subset of particles, we sort the sequence X by in descending order by the theoretically mo-
tivated metric, kT = pT∆R, where ∆R =

√
(∆η)2 + (∆ϕ)2 is the pseudoangular distance to the

jet axis (19). The kTmetric is larger for particles that have larger transverse momentum or are more
closely aligned with the jet axis. This metric is used in iterative jet clustering algorithms at particle
colliders to produce jets with the theoretically desirable properties of infrared safety—meaning the
jet is insensitive to the addition of arbitrarily low-energy particles—and collinear safety—meaning
the jet is insensitive to the splitting of a particle into two or more particles that are moving in nearly
the same direction (19; 20; 21; 22). As a result, partitions derived from kT-sorted sequences are
more likely to group together energetic particles that are physically nearby, enhancing the effective-
ness of spatially aware projection, as illustrated in Fig. 1. The default sorting in LHC physics is
descending order by pT, which does not guarantee adjacent particles are spatially local. This limita-
tion is illustrated in Fig. 1, where pT-based sorting can lead to spatially distant particles appearing
adjacent in the sequence. SAL-T is the first algorithm designed for trigger usage that takes advan-
tage of particle sorting. Many production trigger algorithms, such as AXOL1TL and CICADA (7),
are not permutationally equivariant, yet they do not exploit the sorting information available in the
detector. We define our sorting as:

X = Sort
(
Xunsorted, key = ∥kT∥

)
(2)

The key and value vectors are then partitioned into p partitions:

K
(i)
P =


K(i−1)n

p

K(i−1)n
p +1

...
Ki n

p −1

 , V
(i)
P =


V(i−1)n

p

V(i−1)n
p +1

...
Vi n

p −1

 (3)

where K(i)
P , V

(i)
P ∈ Rn//p×dk , i = 1, . . . , p denotes the partition number, and the key and value vec-

tors are sliced along the sequence dimension. We define learnable projections P (i)
E , P

(i)
F ∈ R1×n//p

which individually act on each X
(i)
P ,

KP = concatpi=1

(
P

(i)
E ,K

(i)
P

)
, V P = concatpi=1

(
P

(i)
F , V

(i)
P

)
,

KP , V P ∈ Rp×dk , i = 1, . . . , p.
(4)

Each projection row in PE or PF only attends to one such partition, ensuring locality. Each projected
vector is then restricted to aggregate embeddings only from its corresponding partition, as illustrated
in Fig. 1. Each partition will only be superpositions of n/p particles, with any leftover padding
where the number of particles does not reach the maximum number of allowed particles in the
jet will be located in the last partitions. This spatially structured design allows SAL-T to capture
local jet substructure while maintaining linear complexity in sequence length, enabling efficient and
physically-informed modeling.

The projections PE and PF are designed such that each row of the output aggregates only over a
localized partition of the input. In our design, for the projected vectors to preserve local substructure
information relevant to jet tagging, each partition must correspond to a localized group of particles
in the (∆η,∆ϕ) plane. Since PE and PF project the input sequence from n dimensions to p di-
mensions, the computational complexity reduces from O(n2) to O(n p), which is near linear when
p ≪ n. By construction, this would mean that for jets with much fewer particles than the sequence
length of n, only the first partitions will be used, while the other partitions will be populated with
zeros. On the other hand, when the number of particles in the sequence is near n, all partitions
will be used. This allows the model to conserve resources for smaller jets that do not have as much
relevant substructure, while focusing in on relevant substructure for larger jets.
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Figure 1: (Left) Jet constituents partitioned and sorted by kT in the (∆η,∆ϕ) plane in SAL-T, show-
ing how constituents are binned spatially before projection. (Center) Jet constituents partitioned by
transverse momentum in the (∆η,∆ϕ) plane. (Right) Visualization of the projection partitioning
strategy used in SAL-T, Jet constituents are partitioned into spatial bins before projection, preserv-
ing local structure.

Convolution Convolutional layers can be applied directly on top of the attention matrix to allow
for more context-rich attention (23). In particle jet datasets, this would allow the attention weights of
each particle to impact the attention weights of nearby particles. When sorted by kT, a convolutional
filter would look at a group of particles close together in physical space, allowing the attention to
learn more spatial context. After the embeddings are split into H attention heads with dimensional-
ity dh = dk/H , we perform a depthwise 2D convolution on the attention matrix logits within each
head, where each filter is applied along the sequence axis, spans the entire projection dimension,
and uses “same” padding to preserve the output dimension. The filter responses are averaged and
passed through a softmax function to yield an attention matrix that incorporates local particle in-
formation. Because these convolutions work on the low-dimensional per-head channels with fixed
kernels, they add only a linear cost in sequence length. This module allows attention to leverage
immediate neighbors in the kT-sorted sequence, capturing spatial patterns without reintroducing
quadratic complexity. Concretely, LPP-MHA is computed as

LPP-MHA(X) = concatHh=1

[
softmax

(
conv2d

(
QhK

P
h /

√
dh

))
V P
h

]
, (5)

and its computational complexity is O(n p f c), where n is the sequence length, p is the projection
dimension, f is the number of filters, and c is the kernel width.

3 EXPERIMENTS

To assess the suitability of our spatially aware linear transformer (SAL-T) for deployment in latency-
and resource-constrained environments such as the trigger, we constrain each model to at most two
multi-head attention layers and limit the total number of trainable parameters to a few thousand.
These restrictions ensure compatibility with the stringent timing and memory requirements of trig-
ger systems. We evaluate each model’s hardware efficiency—measured via resource utilization and
inference latency-alongside classification performance, area under the receiver operating character-
istic curve (AUC) and background rejection, to determine viability for real-time triggering applica-
tions. Background rejection refers to the inverse background efficiency at a fixed signal efficiency
of 80%, denoted as 1/εB(εS = 0.8). This metric quantifies a model’s ability to suppress back-
ground events while maintaining moderate signal retention, and serves as a practical measure of its
discriminative power in classification tasks.

DATASETS

The publicly available hls4ml dataset (24; 25) contains 504,000 jets in the train set, 126,000 jets in
the validation set, and 240,000 jets in the test set. There are five classes of jets, each class originating
from the decay of the following particles: light quark (q), gluon (g), W boson, Z boson, and top quark
(t), each represented by the four-momentum vectors of up to 150 constituent particles. We process
the dataset to best replicate the conditions in the trigger. We use the same setup as in Ref. (26). The
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Figure 2: (Left) Architecture of the linear partitioned particle multi-head attention (LPP-MHA)
module used in SAL-T. The input query, key, and value sequences of dimension n×m are linearly
projected to dimension n × d, then spatially partitioned into p groups of size p × d. Attention
weights are computed via scaled dot-product attention within each partition, followed by a depthwise
convolution over the attention map to promote local context mixing. The resulting attention matrix is
used to aggregate value representations, forming the basis for the output of the attention layer. This
design maintains computational efficiency while maintaining locality-aware expressivity. (Right)
One layer SAL-T model).

initial-state particles are generated to have a pT of at least 1 TeV, while the final state energies are
smeared to replicate conditions in the CMS detector. We then take the n highest particles with a
pTof greater than 1 GeV. When there are less than n constituents, we pad the jet with zeros until it
is of length n. We use transverse momentum (pT), pseudorapidity (∆η), and azimuthal angle (∆ϕ)
relative to the jet axis as the input features. The pT is normalized to its corresponding quartile range
of 5 and 95%.

Beyond the hls4ml dataset, to demonstrate the robustness of SAL-T, we also conduct experi-
ments on two binary classification datasets: the Top Tagging dataset (27; 28) and the Quark Gluon
dataset (29; 30). The Top Tagging dataset contains 1.2 million jets in the training set, 0.4 million jets
in the validation set, and 0.4 million jets in the testing set. There are two classes of jets: signal jets
originate from the decay of top quarks, and background jets originate from light quarks or gluons in
dijet events. The Quark Gluon dataset contains 1.8 million jets for training and 0.2 million jets for
testing. Out of the 1.8 million training jets, we randomly sampled 20% for validation. In the Quark
Gluon dataset, there are two classes of jets, originating from quarks and gluons, respectively.

In addition, we evaluate SAL-T on a generic point cloud classification benchmark: the ModelNet10
dataset (31). ModelNet10 contains 4,899 training and 908 testing 3D objects from 10 categories of
man-made shapes (e.g., chair, sofa, table). For each object, we use the standard protocol of sampling
1,024 points from the mesh surface to form the point cloud input. The task is a 10-way classification
over object categories.

MODEL ARCHITECTURES

All models embed the input jet constituents into a 16-dimensional feature space and use H = 4
attention heads, followed by a lightweight max-aggregation layer and a final dense classification
head. We use dynamic tanh instead of layer norm for normalization across all models due to faster
inference with similar performance (32). All models use the same architecture as in Fig. 2.

• SAL-T: A single LPP-based multi-head attention layer with embedding dimension d = 16
and H = 4 heads; keys and values are projected via spatially aware partitioned matrices PE

and PF (rank 4), and before softmax each head’s raw attention logits are enhanced by three
2D convolutional filters (heights 1, 3, and 5; width matching the number of projections)
with “same” padding to preserve dimensions.
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Table 1: Performance comparison of different models evaluated on jets with up to 150 constituent
particles. We report accuracy, area under the ROC curve (AUC), and average rejection (1/FPR at a
fixed signal efficiency) as the primary classification metrics. Results are shown for various models
and sorting strategies applied to the input sequence, including transverse momentum (pT) sorting
and kT-based sorting. Each value is reported as the mean ± standard deviation across multiple trials.
The transformer is permutation invariant so only the (pT) sorting performance is shown.

Model Accuracy [%] ROC AUC 1/FPR@0.8TPR

SAL-T (pT sorted) 78.82± 0.01 0.950± 0.0028 23.45± 2.12
Linformer (pT sorted) 79.90± 0.00 0.9545± 0.0004 28.06± 0.58
Linformer (kT sorted) 81.00± 0.08 0.9585± 0.0003 38.41± 0.54
SAL-T (kT sorted) 81.18± 0.03 0.9593± 0.0002 40.78± 0.57

Transformer (pT sorted) 81.27± 0.08 0.9589± 0.0004 42.02± 0.71

Deep set 79.65± 0.23 0.8336± 0.0376 7.41± 0.99
Interaction network 80.05± 0.46 0.9128± 0.0139 22.01± 3.69
MLP 53.09± 1.32 0.8054± 0.0120 3.66± 0.12

• Linformer: Identical to SAL-T in embedding dimension (d = 16), head count (H = 4),
and projection dimension (k = 4), but using low rank key value projections (9) without
convolutional filters.

• Transformer: One standard multi head self attention layer with embedding dimension
d = 16, H = 4, key query value dimension dk = 4.

In all cases, the per token outputs of the attention or LPP MHA layer are aggregated via max ag-
gregation over the sequence and then passed to a final dense layer mapping to the five jet class
logits.

Training Each model is trained for 1400 epochs using a phased batch size schedule: 200 epochs
each with batch sizes of 128, 256, 512, 1024, and 2048, followed by 400 epochs with a batch size
of 4096. Optimization is performed using Adam with a learning rate of 0.001. Early stopping is
applied if the validation loss (categorical cross-entropy for multi-class tasks or binary cross-entropy
for binary classification) fails to improve for 40 consecutive epochs. All experiments are conducted
on the National Research Platform (NRP) Nautilus cluster (33; 34) using NVIDIA GTX 1080-Ti or
GTX 3090 GPUs.

4 RESULTS

To validate the effectiveness of SAL-T, we evaluate five model configurations across three per-
formance metrics on the hls4ml dataset, as shown in Table 1. SAL-T applied to kT-sorted jets
outperforms both Linformer baselines on all three metrics and achieves performance comparable to
the full quadratic attention Transformer, accounting for statistical fluctuations (values are reported as
mean ± standard deviation across multiple trials). Notably, kT sorting consistently improves perfor-
mance over standard pT sorting for both SAL-T and linformer, demonstrating that spatial ordering
increases the amount of contextual information between each particle.

In addition, SAL-T significantly outperforms earlier trigger-oriented models (26) including a mul-
tilayer perceptron (MLP), deep sets (35; 29), and interaction network (36; 37), demonstrating its
suitability for low-latency jet tagging. For jets with larger numbers of constituents, SAL-T main-
tains parity with the transformer while outperforming linformer, indicating a greater capacity to
capture complex jet substructures.

To assess efficiency, we report hardware benchmarks in Table 2. SAL-T matches the inference ef-
ficiency of Linformer-based models and offers substantial improvements over the full transformer
in both memory usage and inference latency. Taken together, these results show that SAL-T consis-
tently surpasses linformer in classification performance while matching its hardware efficiency, and
achieves performance on par with the full transformer at significantly lower computational cost.
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Figure 3: (Left) Jet classification accuracy of SAL-T, Linformer, and standard Transformer across
bins of increasing number of particles per jet. SAL-T consistently matches or exceeds the accuracy
of linformer and remains competitive with full transformers. Performance variance in the highest
bin (115–150 particles) is attributable to its small sample size (only 41 jets). (Right) Floating-point
operation (FLOP) counts as a function of sequence length for the three models. While transformer
FLOPs grow quadratically with input length, SAL-T maintains nearly linear scaling, closely tracking
linformer while offering improved performance in high-multiplicity jets.

Table 2: Inference benchmarks of different models for the 150-particle setting. Metrics reported
include the number of parameters, floating point operations (FLOPs), peak GPU memory usage,
and average inference time (with standard deviation) per jet.

Model # Params FLOPs Peak GPU Mem [MB] Inference Time [µs]

SAL-T 3,264 739,918 303.4 27.69± 0.32
SAL-T (no partition) 6,848 739,918 296.4 27.06± 0.17
SAL-T (no convolution) 3,225 552,718 226.2 22.83± 0.84
Linformer 6,809 552,718 245.8 22.38± 0.33
Transformer 2,009 2,479,918 4,357.1 30.86± 0.14

Deep set 3,461 664,805 220.3 17.47± 0.25
Interaction network 10,064,702 61,529,931 4,283.9 307.38± 0.44
MLP 53,837 267,081 92.9 16.42± 0.25

Table 3: Model performance comparison on the Top Tagging dataset. Best metrics between SAL-T
and linformer are highlighted in bold. In the case where two metrics are within statistical uncertainty,
neither is highlighted. All models are sorted by kT.

Layers Model # Params FLOPs Accuracy [%] ROC AUC 1/FPR@0.8TPR

1
SAL-T 3,580 986,161 92.52± 0.11 0.9780± 0.0006 31.84± 1.10
Linformer 8,341 736,561 92.40± 0.07 0.9774± 0.0005 30.89± 1.13
Transformer 1,941 4,186,161 92.91± 0.06 0.9802± 0.0003 36.54± 0.77

2
SAL-T 6,939 2,794,161 92.79± 0.03 0.9796± 0.0001 35.15± 0.17
Linformer 16,329 1,450,161 92.61± 0.02 0.9786± 0.0001 33.11± 0.22
Transformer 3,529 8,349,361 93.11± 0.03 0.9813± 0.0001 40.11± 0.23
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Table 4: Model performance comparison on the Quark Gluon dataset. Best metrics between SAL-T
and Linformer are highlighted in bold. In the case where two metrics are within statistical uncer-
tainty, neither is highlighted. All models are sorted by kT.

Layers Model # Params FLOPs Accuracy [%] ROC AUC 1/FPR@0.8TPR

1
SAL-T 3,196 739,761 81.34± 0.05 0.8888± 0.0005 5.76± 0.05
Linformer 6,741 552,561 81.36± 0.01 0.8882± 0.0001 5.77± 0.01
Transformer 1,941 2,479,761 81.64± 0.03 0.8913± 0.0001 5.98± 0.03

2
SAL-T 6,171 2,095,761 81.77± 0.02 0.8924± 0.0004 6.07± 0.01
Linformer 13,129 1,087,761 81.60± 0.08 0.8906± 0.0006 5.94± 0.05
Transformer 3,529 4,942,161 82.09± 0.03 0.8957± 0.0004 6.32± 0.02

To assess the robustness of SAL-T, we evaluate its performance alongside baseline models on two
additional high-energy physics datasets commonly used in the literature. Given that these datasets
are significantly larger than hls4ml, we report results for both one-layer and two-layer attention
models, whereas only single-layer models are considered for hls4ml. As shown in Tables 3 and 16,
while the performance of single-layer SAL-T and Linformer models is within statistical uncertainty,
SAL-T outperforms linformer with two attention layers, indicating that SAL-T scales more effec-
tively with model capacity and is better suited for larger datasets.

Notably, on the Quark Gluon dataset (Table 16), the two-layer SAL-T surpasses the single-layer
Transformer in classification performance while also offering substantial gains in computational
efficiency, highlighting the scalability and expressiveness of SAL-T in more complex scenarios.

Ablation Study We find that using the partition and convolution individually increases the perfor-
mance of SAL-T when compared the base linformer. Both partitioning and convolution increases
performance of the base linformer for longer, more complex jets, as seen in Table 5. Individually,
SAL-T without partition increases performance when there are 76–114 particles in a jet. SAL-T
without the convolution (only using partition) increases overall accuracy, along with accuracy for
76–114 particles to above that of linformer (see Figure 3). Furthermore, combining partition and
convolution to make the full LPP-MHA layer further increases the performance. This demonstrates
that both novel components of LPP-MHA individually learn spatial information about the jets.

Table 5: Ablation study on SAL-T components. Reported metrics include overall accuracy and
accuracy in bins 2 and 3 of number of particles in a jet reported in Figure 3, as well as background
rejection at 0.8 signal efficiency.

Model # Params Accuracy [%] Bin 2 (38-75) [%] Bin 3 (76-114) [%] 1/FPR@0.8TPR

SAL-T (pT sorted) 3,264 78.82± 0.46 78.02± 0.50 76.24± 4.42 23.45± 2.12
SAL-T (no partition) 6,848 81.02± 0.05 80.40± 0.05 81.15± 0.69 27.68± 0.67
SAL-T (no convolution) 3,225 81.09± 0.10 80.55± 0.08 81.60± 0.93 17.90± 2.64
Linformer (pT sorted) 6,809 79.90± 0.06 79.45± 0.13 80.80± 0.42 28.06± 0.58
Linformer (kT sorted) 6,809 81.00± 0.08 80.45± 0.04 80.41± 0.08 38.41± 0.54
SAL-T (kT sorted) 3,264 81.18± 0.03 80.60± 0.06 81.60± 0.20 40.78± 0.57

ModelNet10 Results. To further highlight the applicability of SAL-T to machine learning tasks
beyond particle physics, we benchmarked on the well-known ModelNet10 dataset. In this setting,
each point cloud is represented by a fixed set of 1024 points, and the task is to classify objects into
ten distinct categories. We sorted the input points by Morton codes to preserve spatial locality in a
way analogous to kT sorting for jets, and found that this ordering is crucial: without it, both SAL-T
and Linformer show a marked drop in performance. We use the exact same model as used for the
hls4ml dataset. (Table 6) With sorting, SAL-T substantially outperforms Linformer in accuracy and
AUC, while being more efficient than a full Transformer. As expected, the full Transformer achieves
the highest accuracy, but at the cost of quadratic compute and memory growth with sequence length.
In contrast, SAL-T offers a favorable trade-off between accuracy and efficiency, scaling linearly
while retaining competitive discriminative power. These results show that the spatially aware design
of SAL-T can leverage input orderings beyond those used in particle physics, making it a generally
useful approach for point cloud classification tasks.
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Table 6: ModelNet10 performance comparison of Transformer, Linformer, and SAL-T. Results are
reported as mean ± standard deviation.

Model FLOPs Peak GPU Mem [MB] Accuracy [%]
Transformer 95,683,468 ± 0 6,221.1 ± 8.3 82.56 ± 3.36
Linformer 3,769,228 ± 0 397.8 ± 27.1 77.86 ± 1.16
SAL-T 5,047,180 ± 0 454.6 ± 3.1 80.10 ± 1.11
Linformer (unsorted) 3,769,228 ± 0 397.8 ± 27.1 60.72 ± 1.97
SAL-T (unsorted) 5,047,180 ± 0 454.6 ± 3.1 68.79 ± 1.16

5 SUMMARY AND OUTLOOK

In this work, we have presented SAL-T, a spatially aware linear transformer that incorporates parti-
tioned attention and lightweight convolution to encode locality in jet constituents. Across multiple
jet-tagging benchmarks, SAL-T consistently outperforms linformer in accuracy, area under the re-
ceiver operating characteristic curve, and background rejection, achieves performance comparable
to full-attention transformers, and maintains linformer-level FLOPs and inference latency, resulting
in significantly improved efficiency over full transformers. These results demonstrate that inte-
grating physics-informed locality into low-rank attention mechanisms can yield substantial gains in
performance for real-time collider data analysis.

Limitations and Future Directions While SAL-T exhibits robust performance and notable ef-
ficiency improvements on standard jet tagging benchmarks, several limitations persist. First, our
evaluation has been constrained to the hls4ml, Top Tagging, and Quark Gluon datasets. Demon-
strating comparable performance on real CMS or ATLAS trigger data and on other point cloud tasks
would enhance confidence in its general applicability. Second, the current spatially aware partition-
ing employs a single choice of p and fixed convolution filter sizes with heights of 1, 3, and 5. The
incorporation of adaptive partition ranks or the ability to learn multi-scale convolution kernels could
lead to more comprehensive local feature representations. Third, all experiments utilize a maximum
of two LPP-MHA layers; the employment of deeper SAL-T stacks might offer a better capture of
jets’ hierarchical structure, albeit potentially compromising the latency benefits we have observed.
Lastly, our latency benchmarks were conducted on a desktop-class GPU (NVIDIA GeForce GTX
1080 Ti). Integrating SAL-T into FPGA-based trigger systems could present additional challenges
in adhering to stringent hardware constraints.

Looking forward, we plan to pursue several avenues to address these limitations. We will inte-
grate spatially aware partitioning and convolution with the pairwise feature attention bias of particle
transformer (3), merging its multi-scale attention scheme with our physics-informed projections to
achieve combined benefits. For our future implementations, we plan to incorporate a sorting tech-
niques based on the clustering sequence history of the particle jets (21; 38), for a more physics in-
formed partitioning. We aim to explore dynamic partitioning, enabling the model to adjust partition
sizes or counts dynamically in response to particle multiplicity, potentially enhancing efficiency for
jets with varying complexity. Moreover, hardware-aware optimization by tailoring SAL-T kernels
for FPGAs or low-power inference engines is intended to meet trigger latency requirements in the
microseconds range. Finally, we intend to deploy SAL-T across a broader spectrum of collider-based
point-cloud tasks, such as jet reconstruction and anomaly detection, to evaluate its generalizability
beyond jet tagging.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work introduces SAL-T, a transformer-based architecture designed for efficient particle jet
classification in high-energy physics. The datasets used in this study are widely adopted public
benchmarks: the hls4ml dataset (24; 25), the Top Tagging dataset (27; 28), the Quark–Gluon
dataset (29; 30), and ModelNet10 (31). These datasets contain only simulated or synthetic data, and
thus do not involve human subjects, personally identifiable information, or sensitive attributes. We
therefore do not anticipate risks related to privacy, security, or discrimination.

Our primary application domain is high-energy physics, where more efficient ML models can reduce
computational costs for large-scale experiments, thereby decreasing energy usage and improving
sustainability of data processing at facilities such as the LHC. We acknowledge that any advances
in efficient machine learning can be repurposed for other domains; however, this work does not
target or develop applications with direct societal risks, such as surveillance or military use. All
experiments were conducted in compliance with open-source licensing terms, and we release our
code in anonymized form to promote transparency and reproducibility.

We believe this work aligns with the ICLR Code of Ethics by upholding principles of research
integrity, fairness, and responsible dissemination.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. All datasets used in this work
are publicly available benchmarks, and we describe their preprocessing and train/validation/test
splits in Section 3. The full model architecture, including hyperparameters and training details,
is provided in Section 2 and Section 3. We report results averaged over multiple runs with standard
deviations where applicable. An anonymized implementation of SAL-T, along with training and
evaluation scripts, is included in the abstract to facilitate verification and extension of our work.
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SUPPLEMENTARY MATERIAL

LLM USAGE

Large Language Models (LLMs) were used as a general purpose writing and editing assistant in the
preparation of this manuscript. Specifically, LLMs helped with phrasing improvements, grammar
checks, and formatting of LaTeX tables and sections. All research ideas, experiments, analyses, and
conclusions were conceived and carried out by the authors. The authors have carefully verified the
accuracy of all content and take full responsibility for the final text.

HYPERPARAMETER STUDIES

We perform ablation studies on two key hyperparameters of SAL-T: the number of partitions and
the convolution filter sizes. Table 7 shows that for 150 particles per jet, increasing the number of
partitions initially improves both efficiency and performance, but beyond four partitions the com-
putational cost grows substantially without additional performance gains. We therefore select four
partitions as the default setting. Table 8 compares different convolution filter configurations, where
the default setting of {1, 3, 5} achieves the best overall trade-off between accuracy, AUC, and effi-
ciency.

Table 7: Effect of partition number on FLOPs, inference time, peak GPU memory, and classification
performance.

Partitions FLOPs Inference [µs] Peak Mem [MB] Accuracy [%] ROC AUC 1/FPR@0.8TPR
1 527,518 24.71 ± 0.88 227.9 80.66 ± 0.03 0.9573 35.24 ± 0.65
2 576,718 27.00 ± 0.23 228.4 80.95 ± 0.13 0.9583 37.91 ± 1.31
4 739,918 27.51 ± 0.35 303.4 81.18 ± 0.03 0.9593 40.78 ± 0.57
8 1,325,518 34.58 ± 0.74 530.4 81.10 ± 0.13 0.9591 39.75 ± 1.21

16 3,533,518 56.91 ± 0.89 981.4 80.97 ± 0.19 0.9583 38.48 ± 1.80

Table 8: Effect of convolution filter sizes on FLOPs, inference time, peak GPU memory, and classi-
fication performance.

Filter sizes FLOPs Inference [µs] Peak Mem [MB] Accuracy [%] ROC AUC 1/FPR@0.8TPR
1 3 5 739,918 27.51 ± 0.35 303.4 81.18 ± 0.03 0.9593 40.78 ± 0.57
1 5 7 816,718 29.16 ± 0.45 303.4 81.00 ± 0.06 0.9588 38.70 ± 1.14
1 3 5 7 879,118 30.36 ± 0.66 378.4 81.10 ± 0.10 0.9589 39.25 ± 0.70
1 3 5 7 9 1,056,718 32.96 ± 0.36 453.4 81.02 ± 0.12 0.9587 38.63 ± 1.13
3 3 3 739,918 29.66 ± 0.14 303.4 80.96 ± 0.03 0.9585 37.92 ± 0.70
5 5 5 855,118 29.34 ± 0.54 303.4 80.97 ± 0.11 0.9585 38.15 ± 1.29
7 7 7 970,318 30.62 ± 0.45 303.4 80.98 ± 0.12 0.9587 38.58 ± 1.27
3 5 7 855,118 29.53 ± 0.38 303.4 81.07 ± 0.05 0.9588 39.13 ± 0.40
3 5 7 9 1,032,718 31.15 ± 0.27 378.4 81.09 ± 0.03 0.9589 39.53 ± 0.22

FURTHER ABLATION STUDIES

In addition to the above studies, we also conduct a full ablation study of SAL-T components on
hls4ml dataset constrained to a maximum of 16, 32, and 150 particles to match the results in
(26) We use the following ablations to the full SAL-T model: Only Partitioning the value matrix,
only partitioning the key matrix, only using one set of projections for both the key and value matrix
(Share EF), without convolution, and without partitioning. We repeat these experiments for inputs
sorted by all pT, ∆R, and kT. We find that kTsorting of inputs consistently performs better than
other sorting methods regardless of input length, as shown in Tables 9 13 14. Additionally, we find
that SAL-T is most effective at tagging on longer seqeuences.

Individually, when benchmarking on 150 particles, we find that partitioning the value matrix is
especially important to achieve strong accuracy and rejection. In Table 13, full SAL-T, SAL-T
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where only the value matrix is partitioned, SAL-T where the value and key matrix share partitioning
weights perform the best when compared to other ablations.

In Tables 11 12 and 14 we demonstrate that partitioning reduces parameter count compared to lin-
former, and convolution with 3 filters adds a very small number of parameters when compared to
linformer. We show that SAL-T and linformer uses much less GPU memory at its peak.

SOTA BASELINE UNDER TINY-MODEL CONSTRAINTS

Since SAL-T was designed to be implemented onto FPGAs, we focus on tiny machine learning
models. The performance of tiny machine learning models for particle physics is currently an
under-explored area. We apply the current state-of-the-art Particle Transformer (ParT) and per-
form an apples-to-apples comparison with SAL-T by shrinking ParT to the size of our tiny models
and running benchmarks. As shown in Table 10, ParT improves performance compared to the native
transformer and SAL-T, but drastically increases the resource usage due to the convolution layers
needed to process the pairwise mask, and the computation of the pairwise features.

ATTENTION MATRICES

We plot attention matrices to demonstrate that convolution and partitioning allows for a more inter-
pretable model. For instance, in figures 4 5 6, we are able to identify which range of particles SAL-T
is attending. On the other hand, since the vanilla linformer has projections that are multiples of all
particles, the projections are much less interpretable. The convolution in SAL-T smooths the atten-
tion in the attention maps, visualizing how SAL-T learns local connections in attention. We take
the attention matrix of all particles after running inference on the test dataset, and sum the attention
values to the first partition. Then, we divide it by the sum of all the attention values in the matrix.
Interestingly, we find that head 2 of SAL-T almost always attends to partition 0 as seen in figure 7.
This only occurs in SAL-T full, and does not occur in linformer.

BATCH SIZE SCHEDULING VS LEARNING RATE DECAY

We trained all models on a phased batch size scheduling training scheme. We doubled the batch size
starting from 128 all the way to 4096 every 200 epochs, with early stopping for each batch size if
the validation loss does not decrease for 40 epochs. We also tested learning rate decay, where we
start at 0.001 learning rate using adam optimizer, and decreased it by half whenever the validation
loss plateaued for 80 epochs. We find that the batch size scheduling outperforms the learning rate
decay as seen in figure 8.
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Table 9: Performance metrics for hls4ml with at most 16 particles per jet
Model Sort Test Accuracy [%] ROC AUC Avg 1/FPR

SAL-T Partition Value Only deltaR 72.12 ± 0.06 0.92 ± 0.00 10.60 ± 0.06
SAL-T deltaR 72.28 ± 0.25 0.92 ± 0.00 10.82 ± 0.31
SAL-T No Conv Partition Value Only deltaR 72.30 ± 0.40 0.92 ± 0.00 10.81 ± 0.40
SAL-T Share EF pt 72.32 ± 0.09 0.92 ± 0.00 10.84 ± 0.08
SAL-T No Conv pt 72.35 ± 0.19 0.92 ± 0.00 10.85 ± 0.20
SAL-T Share EF deltaR 72.35 ± 0.26 0.92 ± 0.00 10.86 ± 0.29
SAL-T pt 72.39 ± 0.04 0.92 ± 0.00 10.91 ± 0.02
SAL-T No Conv deltaR 72.39 ± 0.04 0.92 ± 0.00 10.89 ± 0.05
SAL-T Partition Value Only pt 72.54 ± 0.07 0.92 ± 0.00 11.09 ± 0.17
SAL-T No Conv Partition Value Only pt 72.61 ± 0.07 0.92 ± 0.00 11.19 ± 0.06
SAL-T No Conv Partition Key Only deltaR 72.75 ± 0.05 0.93 ± 0.00 11.35 ± 0.07
SAL-T No Partition deltaR 72.78 ± 0.09 0.93 ± 0.00 11.38 ± 0.14
SAL-T No Conv Partition Key Only pt 72.84 ± 0.05 0.93 ± 0.00 11.39 ± 0.10
SAL-T No Partition pt 72.85 ± 0.12 0.93 ± 0.00 11.45 ± 0.13
Linformer deltaR 72.92 ± 0.10 0.93 ± 0.00 11.47 ± 0.08
SAL-T Partition Key Only pt 72.94 ± 0.06 0.93 ± 0.00 11.52 ± 0.06
Linformer pt 72.94 ± 0.18 0.93 ± 0.00 11.52 ± 0.13
SAL-T Partition Key Only deltaR 72.95 ± 0.13 0.93 ± 0.00 11.58 ± 0.13
SAL-T kt 73.07 ± 0.27 0.93 ± 0.00 11.72 ± 0.24
SAL-T No Conv kt 73.12 ± 0.12 0.93 ± 0.00 11.76 ± 0.06
SAL-T No Conv Partition Value Only kt 73.22 ± 0.09 0.93 ± 0.00 11.87 ± 0.14
SAL-T No Conv Partition Key Only kt 73.24 ± 0.09 0.93 ± 0.00 11.93 ± 0.13
SAL-T Partition Value Only kt 73.29 ± 0.06 0.93 ± 0.00 12.00 ± 0.02
SAL-T Partition Key Only kt 73.35 ± 0.06 0.93 ± 0.00 12.03 ± 0.09
SAL-T Share EF kt 73.40 ± 0.20 0.93 ± 0.00 12.09 ± 0.24
SAL-T No Partition kt 73.52 ± 0.03 0.93 ± 0.00 12.27 ± 0.04
Linformer kt 73.58 ± 0.08 0.93 ± 0.00 12.31 ± 0.15
Transformer pt 73.60 ± 0.13 0.93 ± 0.00 12.48 ± 0.13
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Figure 4: Attention matrices for a top quark jet with 81 particles. Each trio of attention plots rep-
resent a separate head of each respective model. The convolutional layer on top of the attention
smooths the attention values of SAL-T, demonstrating how convolution helps SAL-T leverage im-
mediate neigbhors. Notice in the top right and bottom left attention plots, SAL-T attention focuses
on only one partition before convolution, signifying that SAL-T understands the partitions that are
important to the jet.
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Figure 5: Attention matrices for a top quark jet with 121 particles. Each trio of attention matrices
represents a separate head of the respective models. The convolutional layer on top of the attention
smooths the attention values of SAL-T, demonstrating how convolution helps SAL-T leverage im-
mediate neighbors.
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Figure 6: Attention matrices for a top quark jet with 44 particles. Each trio of attention matrices
represents a separate head of the respective models. The convolutional layer on top of the attention
smooths the attention values of SAL-T, demonstrating how convolution helps SAL-T leverage im-
mediate neighbors.
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Figure 7: histogram of ratio of attention to partition 0 in head 2 throughout all particles in the test
set. We show that before convolution, head 2 almost always attends to partition 0.
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Figure 8: Training/validation accuracy and loss curves for SAL-T with learning rate decay vs batch
size scheduling. (Top Left) Accuracy curve for learning rate decay. (Top Right) Accuracy Curve for
batch size scheduling. (Bottom Left) Loss curve for learning rate decay. (Bottom Right) Loss curve
for batch size scheduling.
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Table 10: Comparison of SAL-T with a reduced Particle Transformer and a native transformer.
Model FLOPs Inference [µs] Peak Mem [MB] Accuracy [%] ROC AUC 1/FPR@0.8TPR
1-layer-ParT 8,217,868 211.20 ± 0.84 OOM 81.42 ± 0.19 0.9599 43.16 ± 1.67
SAL-T 739,918 26.78 ± 0.13 303.4 81.18 ± 0.03 0.9593 40.78 ± 0.57
transformer 2,479,918 29.61 ± 0.12 4,357.1 81.27 ± 0.08 0.9589 42.02 ± 0.71

Table 11: Efficiency metrics for 16-particle HLS4ML datset
Model Sort Training Time [h] Params GPU Peak [MB] FLOPs Inference Time [µs]

SAL-T Partition Value Only deltaR 3.84 ± 0.09 2368 37.0 ± 0.0 79566 15.45 ± 0.28
SAL-T deltaR 4.21 ± 0.25 2176 38.3 ± 0.0 79566 15.78 ± 0.14
SAL-T No Conv Partition Value Only deltaR 2.93 ± 0.50 2329 29.0 ± 0.0 59598 15.22 ± 0.16
SAL-T Share EF pt 3.53 ± 0.36 2112 38.3 ± 0.0 79566 15.78 ± 0.19
SAL-T No Conv pt 3.00 ± 0.25 2137 27.3 ± 0.0 59598 15.21 ± 0.26
SAL-T Share EF deltaR 3.53 ± 0.29 2112 38.3 ± 0.0 79566 15.88 ± 0.18
SAL-T pt 4.09 ± 0.35 2176 38.3 ± 0.0 79566 15.53 ± 0.07
SAL-T No Conv deltaR 3.05 ± 0.23 2137 27.3 ± 0.0 59598 15.05 ± 0.06
SAL-T Partition Value Only pt 3.73 ± 0.15 2368 37.0 ± 0.0 79566 15.54 ± 0.08
SAL-T No Conv Partition Value Only pt 2.91 ± 0.47 2329 29.0 ± 0.0 59598 15.30 ± 0.20
SAL-T No Conv Partition Key Only deltaR 2.90 ± 0.43 2329 29.0 ± 0.0 59598 15.26 ± 0.16
SAL-T No Partition deltaR 3.21 ± 0.16 2560 37.1 ± 0.0 79566 15.43 ± 0.32
SAL-T No Conv Partition Key Only pt 2.86 ± 0.42 2329 29.0 ± 0.0 59598 15.12 ± 0.35
SAL-T No Partition pt 3.20 ± 0.15 2560 37.1 ± 0.0 79566 15.55 ± 0.12
Linformer deltaR 2.75 ± 0.12 2521 29.0 ± 0.0 59598 15.00 ± 0.16
SAL-T Partition Key Only pt 3.27 ± 0.37 2368 41.5 ± 0.0 79566 15.62 ± 0.18
Linformer pt 2.76 ± 0.17 2521 29.0 ± 0.0 59598 15.07 ± 0.28
SAL-T Partition Key Only deltaR 3.39 ± 0.37 2368 41.5 ± 0.0 79566 15.71 ± 0.24
SAL-T kt 4.07 ± 0.26 2176 38.3 ± 0.0 79566 15.70 ± 0.33
SAL-T No Conv kt 3.13 ± 0.31 2137 27.3 ± 0.0 59598 15.14 ± 0.16
SAL-T No Conv Partition Value Only kt 2.97 ± 0.48 2329 29.0 ± 0.0 59598 15.33 ± 0.18
SAL-T No Conv Partition Key Only kt 2.86 ± 0.44 2329 29.0 ± 0.0 59598 15.16 ± 0.28
SAL-T Partition Value Only kt 3.83 ± 0.06 2368 37.0 ± 0.0 79566 15.69 ± 0.16
SAL-T Partition Key Only kt 3.32 ± 0.45 2368 41.5 ± 0.0 79566 15.43 ± 0.11
SAL-T Share EF kt 3.58 ± 0.38 2112 38.3 ± 0.0 79566 15.61 ± 0.26
SAL-T No Partition kt 3.26 ± 0.24 2560 37.1 ± 0.0 79566 15.57 ± 0.10
Linformer kt 2.69 ± 0.07 2521 29.0 ± 0.0 59598 15.09 ± 0.02
Transformer pt 1.98 ± 0.34 2009 62.8 ± 0.0 76494 15.21 ± 0.18
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Table 12: Performance metrics for 32-particle HLS4ML dataset
Model Sort Test Accuracy [%] ROC AUC Avg 1/FPR

SAL-T Share EF deltaR 76.97 ± 0.20 0.94 ± 0.00 17.89 ± 0.68
SAL-T deltaR 77.06 ± 0.72 0.94 ± 0.00 18.22 ± 2.04
SAL-T No Conv deltaR 77.16 ± 0.35 0.94 ± 0.00 18.22 ± 1.04
SAL-T No Conv Partition Value Only deltaR 77.36 ± 0.63 0.94 ± 0.00 19.05 ± 1.94
SAL-T No Conv Partition Value Only pt 77.62 ± 0.26 0.95 ± 0.00 19.73 ± 0.93
SAL-T pt 77.63 ± 0.12 0.95 ± 0.00 19.89 ± 0.61
SAL-T Share EF pt 77.63 ± 0.22 0.95 ± 0.00 19.86 ± 0.58
SAL-T Partition Value Only pt 77.66 ± 0.29 0.95 ± 0.00 20.11 ± 0.98
SAL-T No Conv pt 77.69 ± 0.07 0.95 ± 0.00 20.11 ± 0.15
SAL-T Partition Value Only deltaR 77.74 ± 0.39 0.95 ± 0.00 20.32 ± 1.27
SAL-T No Conv Partition Key Only pt 77.97 ± 0.40 0.95 ± 0.00 21.17 ± 1.35
SAL-T No Conv Partition Key Only deltaR 78.08 ± 0.14 0.95 ± 0.00 21.44 ± 0.41
SAL-T Partition Key Only deltaR 78.21 ± 0.08 0.95 ± 0.00 21.81 ± 0.24
Linformer pt 78.26 ± 0.19 0.95 ± 0.00 22.09 ± 0.60
Linformer deltaR 78.32 ± 0.26 0.95 ± 0.00 22.39 ± 0.98
SAL-T No Partition deltaR 78.34 ± 0.17 0.95 ± 0.00 22.45 ± 0.60
SAL-T No Partition pt 78.39 ± 0.04 0.95 ± 0.00 22.44 ± 0.33
SAL-T Partition Key Only pt 78.39 ± 0.16 0.95 ± 0.00 22.75 ± 0.49
Transformer deltaR 78.52 ± 1.36 0.95 ± 0.01 25.46 ± 4.67
SAL-T No Conv Partition Value Only kt 78.79 ± 0.18 0.95 ± 0.00 25.29 ± 1.00
SAL-T No Conv kt 78.81 ± 0.04 0.95 ± 0.00 25.38 ± 0.21
SAL-T No Conv Partition Key Only kt 78.88 ± 0.08 0.95 ± 0.00 25.79 ± 0.27
SAL-T Share EF kt 78.90 ± 0.15 0.95 ± 0.00 25.66 ± 0.73
SAL-T Partition Key Only kt 78.92 ± 0.16 0.95 ± 0.00 25.55 ± 0.46
SAL-T Partition Value Only kt 79.02 ± 0.06 0.95 ± 0.00 26.23 ± 0.62
SAL-T kt 79.02 ± 0.12 0.95 ± 0.00 25.98 ± 0.97
SAL-T No Partition kt 79.06 ± 0.12 0.95 ± 0.00 26.67 ± 0.54
Transformer kt 79.08 ± 0.04 0.95 ± 0.00 27.29 ± 0.12
Transformer pt 79.10 ± 0.12 0.95 ± 0.00 27.33 ± 0.47
Linformer kt 79.13 ± 0.10 0.95 ± 0.00 26.75 ± 0.50
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Table 13: Efficiency metrics for 32-particle HLS4ML dataset
Model Sort Training Time [h] Params GPU Peak [MB] FLOPs Inference Time [µs]

SAL-T Share EF deltaR 3.91 ± 0.33 2176 65.5 ± 0.0 158414 17.26 ± 0.18
SAL-T deltaR 4.44 ± 0.20 2304 65.5 ± 0.0 158414 17.19 ± 0.24
SAL-T No Conv deltaR 3.31 ± 0.32 2265 53.0 ± 0.0 118478 16.36 ± 0.05
SAL-T No Conv Partition Value Only deltaR 2.97 ± 0.34 2649 55.5 ± 0.0 118478 16.18 ± 0.10
SAL-T No Conv Partition Value Only pt 2.98 ± 0.40 2649 55.5 ± 0.0 118478 16.19 ± 0.19
SAL-T pt 4.42 ± 0.23 2304 65.5 ± 0.0 158414 17.22 ± 0.35
SAL-T Share EF pt 3.91 ± 0.28 2176 65.5 ± 0.0 158414 17.15 ± 0.13
SAL-T Partition Value Only pt 4.20 ± 0.06 2688 64.1 ± 0.0 158414 17.05 ± 0.30
SAL-T No Conv pt 3.34 ± 0.39 2265 53.0 ± 0.0 118478 16.04 ± 0.23
SAL-T Partition Value Only deltaR 4.20 ± 0.03 2688 64.1 ± 0.0 158414 17.05 ± 0.20
SAL-T No Conv Partition Key Only pt 2.88 ± 0.03 2649 55.5 ± 0.0 118478 16.14 ± 0.16
SAL-T No Conv Partition Key Only deltaR 2.92 ± 0.09 2649 55.5 ± 0.0 118478 16.42 ± 0.16
SAL-T Partition Key Only deltaR 3.66 ± 0.43 2688 64.1 ± 0.0 158414 16.75 ± 0.02
Linformer pt 2.91 ± 0.02 3033 54.1 ± 0.0 118478 16.26 ± 0.21
Linformer deltaR 2.94 ± 0.05 3033 54.1 ± 0.0 118478 16.24 ± 0.43
SAL-T No Partition deltaR 3.60 ± 0.20 3072 63.1 ± 0.0 158414 16.90 ± 0.26
SAL-T No Partition pt 3.63 ± 0.21 3072 63.1 ± 0.0 158414 17.11 ± 0.39
SAL-T Partition Key Only pt 3.74 ± 0.42 2688 64.1 ± 0.0 158414 17.39 ± 0.43
Transformer deltaR 2.21 ± 0.38 2009 221.5 ± 0.0 197326 16.08 ± 0.15
SAL-T No Conv Partition Value Only kt 3.02 ± 0.44 2649 55.5 ± 0.0 118478 16.51 ± 0.17
SAL-T No Conv kt 3.34 ± 0.17 2265 53.0 ± 0.0 118478 16.20 ± 0.25
SAL-T No Conv Partition Key Only kt 2.92 ± 0.03 2649 55.5 ± 0.0 118478 16.26 ± 0.16
SAL-T Share EF kt 3.89 ± 0.31 2176 65.5 ± 0.0 158414 17.38 ± 0.25
SAL-T Partition Key Only kt 3.69 ± 0.46 2688 64.1 ± 0.0 158414 17.21 ± 0.11
SAL-T Partition Value Only kt 4.18 ± 0.05 2688 64.1 ± 0.0 158414 16.92 ± 0.14
SAL-T kt 4.52 ± 0.32 2304 65.5 ± 0.0 158414 17.22 ± 0.25
SAL-T No Partition kt 3.61 ± 0.19 3072 66.43 ± 5.77 158414 17.32 ± 0.12
Transformer kt 2.08 ± 0.35 2009 221.5 ± 0.0 197326 15.96 ± 0.22
Transformer pt 2.25 ± 0.37 2009 221.5 ± 0.0 197326 16.25 ± 0.14
Linformer kt 2.93 ± 0.08 3033 54.1 ± 0.0 118478 16.38 ± 0.07

Table 14: Performance metrics for 150-particle HLS4ML dataset
Model Sort Test Accuracy [%] ROC AUC Avg 1/FPR

SAL-T Share EF pt 73.86 ± 0.00 0.93 ± 0.01 13.52 ± 3.17
SAL-T Share EF deltaR 74.16 ± 0.00 0.93 ± 0.01 13.51 ± 4.14
SAL-T No Conv deltaR 76.08 ± 0.00 0.94 ± 0.00 16.05 ± 0.70
SAL-T No Conv pt 76.91 ± 0.00 0.94 ± 0.00 17.90 ± 2.64
SAL-T Partition Value Only deltaR 77.08 ± 0.00 0.94 ± 0.00 18.27 ± 2.73
SAL-T No Conv Partition Value Only pt 77.61 ± 0.00 0.95 ± 0.00 19.53 ± 3.26
SAL-T Partition Value Only pt 77.72 ± 0.00 0.95 ± 0.00 20.46 ± 3.47
SAL-T No Conv Partition Value Only deltaR 78.15 ± 0.00 0.95 ± 0.00 20.91 ± 1.22
SAL-T deltaR 78.25 ± 0.00 0.95 ± 0.00 20.64 ± 1.74
SAL-T pt 78.82 ± 0.00 0.95 ± 0.00 23.45 ± 2.12
SAL-T Partition Key Only pt 79.55 ± 0.00 0.95 ± 0.00 26.48 ± 1.90
SAL-T No Partition deltaR 79.72 ± 0.00 0.95 ± 0.00 27.40 ± 0.74
Linformer deltaR 79.78 ± 0.00 0.95 ± 0.00 27.66 ± 0.84
SAL-T No Conv Partition Key Only pt 79.79 ± 0.00 0.95 ± 0.00 27.78 ± 1.54
SAL-T No Partition pt 79.80 ± 0.00 0.95 ± 0.00 27.68 ± 0.67
SAL-T No Conv Partition Key Only deltaR 79.81 ± 0.00 0.95 ± 0.00 27.81 ± 1.53
SAL-T Partition Key Only deltaR 79.83 ± 0.00 0.95 ± 0.00 27.58 ± 2.69
Linformer pt 79.90 ± 0.00 0.95 ± 0.00 28.06 ± 0.58
Linformer kt 81.00 ± 0.00 0.96 ± 0.00 38.41 ± 0.54
SAL-T No Partition kt 81.02 ± 0.00 0.96 ± 0.00 39.99 ± 0.65
SAL-T Partition Key Only kt 81.03 ± 0.00 0.96 ± 0.00 38.61 ± 1.19
SAL-T Partition Value Only kt 81.04 ± 0.00 0.96 ± 0.00 39.17 ± 0.76
SAL-T Partition Key Only kt 81.05 ± 0.00 0.96 ± 0.00 39.04 ± 1.43
SAL-T No Conv kt 81.09 ± 0.00 0.96 ± 0.00 39.32 ± 1.06
SAL-T Share EF kt 81.12 ± 0.00 0.96 ± 0.00 39.78 ± 0.53
SAL-T No Conv Partition Value Only kt 81.16 ± 0.00 0.96 ± 0.00 39.72 ± 0.48
SAL-T kt 81.18 ± 0.00 0.96 ± 0.00 40.78 ± 0.57
Transformer pt 81.27 ± 0.00 0.96 ± 0.00 42.02 ± 0.71
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Table 15: Efficiency metrics for 150-particle HLS4ML dataset
Model Sort Training Time [h] Params GPU Peak [MB] FLOPs Inference Time [µs]

SAL-T Share EF pt 7.40 ± 0.37 2656 303.4 ± 0.0 739918 27.91 ± 0.32
SAL-T Share EF deltaR 7.33 ± 0.31 2656 303.4 ± 0.0 739918 27.63 ± 0.40
SAL-T No Conv deltaR 5.07 ± 0.32 3225 226.2 ± 0.0 552718 22.83 ± 0.84
SAL-T No Conv pt 5.19 ± 0.21 3225 226.2 ± 0.0 552718 22.71 ± 0.17
SAL-T Partition Value Only deltaR 7.40 ± 0.09 5056 296.4 ± 0.0 739918 27.70 ± 0.58
SAL-T No Conv Partition Value Only pt 4.74 ± 0.20 5017 252.9 ± 0.0 552718 23.01 ± 0.40
SAL-T Partition Value Only pt 7.49 ± 0.12 5056 296.4 ± 0.0 739918 27.29 ± 0.47
SAL-T No Conv Partition Value Only deltaR 4.68 ± 0.21 5017 252.9 ± 0.0 552718 22.24 ± 0.45
SAL-T deltaR 7.63 ± 0.41 3264 303.4 ± 0.0 739918 27.69 ± 0.32
SAL-T pt 7.84 ± 0.29 3264 303.4 ± 0.0 739918 27.39 ± 0.39
SAL-T Partition Key Only pt 7.04 ± 0.37 5056 296.4 ± 0.0 739918 27.04 ± 0.24
SAL-T No Partition deltaR 7.02 ± 0.20 6848 296.4 ± 0.0 739918 27.06 ± 0.17
Linformer deltaR 4.66 ± 0.05 6809 245.8 ± 0.0 552718 22.38 ± 0.33
SAL-T No Conv Partition Key Only pt 4.70 ± 0.01 5017 253.4 ± 0.0 552718 22.64 ± 0.39
SAL-T No Partition pt 6.99 ± 0.19 6848 296.4 ± 0.0 739918 27.15 ± 0.33
SAL-T No Conv Partition Key Only deltaR 4.68 ± 0.06 5017 253.4 ± 0.0 552718 22.02 ± 0.19
SAL-T Partition Key Only deltaR 7.03 ± 0.37 5056 296.4 ± 0.0 739918 27.08 ± 0.54
Linformer pt 4.57 ± 0.04 6809 245.8 ± 0.0 552718 22.54 ± 0.42
Linformer kt 4.64 ± 0.01 6809 245.8 ± 0.0 552718 22.44 ± 0.30
SAL-T No Partition kt 7.00 ± 0.22 6848 296.4 ± 0.0 739918 27.06 ± 0.33
SAL-T Partition Key Only kt 4.64 ± 0.02 5017 253.4 ± 0.0 552718 22.73 ± 0.47
SAL-T Partition Value Only kt 7.48 ± 0.15 5056 296.4 ± 0.0 739918 27.58 ± 0.44
SAL-T Partition Key Only kt 7.03 ± 0.36 5056 296.4 ± 0.0 739918 27.23 ± 0.12
SAL-T No Conv kt 5.00 ± 0.14 3225 226.2 ± 0.0 552718 22.73 ± 0.34
SAL-T Share EF kt 7.27 ± 0.38 2656 303.4 ± 0.0 739918 27.79 ± 0.45
SAL-T No Conv Partition Value Only kt 4.75 ± 0.25 5017 252.9 ± 0.0 552718 22.30 ± 0.37
SAL-T kt 7.66 ± 0.36 3264 303.4 ± 0.0 739918 27.51 ± 0.35
Transformer pt 1.49 ± 0.12 2009 4357.1 ± 0.0 2479918 31.03 ± 0.29

Table 16: Model performance comparison on the Quark Gluon dataset including training time. Best
metrics between SAL-T and Linformer are highlighted in bold. In the case where two metrics are
within statistical uncertainty, neither is highlighted. All models are sorted by kT.

Layers Model # Params FLOPs Training Time [h] Accuracy [%] ROC AUC 1/FPR@0.8TPR

1
SAL-T 3196 739761 6.19± 1.00 81.34± 0.05 0.8888± 0.0005 5.7570± 0.0475
Transformer 1941 2479761 7.23± 2.68 81.64± 0.03 0.8913± 0.0001 5.9820± 0.0269
vanilla 6741 552561 3.67± 0.74 81.36± 0.01 0.8882± 0.0001 5.7713± 0.0110

2
SAL-T 6171 2095761 9.81± 1.45 81.77± 0.00 0.8925± 0.0005 6.0725± 0.0106
Transformer 3529 4942161 11.51± 3.77 82.08± 0.02 0.8956± 0.0003 6.318± 0.0155
vanilla 13129 1087761 7.20± 2.37 81.60± 0.09 0.8905± 0.0007 5.9410± 0.0529
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