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Abstract

Stochastic Rising Bandits (SRBs) model sequential decision-making problems in1

which the expected reward of the available options increases every time they are2

selected. This setting captures a wide range of scenarios in which the available3

options are learning entities whose performance improves (in expectation) over4

time. While previous works addressed the regret minimization problem, this paper5

focuses on the fixed-budget Best Arm Identification (BAI) problem for SRBs. In this6

scenario, given a fixed budget of rounds, we are asked to provide a recommendation7

about the best option at the end of the identification process. We propose two8

algorithms to tackle the above-mentioned setting, namely R-UCBE, which resorts9

to a UCB-like approach, and R-SR, which employs a successive reject procedure.10

Then, we prove that, with a sufficiently large budget, they provide guarantees on11

the probability of properly identifying the optimal option at the end of the learning12

process. Furthermore, we derive a lower bound on the error probability, matched by13

our R-SR (up to logarithmic factors), and illustrate how the need for a sufficiently14

large budget is unavoidable in the SRB setting. Finally, we numerically validate15

the proposed algorithms in synthetic and real-world environments and compare16

them with the currently available BAI strategies.17

1 Introduction18

Multi-Armed Bandits (MAB, Lattimore and Szepesvári, 2020) are a well-known framework that19

effectively solves learning problems requiring sequential decisions. Given a time horizon, the learner20

chooses, at each round, a single option (a.k.a. arm) and observes the corresponding noisy reward,21

which is a realization of an unknown distribution. The MAB problem is commonly studied in two22

flavours: regret minimization (Auer et al., 2002) and best arm identification (Bubeck et al., 2009).23

In regret minimization, the goal is to control the cumulative loss w.r.t. the optimal arm over a time24

horizon. Conversely, in best arm identification, the goal is to provide a recommendation about the25

best arm at the end of the time horizon. Specifically, we are interested in the fixed-budget scenario,26

where we seek to minimize the error probability of recommending the wrong arm at the end of the27

time budget, no matter the loss incurred during learning.28

This work focuses on the Stochastic Rising Bandits (SRB), a specific instance of the rested ban-29

dit (Tekin and Liu, 2012) setting in which the expected reward of an arm increases according to the30

number of times it has been pulled. Online learning in such a scenario has been recently addressed31

from a regret minimization perspective by Metelli et al. (2022), in which the authors provide no-32

regret algorithms for the SRB setting in both the rested and restless cases. The SRB setting models33

several real-world scenarios where arms improve their performance over time. A classic example is34

the so-called Combined Algorithm Selection and Hyperparameter optimization (CASH, Thornton35

et al., 2013; Kotthoff et al., 2017; Erickson et al., 2020; Li et al., 2020; Zöller and Huber, 2021), a36

problem of paramount importance in Automated Machine Learning (AutoML, Feurer et al., 2015;37

Yao et al., 2018; Hutter et al., 2019; Mussi et al., 2023). In CASH, the goal is to identify the best38

learning algorithm together with the best hyperparameter configuration for a given ML task (e.g.,39
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classification or regression). In this problem, every arm represents a hyperparameter tuner acting40

on a specific learning algorithm. A pull corresponds to a unit of time/computation in which we41

improve (on average) the hyperparameter configuration (via the tuner) for the corresponding learning42

algorithm. CASH was handled in a bandit Best Arm Identification (BAI) fashion in Li et al. (2020)43

and Cella et al. (2021). The former handles the problem by considering rising rested bandits with44

deterministic rewards, failing to represent the intrinsic uncertain nature of such processes. Instead,45

the latter, while allowing stochastic rewards, assumes that the expected rewards evolve according to a46

known parametric functional class, whose parameters have to be learned.147

Original Contributions In this paper, we address the design of algorithms to solve the BAI task48

in the rested SRB setting when a fixed budget is provided.2 More specifically, we are interested in49

algorithms guaranteeing a sufficiently large probability of recommending the arm with the largest50

expected reward at the end of the time budget (as if only this arm were pulled from the beginning).51

The main contributions of the paper are summarized as follows:352

• We propose two algorithms to solve the BAI problem in the SRB setting: R-UCBE (an optimistic53

approach, Section 4) and R-SR (a phases-based rejection algorithm, Section 5). First, we intro-54

duce specifically designed estimators required by the algorithms (Section 3). Then, we provide55

guarantees on the error probability of the misidentification of the best arm.56

• We derive the first error probability lower bound for the SRB setting, matched by our R-SR57

algorithm up to logarithmic factors, which highlights the complexity of the problem and the need58

for a sufficiently large time budget (Section 6).59

• Finally, we conduct numerical simulations on synthetically generated data and a real-world online60

best model selection problem. We compare the proposed algorithms with the ones available in the61

bandit literature to tackle the SRB problem (Section 7).62

2 Problem Formulation63

In this section, we revise the Stochastic Rising Bandits (SRB) setting (Heidari et al., 2016; Metelli64

et al., 2022). Then, we formulate our best arm identification problem, introduce the definition of error65

probability, and provide a preliminary characterization of the problem.66

Setting We consider a rested Multi-Armed Bandit problem ⌫ “ p⌫iqiPJKK with a finite number67

of arms K.4 Let T P N be the time budget of the learning process. At every round t P JT K, the68

agent selects an arm It P JKK, plays it, and observes a reward xt „ ⌫ItpNIt,tq, where ⌫ItpNIt,tq69

is the reward distribution of the chosen arm It at round t and depends on the number of pulls70

performed so far Ni,t :“ ∞
t

⌧“1 1tI⌧ “ iu (i.e., rested). The rewards are stochastic, formally71

xt :“ µItpNIt,tq ` ⌘t, where µItp¨q is the expected reward of arm It and ⌘t is a zero-mean �
2-72

subgaussian noise, conditioned to the past.5 As customary in the bandit literature, we assume that73

the rewards are bounded in expectation, formally µipnq P r0, 1s,@i P JKK, n P JT K. As in (Metelli74

et al., 2022), we focus on a particular family of rested bandits in which the expected rewards are75

monotonically non-decreasing and concave in expectation.76

Assumption 2.1 (Non-decreasing and concave expected rewards). Let ⌫ be a rested MAB, defining77

�ipnq :“ µipn ` 1q ´ µipnq, for every n P N and every arm i P JKK the rewards are non-decreasing78

and concave, formally:79

Non-decreasing: �ipnq • 0, Concave: �ipn ` 1q § �ipnq.

Intuitively, the �ipnq represents the increment of the real process µip¨q evaluated at the n
th pull.80

Notice that concavity emerges in several settings, such as the best model selection and economics,81

representing the decreasing marginal returns (Lehmann et al., 2001; Heidari et al., 2016).82

1A complete discussion of the related works is available in Appendix A. Additional motivating examples are
discussed in Appendix B.

2We focus on the rested setting only and, thus, from now on, we will omit “rested” in the setting name.
3The proofs of all the statements in this work are provided in Appendix D.
4Let y, z P N, we denote with JzK :“ t1, . . . , zu, and with Jy, zK :“ ty, . . . , zu.
5A zero-mean random variable x is �2-subgaussian if it holds Exre⇠xs § e

�2⇠2

2 for every ⇠ P R.
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Learning Problem The goal of BAI in the SRB setting is to select the arm providing the largest83

expected reward with a large enough probability given a fixed budget T P N. Unlike the stationary84

BAI problem (Audibert et al., 2010), in which the optimal arm is not changing, in this setting, we85

need to decide when to evaluate the optimality of an arm. We define optimality by considering the86

largest expected reward at time T . Formally, given a time budget T , the optimal arm i
˚pT q P JKK,87

which we assume unique, satisfies:88

i
˚pT q :“ argmax

iPJKK
µipT q,

where we highlighted the dependence on T as, with different values of the budget, i˚pT q may
change. Let i P JKKzti˚pT qu be a suboptimal arm, we define the suboptimality gap as �ipT q :“
µi˚pT qpT q´µipT q. We employ the notation piq P JKK to denote the ith best arm at time T (arbitrarily
breaking ties), i.e., we have �p2qpT q § ¨ ¨ ¨ § �pKqpT q. Given an algorithm A that recommends
Î

˚pT q P JKK at the end of the learning process, we measure its performance with the error probability,
i.e., the probability of recommending a suboptimal arm at the end of the time budget T :

eT pAq :“ PApÎ˚pT q ‰ i
˚pT qq.

Problem Characterization We now provide a characterization of a specific class of polynomial89

functions to upper bound the increments �ipnq.90

Assumption 2.2 (Bounded �ipnq). Let ⌫ be a rested MAB, there exist c ° 0 and � ° 1 such that for91

every arm i P JKK and number of pulls n P J0, T K it holds that �ipnq § cn
´� .92

We anticipate that, even if our algorithms will not require such an assumption, it will be used93

for deriving the lower bound and for providing more human-readable error probability guarantees.94

Furthermore, we observe that our Assumption 2.2 is fulfilled by a strict superset of the functions95

employed in Cella et al. (2021).96

3 Estimators97

In this section, we introduce the estimators of the arm expected reward employed by the proposed98

algorithms.6 A visual representation of such estimators is provided in Figure 1.99

Let " P p0, 1{2q be the fraction of samples collected up to the current time t we use to build estimators
of the expected reward. We employ an adaptive arm-dependent window size hpNi,t´1q :“ t"Ni,t´1u
to include the most recent samples collected only, avoiding the use of samples that are no longer
representative. We define the set of the last hpNi,t´1q rounds in which the i

th arm was pulled as:
Ti,t :“ t⌧ P JT K : I⌧ “ i ^ Ni,⌧ “ Ni,t´1 ´ l, l P J0, hpNi,t´1q ´ 1Ku .

Furthermore, the set of the pairs of rounds ⌧ and ⌧
1 belonging to the sets of the last and second-last100

hpNi,t´1q-wide windows of the i
th arm is defined as:101

Si,t :“
 

p⌧, ⌧ 1q P JT K ˆ JT K : I⌧ “ I⌧ 1 “ i ^ Ni,⌧ “ Ni,t´1 ´ l,

Ni,⌧ 1 “ Ni,⌧ ´ hpNi,t´1q, l P J0, hpNi,t´1q ´ 1K
(
.

In the following, we design a pessimistic estimator and an optimistic estimator of the expected reward102

of each arm at the end of the budget time T , i.e., µipT q.7103

Pessimistic Estimator The pessimistic estimator µ̂ipNi,t´1q is a negatively biased estimate of µipT q104

obtained assuming that the function µip¨q remains constant up to time T . This corresponds to the105

minimum admissible value under Assumption 2.1 (due to the Non-decreasing constraint). This106

estimator is an average of the last hpNi,t´1q observed rewards collected from the i
th arm, formally:107

µ̂ipNi,t´1q :“ 1

hpNi,t´1q
ÿ

⌧PTi,t

x⌧ . (1)

The estimator enjoys the following concentration property.108

6The estimators are adaptations of those presented by Metelli et al. (2022) to handle a fixed time budget T .
7Naïvely computing the estimators from their definition requires OphpNi,t´1qq number of operations. An

efficient way to incrementally update them, using Op1q operations, is provided in Appendix C.
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Lemma 3.1 (Concentration of µ̂i). Under Assumption 2.1, for every a ° 0, simultaneously for every109

arm i P JKK and number of pulls n P J0, T K, with probability at least 1 ´ 2TKe
´a{2 it holds that:110

�̂ipnq ´ ⇣̂ipnq § µ̂ipnq ´ µipnq § �̂ipnq, (2)

where �̂ipnq :“ �

b
a

hpnq and ⇣̂ipnq :“ 1
2 p2T ´ n ` hpnq ´ 1q �ipn ´ hpnq ` 1q.111

tT
⌧⌧ 1

µ̌
T i

pN
i
,t

´
1

q

µ̂
i
pN

i
,t

´
1

q

Ni,t´1

�̌
T i

pN
i
,t

´
1

q

B
T i

pN
i
,t

´
1

q

hpNi,t´1q

Figure 1: Graphical representation of the
pessimistic µ̂ipNi,t´1q and the optimistic
µ̌
T

i
pNi,t´1q estimators.

As supported by intuition, we observe that the estima-112

tor is affected by a negative bias that is represented by113

⇣̂ipnq that vanishes as n Ñ 8 under Assumption 2.1114

with a rate that depends on the increment functions115

�ip¨q. Considering also the term �̂ipnq and recalling116

that hpnq “ Opnq, under Assumption 2.2, the overall117

concentration rate is Opn´1{2 ` cTn
´�q.118

Optimistic Estimator The optimistic estimator119

µ̌
T

i
pNi,t´1q is a positively biased estimation of µipT q120

obtained assuming that function µip¨q linearly in-121

creases up to time T . This corresponds to the122

maximum value admissible under Assumption 2.1123

(due to the Concavity constraint). The estimator is124

constructed by adding to the pessimistic estimator125

µ̂ipNi,t´1q an estimate of the increment occurring126

in the next step up to T . The latter uses the last127

2hpNi,t´1q samples to obtain an upper bound of such128

growth thanks to the concavity assumption, formally:129

µ̌
T

i
pNi,t´1q :“ µ̂ipNi,t´1q `

ÿ

pj,kqPSi,t

pT ´ jq xj ´ xk

hpNi,t´1q2 . (3)

The estimator displays the following concentration guarantee.130

Lemma 3.2 (Concentration of µ̌T

i
). Under Assumption 2.1, for every a ° 0, simultaneously for every131

arm i P JKK and number of pulls n P J0, T K, with probability at least 1 ´ 2TKe
´a{10 it holds that:132

�̌
T

i
pnq § µ̌

T

i
pnq ´ µipnq § �̌

T

i
pnq ` ⇣̌

T

i
pnq, (4)

where �̌
T

i
pnq :“ �¨pT´n`hpnq´1q

b
a

hpnq3 and ⇣̌
T

i
pnq :“ 1

2 p2T´n`hpnq´1q �ipn´2hpnq̀ 1q.133

Differently from the pessimistic estimation, the optimistic one displays a positive vanishing bias134

⇣̌
T

i
pnq. Under Assumption 2.2, we observe that the overall concentration rate is OpTn´3{2`cTn

´�q.135

4 Optimistic Algorithm: Rising Upper Confidence Bound Exploration136

In this section, we introduce and analyze Rising Upper Confidence Bound Exploration137

(R-UCBE) an optimistic error probability minimization algorithm for the SRB setting with a fixed138

budget. The algorithm explores by means of a UCB-like approach and, for this reason, makes use of139

the optimistic estimator µ̌T

i
plus a bound to account for the uncertainty of the estimation.8140

Algorithm The algorithm, whose pseudo-code is reported in Algorithm 1, requires as input an141

exploration parameter a • 0, the window size " P p0, 1{2q, the time budget T , and the number of142

arms K. At first, it initializes to zero the counters Ni,0, and sets to `8 the upper bounds BT

i
pNi,0q143

of all the arms (Line 2). Subsequently, at each time t P JT K, the algorithm selects the arm It with the144

largest upper confidence bound (Line 4):145

It P argmax
iPJKK

B
T

i
pNi,t´1q :“ µ̌

T

i
pNi,t´1q ` �̌

T

i
pNi,t´1q, (5)

with: �̌
T

i
pNi,t´1q :“ � ¨ pT ´ Ni,t´1 ` hpNi,t´1q ´ 1q

c
a

hpNi,t´1q3 , (6)

8In R-UCBE, the choice of considering the optimistic estimator is natural and obliged since the pessimistic
estimator is affected by negative bias and cannot be used to deliver optimistic estimates.
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where �̌T

i
pNi,t´1q represents the exploration bonus (a graphical representation is reported in Figure 1).146

Once the arm is chosen, the algorithm plays it and observes the feedback xt (Line 5). Then, the147

optimistic estimate µ̌T

It
pNIt,tq and the exploration bonus �̌T

It
pNIt,tq of the selected arm It are updated148

(Lines 8-9). The procedure is repeated until the algorithm reaches the time budget T . The final149

recommendation of the best arm is performed using the last computed values of the bounds BT

i
pNi,T q,150

returning the arm Î
˚pT q corresponding to the largest upper confidence bound (Line 12).151

Bound on the Error Probability of R-UCBE We now provide bounds on the error probability for152

R-UCBE. We start with a general analysis that makes no assumption on the increments �ip¨q and, then,153

we provide a more explicit result under Assumption 2.2. The general result is formalized as follows.154

Theorem 4.1. Under Assumption 2.1, let a˚ be the largest positive value of a satisfying:155

T ´
ÿ

i‰i˚pT q
yipaq • 1, (7)

where for every i P JKK, yipaq is the largest integer for which it holds:156

T�iptp1 ´ 2"qyuqlooooooooomooooooooon
pAq

` 2T�

c
a

t"yu3loooooomoooooon
pBq

• �ipT q. (8)

If a˚ exists, then for every a P r0, a˚s the error probability of R-UCBE is bounded by:157

eT pR-UCBEq § 2TK exp
´

´ a

10

¯
. (9)

Some comments are in order. First, a˚ is defined implicitly, depending on the constants �, T , the158

increments �ip¨q, and the suboptimality gaps �ipT q. In principle, there might exist no a
˚ ° 0159

fulfilling condition in Equation (7) (this can happen, for instance, when the budget T is not large160

enough), and, in such a case, we are unable to provide theoretical guarantees on the error probability161

of R-UCBE. Second, the result presented in Theorem 4.1 holds for generic increasing and concave162

expected reward functions. This result shows that, as expected, the error probability decreases when163

the exploration parameter a increases. However, this behavior stops when we reach the threshold a
˚.164

Intuitively, the value of a˚ sets the maximum amount of exploration we should use for learning.165

Under Assumption 2.2, i.e., using the knowledge on the increment �ip¨q upper bound, we derive a166

result providing conditions on the time budget T under which a
˚ exists and an explicit value for a˚.167

Corollary 4.2. Under Assumptions 2.1 and 2.2, if the time budget T satisfies:168

T •

$
’&

’%

´
c

1
� p1 ´ 2"q´1 pH1,1{�pT qq ` pK ´ 1q

¯ �
�´1

if � P p1, 3{2q
´
c

2
3 p1 ´ 2"q´ 2

3� pH1,2{3pT qq ` pK ´ 1q
¯3

if � P r3{2,`8q
, (10)

there exists a˚ ° 0 defined as:169

a
˚ “

$
’’&

’’%

✏
3

4�2

ˆ´
T

1´1{�´pK´1q
H1,1{�pT q

¯�

´ cp1 ´ 2"q´�

˙2

if � P p1, 3{2q

✏
3

4�2

ˆ´
T

1{3´pK´1q
H1,2{3pT q

¯3{2
´ cp1 ´ 2"q´�

˙2

if � P r3{2,`8q
,

where H1,⌘pT q :“ ∞
i‰i˚pT q

1
�⌘

i pT q for ⌘ ° 0. Then, for every a P r0, a˚s, the error probability of170

R-UCBE is bounded by:171

eT pR-UCBEq § 2TK exp
´

´ a

10

¯
.

First of all, we notice that the error probability eT pR-UCBEq presented in Theorem 4.2 holds under172

the condition that the time budget T fulfills Equation (10). We defer a more detailed discussion173

on this condition to Remark 5.1, where we show that the existence of a finite value of T fulfilling174

Equation (10) is ensured under mild conditions.175

Let us remark that term H1,⌘pT q characterizes the complexity of the SRB setting, corresponding to176

term H1 of Audibert et al. (2010) for the classical BAI problem when ⌘ “ 2. As expected, in the177

small-� regime (i.e., � P p1, 3{2s), looking at the dependence of H1,1{�pT q on �, we realize that178
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Algorithm 1: R-UCBE.
Input :Time budget T , Number of arms K,

Window size ", Exploration parameter a
1 Initialize Ni,0 “ 0,
2 BT

i p0q “ `8,@i P JKK
3 for t P JT K do
4 Compute It P argmaxiPJKK B

T
i pNi,t´1q

5 Pull arm It and observe xt

6 NIt,t – NIt,t´1 ` 1
7 Ni,t – Ni,t´1, @i ‰ It
8 Update µ̌T

ItpNIt,tq
9 Update �̌T

ItpNIt,tq
10 Compute BT

ItpNIt,tq “ µ̌T
ItpNIt,tq ` �̌T

ItpNIt,tq
11 end
12 Recommend pI˚pT q P argmaxiPJKK B

T
i pNi,T q

Algorithm 2: R-SR.
Input :Time budget T , Number of arms K,

Window size "
1 Initialize t – 1, N0 “ 0, X0 “ JKK
2 for j P JK ´ 1K do
3 for i P Xj´1 do
4 for l P JNj´1 ` 1, NjK do
5 Pull arm i and observe xt

6 t – t ` 1
7 end
8 Update µ̂ipNjq
9 end

10 Define Ij P argminiPXj´1
µ̂ipNjq

11 Update Xj “ Xj´1 ztIju
12 end
13 Recommend pI˚pT q P XK´1 (unique)

the complexity of a problem decreases as the parameter � increases. Indeed, the larger �, the faster179

the expected reward reaches a stationary behavior. Nevertheless, even in the large-� regime (i.e.,180

� ° 3{2), the complexity of the problem is governed by H1,2{3pT q, leading to an error probability181

larger than the corresponding one for BAI in standard bandits (Audibert et al., 2010). This can be182

explained by the fact that R-UCBE uses the optimistic estimator that, as shown in Section 3, enjoys a183

slower concentration rate compared to the standard sample mean, even for stationary bandits.184

This two-regime behavior has an interesting interpretation when comparing Corollary 4.2 with185

Theorem 4.1. Indeed, � “ 3{2 is the break-even threshold in which the two terms of the l.h.s. of186

Equation (8) have the same convergence rate. Specifically, the term pAq takes into account the187

expected rewards growth (i.e., the bias in the estimators), while pBq considers the uncertainty in188

the estimations of the R-UCBE algorithm (i.e., the variance). Intuitively, when the expected reward189

function displays a slow growth (i.e., �ipnq § cn
´� with � † 3{2), the bias term pAq dominates190

the variance term pBq and the value of a˚ changes accordingly. Conversely, when the variance term191

pBq is the dominant one (i.e., �ipnq § cn
´� with � ° 3{2), the threshold a

˚ is governed by the192

estimation uncertainty, being the bias negligible.193

As common in optimistic algorithms for BAI (Audibert et al., 2010), setting a theoretically sound194

value of exploration parameter a (i.e., computing a
˚), requires additional knowledge of the setting,195

namely the complexity index H1,⌘pT q.9 In the next section, we propose an algorithm that relaxes this196

requirement.197

5 Phase-Based Algorithm: Rising Successive Rejects198

In this section, we introduce the Rising Successive Rejects (R-SR), a phase-based solution199

inspired by the one proposed by Audibert et al. (2010), which overcomes the drawback of R-UCBE of200

requiring knowledge of H1,⌘pT q.201

Algorithm R-SR, whose pseudo-code is reported in Algorithm 2, takes as input the time budget T202

and the number of arms K. At first, it initializes the set of the active arms X0 with all the available203

arms (Line 1). This set will contain the arms that are still eligible candidates to be recommended.204

The entire process proceeds through K ´ 1 phases. More specifically, during the j
th phase, the arms205

still remaining in the active arms set Xj´1 are played (Line 5) for Nj ´ Nj´1 times each, where:206

Nj :“
R

1

logpKq
T ´ K

K ` 1 ´ j

V
, (11)

and logpKq :“ 1
2 ` ∞

K

i“2
1
i
. At the end of each phase, the arm with the smallest value of the207

pessimistic estimator µ̂ipNjq is discarded from the set of active arms (Line 11). At the end of the208

pK ´ 1qth phase, the algorithm recommends the (unique) arm left in XK´1 (Line 13).209

9We defer the empirical study of the sensitivity of a to Section 7.
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It is worth noting that R-SR makes use of the pessimistic estimator µ̂ipnq. Even if both estimators210

defined in Section 3 are viable for R-SR, the choice of using the pessimistic estimator is justified211

by its better concentration rate Opn´1{2q compared to that of the optimistic estimator OpTn´3{2q,212

being n § T (see Section 3).213

Note that the phase lengths are the ones adopted by Audibert et al. (2010). This choice allows214

us to provide theoretical results without requiring domain knowledge (still under a large enough215

budget). An optimized version of Nj may be derived assuming full knowledge of the gaps �ipT q,216

but, unfortunately, such a hypothetical approach would have similar drawbacks as R-UCBE.217

Bound on the Error Probability of R-SR The following theorem provides the guarantee on the218

error probability for the R-SR algorithm.219

Theorem 5.1. Under Assumptions 2.1 and 2.2, if the time budget T satisfies:220

T • 2
�`1
�´1 c

1
�´1 logpKq �

�´1 max
iPJ2,KK

!
i

�
�´1�piqpT q´ 1

�´1

)
, (12)

then, the error probability of R-SR is bounded by:

eT pR-SRq § KpK ´ 1q
2

exp

ˆ
´ "

8�2
¨ T ´ K

logpKqH2pT q

˙
,

where H2pT q :“ maxiPJKK
 
i�piqpT q´2

(
and logpKq “ 1

2 ` ∞
K

i“2
1
i
.221

Similar to the R-UCBE, the complexity of the problem is characterized by term H2pT q that, for the222

standard MAB setting, reduces to the H2 term of Audibert et al. (2010). Furthermore, when the223

condition of Equation (12) on the time budget T is satisfied, the error probability coincides with that224

of the SR algorithm for standard MABs (apart for constant terms). The following remark elaborates225

on the conditions of Equations (10) and (12) about the minimum requested time budget.226

Remark 5.1 (About the minimum time budget T ). To satisfy the eT bounds presented in Corollary 4.2227

and Theorem 5.1, R-UCBE and R-SR require the conditions provided by Equations (10) and (12)228

about the time budget T , respectively. First, let us notice that if the suboptimal arms converge to229

an expected reward different from that of the optimal arm as T Ñ `8, it is always possible to230

find a finite value of T † `8 such that these conditions are fulfilled. Formally, assume that there231

exists T0 † `8 and that for every T • T0 we have that for all suboptimal arms i ‰ i
˚pT q it holds232

that �ipT q • �8 ° 0. In such a case, the l.h.s. of Equations (10) and (12) are upper bounded by233

a function of �8 and are independent on T . Instead, if a suboptimal arm converges to the same234

expected reward as the optimal arm when T Ñ `8, the identification problem is more challenging235

and, depending on the speed at which the two arms converge as a function of T , might slow down the236

learning process arbitrarily. This should not surprise as the BAI problem becomes non-learnable237

even in standard (stationary) MABs when multiple optimal arms are present (Heide et al., 2021).238

6 Lower Bound239

In this section, we investigate the complexity of the BAI problem for SRBs with a fixed budget.240

Minimum time budget T We show that, under Assumptions 2.1 and 2.2, any algorithm requires a241

minimum time budget T to be guaranteed to identify the optimal arm, even in a deterministic setting.242

Theorem 6.1. For every algorithm A, there exists a deterministic SRB satisfying Assumptions 2.1243

and 2.2 such that the optimal arm i
˚pT q cannot be identified for some time budgets T unless:244

T • H1,1{p�´1qpT q “
ÿ

i‰i˚pT q

1

�ipT q 1
�´1

. (13)

Theorem 6.1 formalizes the intuition that any of the suboptimal arms must be pulled a sufficient245

number of times to ensure that, if pulled further, it cannot become the optimal arm. It is worth246

comparing this bound on the time budget with the corresponding conditions on the minimum247

time budget requested by Equations (10) and (12) for R-UCBE and R-SR, respectively. Regarding248

R-UCBE, we notice that the minimum admissible time budget in the small-� regime is of order249

H1,1{�pT q�{p�´1q which is larger than term H1,1{p�´1qpT q of Equation (13).10 Similarly, in the250

10See Lemma D.12.
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Error Probability eT p¨q Time Budget T

SRB
1

4
exp

˜
´ 8T

�2
∞

i‰i˚pT q
1

�2
i pT q

¸
ÿ

i‰i˚pT q

1

�ipT q 1
�´1

R-UCBE 2 T K exp
´

´ a

10

¯

$
’’’’&

’’’’%

ˆ
c

1
� p1 ´ 2"q´1

ˆ ÿ

i‰i˚pT q

1

�1{�
i

pT q

˙
` pK ´ 1q

˙ �
�´1

if � P p1, 3{2q
ˆ
c

2
3 p1 ´ 2"q´ 2

3�

ˆ ÿ

i‰i˚pT q

1

�2{3
i

pT q

˙
` pK ´ 1q

˙3

if � P r3{2,`8q

R-SR
KpK ´ 1q

2
exp

¨

˚̋´ "

8�2

T ´ K

logpKq max
iPJKK

!
i�´2

piq pT q
)

˛

‹‚ 2
1`�
�´1 c

1
�´1 logpKq �

�´1 max
iPJ2,KK

!
i

�
�´1�piqpT q´ 1

�´1

)

Table 1: Bounds on the time budget and error probability: lower for the setting and upper for the
algorithms.

large-� regime (i.e., � ° 3{2), the R-UCBE requirement is of order H1,2{3pT q3 • H1,2pT q which251

is larger than the term of Theorem 6.1 since 1{p� ´ 1q † 2. Concerning R-SR, it is easy to show252

that H1,1{p�´1qpT q « maxiPJ2,KK i�piqpT q´1{p�´1q, apart from logarithmic terms, by means of253

the argument provided by (Audibert et al., 2010, Section 6.1). Thus, up to logarithmic terms,254

Equation (12) provides a tight condition on the minimum budget.255

Error Probability Lower Bound We now present a lower bound on the error probability.256

Theorem 6.2. For every algorithm A run with a time budget T fulfilling Equation (13), there exists a257

SRB satisfying Assumptions 2.1 and 2.2 such that the error probability is lower bounded by:258

eT pAq • 1

4
exp

ˆ
´ 8T

�2H1,2pT q

˙
, where H1,2pT q :“

ÿ

i‰i˚pT q

1

�2
i
pT q .

Some comments are in order. First, we stated the lower bound for the case in which the minimum259

time budget satisfies the inequality of Theorem 6.1, which is a necessary condition for identifying the260

optimal arm. Second, the lower bound on the error probability matches, up to logarithmic factors,261

that of our R-SR, suggesting the superiority of this algorithm compared to R-UCBE. Finally, provided262

that the identifiability condition of Equation (13), such a result corresponds to that of the standard263

(stationary) MABs (Audibert et al., 2010; Kaufmann et al., 2016). A summary of all the bounds264

provided in the paper is presented in Table 1.265

7 Numerical Validation266

In this section, we provide a numerical validation of R-UCBE and R-SR. We compare them with267

state-of-the-art bandit baselines designed for stationary and non-stationary BAI in a synthetic setting,268

and we evaluate the sensitivity of R-UCBE to its exploration parameter a. Additional details about the269

experiments presented in this section are available in Appendix G. Additional experimental results on270

both synthetic settings and in a real-world experiment are available in Appendix H.11271

Baselines We compare our algorithms against a wide range of solutions for BAI:272

• RR: uniformly pulls all the arms until the budget ends in a round-robin fashion and, in the end,273

makes a recommendation based on the empirical mean of their reward over the collected samples;274

• RR-SW: makes use of the same exploration strategy as RR to pull arms but makes a recommendation275

based on the empirical mean over the last "T

K
collected samples from an arm.12276

• UCB-E and SR (Audibert et al., 2010): algorithms for the stationary BAI problem;277

• Prob-1 (Abbasi-Yadkori et al., 2018): an algorithm dealing with the adversarial BAI setting;278

• ETC and Rest-Sure (Cella et al., 2021): algorithms developed for the decreasing loss BAI setting.13279

The hyperparameters required by the above methods have been set as prescribed in the original papers.280

For both our algorithms and RR-SW, we set " “ 0.25.281

11The code to run the experiments is available in the supplementary material. It will be published in a public
repository conditionally to the acceptance of the paper.

12The formal description of this baseline, as well as its theoretical analysis, is provided in Appendix E.
13This problem is equivalent to ours, given a linear transformation of the reward.
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Setting To assess the quality of the recommendation Î
˚pT q provided by our algorithms, we consider282

a synthetic SRB setting with K “ 5 and � “ 0.01. Figure 2 shows the evolution of the expected283

values of the arms w.r.t. the number of pulls. In this setting, the optimal arm changes depending284

on whether T P r1, 185s or T P p185,`8q. Thus, when the time budget is close to that value, the285

problem is more challenging since the optimal and second-best arms expected rewards are close to286

each other. For this reason, the BAI algorithms are less likely to provide a correct recommendation287

than for time budgets for which the two expected rewards are well separated. We compare the288

analyzed algorithms A in terms of empirical error eT pAq (the smaller, the better), i.e., the empirical289

counterpart of eT pAq averaged over 100 runs, considering time budgets T P r100, 3200s.290

Results The empirical error probability provided by the analyzed algorithms in the synthetically291

generated setting is presented in Figure 3. We report with a dashed vertical blue line at T “ 185, i.e.,292

the budgets after which the optimal arm no longer changes. Before such a budget, all the algorithms293

provide large errors (i.e., ēT pAq ° 0.2). However, R-UCBE outperforms the others by a large margin,294

suggesting that an optimistic estimator might be advantageous when the time budget is small. Shortly295

after T “ 185, R-UCBE starts providing the correct suggestion consistently. R-SR begins to identify296

the optimal arm (i.e., with ēT pR-SRq † 0.05) for time budgets T ° 1000. Nonetheless, both297

algorithms perform significantly better than the baseline algorithms used for comparison.298

Sensitivity Analysis for the Exploration Parameter of R-UCBE We perform a sensitivity analysis299

on the exploration parameter a of R-UCBE. Such a parameter should be set to a value less or equal300

to a
˚, and the computation of the latter is challenging. We tested the sensitivity of R-UCBE to this301

hyperparameter by looking at the error probability for a P ta˚{50, a˚{10, a˚
, 10a˚

, 50a˚u. Figure 4302

shows the empirical errors of R-UCBE with different parameters a, where the blue dashed vertical303

line denotes the last time the optimal arm changes over the time budget. It is worth noting how, even304

in this case, we have two significantly different behaviors before and after such a time. Indeed, if305

T § 185, we have that a misspecification with larger values than a
˚ does not significantly impact306

the performance of R-UCBE, while smaller values slightly decrease the performance. Conversely,307

for T ° 185 learning with different values of a seems not to impact the algorithm performance308

significantly. This corroborates the previous results about the competitive performance of R-UCBE.309

8 Discussion and Conclusions310

This paper introduces the BAI problem with a fixed budget for the Stochastic Rising Bandits setting.311

Notably, such setting models many real-world scenarios in which the reward of the available options312

increases over time, and the interest is on the recommendation of the one having the largest expected313

rewards after the time budget has elapsed. In this setting, we presented two algorithms, namely314

R-UCBE and R-SR providing theoretical guarantees on the error probability. R-UCBE is an optimistic315

algorithm requiring an exploration parameter whose optimal value requires prior information on the316

setting. Conversely, R-SR is a phase-based solution that only requires the time budget to run. We317

established lower bounds for the error probability an algorithm suffers in such a setting, which is318

matched by our R-SR, up to logarithmic factors. Furthermore, we showed how a requirement on the319

minimum time budget is unavoidable to ensure the identifiability of the optimal arm. Finally, we320

validate the performance of the two algorithms in both synthetically generated and real-world settings.321

A possible future line of research is to derive an algorithm balancing the tradeoff between theoretical322

guarantees on the eT and the chance of providing such guarantees with lower time budgets.323
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