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ABSTRACT

Vision-based 4D occupancy forecasting enables autonomous vehicles to predict
future 3D semantic scenes from historical multi-view images, which is critical for
driving safety. While current methods show promising results, the potential of
simultaneous 2D and 3D spatio-temporal modeling and leveraging temporal cues
from 2D multi-view image sequences to improve 4D occupancy prediction remains
unexplored, presenting a critical bottleneck for advancing performance. To address
this gap, we introduce STM4D, a novel framework for 4D occupancy prediction
that jointly models temporal dynamics in both voxel-based representations and
multi-view image sequences, while explicitly incorporating feature interaction
between the two complementary branches. Our framework incorporates three
core components: 1) A 3D Spatio-Temporal (3DST) module that learns volumet-
ric dynamics from historical voxel states to predict future voxel states; 2) A 2D
Spatio-Temporal (2DST) module employing an auxiliary segmentation forecasting
task to enhance temporal semantic consistency; 3) A Spatio-Temporal Interaction
Modeling (STIM) module that enables camera-agnostic feature interaction between
2D and 3D representations. The unified architecture is trained end-to-end and estab-
lishes new state-of-the-art performance on both Occ3D-nuScenes and Cam4DOcc
benchmarks.
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Figure 1: The comparison of the proposed method with other frameworks: (a) 3D occupancy-based
forecasting model; (b) 3D feature-based forecasting model with 3D and 2D labels as supervision;
(c) Our proposed framework adopts both 2D and 3D spatio-temporal modeling processes with extra
2D-3D interactions.
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1 INTRODUCTION

Vision-centric 3D occupancy prediction estimates the 3D semantics of each voxel in the entire scene
from input multi-view images, which plays a crucial role in autonomous driving (Tong et al., 2023;
Ma et al., 2024b; Zhang et al., 2023b; Tian et al., 2023; Huang et al., 2023). For a better understanding
of the dynamic world and providing clues of the future 3D scenes, vision-centric 4D occupancy
forecasting (Ma et al., 2024a) is further introduced to predict the future 3D occupancy given previous
observations. It helps to understand the world dynamics and advance the downstream tasks, such as
collision avoidance and route planning (Min et al., 2024).

Existing 4D occupancy forecasting methods mainly adopt an occupancy-based forecasting framework
(Yan et al., 2024) (see Figure 1(a)) : First, obtain the past and current occupancy with a pre-trained
3D occupancy model; then, feed them into a forecasting model to predict the future occupancy, which
first encodes the occupancy into tokens and generates future tokens with an autoregressive model, and
finally decodes future tokens into future occupancies. However, such iterative encoding and decoding
operations can lead to progressive information loss. Moreover, this approach heavily relies on 3D
annotations and cannot be trained in an end-to-end manner. The recently proposed PreWorld (Li
et al., 2025) is a semi-supervised model for 4D occupancy forecasting. It introduces a straightforward
state-conditioned forecasting module and leverages 2D supervision through voxel rendering (see
Figure 1(b)). Although PreWorld reduces the dependency on densely annotated 3D occupancy
labels, it fails to effectively utilize the temporal information inherent in 2D image sequences for 4D
occupancy forecasting due to its reliance on a purely supervision-driven approach. Overall, existing
approaches exhibit a notable deficiency in exploring integrated 2D and 3D spatio-temporal modeling
frameworks and overlook the essential interactions between these two paradigms to better leverage
temporal cues from the 2D branch for more effective spatio-temporal modeling, which fundamentally
constrains their long-term forecasting capabilities.

We propose STM4D, a unified architecture for joint 2D-3D spatio-temporal modeling that explicitly
bridges complementary representations through synchronized cross-modal interaction. Our frame-
work introduces dedicated interaction mechanisms between temporally aligned 2D and 3D branches
(Figure 1(c)), establishing a new paradigm for holistic 4D scene understanding that simultaneously
captures semantic dynamics in image space and geometric evolution in volumetric representations.
The complete architecture is detailed in Figure 2.

Specifically, we propose a 3D Spatio-Temporal (3DST) module to capture spatio-temporal dependen-
cies in volumetric representations. This module predicts future voxel states based on historical voxel
states derived from multi-view images, enhancing the modeling of 3D scene dynamics. Subsequently,
we introduce a 2D Spatio-Temporal (2DST) module, which incorporates an auxiliary task aimed
at predicting future multi-view image segmentation sequences from historical image features. The
semantic segmentation labels are automatically annotated using Segment Anything (SAM) (Kirillov
et al., 2023). Finally, we present a Spatio-Temporal Interaction Modeling (STIM) module to facilitate
cross-modal feature interaction between 2D and 3D representations without relying on camera pa-
rameters, further improving the performance of 4D occupancy forecasting. The entire framework is
trained in an end-to-end manner, eliminating the need for staged optimization.

The contributions of the paper are summarized as follows:

• We propose a novel 3D spatio-temporal modeling (3DST) module that effectively learns
volumetric dynamics from historical voxel states to predict future states, thereby advancing
4D occupancy forecasting capabilities.

• We propose a 2D Semantic Spatio-Temporal (2DST) module that predicts future semantic
maps while facilitating semantically-aware temporal regularization learning in 2D space.

• Instead of adopting the 3D and 2D spatio-temporal modeling branches separately, we
introduce a Spatio-Temporal Interaction Module (STIM) that enables camera-agnostic 2D-
3D interactions through cross-modal feature alignment, thereby enabling more direct and
effective utilization of spatio-temporal cues from the 2D branch.

• Extensive experiments demonstrate that the proposed STM4D method achieves state-of-
the-art performance on both the Occ3D-nuScenes and Cam4DOcc benchmarks for 4D
occupancy forecasting. Furthermore, the design enables the model to maintain strong
performance even with limited 3D annotations.
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2 RELATED WORK

3D Occupancy Prediction. Vision-based 3D occupancy prediction Tong et al. (2023); Ma et al.
(2024b); Tang et al. (2024); Zhao et al. (2024); Ouyang et al. (2024); Zhang et al. (2025); Zhu
et al. (2024); Lu et al. (2024) has attracted considerable attention in autonomous driving for its
capability to generate dense 3D environmental representations that surpass traditional bounding
box methods. This approach estimates semantic occupancy states from multi-view camera images,
enabling more comprehensive scene understanding crucial for safe navigation. To address the
challenges of acquiring dense 3D annotations, several methods have explored using 2D information
as alternative supervision signals. Specifically, Vampire (Xu et al., 2024) regulates intermediate
3D volume features by incorporating rendered camera-view depth and semantic information during
training. Extending this direction, RenderOcc (Pan et al., 2024a) and SelfOcc (Huang et al., 2024)
employ more radical strategies that depend exclusively on 2D supervision, completely eliminating
the need for 3D labels to reduce annotation costs and complexity. However, these methods utilize
2D information merely from a supervisory perspective, which fails to fully exploit its potential. In
contrast, our approach focuses on 2D and 3D spatiotemporal modeling and the interaction between
2D and 3D branches, enabling more direct and effective utilization of 2D information.

4D Occupancy Forecasting. Compared to the 3D case, 4D occupancy forecasting places greater
emphasis on spatio-temporal information modeling, as it requires the model to anticipate how the
scene will evolve. Cam4DOcc (Ma et al., 2024a) proposed a strong baseline and a comprehensive
benchmark for 4D occupancy forecasting. DriveWorld (Min et al., 2024) provided a pre-training
framework considering both spatial and temporal information for 4D downstream tasks in a driving
scenario. Drive-OccWorld (Yang et al., 2025) proposed an efficient semantic and motion conditional
normalization to enhance the historical BEV feature and conducted temporal cross-attention on it for
better temporal modeling. OccWorld (Zheng et al., 2025) decomposed the scene into world tokens
and proposed a spatial-temporal generative transformer to aggregate multi-scale token embeddings.
OccProphet (Chen et al., 2025) proposed a novel tripling operation to decompose the voxel features
into scene, height, and BEV components separately, enabling lightweight spatio-temporal feature
interaction and significantly reducing the computational cost. The above methods have explored
temporal modeling in the 3D domain for 4D Occupancy, yet none of them have investigated leveraging
2D labels to enhance performance or reduce reliance on 3D annotations. Then, PreWorld (Li et al.,
2025) proposed a semi-supervised 4D occupancy forecasting pipeline that introduces 2D rendering
supervision for predicted future 3D volume features and fine-tunes the network using limited 3D
occupancy labels, thereby reducing the dependency on dense 3D annotations. However, merely
utilizing 2D information from a supervisory perspective fails to directly leverage the inherent temporal
cues present in 2D sequences. To address this gap, we introduce a novel framework that jointly
models temporal dynamics in both voxel-based representations and multi-view image sequences,
while explicitly incorporating feature interaction between the two complementary branches to better
leverage temporal cues in 2D sequences.

Spatio-Temporal Modeling in Video Prediction. Spatio-Temporal Modeling has been well studied
in the 2D video prediction tasks Guen & Thome (2020); Wang et al. (2020); Yu et al. (2022); Girdhar
& Grauman (2021); Liu et al. (2023); Benaim et al. (2020). Many works try to solve it from different
perspectives, such as architecture or semantics. MAU (Chang et al., 2021) designed an efficient
attention and fusion module to aggregate temporal information at different levels in order to have a
broader temporal receptive field. MotionRNN (Wu et al., 2021) proposed a novel MotionGRU unit
that decomposes object motion into transient variations and motion trends, and integrates it into an
RNN framework to achieve more accurate motion prediction. SADM (Bei et al., 2021) observed that
different semantic regions have different dynamic characteristics. Based on this observation, they
proposed a newly designed semantic-aware dynamic model that predicts complete video frames with
both semantic and geometric consistency. PastNet (Wu et al., 2024) pointed out that prior methods
often overlook the physical priors in videos. To address this, they introduced spectral convolution in
the Fourier domain to embed inductive biases from physical laws and designed an efficient discrete
spatio-temporal (DST) module to explore spatio-temporal information. DFDNet (Gan et al., 2025)
first filters out transient high-dynamic information, which may contain irrelevant noise, and then
extracts temporal dependencies from the filtered sequences. In our work, we explore enhancing 4D
occupancy forecasting by leveraging 2D temporal information through interactive modeling between
3D voxel sequences and camera view video sequences.
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Figure 2: The overall pipeline of our STM4D: First, we extract multi-camera image features from the
past and current frames. The bottom 2D branch processes image features through the 2DST module
and utilizes a segmentation head to predict future semantic segmentation maps. The top 3D branch
projects image features into 3D space and refines them via the 3DST Module, generating future
refined spatio-temporal features. Both the fused features from 2DST and refined spatio-temporal
features from 3DST then interact through the STIM Module and are finally passed to the occupancy
head for current and future occupancy prediction.

3 4D OCCUPANCY FORECASTING WITH SPATIO-TEMPORAL MODELING

3.1 MODEL ARCHITECTURE

As illustrated in Figure 2, our proposed STM4D model takes past and current multi-view images
{Ii}0i=−m as input, where the superscript i denotes the timestamp (with i = 0 corresponding to
the current frame). Throughout this paper, superscripts on all symbols represent timestamps, with
both m > 0 and n > 0 denoting the lengths of historical and future sequences, respectively. First,
an image backbone (e.g., ResNet (He et al., 2016)) extracts image features {f i

2d}0i=−m for each
timestamp. These features are then fed into both the 2D branch and the 3D branch, respectively.

In the 3D branch, we use LSS (Philion & Fidler, 2020) to lift the 2D image features {f i
2d}0i=−m

into 3D space, obtaining a set of voxel features {f i
3d}0i=−m. These voxel features {f i

3d}0i=−m are
then processed by a novel 3D Spatio-Temporal Modeling (3DST) module to generate refined
spatio-temporal features {ri3d}ni=0 for future time steps.

In the 2D branch, the image features {f i
2d}0i=−m are passed through a 2D Spatio-Temporal Modeling

(2DST) module for temporal enhancement and future prediction. The output features {f i
2d}ni=0 are

then processed by a segmentation head to produce multi-view semantic segmentation maps {Si}ni=0.
Meanwhile, multi-scale fused features are flattened across both view and spatial dimensions to form
the fused features Ffuse, which are subsequently passed to the Spatio-Temporal Interaction Module
(STIM).

Finally, our proposed Spatio-Temporal Interaction Module (STIM) integrates the fused features
Ffuse from the 2DST module and the refined spatio-temporal features {ri3d}ni=0 from the 3DST module
through cross-domain interaction. The resulting representation is forwarded to the occupancy head to
jointly predict current and future occupancy states {Oi}ni=0.

3.2 3D SPATIO-TEMPORAL MODELING

We propose a new 3D Spatio-Temporal (3DST) module that learns volumetric dynamics from
historical voxel states to predict future voxel states, thereby advancing 4D occupancy forecasting

4
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capabilities (see Figure 2). The input to our 3DST consists of historical and current Voxel Features
{f i

3d}0i=−m obtained from the Lifting Module.

To jointly capture motion patterns and spatial structures, we process the voxel features through
parallel temporal and spatial encoding pathways. The temporal encoder models dynamic changes
across frames, while the spatial encoder integrates cross-frame information through channel-wise
concatenation:

{T i
3d}0i=−m = Gt({f i

3d}0i=−m), (1)

{V i
3d}ni=0 = Gs

(
Concat({f i

3d}0i=−m)
)
, (2)

where Gt and Gs denote 3D CNN-based temporal and spatial encoders respectively (e.g., ResNet3D
for both modules).

The temporal features {T i
3d}0i=−m undergo sequential processing through autoregressive prediction

and refinement stages: the LSTMAR module forecasts future temporal features, while the LSTMRefine
layer enhances their temporal consistency:

{T i
3d}ni=0 = LSTMAR({T i

3d}0i=−m), (3)

{T ′i
3d}ni=0 = LSTMRefine({T i

3d}ni=0). (4)

For each timestamp, we concatenate the spatial features V i
3d with both temporal features T i

3d and
refined temporal features T ′i

3d, followed by a summation to obtain refined spatio-temporal features:

ri3d = Sum
(

Concat(V i
3d, T

i
3d), Concat(V i

3d, T
′i
3d)

)
, i = 0, 1, ..., n. (5)

It is noteworthy that our LSTM architecture follows 3D ConvLSTM (Shi et al., 2015), with further
details provided in the appendix A.1. Through this design, the temporal encoder and autoregressive
LSTM capture dynamic evolution, while the spatial encoder preserves cross-frame structure. The
fusion step ensures that spatial cues compensate for the loss of spatial information during temporal
modeling, leading to robust 4D voxel forecasting.

3.3 2D SPATIO-TEMPORAL MODELING

Although some approaches, such as PreWorld (Li et al., 2025), attempt to leverage 2D supervision by
rendering occupancy into semantic maps or depth images, they overlook the temporal cues presented
in 2D sequences. To address this issue, we propose a 2D Spatio-Temporal (2DST) module (see
Figure 2), which introduces an auxiliary task that predicts future multi-view semantic segmentation
maps {Si}ni=0 from historical multi-view image features {f i

2d}0i=−m. This design enables the model
to learn semantically-aware temporal regularization in 2D space.

We first take the historical image features {f i
2d}0i=−m as input. These features are concatenated along

the feature channel dimension and passed through a DenseNet-based 2D CNN D to obtain multi-scale
representations that comprehensively unify spatio-temporal information from historical frames:

Fms = D
(
concat({f i

2d}0i=−m)
)
. (6)

The resulting multi-scale features are processed by a multi-scale fusion module M, where each scale
is aligned to the smallest resolution, concatenated, and fused. The flattened output is defined as the
fused feature representation:

Ffuse = Flatten(M(Fms)). (7)

This fused feature is later forwarded to the Spatio-Temporal Interaction Module (STIM) introduced
in Section 3.4.

In parallel, another branch expands channels and reshapes Fms to produce future multi-frame repre-
sentations. These representations are then progressively upsampled by 3D transposed convolutions
and refined with 3D convolutions, yielding predicted future 2D features {f i

2d}ni=0. This process of
3D convolution-based upsampling and refinement explicitly models spatio-temporal relationships
across multiple frames.

5
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Figure 3: Our STIM module leverages refined spatio-temporal features from 3DST and fused features
from 2DST as inputs, establishes spatio-temporal interactions between 2D and 3D branches without
relying on any camera parameters, and ultimately outputs enhanced features.

3.4 SPATIO-TEMPORAL INTERACTION MODELING

We further propose a novel Spatio-Temporal Interaction Module (STIM), enabling explicit cross-
dimensional interaction to directly leverage temporal cues derived from 2D spatio-temporal modeling.
The STIM module explicitly captures interdependencies between the fused features Ffuse from
the 2DST module and the refined spatio-temporal features ri3d generated by the 3DST module,
establishing a bidirectional bridge between these complementary representations (see Figure 3).

Specifically, the fused features Ffuse serve as an intermediate representation in 2DST that bridges
historical information and future predictions, encapsulating spatio-temporal cues from the 2D branch.
These features are utilized as both key and value inputs to the cross-attention module, while a learnable
bird’s-eye-view (BEV) query QBEV is fed as the query input. Through this process, structured BEV
features FBEV are generated:

FBEV = CrossAttn(QBEV, Ffuse). (8)

It is worth noting that we did not use any camera parameters throughout this process. Since the
fused features Ffuse have a small size, we abandoned projection-based local interaction and adopted
global interaction. Specifically, each query QBEV interacts with the entire fused features Ffuse through
attention mechanisms, thereby eliminating the need for any camera parameters. Subsequently, a
lightweight MLP is employed to predict the feature distribution along the height dimension from
BEV features FBEV. This height-aware feature representation is then replicated across the temporal
dimension to generate the 3D features {V ′i

3d}ni=0.

Subsequently, the refined spatio-temporal features {ri3d}ni=0 are processed by a 3D convolution to
reduce their channel dimensionality to get {r̃i3d}ni=0. These features {r̃i3d}ni=0 are then concatenated
with the 3D features {V ′i

3d}ni=0 and fed into an LSTM module. The output of the LSTM is further con-
catenated with the channel-reduced refined spatio-temporal features {r̃i3d}ni=0 to form the enhanced
features {Ei

3d}ni=0.

{Ei
3d}ni=0 = Concat

(
LSTM

(
Concat

(
{r̃i3d}ni=0, {V ′i

3d}ni=0

))
, {r̃i3d}ni=0

)
. (9)

These enhanced features are subsequently fed into an occupancy head to predict the final occupancy
output {Oi}ni=0.

4 EXPERIMENTS AND RESULTS

4.1 DATASETS AND METRICS

Occ3D-nuScenes (Tian et al., 2023) extends nuScenes (Caesar et al., 2020) with voxel annotations in
[−40, 40]m × [−40, 40]m × [−1, 5.4]m (ego-centric), discretized to 200× 200× 16 voxels at 0.4m
resolution. Following standard protocols, we use mIoU (primary) and IoU metrics for evaluation.

Cam4DOcc (Ma et al., 2024a) utilizes 700 training scenes (23,930 sequences) and 150 test scenes
(5,119 sequences) from nuScenes/nuScenes-Occupancy (Wang et al., 2023a). The 7-frame config-
uration (3 observed + 4 predicted) covers [−51.2, 51.2]m × [−51.2, 51.2]m × [−5, 3]m with 0.2m

6
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Table 1: Results comparison on mIoU and IoU at 1s, 2s, and 3s time horizons on Occ3D-nuScenes.

Method Aux. Sup. mIoU (%) ↑ IoU (%) ↑
1s 2s 3s Avg. 1s 2s 3s Avg.

OccWorld-S None 0.28 0.26 0.24 0.26 5.05 5.01 4.95 5.00
OccWorld-T Semantic LiDAR 4.68 3.36 2.63 3.56 9.32 8.23 7.47 8.34
OccWorld-D 3D Occ 11.55 8.10 6.22 8.62 18.90 16.26 14.43 16.53
OccLLAMA-F 3D Occ 10.34 8.66 6.98 8.66 25.81 23.19 19.97 22.99
PreWorld 3D Occ 11.69 8.72 6.77 9.06 23.01 20.79 18.84 20.88
PreWorld+ 2D Labels & 3D Occ 12.27 9.24 7.15 9.55 23.62 21.62 19.63 21.62

STM4D (Ours) 2D Labels & 3D Occ 12.48 9.41 7.60 9.83 23.46 21.04 19.51 21.33

resolution (512 × 512 × 40 grid). We evaluate the following four tasks: (1) Inflated GMO, (2)
Inflated GMO with GSO, (3) Fine-grained GMO with GSO, and (4) Fine-grained GMO prediction.
Performance is measured using the IoUc, IoUf (2s), and ˜IoUf metrics (Ma et al., 2024a).

4.2 IMPLEMENTATION AND TRAINING DETAILS.

Each benchmark has distinct task definitions and evaluation metrics. We adapt our implementation
accordingly to ensure fair comparisons with prior work. Multi-view 2D segmentation labels are
auto-generated by Segment Anything (SAM) (Kirillov et al., 2023), avoiding manual annotation. See
OccNerf (Zhang et al., 2023a) for details. All experiments were run on 8 NVIDIA RTX6000 Ada
GPUs.

Occ3D-nuScenes Benchmark: Following Preworld (Li et al., 2025), we adopt BEV-Stereo’s (Li
et al., 2023b) architecture (2D backbone + lifting module) with 512×1408 input resolution. Training
uses Adam optimizer (LR=1× 10−4, batch size=8) for 18 epochs. The 2D branch employs cross-
entropy loss (weight=1.0), while the 3D branch combines Focal loss, Lovász-Softmax loss, and
scene-class affinity losses (each weight=1.0). For the 3D branch, we implement curriculum learning
with dynamic frame prediction:

future_intervals(e) =
{
{0, 1} e ≤ 4

{n ∈ N | 0 ≤ n ≤ min(⌊ e−3
2 ⌋, 5)} otherwise

(10)

Cam4DOcc Benchmark: Building on Cam4DOcc (Ma et al., 2024a), we maintain their 2D backbone
and lifting module but introduce our 2DST, 3DST, and STIM modules while removing the flow
prediction branch. Input resolution is reduced to 448×896. Training configuration: 24 epochs, batch
size 8, Adam (1 × 10−4 LR), with cross-entropy loss for both 2D segmentation and occupancy
prediction (weights=1.0).

4.3 MAIN RESULTS

4D Occupancy Forecasting Results On Occ3D-nuScenes. We compare 4D occupancy forecasting
results on the Occ3D-nuScenes dataset of the proposed STM4D method and SOTA methods OccWorld
(Zheng et al., 2025), OccLLaMA (Wei et al., 2024), PreWorld (Li et al., 2025), and PreWorld+ (the
full method of Li et al. (2025)), in Table 1. STM4D outperforms all comparisons in terms of Avg.
mIoU, indicating its strong power of spatio-temporal modeling for the 4D occupancy forecasting
tasks. IoU is not a core metric, and further explanations will be provided in Appendix A.1. More
importantly, STM4D has a performance gain over the SOTA method PreWorld+ (Li et al., 2025) on
3s forecasting (0.45 mIoU) than on 1s (0.21 mIoU) or 2s (0.17 mIoU) forecasting tasks, especially
demonstrating the long-term forecasting advantages of our method over the SOTA. The reason is
that STM4D consists of both 2D and 3D spatio-temporal modules and the interactions between the
2D and 3D branches, which equip our method with much more powerful spatio-temporal modeling
abilities than all other methods.

4D Occupancy Forecasting Results On Cam4DOcc. We conduct comprehensive comparisons
with OpenOccupancy-C (Wang et al., 2023b), SPC (Wei et al., 2023; Luo et al., 2023; Zhu et al.,
2021), PowerBEV-3D (Li et al., 2023a), OccProphet (Chen et al., 2025) and the OCFNet baseline
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Table 2: Result on forecasting inflated GMO and fine-grained GSO on Cam4DOcc.

Method IoUc IoUf (2 s) ˜IoUf

G
M

O

G
SO

m
ea

n

G
M

O

G
SO

m
ea

n

G
M

O

OpenOccupancy-C 13.53 16.86 15.20 12.67 17.09 14.88 12.97
SPC 1.27 3.29 2.28 failed 1.40 – failed
PowerBEV-3D 23.08 – – 21.25 – – 21.86
OCFnet 29.84 17.72 23.78 25.53 17.81 21.67 26.53
OccProphet 33.61 24.18 28.89 26.45 24.19 25.32 28.74

STM4D (Ours) 33.92 24.75 29.34 26.83 24.15 25.49 29.34

Table 3: Comparison of different methods on
forecasting inflated GMO on Cam4DOcc.

Method IoUc IoUf (2 s) ˜IoUf

OpenOccupancy-C 12.17 11.45 11.74
SPC 1.27 failed failed
PowerBEV-3D 23.08 21.25 21.86
OCFnet 31.30 26.82 27.98
OccProphet 34.36 26.94 29.15

STM4D (Ours) 34.70 28.21 30.92

Table 4: Ablation study on method modules.
3DST 2DST STIM Avg. mIoU (%) ↑

✗ ✗ ✗ 8.16
✗ ✓ ✗ 8.45
✓ ✗ ✗ 8.89
✓ ✓ ✗ 9.64
✓ ✓ ✓ 9.83

(Ma et al., 2024a) on Cam4DOcc benchmark (Ma et al., 2024a). Experimental results demonstrate
that our approach demonstrates consistent performance improvements for all tasks. For the inflated
GMO and fine-grained GSO tasks (Table 2), we achieve a gain 0.45 (29.34 vs 28.89) in IoUc, a
0.17 improvement (25.49 vs 25.32) in IoUf (2s), and a 0.60 improvement (29.34 vs 28.74) in ˜IoUf .
For inflated GMO prediction (Table 3), we observe a 0.34 improvement (34.70 vs 34.36) in IoUc, a
1.27 increase (28.21 vs 26.94) in IoUf (2s), and a 1.77 gain (30.92 vs 29.15) in ˜IoUf . Our method
demonstrates significantly greater performance improvement in future-frame predictions compared to
current-frame predictions, further indicating its superior capability for long-term temporal forecast-
ing. Additional experiments, including fine-grained GMO prediction and fine-grained GMO+GSO
prediction, will be provided in Appendix A.2.

Visualization. Figure 4 compares qualitative results of our STM4D, PreWorld+ (Li et al., 2025),
and OccWorld-D (Zheng et al., 2025), with each row showing predictions at 0.5s intervals over
3 seconds. Our method generates more accurate predictions: it correctly identifies "construction
vehicle" (vs. "truck" misclassification by others) and consistently tracks the bottom "car" with precise
motion trajectory, while others lose tracking or predict incorrect downward motion. These results
demonstrate STM4D’s superior temporal dynamic modeling in resolving motion ambiguities.

4.4 ABLATION STUDY

Module Ablations. We conduct systematic ablation studies to evaluate the contributions of key
components in our STM4D framework, with results summarized in Table 4. Using PreWorld with
3D-only supervision as our baseline (Row 1, 8.16), we observe that incorporating the 2DST module
improves performance to 8.45, demonstrating the importance of 2D spatio-temporal modeling. The
3DST module alone achieves 8.89, confirming the effectiveness of our 3D temporal modeling design.
The combination of both 2DST and 3DST reaches 9.64, indicating their complementary benefits
in multi-view temporal reasoning. Our full model, incorporating all three modules, achieves the
best performance of 9.83, demonstrating that the STIM-mediated 2D-3D interactions further refine
temporal feature representations and contribute to the state-of-the-art performance.

Semi-3D Supervision Ablations. We follow PreWorld+’s semi-supervised setup and reduce 3D
supervision from 700 to 450 and 150 scenes to evaluate performance under limited 3D labels.
As Table 5 shows, both methods decline with fewer 3D labels, yet ours consistently outperforms

8
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Figure 4: The visualization of the 4D occupancy forecasting results. The black circles indicate that
our method can achieve more accurate results than SOTA PreWorld+ (full method of Li et al. (2025))
and OccWorld-D (Zheng et al., 2025).

Table 5: Ablation study on the quantity of 3D
supervision scenes (total of 700).

Labels Avg. mIoU (%) ↑
3D 2D PreWorld+ STM4D

150 700 25.02 25.71
450 700 33.37 34.31
700 700 34.69 35.18

Table 6: Ablation study on frame
count for 2D prediction.

Frame Count Avg. mIoU (%) ↑
3 9.45
5 9.61
7 9.83

PreWorld+, demonstrating the superiority of our spatio-temporal modeling strategy. Notably, our 2D
spatio-temporal branch acts as effective regularization that compensates for reduced 3D supervision.

Ablation Study on Frame Count for 2D Prediction. We ablate the number of multi-view seg-
mentation maps predicted by the 2DST module (0.5s inter-frame interval). As shown in Table 6,
performance improves from 9.45 mIoU (3 frames) to 9.61 mIoU (5 frames). Best results (9.83 mIoU
at 0–3s) occur when the 2D prediction length matches the 3DST output (7 frames), confirming that
longer horizons in the 2D branch enhance temporal prior aggregation and boost performance.

5 CONCLUSION

We focus on a novel perspective that integrates simultaneous 2D and 3D spatio-temporal modeling and
leverages temporal cues from 2D multi-view image sequences to improve 4D occupancy prediction,
proposing the STM4D model as our solution. STM4D consists of the 3D spatio-temporal modeling
module 3DST as well as the 2D spatio-temporal modeling module 2DST. Besides, we also propose an
extra 2D and 3D spatio-temporal interaction module STIM for further enhancing the spatio-temporal
fusion of the 2D and 3D features. Experimental results demonstrate the effectiveness of our method
in 4D occupancy forecasting, particularly in long-term prediction scenarios. The proposed spatio-
temporal modeling framework provides a new perspective for further enhancing the performance of
autonomous driving systems.
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ETHICS STATEMENT

This work presents a novel framework for 4D occupancy forecasting, a critical task for enhancing
the safety and situational awareness of autonomous driving systems. Our research utilizes publicly
available benchmarks, Occ3D-nuScenes (Tian et al., 2023) and Cam4DOcc (Ma et al., 2024a), which
consist of data collected in accordance with their respective licenses and ethical guidelines. These
datasets contain no personally identifiable information. We foresee the primary societal benefit of
this work to be the advancement of reliable perception systems for autonomous vehicles, potentially
leading to reduced traffic accidents. We are not aware of any direct negative societal impacts of our
method itself, but we acknowledge the broader ethical considerations common to all autonomous
driving technologies, such as decision-making in edge cases and the potential for job displacement.
We encourage the responsible development and deployment of such technologies, underscored by
rigorous testing and transparent regulatory frameworks.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we detail our methodology and experiments. The STM4D architecture is
described in Section 3, including the 3DST (Sec. 3.2), 2DST (Sec. 3.3), and STIM (Sec. 3.4) modules.
Implementation details (e.g., network architectures, hyperparameters, training configurations) for the
Occ3D-nuScenes and Cam4DOcc benchmarks are provided in Section 4.2, along with the process for
generating 2D segmentation labels using SAM (Kirillov et al., 2023). The datasets are public. Code,
models, and training logs will be released upon acceptance. Experiments used 8 NVIDIA RTX 6000
Ada GPUs; scripts will be provided to facilitate replication.

LLM USAGE STATEMENT

Large Language Models (LLMs), such as ChatGPT, were used to assist with language polishing,
grammar correction, and improving the clarity of the manuscript. All technical ideas, model designs,
experiments, and analyses were conceived and executed by the authors. The LLM did not generate
novel research content or influence the reported scientific results.
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A APPENDIX

A.1 DETAILED EXPLANATION

About the mIoU/IoU Performance Discrepancy. It is noteworthy that in Table 1, our STM4D
method achieves comprehensive superiority in the mIoU metric, yet it does not attain comparable
performance in terms of IoU. A similar trend is observed for PreWorld (Li et al., 2025) (second to
last row).

Figure 5: The non-empty voxels voxel coverage
predicted by our STM4D is lower than that of Pre-
World but higher than that of OccWorld, resulting
in a correspondingly lower IoU than PreWorld but
a higher one than OccWorld.

We emphasize that mIoU is widely recognized
as the primary evaluation metric for this task,
whereas IoU is not considered a core crite-
rion. By jointly modeling 2D and 3D spatio-
temporal information, STM4D prioritizes trajec-
tory and semantic consistency of key dynamic
objects (e.g., vehicles and pedestrians), which
may come at the cost of some scene coverage.
As shown in Figure 5, our method achieves a
lower proportion of non-empty voxels than Pre-
World (Li et al., 2025) but higher than OccWorld
(Zheng et al., 2025), which results in a lower IoU
than PreWorld but higher than OccWorld.

As illustrated in Figure 6, although STM4D pro-
duces scenes with slightly lower completeness
compared to PreWorld, it yields more accurate
predictions for moving objects and road struc-
tures. Therefore, the observed relative perfor-
mance in IoU should not be construed as a model
limitation. Instead, the superior mIoU results reflect a deliberate and meaningful design trade-off,
one that better aligns with the practical needs of autonomous driving systems.

The setting of the LSTM implementation in the 3DST module. In the 3D Spatio-Temporal (3DST)
module, our LSTM architecture fundamentally extends the ConvLSTM (Shi et al., 2015) framework
by replacing all 2D convolutional operations with 3D convolutions to natively process 3D voxel data
while preserving temporal modeling capabilities. Specifically, the autoregressive LSTM employs a
sliding window mechanism with a fixed size of 2, utilizing two consecutive historical time steps to
predict the subsequent time step, effectively balancing computational efficiency and temporal context
utilization. The detailed configuration adopts a single hidden layer. The hidden state dimension of
the autoregressive LSTM is set to 16, while the others are set to 32, with 3× 3× 3 kernel sizes used
for all convolutional operations.

The details of 2DST module. For the 2D CNNs in 2DST (Figure 2), the input to the module
consists of multi-view 2D image features with dimensions (N,T,C, h, w). These features are
then concatenated along the channel dimension to form image features of shape (N,T × C, h,w).
Subsequently, we employ DenseNet (Huang et al., 2017) to extract multi-scale features. Specifically,
through this operation, the original image features are downsampled to 1/4, 1/8, and 1/16 of the
original feature resolution, where the 1/16 resolution is (8, 22) with 256 feature channels. These
features are then aligned to the 1/16 resolution and concatenated together. In this process, the
concatenated features serve as a bridge linking past frames and historical frames, containing rich
temporal information from the 2D sequence. The concatenated features are flattened and used as
input to STIM, forming the fused features. Simultaneously, the concatenated features also undergo
channel expansion and are reshaped to align with future frames. They are then processed by 3D
transposed convolutions to progressively upsample to the target segmentation size while refining
temporal relationships. Finally, a Conv3D layer further refines the output to produce future image
features.

The details of STIM module. Since the fused features from 2DST, which contain rich 2D temporal
information with shape (B,L,C), are obtained by flattening multi-view feature maps with sufficiently
small resolution (8× 22), directly applying global cross-attention to the fused features does not incur
significant computational overhead. The specific procedure of our STIM (Figure 2) is as follows:
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First, we initialize a query tensor of size (200, 200, 256). Using the fused features as keys and values,
we apply cross-attention to obtain a BEV feature of size (200, 200, 256). Next, an MLP is used to
predict the height feature distribution, which is then reshaped to yield 3D features (C, 200, 200, 16).
Finally, these 3D features are aligned to future frames through replication, then concatenated with the
refined spatio-temporal features and fed into an LSTM. The output of the LSTM is then combined
with the refined spatio-temporal features to produce the enhanced features, which serve as the final
output of the STIM module.

The reason for using different methods for comparison for two datasets. The two datasets
employ fundamentally different task formulations and evaluation metrics: Occ3D-nuScenes evaluates
4D semantic occupancy prediction across 18 classes using mIoU/IoU metrics, while Cam4DOcc
progressively assesses performance through four difficulty tiers using GSO/GMO IoU measurements.
Due to these inherent methodological differences, most works (e.g., OccWorld, OccLLAMA, and
PreWorld on Occ3D-nuScenes; OCFnet, PowerBEV-3D, and SPC on Cam4DOcc) report results on
only one dataset, making direct cross-dataset comparisons methodologically unsound.

A.2 MORE EXPERIMENTS

3D Occupancy Prediction Results On Occ3D-nuScenes. We conduct a comprehensive evaluation of
3D occupancy prediction performance on the Occ3D-nuScenes benchmark, comparing our proposed
STM4D framework against current state-of-the-art methods in Table 7. To adapt our spatio-temporal
forecasting architecture for the static occupancy task, we configure both the 3DST and 2DST modules
with a prediction length of 1, focusing exclusively on reconstructing the current scene structure. The
results demonstrate the compelling effectiveness of our approach. STM4D achieves state-of-the-art
performance with an overall mIoU of 35.18, surpassing all competing methods by a significant
margin. Notably, our method outperforms strong baselines such as PreWorld+ (34.69 mIoU) and
OccFlowNet (33.86 mIoU). A fine-grained analysis reveals that STM4D achieves top performance in
9 out of 17 semantic categories, exhibiting particular strength in challenging classes including barrier
(45.73), car (50.07), and drivable surface (67.55). The comprehensive performance gains, evident in
both overall and category-specific metrics, underscore STM4D’s exceptional capability in geometric
reasoning and structural understanding. These results validate that our spatio-temporal modeling
paradigm, even when specialized for static scene comprehension, effectively captures complex 3D
structures and semantic relationships, yielding more accurate occupancy predictions than methods
specifically designed for this task.

Table 7: 3D occupancy prediction performance on the Occ3D-nuScenes dataset. GT represents
the type of labels used during training. The best results are represented by bold.
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SelfOcc (Huang et al., 2024) 2D 0.00 0.15 0.66 5.46 12.54 0.00 0.80 2.10 0.00 0.00 8.25 55.49 0.00 26.30 26.54 14.22 5.60 9.30
OccNeRF (Zhang et al., 2023a) 2D 0.00 0.83 0.82 5.13 12.49 3.50 0.23 3.10 1.84 0.52 3.90 52.62 0.00 20.81 24.75 18.45 13.19 9.53
RenderOcc (Pan et al., 2024b) 2D 5.69 27.56 14.36 19.91 20.56 11.96 12.42 12.14 14.34 20.81 18.94 68.85 33.35 42.01 43.94 17.36 22.61 23.93
OccFlowNet (Boeder & Risse, 2025) 2D 1.60 27.50 26.00 34.00 32.00 20.40 25.90 18.60 20.20 26.00 28.70 62.00 27.20 37.80 39.50 29.00 26.80 28.42

MonoScene (Cao & De Charette, 2022) 3D 1.75 7.23 4.26 4.93 9.38 5.67 3.98 3.01 5.90 4.45 7.17 14.91 6.32 7.92 7.43 1.01 7.65 6.06
TPVFormer (Huang et al., 2023) 3D 7.22 38.90 13.67 40.78 45.90 17.23 19.99 18.85 14.30 26.69 34.17 55.65 35.47 37.55 30.70 19.40 16.78 27.83
BEVDet (Huang et al., 2021) 3D 4.39 30.31 0.23 32.26 34.47 12.97 10.34 10.36 6.26 8.93 23.65 52.27 24.61 26.06 22.31 15.04 15.10 19.38
OccFormer (Zhang et al., 2023b) 3D 5.94 30.29 12.32 34.40 39.17 14.44 16.45 17.22 9.27 13.90 26.36 50.99 30.96 34.66 22.73 6.76 6.97 21.93
BEVFormer (Li et al., 2024) 3D 5.85 37.83 17.87 40.44 42.43 7.36 23.88 21.81 20.98 22.38 30.70 55.35 28.36 36.00 28.06 20.04 17.69 26.88
RenderOcc (Pan et al., 2024b) 2D+3D 4.84 31.72 10.72 27.67 26.45 13.87 18.20 17.67 17.84 21.19 23.25 63.20 36.42 46.21 44.26 19.58 20.72 26.11
CTF-Occ (Tian et al., 2023) 3D 8.09 39.33 20.56 38.29 42.24 16.93 24.52 22.72 21.05 22.98 31.11 53.33 33.84 37.98 33.23 20.79 18.00 28.53
SparseOcc (Tang et al., 2024) 3D - - - - - - - - - - - - - - - - - 30.90
OccFlowNet (Boeder & Risse, 2025) 2D+3D 8.00 37.60 26.00 42.10 42.50 21.60 29.20 22.30 25.70 29.70 34.40 64.90 37.20 44.30 43.20 34.30 32.50 33.86
PreWorld (Li et al., 2025) 3D 10.83 44.13 26.35 42.16 46.15 22.92 28.86 26.89 26.44 28.29 34.43 65.67 35.91 41.09 37.41 30.16 29.54 33.95
PreWorld+ (Li et al., 2025) 2D+3D 11.81 45.01 26.29 43.32 47.71 24.23 31.29 27.41 27.68 30.62 35.64 63.71 37.27 41.20 37.54 29.36 29.70 34.69

STM4D (Ours) 2D+3D 12.63 45.73 27.73 33.92 50.07 26.98 27.96 28.69 27.88 30.74 35.18 67.55 35.74 39.52 42.82 32.76 32.13 35.18

Fine-grained GMO prediction task on Cam4DOcc. We conduct comprehensive comparisons
with OpenOccupancy-C (Wang et al., 2023b), SPC (Wei et al., 2023; Luo et al., 2023; Zhu et al.,
2021), PowerBEV-3D (Li et al., 2023a), OccProphet (Chen et al., 2025) and the OCFNet baseline
(Ma et al., 2024a) on Cam4DOcc benchmark (Ma et al., 2024a). On the fine-grained GMO task
(Table 8), our proposed STM4D also establishes a new state-of-the-art performance, achieving the
highest scores across all evaluation metrics. As shown in Table 8, STM4D attains an IoUc of 11.98,
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Table 8: Comparison of different methods on
forecasting fine-grained GMO on Cam4DOcc.

Method IoUc IoUf (2 s) ˜IoUf

OpenOccupancy-C 10.82 8.02 8.53
SPC 5.85 1.08 1.12
PowerBEV-3D 5.91 5.25 5.49
OCFnet 11.45 9.68 10.10
OccProphet 15.38 10.69 11.98

STM4D (Ours) 11.98 11.03 12.54

Table 9: LSTM replacement comparison.

Method mIoU (%) ↑
1s 2s 3s Avg.

Transformer 12.16 9.08 7.20 9.48
GRU 12.21 9.17 7.16 9.51
LSTM 12.48 9.41 7.60 9.83

Table 10: Comparison of different methods on forecasting fine-grained GMO and fine-grained GSO
simultaneously on Cam4DOcc.

Method IoUc IoUf (2 s) ˜IoUf
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OpenOccupancy-C 9.62 17.21 13.42 7.41 17.30 12.36 7.86
SPC 5.85 3.29 4.57 1.08 1.40 1.24 1.12
PowerBEV-3D 5.91 – – 5.25 – – 5.49
OCFnet 11.02 17.79 14.41 9.20 17.83 13.52 9.66
OccProphet 13.71 24.42 19.06 9.34 24.56 16.95 10.33

STM4D (Ours) 14.03 24.81 19.42 9.53 25.06 17.30 10.89

IoUf (2s) of 11.03, and ˜IoUf of 12.54, outperforming all competing methods. Specifically, STM4D
shows significant improvements over previous state-of-the-art approaches: a 22.3% increase in ˜IoUf

compared to OccProphet (Chen et al., 2025) (11.98 vs. 10.10), a 24.2% improvement in IoUf (2s)
over OCFnet (Ma et al., 2024a) (11.03 vs. 9.68), and substantial gains over OpenOccupancy-C
(Wang et al., 2023b) across all metrics. These consistent improvements highlight STM4D’s superior
capability in accurately capturing and predicting complex dynamic object trajectories, particularly in
challenging fine-grained scenarios where precise motion forecasting is essential.

Fine-grained GMO and fine-grained GSO prediction task on Cam4DOcc. Our proposed frame-
work, STM4D, establishes new state-of-the-art performance on the challenging task of fine-grained
future scene forecasting, significantly outperforming existing methods in predicting both General
Moving Objects (GMO) and General Static Occupancy (GSO). The quantitative results, summarized
in Table 10, demonstrate our method’s comprehensive superiority. STM4D achieves the highest
scores across all critical evaluation metrics: it attains a mean IoUc of 19.42 (with a decomposition of
14.03 for GMO and 24.81 for GSO), an IoUf (2s) of 17.30 (9.53 for GMO and 25.06 for GSO), and a
˜IoUf of 10.89 specifically for GMO forecasting.Notably, the performance gain in ˜IoUf for GMO—a

key metric for evaluating the forecasting of dynamic agents—represents a substantial improvement of
5.4% over the previous leading method, OccProphet (Chen et al., 2025), and a marked 12.7% increase
over OCFnet (Ma et al., 2024a). These results robustly demonstrate STM4D’s superior capability in
capturing and modeling the complex spatiotemporal dependencies inherent in dynamic autonomous
driving scenarios, ultimately leading to more accurate and reliable long-horizon predictions.

Superiority of LSTM in Spatiotemporal Forecasting. To select the most suitable sequence
modeling architecture for our task, we conduct comprehensive experiments comparing several
classical and well-established sequence modeling architectures, including ConvLSTM (Shi et al.,
2015) (here uniformly referred to as LSTM), Transformer (Vaswani et al., 2017), and GRU (Chung
et al., 2014) variants. Based on the comparative results in Table 9, LSTM achieves the highest mIoU
across all evaluated time horizons, scoring 12.48, 9.41, and 7.60 at 1s, 2s, and 3s, respectively, with
an average of 9.83. While GRU slightly exceeds Transformer on average performance (9.51 vs.
9.48), both exhibit a noticeable decline in accuracy over time. These results demonstrate LSTM’s
superior capability in modeling long-term temporal dependencies for the presented task, providing
strong empirical evidence that its gated memory mechanism and gradient preservation properties offer
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Table 11: Comparison of model complexity: number of parameters Np, GPU memory, and inference
FPS.

Dataset Method Np (Million) Memory (G) FPS

Occ3D-nuScenes
OccWorld-D (Zheng et al., 2025) - 23 2.3
PreWorld (Li et al., 2025) 121 29 4.1
Ours 155 33 4.2

Cam4DOcc
OCFnet (Ma et al., 2024a) 370 57 1.7
OccProphet (Chen et al., 2025) 82 24 4.5
Ours 81 22 4.5

distinct advantages for capturing complex spatiotemporal relationships—particularly in challenging
forecasting scenarios that demand sustained temporal coherence.

A.3 METHOD COMPUTATION COMPARISON

To ensure fair comparisons across different dataset domains where methods employ varying 2D
image backbones and 2D-to-3D lifting modules—and not all approaches report results on both
benchmarks—we conduct separate evaluations per dataset. We analyze computational efficiency
in Table 11, comparing model parameters, GPU memory usage, and inference speed measured
on an NVIDIA RTX 6000 Ada GPU. Our implementation follows established configurations: on
Occ3D-nuScenes (Tian et al., 2023), we adopt PreWorld’s (Li et al., 2025) backbone and lifting
module design, while on Cam4DOcc (Ma et al., 2024a), we align with OCFnet’s architecture.

Our model achieves superior efficiency with 81M parameters on Cam4DOcc (compared to OCFnet’s
370M and OccProphet’s 82M) and 155M parameters on Occ3D-nuScenes (compared to PreWorld’s
121M), demonstrating significant parameter efficiency. Training memory consumption remains
moderate at 22GB on Cam4DOcc and 33GB on Occ3D-nuScenes, while maintaining competitive
inference speeds of 4.5 FPS on both datasets. This optimized performance-to-computation ratio—
achieving the highest FPS while maintaining parameter efficiency—demonstrates our method’s
practical advantages for real-world deployment scenarios.

A.4 MORE VISUALIZATION

We also visualize qualitative results from our STM4D, PreWorld+ (Li et al., 2025), and OccWorld-D
(Zheng et al., 2025), with each row displaying occupancy predictions at 0.5-second intervals over a
3-second horizon. The black circles highlight the regions where our STM4D demonstrates superior
predictive performance compared to other methods.

As shown in Figure 6, our STM4D method more accurately predicts the U-shaped structure of the
drivable area while maintaining its structural consistency over the 3-second horizon. Additionally, our
approach effectively detects parked vehicles on the roadside and retains them consistently throughout
the prediction duration. In contrast, while other methods achieve satisfactory performance on initial
frames, they exhibit significant degradation in subsequent predictions, often failing to maintain road
topology and completely losing track of vehicle instances. These results demonstrate the model’s
strong capability in capturing complex spatial structures and maintaining robust temporal consistency
for both static and dynamic objects in long-horizon occupancy prediction tasks.

As illustrated in Figure 7, our STM4D method accurately predicts both the road structure and vehicles
on the roadside while consistently maintaining their state over time. In contrast, although other
methods achieve reasonable accuracy in the initial frames, the road structure becomes severely
corrupted in later frames, and roadside vehicles are completely lost. These observations further
demonstrate the superior temporal consistency and robustness of our approach in long-term occupancy
forecasting.
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Figure 6: The visualization of the 4D occupancy forecasting results. The black circles indicate that
our method can achieve more accurate results than SOTA PreWorld+ (full method of Li et al. (2025))
and OccWorld-D (Zheng et al., 2025).

G
T

S
T
M
4D

(o
ur
s)

P
re
W
or
ld
+

O
cc
W
or
ld
-D

T=0.0s T=0.5s T=1.0s T=1.5s T=2.0s T=2.5s T=3.0s

Figure 7: The visualization of the 4D occupancy forecasting results. The black circles indicate that
our method can achieve more accurate results than SOTA PreWorld+ (full method of Li et al. (2025))
and OccWorld-D (Zheng et al., 2025).
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