
Under review as a conference paper at ICLR 2024

META-LEARNING NONLINEAR DYNAMICAL SYSTEMS
WITH DEEP KERNELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Scientific processes are often modelled by sets of differential equations. As
datasets grow, individually fitting these models and quantifying their uncertain-
ties becomes a computationally challenging task. In this paper, we focus on im-
proving the scalability of a particular class of stochastic dynamical model, called
latent force models. These offer a balance between data-driven and mechanistic
inference in dynamical systems, achieved by deriving a kernel function over a low-
dimensional latent force. However, exact computation of posterior kernel terms is
rarely tractable, requiring approximations for complex scenarios such as nonlin-
ear dynamics. We overcome this issue by posing the problem as meta-learning the
class of latent force models corresponding to a set of differential equations. By
employing a deep kernel along with a sensible function embedding, we demon-
strate the ability to extrapolate from simulations to real experimental datasets.
Finally, we show how our model scales compared with other approximations.

1 INTRODUCTION

Differential equations are mathematical models that describe the change of a function with respect
to one or more variables, such as time. They play a central role in the natural and social sciences,
as they provide a way to model and understand complex systems and phenomena. Differential
equations are used in physics; for example, Newton’s laws of motion to describe the behaviour of
objects by expressing the acceleration and velocity of an object as a function of its position and other
physical variables. In biology, differential equations are used to model processes such as the spread
of diseases, the growth and decline of populations, and the dynamics of biochemical reactions. They
provide a grounded method of making historic and future predictions of complex systems.

In a machine learning context, the modelling power of differential equations make them excel-
lent inductive biases if incorporated properly. Latent force models (LFMs) were introduced when
Lawrence et al. (2006) modelled a network of genes interacting with a common protein in the bio-
logical process of transcriptional regulation using a set of ordinary differential equations (ODEs).
LFMs are probabilistic models that assume that the underlying dynamics of a s system can be mod-
eled parametrically in terms of a low-dimensional latent force. Hypothetically, this enables them to
handle noisy, high-dimensional, and nonlinear dynamics. However, there are computational chal-
lenges that hinder the usability of these models.

LFMs assume a joint Gaussian process prior over the latent force and observed outputs, which is de-
termined by the model dynamics as described by the differential equations. Inferring the latent force
requires computing their posterior distribution, which is analytically tractable only for a small set of
problem scenarios. In the remaining cases, which tend to be nonlinear or nonstationary dynamical
systems, the posterior requires some approximation. For example, Moss et al. (2021) describe an
approach for approximating the posterior in a LFM using an ODE solver. While this can reliably
infer latent forces for otherwise intractable problems, relying on an ODE solver is computationally
costly and makes the model intractable for a range of larger scale, real-world scenarios. Deep GPs
have also been investigated for solving LFMs since, as McDonald & Álvarez (2021) points out, such
shallow models do not allow enough representative power for more complex systems. Crucially, ex-
isting works do not address the serious challenge of scaling up LFMs to work in the multi-task
setting. It is often desired to fit many independent LFMs simultaneously; for example, in the case of
genomics, we may wish to make inferences over thousands of genes or interaction subnetworks.

1

Under review as a conference paper at ICLR 2024

In this work, we propose a meta-learning approach to solve a general class of LFMs. We avoid any
ODE solving step and any variational approximations by instead learning the dynamics in a deep
kernel (Wilson et al., 2016). Our framework makes use of neural network representations of sets
in order to produce a function embedding for each task. Specifically, we consider the Transformer
(Vaswani et al., 2017) and the Fourier neural operator (Li et al., 2020). Given a task consisting of
only the input mesh, for example time, and the observed functions’ embedding, our model infers
the associated latent force with standard Gaussian process conditioning. This makes our approach
much faster than training an LFM on individual tasks. This method can model complex nonlinear
dynamics and provides solutions even to multivariate problems such as partial differential equations
which were previously computationally infeasible for large datasets.

2 PRELIMINARIES

Gaussian processes Gaussian processes are stochastic processes commonly used as priors for
latent functions in Bayesian machine learning models that map from inputs x ∈ RD to predictions
f(x) ∈ R. A GP prior

f ∼ GP(m(x), κ(x,x′)) (1)
is described by its mean function m(x) and its kernel function κ(x,x′). The mean function is
usually set to 0 for standardised data. The kernel function may have a set of hyper-parameters θ,
such as the lengthscale l in an RBF kernel, kRBF(x,x

′) = exp(− l
2∥x − x′∥2). Under this prior,

any finite collection of points f(X) for inputs X = [x1,x2, . . . ,xN]
⊤ is normally distributed:

f ∼ N (m(X), κ(X,X)). If the model specifies a Gaussian likelihood for observations y, meaning
y ∼ N (f, σ2), the posterior distribution for training data X,y is analytically tractable and given by

f |y ∼ N
(
κ(x,X)[κ(X,X) + σ2I]−1y, κ(x,x′)− κ(x,X)[κ(X,X) + σ2I]−1κ(X,x′)

)
.

Moreover the marginal likelihood has a closed form expression and is given by

p(y) = N (y |0, κ(X,X) + σ2I). (2)

The availability of a closed form expression allows optimising the kernel hyper-parameters θ by
maximising the marginal likelihood using gradient-based optimisation.

Deep Kernel Learning Deep kernel learning as presented by Wilson et al. (2016) constitutes an
attempt to combine the representation learning capabilities of deep neural networks with the non-
parametric nature of Gaussian processes. A neural network is used to map an input x into a latent
space yielding a vector NN(x) ∈ RD. This representation is then fed into a base kernel κ(·, ·) (such
as an RBF kernel) to yield the covariance between inputs κ(NN(x),NN(x′)).

Latent Force Models LFMs incorporate explicit dynamics of differential equations in the kernel
functions of Gaussian processes (GPs) in order to infer latent forcing terms (Lawrence et al., 2006;
Alvarez et al., 2009). The latent force captures the underlying process and structure in the data,
while being unobserved and shared amongst the outputs. The differential equation, g, parameterised
by Θ, enforces a mechanistic relationship between inputs, x ∈ RT , outputs, y(x) ∈ RP×T , and an
unobserved latent force, f(x) ∈ RQ. A GP prior is assigned to the latent force, f ∼ GP(0, κ(x,x′)),
which naturally captures biological noise and enables non-linear expressivity through kernels. Some
LFM work considers multiple forces but we do not cover this due to the identifiability issues they
pose. The force can be transformed by some response function G(f),

differential︷ ︸︸ ︷
D y(x) =

differential equation︷ ︸︸ ︷
g
(
y,x;Θ, G ◦ f(x)

)
, (3)

where D is some differential operator, for example an nth order derivative for ODEs or partial deriva-
tives for PDEs. An analytical expression for the covariance between outputs, κy,y′(x,x′), is pos-
sible under the necessary condition that G is a linear operator. In these cases, maximum marginal
likelihood yields the differential equation parameters and inference can be carried out with stan-
dard posterior GP identities (see Rasmussen & Williams (2005)). However, we often face larger
datasets with a non-linear relationship to the latent force leading to computational challenges where
approximations must be used.

2

Under review as a conference paper at ICLR 2024

Figure 1: Schematic of DKLFM. First, a dataset of latent force tasks is created by sampling the
latent force and differential equation parameters and solving the forward solution. The simulated
functions are embedded by aggregating the output state of an encoder. A deep kernel is learned
to represent the convolution operator of an arbitrary LFM. For training tasks, the model minimises
the loss in Equation 5 with access to simulated latent force data. For test tasks, the latent force is
unobserved and inferred via the cross-covariance only, as in a typical LFM scenario. The diagram
shows one task; in reality, we train over batches of tasks.

3 DEEP KERNEL LEARNING OF LATENT FORCE MODELS

In this section, we present DKLFM (an acronym of the heading above): a novel meta-learning
method for multi-task dynamical modelling. We first detail the problem setting and derive our
objective function, and finally discuss any design choices in our approach.

3.1 MODEL FORMULATION

We assume a dataset of N tasks {xn,yn(x), fn(x)}Nn=0, where xn ∈ RT×D denotes T observed
D-dimensional input points which may be temporal (D = 1) or spatio-temporal (D > 1). Our
output observations, yn ∈ RP×T , is the set of P function outputs, and fn ∈ RT is the latent force
at the observed input points. We split the dataset into train and test tasks, where train tasks contain
both the latent force data and observed outputs, while test tasks only have observed outputs.

The model setup is summarised in Figures 1 and 2. The direction in the graphical model is such that
the output observations determine the latent force. While a model could have been constructed the
other way around, this would not reflect reality: for real datapoints without latent force observations,
we can only condition on the output functions. In order to generalise across tasks, we construct a
task representation, denoted rn = emb(xn,yn), where emb is an arbitrary encoder. We then learn
a latent function, h, mapping from the input mesh, xn, and the task representation, rn, to the latent
force, fn. Inferences are then made using GP conditioning on the output observations for arbitrary
test tasks. We assign a GP prior to h and use a Gaussian likelihood for the latent force, i.e.

h ∼ GP(mh(·), κ(·, ·)) (prior)

f ∼ N (h, σ2) (likelihood)

where mh is the mean function of the GP prior and κ is its kernel.

Under the LFM assumptions, the distribution of y is implicitly determined via the joint distribution
of the latent function and the outputs. More specifically, the latent function outputs at the observed
inputs x and the outputs y are jointly Gaussian distributed as

h,y ∼ N
([

µh
µy

]
,

[
Khh Khy

Kyh Kyy

])
, (joint)

where the mean vectors and covariance matrices are obtained by evaluating the mean and kernel
functions. As described above, the latent function h operates on both the inputs xn and a task
representation rn. Its mean and kernel function thus receive a concatenation zn = rn ⊕ xn as
input. The mean vectors µh,µy are evaluations of the mean function mh of the GP prior on h and
a dedicated mean function my for the outputs, as in

µh = mh (rn ⊕ x) ,

Khh = κ (rn ⊕ xn, rn ⊕ xn) . (4)

3

Under review as a conference paper at ICLR 2024

x y h f

Figure 2: Graphical model

The cross-covariance Kyh and covariance Kyy are determined similarly using kernel κ, however
the task representation is not present in the inputs corresponding to the index set of yn.

In an LFM, the kernel function is derived from a set of differential equations. In order to hold
sufficient capacity in the general case where the equations cannot be solved, we define the kernel
κ to be a deep kernel (Wilson et al., 2016) with a neural network mapping the inputs to latent
representation vectors before feeding them into a base kernel. In practice, this base kernel provides
an additional inductive bias, for example ensuring smoothness in the latent space with an RBF
kernel or periodicity with a periodic kernel. We selected constant mean functions mh,my with
learned outputs ch and cy respectively.

The trainable parameters in our model include the task encoder weights, the deep kernel weights, and
the parameters of the base kernel and mean functions. These are optimised jointly by maximising
the marginal likelihood of the observed outputs and latent force for training tasks. The marginal
likelihood has the closed form:

p(y, f) =

∫
p(y, f ,h) dh =

∫
p(f |h)p(h|y)p(y) dh

= N (y |µy,Kyy)

∫
N (f |h, σ2I)N (h |µh|y,Kh|y) dh

= N (f |µh|y,Kh|y + σ2I)N (y |µy,Kyy). (5)

Here, µh|y and Kh|y are defined as

µh|y = µh +KhyK
−1
yy y, (6)

Kh|y = Khh −KhyK
−1
yy Kyh. (7)

At test time, we receive an arbitrary input x∗. At these input locations, we define h∗ and y∗ as the
inferred latent force and predicted outputs, respectively. We can infer the unobserved latent forces
using the conditional GP defined by Equations 6 and 7. The posterior predictive distribution is used
for finding the distribution over the outputs, which is the conditional GP defined by

y∗|y ∼ N (f |µy∗|y,Ky∗|y),

where the mean and covariance are found with standard GP machinery:

µy∗|y = µy +Ky∗yK
−1
yy y,

Ky∗|y = Ky∗y∗ −Ky∗yK
−1
yy Kyy∗.

Note that so far we are using exact GP inference. If the input space is very large, then the matrix
inversion can become computationally challenging and a variational approximation may be easily
interchanged here. We will now discuss specific components of the model in more detail.

Task Representation In this meta-learning problem, we simulate a dataset of tasks where the input
mesh is typically the same for all instances, which would result in identical covariance matrices for
our GPs. We must therefore provide the task-specific embedding, emb(xn,yn), in the input space
of the GP. In keeping with the LFM paradigm where latent forces are completely determined by the
output dynamics, this embedding does not observe any latent force data. Instead, this representation
is used by the deep kernel to learn the relationship between output functions and latent force in
its latent space. As such, our embedding must contain the dynamics information usually captured
by the differential equation and associated parameters. Our other requirement is input resolution
invariance in order to maintain the flexibility of Gaussian processes.

To that end, in our research we explored two different encoders: a Fourier neural operator (Li et al.,
2020) and a Transformer (Vaswani et al., 2017). In both cases, the embedding is a transformation

4

Under review as a conference paper at ICLR 2024

applied to the mesh dimensions (T ×D) of our observations, treating each of the P output functions
and B tasks independently. We take the mean over T to yield a latent vector for each output function.
Our embedding function is therefore emb : RP ·B×T×D → RP ·B×L, where L is a hyperparameter
determining the size of our embedding. This is trained end-to-end with the deep kernel.

The Fourier neural operator was originally developed to solve partial differential equations (PDEs)
due their mesh-invariance and roughly ∼ 1,000× faster solving speeds. In our work, we apply
a linear layer to increase the input dimensionality, D, followed by several spectral convolutions.
These consist of computing the Fourier transform over the mesh size dimension and extracting the
first n Fourier modes, which are multiplied by learned complex weights. Finally the inverse Fourier
transform takes us back into the input domain. One severe limitation is that the Fourier transform
requires the input to be a regularly spaced.

In an effort to resolve this issue, we also consider a Transformer. The specific architecture used in
our work is a decoder only, consisting of a linear layer followed by several layers of self-attention.
The number of layers is experiment-specific and is discussed in Section 4. Sinusoidal positional
encoding enabled the modelling of an irregular mesh. We found very little difference in performance
between the two. Since our experiments have a non-uniform input grid, we use the Transformer.

Resolution invariance Our mesh-invariance enables super-resolution inference; test cases can be
at an arbitrary resolution higher than the training data, as we demonstrate in Section 4.2.

Deep kernels As discussed, the kernel function in an LFM is derived from differential equations.
Since we are aiming for a general approach capable of being applied to any differential equations,
even PDEs, we select a simple MLP NN : RL1 → RL2 . Moreover, the same network is used
to transform both kernel inputs. In some experiments, particularly periodic scenarios, it helped to
concatenate the input mesh after applying the neural network. This granted the periodic base kernel
access to both the latent vector and input mesh. For example, based on Equation 4,

Khh = κ (an,an) := κperiodic(xn ⊕ NN (an),xn ⊕ NN(an)) ,

where an = rn ⊕ xn. Similarly for the cross-covariance, the same MLP is used. With separate
networks, the model could transform the two input spaces such that the cross-covariance ignores the
conditioning data entirely, leading to a poor performance on the output function.

4 EXPERIMENTS

In this section we investigate the performance of DKLFM on two ODE-based LFMs and one PDE-
based LFM. Given that this is the first meta-learning model for latent force models, we analyse the
performance on real, experimentally-derived datasets not in the synthetic training distribution.

4.1 NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

The first ODE model is the similar to the original application of latent force models (Lawrence et al.,
2006): the biological process of transcription. In this experiment, cancer cells are subject to ionising
radiation and the concentration of mRNA is measured via microarray at different timepoints. The
data pertains to transcript counts for five targets of the transcription factor p53 over seven timepoints
and three replicates. We also consider the paired ODE Lotka-Volterra equations, which govern
predator-prey dynamics and exhibit periodic solutions.

Latent Force Setup The first task models the time derivative of mRNA, yj(t), of gene j related
to its latent regulating transcription factor protein(s) fi(t) (Barenco et al., 2006):

dyj(t)
dt

=

basal rate︷︸︸︷
bj +sj

response︷ ︸︸ ︷
G(f(t))−

decay term︷ ︸︸ ︷
djyj(t), (8)

where bj is the base transcription rate of gene j, sj is the sensitivity, or a response factor to the
transcription factors, and G is an optional function, for example a nonlinearity enforcing positivity
or a saturation term enforcing limits on the latent force. The exact solution is only tractable when

5

Under review as a conference paper at ICLR 2024

Train task Test tasks

Figure 3: Training and test transcriptional regulation tasks. Notice that even for test tasks, the
learned variance encapsulates most ground truth. Test tasks do not have access to latent force data.

the response function is the identity. In this case, we set G to the softplus function: G(f(t)) =
log(1 + exp(f(t))). The Lotka-Volterra task is defined by the equations:

du(t)
dt

= αu(t)− βu(t)v(t)
dv(t)

dt
= γu(t)v(t)− δv(t), (9)

where u(t) and v(t) are prey and predator populations respectively, with growth rates α and γ, decay
rates β and δ. The periodic kernel was used for this task in order to capture the periodic nature of
the Lotka-Volterra solutions. This also improves temporal extrapolation.

We start by sampling parameters for Equation 8 from an empirical distribution of parameters learnt
by running the Alfi (Moss et al., 2021) latent force inference package on the p53 network of genes
experimentally measured by Barenco et al. (2006). This involves numerically solving the ODE.
Next, the latent force is sampled from a GP prior with RBF kernel, and the ODE is solved yielding
a single task. Gaussian-distributed random noise is added to the latent forces. The Lotka-Volterra
dataset was simulated using a 4th-order Runge-Kutta solver. We generate 500 instances for both
experiments in this fashion, and these are split into training, validation, and test tasks.

Figure 3 demonstrates that DKLFM can infer distributions over latent forces for the task of tran-
scriptional regulation. We then apply the model trained on the simulated dataset to a real microarray
dataset from Barenco et al. (2006), and show our inferred transcription factor concentration along-
side the unobserved ground truth in Figure 4a. Next, we demonstrate the intra-task extrapolation
in Figure 4b, where the input has been extended into the past and future. Finally, we compare our
results with baseline models in Table 1.

4.2 PARTIAL DIFFERENTIAL EQUATIONS

In order to demonstrate the flexibility of our model, we also fit a PDE-based LFM. These are the
multivariate extension of ODEs and are significantly harder to solve, with no method able to solve
all classes of PDEs. Numerical solvers typically operate on a mesh and thus suffer the curse of
dimensionality. Here, we demonstrate that DKLFM can be used to fit reaction diffusion equations
with a very moderate dataset of 500 low-resolution tasks. The test tasks are inferred at a much higher
resolution compared with at training time.

0.0 0.2 0.4 0.6 0.8 1.0
Time

-1

0

1

2

m
R

N
A

 c
ou

nt

Outputs

prediction
observations

0.0 0.2 0.4 0.6 0.8 1.0
Time

-1

0

1

2

3

m
R

N
A

 c
ou

nt

Latent force

prediction
ground truth

(a) DKLFM infers the protein concentration of tran-
scription factor p53. The ground truth was published
by Barenco et al. (2006). The model was trained only
on simulations of Equation 8.

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.0

0.5

1.0

1.5

P
re

y

Outputs

prediction
training data
observations

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.0

0.5

1.0

1.5

2.0

2.5

P
re

da
to

r

Latent force

prediction
truth
ground truth

(b) DKLFM infers the predator-prey relationship in
a Lotka-Volterra setup. The model has only been
trained within the time range denoted by the grey
shading, and extrapolates the periodic nature beyond.

Figure 4: DKLFM extrapolation in both tasks and input domain.

6

Under review as a conference paper at ICLR 2024

0.00 0.25 0.50 0.75

-1 0 1 2

-0.4 -0.2 0.0 0.2

-2 -1 0 1 2

-0.5 0.0 0.5

-2 -1 0 1 2

-0.4 -0.2 0.0 0.2 0.4

-3 -2 -1 0 1

-0.5 0.0

-2 -1 0 1

Train task

Time Time Time Time Time

O
bs

er
ve

d
O

ut
pu

ts

Sp
ac

e
Sp

ac
e

Sp
ac

e
Sp

ac
e

Pr
ed

ic
te

d
O

ut
pu

ts
(s

up
er

-r
es

ol
ut

io
n)

G
ro

un
d

Tr
ut

h
L

at
en

tF
or

ce
Pr

ed
ic

te
d

L
at

en
tF

or
ce

(s
up

er
-r

es
ol

ut
io

n)

Test tasks

Figure 5: DKLFM trained on a synthetic reaction diffusion dataset. The first column is a training
example and the next four are test cases, where the latent force is not observed. The embedding
size was increased to 96 to account for the increase in dimensionality. The model was trained with
a 21 × 21 spatiotemporal grid. At prediction time, 40 × 40 grid was used to illustrate the super-
resolution capability. Each pair of plots vertically shares the same colorbar to enforce the same scale
and accurately demonstrate inference accuracy.

Latent Force Setup Reaction diffusion equations have many uses, and in this paper we look
at the biological process of Drosophila embryogenesis (formation of the fruit-fly embryo). The
spatiotemporal RNA expression, y(x, t) of gap genes is measured using a reaction diffusion PDE
from López-Lopera et al. (2019):

∂y(x, t)

∂t
= Su(x, t)− λy(x, t) +D

∂2y(x, t)

∂x2
, (10)

where S is the production rate of the driving mRNA, u(x, t) is the latent force, λ is the decay rate
and D is the diffusion rate. Notice that the latent force is 2-dimensional; indeed, DKLFM can cater
for any multivariate input.

In order to simulate a dataset from Equation 10, we implemented the Green’s function approximation
from López-Lopera et al. (2019). We then sampled parameters uniformly by empirical inspection of
the gap gene dataset from Becker et al. (2013). We selected production rates in the range [0.2, 1.0],
decay rates in the range [0.01, 0.4], diffusion rates in the range [0.001, 0.1]. For the latent force,
we sampled the two lengthscales (corresponding to spatial and temporal dimensions) in the ranges
[0.1, 0.4] since both dimensions are normalised to [0, 1].

A PDE solver was not required since the approximation used gives the full covariance matrix, includ-
ing cross-covariances between latent force and outputs. However, the full joint covariance matrix
is singular due to repeated inputs, so sampling is implemented with the eigendecomposition rather
than Cholesky. We generate 500 tasks in this fashion, of which 250 are used for training.

7

Under review as a conference paper at ICLR 2024

Table 1: Comparison to baseline models for the transcriptional regulation ODE. For the DKLFM,
we train on a dataset of 256 instances. Alfi and DeepLFM optimise each instance independently.
Results are averages over 20 instances. DKLFM and DeepLFM were run on an NVIDIA GeForce
RTX 4090 GPU.

Model Latent MSE ↓ Output MSE ↓ Time (s) ↓ Mechanistic
Alfi 0.117 0.0155 3.27 Strong

DeepLFM - 0.0332 12.6 Mid
DKLFM 0.108 0.0028 0.0118 Weak

Table 2: Comparison to baseline models for the reaction diffusion PDE. The time column corre-
sponds to the inference time per-instance.

Model Latent MSE ↓ Output MSE ↓ Time (s) ↓ Mechanistic
Alfi 0.0886 0.0215 > 10m Strong

DeepLFM - 0.356 96.7 Mid
DKLFM 0.633 0.720 0.0523 Weak

We show that we can learn a general solution operator for PDE tasks in Figure 5, invariant to in-
put resolution. In Table 2, we show how our framework compares against single-instance models.
While Alfi obtains the most accurate result, the computational burden outweighs the benefits for any
reasonably sized dataset.

4.3 CASE STUDY: PERFORMANCE COST

The utility of LFMs for large scientific datasets is limited by their lengthy training times. For exam-
ple, in genomics, a realistic scenario is where a bioinformatician will want to train an LFM on the
order of several thousand high-variance genes. This limits the use of the available approximations.

Our framework, however, solves many LFMs simultaneously rather than optimising a single in-
stance. Therefore, an analysis of the relationship between error and training set size is key to finding
the point our error rate drops to the level of solving an individual instance. If this is less than or sim-
ilar to the number of instances in a typical use-case, then it is computationally preferable to generate
a simulated dataset of this size rather than to train individual LFMs. For this study, we compare
against Alfi, an accurate nonlinear LFM approximation defined in Moss et al. (2021). We chose
the ODE task, since the PDE solver in Alfi is too computationally intensive for this comparison. In
Figure 6, we confirm our hypothesis by plotting the MSE versus dataset size for our model, and
horizontal lines are the mean MSE for Alfi over a subset of 64 tasks.

0 100 200 300 400
Number of training tasks

0.00

0.01

0.02

0.03

0.04

0.05

0.06

O
ut

pu
t

M
SE

0.1

0.2

0.3

0.4

0.5

0.6

La
te

nt
 M

SE

Output MSE (ours)
Latent MSE (ours)
Output MSE (Alfi)
Latent MSE (Alfi)

Figure 6: We plot MSEs against training dataset size to demonstrate the point at which it becomes
more economical to use DKLFM rather than single-instance models. At around 200 tasks, the
performance of DKLFM matches that of a single-instance model optimised by Alfi.

8

Under review as a conference paper at ICLR 2024

5 RELATED WORK

Differential equation-based inference in dynamical systems with Gaussian processes was introduced
in Lawrence et al. (2006) and Alvarez et al. (2009). These approaches derive the kernel functions
by solving the convolution integral of a base kernel with a linear operator corresponding to the
ODE solution. When the dynamics becomes nonlinear, the Laplace approximation was used for the
marginal likelihood. The primary issue with this technique is the manual requirement of solving the
specific ODE as well as the first and second derivatives of the nonlinearity.

Ward et al. (2020) employ a state-space model for approximating the posterior of a non-linear LFM.
The authors use autoregressive flows to construct a joint density of the state using variational infer-
ence, bypassing complex kernel derivations but resulting in the over-confidence prevalent in such
black-box variational approaches.

Alfi (Moss et al., 2021) avoids the complex derivations of kernel functions by sampling the latent
force from the GP prior and gradient matching to pre-estimate reasonable parameters. An ODE or
PDE solver is then used to fine-tune the parameters with the forward solution of the equations. The
use of a solver renders this approach too computationally intensive for a multi-task setting.

McDonald & Álvarez (2021) tackles non-linear and non-stationary dynamics by constructing a deep
GP (Damianou & Lawrence, 2013). At each layer, an RBF kernel is convolved with the Green’s
function of the ODE. This deep representation enables the modeling of a wider range of tasks than
a standard LFM. It is, however, not directly applicable to PDEs or to a multi-task setting.

6 CONCLUSION

We have introduced a novel meta-learning framework for latent force models by leveraging the ex-
pressive power of deep kernels combined with a learned task representation. Where standard LFMs
require an optimisation loop to find kernel parameters, our approach only requires GP condition-
ing on observations at prediction time, enabling extremely fast latent force inference. Specifically,
this involves inverting a T × T matrix with O(T 2) computational complexity. If the input size is
too large, a technique such as variational inducing points reduces the computational complexity to
O(TM2) with M inducing points. DKLFM is therefore an exact inference probabilistic model: the
first of its kind for learning the solution operator for an arbitrary nonlinear LFM. We achieve this by
learning a deep kernel corresponding to the differential equation by training on a simulated dataset
of tasks. The embedding of each task’s observations are interpreted as the task representation, con-
taining information such as rate parameters. At test time, this representation along with an arbitrary
input is used to compute the latent forces with Gaussian process conditioning on observations.

Limitations Speed is limited by generating the training dataset, which is easily parallelised. We
envisage these models being used like large language models (Shanahan, 2022), where a user can
fine-tune a pretrained DKLFM to make latent force inferences on their dataset. The original LFM
is strongly mechanistic, deriving the covariance function from strict dynamics equations. While
this may be more robust in the presence of lots of noise, it is overly rigid for real-world tasks. Our
approach is weakly mechanistic: dynamics are not imposed, but rather parametrically learnt from the
data and paired with a nonparametric GP to condition on unseen data. As with AlphaFold (Jumper
et al., 2021), combining biophysical priors and data-driven approaches may be more appropriate
for complex problems. The inference performance of DKLFM is reliant on learning a good cross-
covariance between latent forces and observations. We hypothesise that this is why this model does
not exhibit the tendency for over-confidence in predictions commonly found in related approaches.
Over-confidence away from training data is also a problem for deep kernel learning, however since
we learn the same deep kernel over a dataset of tasks this has proved not to be an issue.

Further work DKLFM explicitly treats the uncertainty in the latent forces and output functions.
In an active learning context, we can query input points where the output function or latent forces
have high-uncertainty. This enables experiment design, for example to determine an appropriate
coarseness for a time-course experiment. Furthermore, we have currently only considered one latent
force per task. Multiple forces lead to identifiability issues, where many combinations of latent
forces would solve the same LFM. We therefore leave this to future research.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Mauricio Alvarez, David Luengo, and Neil D Lawrence. Latent force models. In Artificial Intelli-
gence and Statistics, pp. 9–16. PMLR, 2009.

Martino Barenco, Daniela Tomescu, Daniel Brewer, Robin Callard, Jaroslav Stark, and Michael
Hubank. Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome
biology, 7:1–18, 2006.

Kolja Becker, Eva Balsa-Canto, Damjan Cicin-Sain, Astrid Hoermann, Hilde Janssens, Julio R
Banga, and Johannes Jaeger. Reverse-engineering post-transcriptional regulation of gap genes
in drosophila melanogaster. PLoS computational biology, 9(10):e1003281, 2013.

Andreas Damianou and Neil D Lawrence. Deep gaussian processes. In Artificial intelligence and
statistics, pp. 207–215. PMLR, 2013.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

Neil Lawrence, Guido Sanguinetti, and Magnus Rattray. Modelling transcriptional regulation using
gaussian processes. Advances in Neural Information Processing Systems, 19, 2006.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Andrés F López-Lopera, Nicolas Durrande, and Mauricio A Alvarez. Physically-inspired gaus-
sian process models for post-transcriptional regulation in drosophila. IEEE/ACM transactions on
computational biology and bioinformatics, 18(2):656–666, 2019.

Thomas McDonald and Mauricio Álvarez. Compositional modeling of nonlinear dynamical systems
with ode-based random features. Advances in Neural Information Processing Systems, 34:13809–
13819, 2021.

Jacob D Moss, Felix L Opolka, Bianca Dumitrascu, and Pietro Lió. Approximate latent force model
inference. arXiv preprint arXiv:2109.11851, 2021.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press, 2005. ISBN 026218253X.

Murray Shanahan. Talking about large language models. arXiv preprint arXiv:2212.03551, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Wil Ward, Tom Ryder, Dennis Prangle, and Mauricio Alvarez. Black-box inference for non-linear
latent force models. In International Conference on Artificial Intelligence and Statistics, pp.
3088–3098. PMLR, 2020.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing. Deep kernel learn-
ing. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics,
volume 51, 2016.

10

	Introduction
	Preliminaries
	Deep Kernel Learning of Latent Force Models
	Model Formulation

	Experiments
	Nonlinear Ordinary Differential Equations
	Partial Differential Equations
	Case Study: Performance Cost

	Related Work
	Conclusion

