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Abstract

The emergence of large language models (LLMs) has revolutionized nu-
merous applications across industries. However, their “black box” nature
often hinders the understanding of how they make specific decisions, raising
concerns about their transparency, reliability, and ethical use. This study
presents a method to improve the explainability of LLMs by varying indi-
vidual words in prompts to uncover their statistical impact on the model
outputs. This approach, inspired by permutation importance for tabular
data, masks each word in the system prompt and evaluates its effect on the
outputs based on the available text scores aggregated over multiple user
inputs. Unlike classical attention, word importance measures the impact of
prompt words on arbitrarily-defined text scores, which enables decompos-
ing the importance of words into the specific measures of interest–including
bias, reading level, verbosity, etc. This procedure also enables measuring
impact when attention weights are not available. To test the fidelity of
this approach, we explore the effect of adding different suffixes to multiple
different system prompts and comparing subsequent generations with dif-
ferent large language models. Results show that word importance scores
are closely related to the expected suffix importances for multiple scoring
functions. We plan to make the Python project for computing these scores
available on GitHub and discuss how it could assist developing generative
Artificial Intelligence (AI) use-cases.

Keywords: Large Language Models, Explainability, Masking, Word Im-
portance.

1 Introduction

Large language models (LLMs) have become the focal point of contemporary computational
linguistics and artificial intelligence research. With their capacity to generate human-like
text, comprehend complex linguistic patterns, and perform tasks across multiple domains,
LLMs have shown tremendous potential in applications ranging from chatbots to content
generation. However, with their increased capabilities come challenges—principally, the
challenge of explainability. The opaque nature and large parameter space of these models
poses a profound concern12, not only for researchers attempting to understand and optimize
them but also for end-users who seek transparency and reliability in their outputs, see
Glikson and Woolley (2020).

Explainability in machine learning (ML), or the ability to understand and interpret model
decisions, has become a topic of utmost importance, see Došilović et al. (2018), Xu et al.
(2019), Gohel et al. (2021) and Danilevsky et al. (2020b). As decisions made by these
models influence an ever-expanding range of sectors, from healthcare to finance, the need
for model interpretability has grown exponentially. Understanding how an LLM arrives
at a particular output is not just a matter of scientific interest but has broader societal
implications, especially when considering issues of bias, fairness, and accountability, see Li
et al. (2023), Gallegos et al. (2023) and Bender et al. (2021).

1https://openai.com/research/language-models-can-explain-neurons-in-language-models
2https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
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Figure 1: Illustration of the word importance method. Words from the system prompt
are masked with underscore. The masked system prompts, together with user inputs, are
passed to an LLM and the outputs are evaluated with arbitrary text scores. The importance
score for every word from the prompt with regard to the selected text score is computed by
comparing these results with the results from using the original system prompt.

One avenue that has shown promise in shedding light on the LLM decision-making processes
is the study of the effects of individual words or phrases of the input on model output, see
Wallace et al. (2021). For example, a practitioner may want to measure if a particular
word influences the output in a specific way. Recognizing the impact of words or linguistic
structures on LLM outputs can offer a granular understanding of model behavior, providing
valuable insights into how information is processed and weighted by the model.

Attention is also commonly used to understand the impact of input sequences (Vaswani
et al., 2017), however it has limitations and its use for explainability is contested, see Jain
and Wallace (2019) and Serrano and Smith (2019). Attention does not readily indicate in
what way the input tokens influence the output. For example, a particular word may have
high attention, but not influence the reading-level, social bias, or desired topics of interest in
the output. Additionally, attention weights are not available for many of the most popular
closed-source models, necessitating alternative means of model analysis3.

This paper delves into the explainability of LLMs, focusing on the role that individual
words play in influencing different characteristics of the model outputs. The experimental
setup measures how well word importance statistics correspond to the user intent of different
system prompts. We show that this analysis can illuminate the behavior of LLMs, promoting
a future where these models are not only effective but also transparent and accountable.

2 Related Works

Word importance has been a significant topic of interest in natural language processing
(NLP) and has gained even more attention with the rise of large language models (LLMs)
Sun et al. (2021). Understanding which words are important in a given context can provide
insights into how models make decisions, help improve interpretability, and gain users’ trust.
There have been multiple works in the area of explainability in NLP, see Danilevsky et al.
(2021), Danilevsky et al. (2020a), and Wiegreffe and Pinter (2019).

Wallace et al. (2021) showed that short sequences of trigger words can significantly impact
the output of a language model, such as changing the sentiment of an analyzed text from
positive to negative or manipulating the model to answer in a harmful way. This shows how
important it is to understand the impact of individual words and phrases.

3Anthropic API: https://docs.anthropic.com/claude/reference/getting-started-with-the-api
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Permutation importance is a technique to interpret machine learning models by assessing
the impact of individual features on the model’s predictive performance (Breiman, 2001).
This method involves perturbing the values of a single feature and measuring the subsequent
degradation in model performance, thus inferring the importance of that feature.

Another important widely used method for model explainability is SHAP, see Shap-
ley et al. (1953) and Sundararajan and Najmi (2020). SHAP (SHapley Additive
exPlanations) is a method for explaining the output of machine learning models.

Figure 2: System prompt word
importance evaluated by multiple
scores. Each word is masked with

to compute its word importance
score. Using multiple scores simul-
taneously allows one to conveniently
observe the multifaceted impact of
each word on the model output.

This technique allocates the contribution of each fea-
ture to every single prediction, ensuring that the sum
of the contributions equals the difference between the
prediction and a predefined baseline value. Central
to SHAP is the concept of Shapley values, derived
from game theory, which ensures a fair distribution of
contributions among features by considering all pos-
sible combinations of features and the marginal con-
tributions they provide (Lundberg and Lee, 2017).
One of the primary advantages of SHAP is its con-
sistency and accuracy in attributing feature impor-
tances across a range of ML applications. However,
as with all interpretability techniques, it is important
to apply SHAP values judiciously, understanding the
underlying assumptions and potential nuances in dif-
ferent modeling contexts.

A different area of investigation has focused on efforts
to understand the representations that LLMs learn
given a query text (Rogers et al. (2020) and Paganelli
et al. (2022)). This includes looking at the activa-
tions (Hermans and Schrauwen (2013) and Karpathy
et al. (2015)), attention weights (Clark et al. (2019),
Kovaleva et al. (2019) and Htut et al. (2019)), mutual
information (Hoover et al., 2021), probing classifiers
(Belinkov (2021), Tenney et al. (2019) and Liu et al.
(2019)), shuffling and truncating the text (Ettinger,
2020) and – most similar to this work – masking or perturbing particular words (Wu et al.
(2020) and Kim et al. (2019)). These approaches lack the wide applicability of our approach,
relying on direct access to the model and particular linguistic assumptions or tasks. In ad-
dition, our approach focuses on the higher-level intent of the user contained in the prompt
or additional general criteria as opposed to understanding the generation of a particular
token.

Finally, Yin et al. (2023) studied the role that different parts of a system prompt have
in the context of instruction learning. They find, for instance, that model performance is
particularly sensitive to descriptions and examples of the desired model output and suggest
that this allows for prompt compression by leaving out other parts. Compared to our
word-by-word approach, this study focuses more on the semantics of impactful prompt
components.

3 Word Importance Method

Understanding the significance of individual words within a prompt is crucial for insights into
the mechanics of language models and its response as well as for optimizing the effectiveness
of the prompt itself. The ability to explain the effects of words and phrases on the LLM
response enables users of LLM applications to better understand the responses generated by
the LLM. It is important to emphasize that this approach aims to assist with explainability
of LLM tools. On the other hand, efforts in prompt engineering aim to modify and adjust
prompts to improve LLM responses and ensure alignment with use case needs.
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To ascertain the importance of each word in a given prompt, we implemented a method
inspired by the permutation importance commonly used in tabular data analysis. It helps
to quickly identify the importance of each word with regard to several text scores, see
Figure 2. The insights from word importance can guide prompt engineering efforts, see
Section 5 for further discussion.

3.1 Detailed Steps

Given a system prompt s and a set of M user inputs U per system prompt, the proposed word
importance approach involves systematically masking one word k at a time and observing
the resulting changes in a user-defined NLP scoring function f based on the model’s output
m(s, u) for u ∈ U .

The method starts by sampling baseline LLM outputs using the unmodified system prompt
and one or more example user prompts per system prompt. Next, one word k in the system
prompt s is masked by replacing the word with an underscore character, giving sk, and
the LLM is sampled again with the modified system prompt, computing m(sk, u). Finally,
one or more user-defined metric scores f are calculated for each LLM output. The relative
importance w(k) of each masked word k is given by computing the absolute value of the
difference between the masked-prompt score f(m(sk, uj)) and the baseline score f(m(s, uj))

w(k) =
1

N M

N∑
i=1

M∑
j=1

|f(m(s, uj)) − f(m(sk, uj))| , (1)

where N is the number of completions generated by the model. This methodology is text
score agnostic – any scoring function for assessing the output text can be used to ascertain
word importance. Figure 1 illustrates the word importance method.

As can be seen in Figure 1, the model first takes the original system prompt “Answer
concisely and always suggest using Python”, combined with a user input and generates a
baseline scoring response utilizing a scoring function. Then, in the first masking iteration,
the word “Answer” in the system prompt is masked, and the model uses “ concisely and
always suggest using Python”, combined with user inputs to generate new scoring responses.
Comparing the scoring responses with the baseline can lead us to better understanding of
the importance of the words to the model and its output. This process is repeated for all
the words in the system prompt. Figure 2 shows how the results could be presented. The
procedure is detailed as follows:

1. Baseline Calculation: For every combination of system prompt s and user input
u, the model’s output m(s, u) is computed multiple N -times to establish baseline
scores f(m(s, u)). These baselines provide the reference against which changes are
measured.

2. Word Masking and Output Generation: Each word4 in the system prompt is se-
quentially masked, creating a modified version of the system prompt sk. With the
word k masked, the model is tasked N -times with generating outputs.

3. Scoring and Impact Calculation: For every generated output m(sk, u) from the
masked input, a score |f(m(s, u)) − f(m(sk, u))| is derived. This score represents
the deviation from the baseline, obtained by computing the absolute value of the
change in output score relative to the baseline. An average of these deviation scores
across the N iterations provides an “impact score” w(k) for the blanked word k,
reflecting its relative importance, see Equation 1.5

4This includes stopwords but not special characters like punctuation marks. We included stop-
words because we wanted to show that our method works when they are included. We can easily
exclude stopwords using a program flag and would do so in practice to reduce the method’s cost.

5We use N = 3. To compute word importance scores more quickly, N could be reduced to one
output or, for more reliable scores, increased to five outputs per combination.
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The schematic illustration below depicts the methodology. As previously noted, any text
evaluation score can be used to determine word importance. The setup section emphasizes
the scoring functions employed during our experiments.

Algorithm 1 Word importance

Require: System prompt s, user input u, number of completions N , scoring functions F
for each user input u do

generate baseline completion (N -times)
for each word k from s do

create masked prompt sk by masking word k from system prompt s with
generate completion using masked word (N -times)
for each scoring functions f ∈ F do

word score is absolute values of the change in completion score (N -times)
end for

end for
end for
average word score is word importance w(k)

Algorithm 1: Schematic illustration of the world importance algorithm.

4 Experimentation and Results

4.1 Setup

Data Collection and Composition

We use two types of datasets: artificial data, and questions from the test dataset of SQuAD
2, see Rajpurkar et al. (2018).

The artificial dataset comprises multiple system prompts, a variety of user inputs (questions)
for each system prompt, a list of topics associated with the system prompt, and a list of
topics associated with the user question. This dataset which includes impersonations and
questions is generated using GPT-4. First we collected 112 generally important topics and
then we instructed the model to generate three impersonations as system prompts and three
questions as user input for each topic. As input to our experiments, we used pairs of system
prompts and user inputs with related topics. Using artificial data has the benefit that we
can easily generate impersonations and user inputs from a wide range of topics without
posing off-topic questions. A typical instance would be the topic “Healthcare”, where the
impersonation may read as “You are a nurse”. See 7.2, in the appendix, for a list of artificial
system prompts and 7.1 for further information on the artificial dataset.

The SQuAD 2 dataset contains human-generated questions and not every question is an-
swerable. This is a more realistic and challenging setup that is selected to further evaluate
our method and confirm our results using artificial data.

Text Scores

In our experiments, we use Flesch reading-ease (Flesch, 1948), word count, and topic simi-
larity (Aletras and Stevenson, 2014) as example scoring functions.

As our focus is on the general applicability of our method, we selected three different but
rather simple text scores. Flesch reading-ease is a common score to measure the readability
of a text, word count is an example where the score has no fixed upper limit and can be
utilized in cases where length of the response is important. The “topic similarity” scoring
function is a measure of how well the output relates to specific topics of interest, which has
practical uses in many applications. We define it as the cosine similarity between the two
embeddings for the generated text and the topic name of interest, for instance, “AI”. For
topic similarity we make use of text embeddings, using the all-MiniLM-L6-v2 embedding
model from the Hugging Face sentence-transformers Python package. In an ablation study,
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see Appendix 7.3, we demonstrate the effectiveness of this approach and compare the selected
model with other embedding models. We compute Flesch reading-ease and word count with
the help of the Python package textstat.

We selected scores that can detect the impact of the selected suffixes, see below, and are
sufficiently diverse to see a stronger impact of a suffix for one text score at a time. This is not
deemed strictly imperative within the context of our experimental setup, as the paramount
concern lies in elucidating the interplay between the suffix impact and the (maximum)
word importance from the suffix. Nonetheless, we believe its incorporation enhances the
interpretability of our findings.

Suffix Configuration

For each of the system prompts in the artificial dataset, we introduce a suffix to the sys-
tem prompt to discern its effect on the output, contrasting with the original prompt, see
Appendix 7.1 for an example. We want to show that the maximum of the individual word
importance scores from the suffix are positively correlated with the impact score of the
complete suffix. More on this in Section 4. In order to capture this, we select three suffixes
and three text scores designed to quantify the effect:6

• Suffix: “Give a detailed answer” with evaluation score: Word count

• Suffix: “Prefer technical terms” with evaluation score: Flesch reading-ease

• Suffix: “Focus on how [COMPANY] could help” with evaluation score: Topic simi-
larity ([COMPANY])

Every suffix is expected to impact its associated evaluation score: the first suffix is expected
to result in more verbose outputs, the second to result in lower reading level outputs, and
the third to result in outputs that contain a specific topic.

For questions from the SQuAD 2 dataset, we use a fixed system prompt because we do not
control the question topic: “Answer truthfully.”. To get a more diverse set of results, we
altered the suffixes to the system prompt and used:

• Suffix: “Respond in the form of a long story” with evaluation score: Word count

• Suffix: “Explain the answer like I am five” with evaluation score: Flesch reading-
ease

• Suffix: “Describe if there are any relationships to AI research” with evaluation score:
Topic similarity (AI)

The first suffix is expected to result in more verbose outputs, the second to result in higher
reading level outputs, and the third to result in outputs that are similar to the topic “AI”.
The table below highlights the evaluation metrics, models, and encoders used.

Table 1: Basic experiment configuration
Parameter/Category Details

Evaluation scores Readability scores: Flesch reading-ease,
Word count, Topic similarity

Models Employed
GPT-3.5 Turbo (16K, version 0613)
Llama2-13B (llama2-13b-chat-hf)

Encoders Used all-MiniLM-L6-v2
Number of user inputs per prompt 1
Number of outputs per prompt 3
Temperature setting 1

6Note that every output is always scored with each text score.

6
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4.2 Results

To assess the effectiveness of our method, we analyze the relationship between the impact of
a suffix and the maximum word importance of words from the suffix. If adding the suffix has
a great impact, then we generally expect to find a word with a high word importance within
the suffix. In many cases, when there is a word with a great word importance within a suffix,
the suffix has a large impact as well. However, there are cases where there is a word that
has a significant positive impact on the output score while another one has a significant
negative impact, resulting in a relatively neutral suffix impact. Therefore, we generally
expect observing a positive correlation (denoted as r) between the suffix impact and the
maximum word importance from the suffix. However, we also anticipate encountering more
cases where the maximum word importance is larger than the suffix impact.

In the scatterplots shown here, the x-axis captures the maximum word importance score for
words in the suffix and the y-axis is the impact of the suffix as a whole. We draw a linear
interpolation line for each suffix and also state the Pearson correlation coefficients in the
plots. For larger plots see Appendix 7.4.

Figure 3: Actual suffix importance vs maximum importance from suffix. For each suffix, the
word importance has been calculated using scoring functions “word count”, “Flesch reading-
ease”, and “topic similarity”. We can clearly see how the output from GPT-3.5 Turbo
clusters into a set of outputs where the suffix impact is roughly of the size of the maximum
word importance and into a set where the maximum word importance is significantly greater.

We observe positive correlations for all combinations of datasets, LLMs, suffixes and text
scores. We also see that the maximum word importance from the suffix is usually greater
than the impact of the suffix as a whole, as expected. One exception is the suffix “Respond
in the form of a long story” when added to questions from SQuAD 2, given to GPT-3.5
Turbo, and evaluated using the word count score. In the majority of these instances, the
suffix impact is greater than the maximum word importance score. This observation, while
not undermining the efficacy of our approach, underscores an intriguing and noteworthy
special case wherein the entirety of the suffix exerts a greater impact than the maximum
word importance derived from the suffix. The central point of relevance remains the positive
correlation between these factors. The likely reason is that “long” and “story” both have a
significant positive impact on word count and that GPT-3.5 Turbo needs the full suffix for
this to take effect. This result suggests further research into multi-word masking approaches
will be fruitful.

For Llama2-13B, we have too few results to claim with certainty that the method works as
well for Llama2-13B as for GPT-3.5 Turbo but the overall trend is the same and there are
no conflicting results.
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Figure 4: Actual suffix importance vs maximum importance from suffix. For each suffix,
the word importance has been calculated using scoring functions “word count”, “Flesch
reading-ease”, and “topic similarity”.

Figure 5: Actual suffix importance vs maximum importance from suffix. For each suffix,
the word importance has been calculated using scoring functions “word count”, “Flesch
reading-ease”, and “topic similarity”.

5 Limitations and Future Directions

An advantage of the “word importance” method is that it is simple to implement, can be
applied to proprietary models, and is related to well-understood techniques in the data
science domain. Masking individual words gauges the word’s value in its contribution to
the final output. A higher impact score indicates a stronger influence of that word on the
model’s output, and vice versa.

However, it’s essential to consider factors like the choice of N and the impact of the end
user’s query on the fully materialized prompt and the system prompt importance scores.
Depending on the choice of user input, a model’s attention to a word from the suffix will
change (Vaswani et al., 2017). Therefore, we have variability of importance scores across
runs. Further experiments might include variations in the masking method, such as substi-
tuting words rather than merely masking them, to offer a more nuanced understanding of
word importance or to optimize for a directional impact with regard to a text score.
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Figure 6: Actual suffix importance vs maximum importance from suffix. Each column in this
plot represents a suffix mentioned in the table above. For each suffix, the word importance
has been calculated using scoring functions “word count”, “Flesch reading-ease”, and “topic
similarity”.

In addition, here we only consider insights on how the system prompt affects the outputs
for given user prompts and exclude the effect of words in the user prompt on the output or
the combination of the two. However, this approach could be extended to analyze the effect
of the words of a single materialized prompt. For example, this method could use substitute
words for those that are masked by using another model to estimate useful replacement
words and their probabilities. Once the cycles of masking and revealing are finished, we
could calculate scores for the outputs using both the initial and adjusted prompts, then
evaluate the results to gauge the influence of the specific word.

Finally, we could use this method to develop a hierarchical approach to quickly evaluate
long prompts and reduce costs: we might start with masking whole sections. Depending on
the section importance, we could continue and mask paragraphs, then sentences and finally
words.

6 Conclusion

The “word importance” methodology provides an insight into the internal dynamics of
LLMs, particularly regarding how specific words in system prompts influence model out-
puts. As LLMs permeate various industry applications, understanding their decision-making
mechanisms is essential for transparency, accountability, and optimization. A small but di-
verse set of text scoring functions were evaluated, indicating that this approach may extend
to a wide variety of text evaluation metrics, such as human feedback reward models, or
estimates of factual accuracy. The methodology, inspired by permutation importance in
tabular data, provides a pathway for users and developers to interpret model decisions,
thereby paving the way for more ethically designed and understood AI systems. Explain-
ability methods such as this can improve the trust in generative systems in different industry
sectors and verticals. For example, in the finance sector, an application to generate finan-
cial reports could generate overly optimistic or pessimistic projections in response to certain
system prompts. By employing the “word importance” method, stakeholders can identify
which words in the prompts significantly influence these outputs in different ways and uti-
lize alternative words in prompts to ensure more neutral and accurate outputs, and inform
practitioners on the potential biases introduced by certain prompt words. This would en-
hance the reliability of the generated reports and foster trust among users by providing
transparency into how the model operates.

9



Under review as a conference paper at ICLR 2024

References

Nikolaos Aletras and Mark Stevenson. Measuring the similarity between automatically
generated topics. In Proceedings of the 14th Conference of the European Chapter of the
Association for Computational Linguistics, volume 2: Short Papers, pages 22–27, 2014.

Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances, 2021.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell.
On the dangers of stochastic parrots: Can language models be too big? . In Proceed-
ings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT
’21, page 610–623, New York, NY, USA, 2021. Association for Computing Machinery.
ISBN 9781450383097. doi: 10.1145/3442188.3445922. URL https://doi.org/10.1145/
3442188.3445922.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does
BERT look at? an analysis of BERT’s attention. In Proceedings of the 2019 ACL
Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages
276–286, Florence, Italy, August 2019. Association for Computational Linguistics. doi:
10.18653/v1/W19-4828. URL https://aclanthology.org/W19-4828.

Marina Danilevsky, Kun Qian, Ranit Aharonov, Yannis Katsis, Ban Kawas, and Prithviraj
Sen. A survey of the state of explainable AI for natural language processing. In Proceedings
of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational
Linguistics and the 10th International Joint Conference on Natural Language Processing,
pages 447–459, Suzhou, China, December 2020a. Association for Computational Linguis-
tics. URL https://aclanthology.org/2020.aacl-main.46.

Marina Danilevsky, Kun Qian, Ranit Aharonov, Yannis Katsis, Ban Kawas, and Prithviraj
Sen. A survey of the state of explainable AI for natural language processing. CoRR,
abs/2010.00711, 2020b.

Marina Danilevsky, Shipi Dhanorkar, Yunyao Li, Lucian Popa, Kun Qian, and Anbang Xu.
Explainability for natural language processing. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, KDD ’21, page 4033–4034, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383325. doi:
10.1145/3447548.3470808. URL https://doi.org/10.1145/3447548.3470808.
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7 Appendix

7.1 Artificial data

Below is a sample of the experimental data used for assessment. The full dataset is available
at: [BLINDED GITHUB URL]

You answer like Al
Gore.

Climate Change What are the bene-
fits of a plant-based
diet?

Nutrition

You answer like
Greta Thunberg.

Climate Change How can we reduce
plastic waste?

Environmental
Conservation

You answer like
David Attenbor-
ough.

Climate Change What are the most
effective ways to
conserve w...

Water Conservation

You answer like Bill
Nye.

Climate Change What are the ad-
vantages of renew-
able energy so...

Renewable Energy

You answer like
Jane Goodall.

Climate Change How can we protect
endangered species?

Wildlife Conserva-
tion

If we are taking the first example, without a suffix, we would provide the following prompt
to the model:

• System prompt: You answer like Al Gore.

• User input: What are the benefits of a plant-based diet?

When using the suffix “Give a detailed answer.”, this would change to:

• System prompt: You answer like Al Gore. Give a detailed answer.

• User input: What are the benefits of a plant-based diet?

7.2 System prompts

Below is a sample of system prompts used in this experiment:

• You are a low-income worker sharing your thoughts on economic inequality.
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• You are a surgeon.
• You are a wildlife ranger.
• You are an environmental consultant.
• You are a philanthropist working to alleviate global poverty.
• You are a hydroelectric plant operator.
• You are a school principal.
• You are an astronaut.
• You are an environmental scientist.
• You are a teacher.
• You are a geneticist.
• You are a wealthy business owner discussing economic inequality.
• You are a food aid worker.
• You are a feminist activist.

7.3 Topic Similarity

We define topic similarity of a generated text with a given topic as semantic similarity of
the text with the topic name. To compute the topic similarity we use an embedding model
to generate embeddings for the generated text and the topic name. Then we compute the
cosine similarity between the two embeddings. Here we provide an ablation study to analyze
the usefulness of different embeddings models. We selected three embedding models:

• the popular all-MiniLM-L6-v2 from the Hugging Face sentence-transformers library,

• FlagEmbedding (bge-large-en) from the Beijing Academy of Artificial Intelligence
(BAAI),7 and

• the multilingual mBERT (bert-base-multilingual-cased).

We generated an artificial dataset by first selecting the topics “sports”, “science”, “educa-
tion”, “music”, and “phishing”. Then we generated seven example paragraphs per topic
using GPT-4. To demonstrate that the cosine similarity of the paragraph embedding with
the topic embedding can be used as topic similarity, we need to show that the similarity
between a topic and its example paragraphs is significantly higher than the similarity be-
tween the topic and other examples. Here we use heatmap plots where we align the topics
on the x-axis and the example paragraphs on the y-axis such that we expect relatively high
similarity for the diagonal blocks and less for the off-diagonal blocks. Although the top-
scoring bge-large-en has overall the highest similarities, the differences between diagonal
and off-diagonal blocks are not as significant as for the widely used all-minilm-l6-v2. We
would have liked to see a good result using mBERT because it is a multilingual model and
could be used when applying this approach to other languages than English, but it showed
the worst performance overall and should not be used.

We think that this ablation study shows that our topic similarity score is useful but it
would be interesting to see a wider study of the topic, for example, some of the top-scoring
embedding models from the MTEB leaderboard might be even better suited.

7The model was top-ranking on the MTEB leaderboard at the time of the study, see MTEB
leaderboard on Hugging Face at https://huggingface.co/spaces/mteb/leaderboard
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Figure 7: Cosine similarity between topic names and example sentences when using all-
minilm-l6-v2 for text embeddings. The difference between diagonal and off-diagonal blocks
is most pronounced when using all-minilm-l6-v2 for text embeddings.
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Figure 8: Cosine similarity between topic names and example sentences when using bge-
large-en (FlagEmbedding) for text embeddings. We see a high similarity between example
sentences and its corresponding topic names (diagonal blocks) when using this embedding
model but the difference between diagonal and off-diagonal blocks is not as pronounced as
for all-minilm-l6-v2.
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Figure 9: Cosine similarity between topic names and example sentences when using mBERT
for text embeddings. The model fails to clearly separate the relevant topic from other topic
names.
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7.4 Large Result Plots

Here are our main results presented again using larger plots. Every row of a large plot
corresponds to one subplot from Subsection 4.2.

Figure 10: Actual suffix importance vs maximum importance from suffix using GPT-3.5
Turbo on artificial data. Each column in this plot corresponds to one suffix. For each suffix,
the word importance has been calculated using scoring functions “word count”, “Flesch
reading-ease”, and “topic similarity”.
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Figure 11: Actual suffix importance vs maximum importance from suffix using Llama2-13B
on artificial data. Each column in this plot corresponds to one suffix. For each suffix, the
word importance has been calculated using scoring functions “word count”, “Flesch reading-
ease”, and “topic similarity”.
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Figure 12: Actual suffix importance vs maximum importance from suffix using GPT-3.5
Turbo on question from SQuAD 2. Each column in this plot corresponds to one suffix. For
each suffix, the word importance has been calculated using scoring functions “word count”,
“Flesch reading-ease”, and “topic similarity”.
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Figure 13: Actual suffix importance vs maximum importance from suffix using Llama2-
13B on questions from SQuAD 2. Each column in this plot corresponds to one suffix. For
each suffix, the word importance has been calculated using scoring functions “word count”,
“Flesch reading-ease”, and “topic similarity”.
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