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Abstract

Many approaches for scalable GPs have focused on using a subset of data as1

inducing points. Another promising approach is the Karhunen-Loève (KL) decom-2

position, in which the GP kernel is represented by a set of basis functions which3

are the eigenfunctions of the kernel operator. Such kernels have the potential to be4

very fast, and do not depend on the selection of a reduced set of inducing points.5

However KL decompositions lead to high dimensionality, and variable selection6

thus becomes paramount. This paper reports a new method of forward variable7

selection, enabled by the ordered nature of the basis functions in the KL expansion8

of the Bayesian Smoothing Spline ANOVA kernel (BSS-ANOVA), coupled with9

fast Gibbs sampling in a fully Bayesian approach. It quickly and effectively limits10

the number of terms, yielding a method with competitive accuracies, training and11

inference times for tabular datasets of low feature set dimensionality. The new al-12

gorithm determines how high the orders of included terms should reach, balancing13

model fidelity with model complexity using L0 penalties inherent in Bayesian and14

Akaike information criteria. The inference speed and accuracy makes the method15

especially useful for modeling dynamic systems, by modeling the derivative in a16

dynamic system as a static problem, then integrating the learned dynamics using17

a high-order scheme. The methods are demonstrated on two dynamic datasets:18

a ‘Susceptible, Infected, Recovered’ (SIR) toy problem, with the transmissibility19

used as forcing function, along with the experimental ‘Cascaded Tanks’ benchmark20

dataset. Comparisons on the static prediction of derivatives are made with a ran-21

dom forest (RF), a residual neural network (ResNet), and the Orthogonal Additive22

Kernel (OAK) inducing points scalable GP, while for the timeseries prediction com-23

parisons are made with LSTM and GRU recurrent neural networks (RNNs). The24

GP outperforms the RF and ResNet on the static estimation, and is comparable to25

OAK. In dynamic systems modeling it outperforms both RNNs, while performing26

many orders of magnitude fewer calculations. For the SIR test, which involved27

prediction for a set of forcing functions qualitatively different from those appearing28

in the training set, BSS-ANOVA captured the correct dynamics while the neural29

networks failed to do so.30

1 Karhunen-Loève decomposed Gaussian processes31

1.1 Gaussian process fundamentals32

Gaussian processes (GPs) are stochastic functions that are engines for nonparametric regression.33

Initially developed for modeling and interpolation in geographic information systems datasets,34
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applications have multiplied across many fields of data science. A key advantage of the GP is its35

broad, continuous nonparametric support and the frequent amenability of different GP kernels to36

precise analysis.37

A GP is Gaussian in that it is a covariance model linking pairs of points on functional draws. As such38

a GP is completely described by a mean function (often zero in the prior) and covariance kernel. The39

most famous and perhaps simplest of the covariance kernels is the squared exponential:40

κ(x, x′) = ς2 exp
[ (x− x′)2

ξ

]
(1)

where the sill ς2 and range ξ parameters determine the scale and smoothness of the draws. In a typical41

implementation modeling a static dataset Z, the statistical model42

Z = δ(x|ς2, ξ) + ε (2)

with ε an observation error process, is first used to infer the hyperparameters, after which predictions43

conditioned on the training dataset can be made. The draws on the squared exponential GP – a44

limiting case of the Matérn covariance family – are infinitely differentiable.45

From a practical standpoint the training of the above GP is O(N3), requiring a Cholesky decom-46

position of the full covariance matrix. This limits the use of the GP to moderately-sized datasets,47

generally of a thousand instances or fewer.48

1.2 Scalable Gaussian processes with inducing points49

Liu et al. [2020] provide a thorough overview of efforts that aim to improve scalability while50

maintaining prediction accuracy using global kernel approximations derived in some sense from a51

set of M << N inducing points [Chalupka et al., 2013, Quinonero-Candela and Rasmussen, 2005,52

Deisenroth and Ng, 2015, Rasmussen and Ghahramani, 2001, Wang et al., 2022]. Generally the goal53

is to approximate the full-rank kernel matrix with local approximations. Of particular note is a O(N)54

method that directly estimates the covariance with training and inference times that limits the increase55

in M for large N developed by Wilson et al. [2015]. Some methods employ ANOVA decompositions56

to the full kernel which break out contributions in terms of features and their combinations:57

κ(x,x′) =

n∑
i=1

κi(xi, x
′
i) +

n−1∑
i=1

n∑
j=i+1

κi(xi, x
′
i)κj(xj , x

′
j) + · · · (3)

which presents opportunities for variable selection [Duvenaud et al., 2011]; of particular note is58

the recent Orthogonal Additive Kernel (OAK) which orthogonalizes the kernels in (3) in order to59

minimize overlap between main effects and higher-order interactions [Lu et al., 2022].60

1.3 Karhunen-Loève decomposition and BSS-ANOVA61

Another approach to scalability in GPs that is distictive to the inducing points approach is the62

Karhunen-Loève (KL) expansion, in which the kernel is expressed in terms of a sum over its63

eigenfunctions:64

δ(x;β) ∼MVN(0, κ) =
∑
i

βiφi(x) (4)

where65

φi(x) =
√
λiui(x) (5)∫

κ(x, x′)ui(x
′)dx′ = λiu(x) (6)

βi ∼ N(0, λi) (7)

Such methods have the potential to be fast: O(NP ) in training and P per point for inference, where66

P is the number of terms in the expansion. However such kernels have not been the subject of much67

research in machine learning contexts generally. The main issues are tractable calculation of the basis68

functions {φi} and dimensionality issues [Greengard and O’Neil, 2021].69
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In 2009 Reich et al. [2009] introduced the Bayesian Smoothing Spline ANOVA (BSS-ANOVA)70

kernel, which is subject first to an ANOVA decomposition, followed by a KL decomposition. The71

core of the BSS-ANOVA kernel is:72

κ1(x, x′) = B1(x)B1(x′) + B2(x)B2(x′) +
1

24
B4(|x− x′|) (8)

where Bk is the kth Bernoulli polynomial, defined by the generating function73

tetx

et − 1
=

∞∑
i=0

Bi(x)
ti

i!
(9)

yielding74

B1(x) = x− 1

2
(10)

B2(x) = x2 − x+
1

6
(11)

B4(x) = x4 − 2x3 + x2 − 1

30
(12)

This kernel is effectively a sum of a non-stationary quadratic response surface – corresponding to75

the first two terms in (8) – and a stationary deviation (the final term). As in (3), covariances for76

higher-order interactions are constructed with dyadic products of the main effect covariance:77

κ2([xj , xk], [x′j , x
′
k]) = κ1(xj , x

′
j)κ1(xk, x

′
k) (13)

and so on for higher-order interactions. Terms are then multiplied by scaling hyperparameters and78

added together to produce the full kernel:79

κ = σ2
0τ

2
0 + σ2

1τ
2
1

n∑
i=1

κ1,i + σ2
2τ

2
2

n−1∑
i=1

n∑
j=i+1

κ2,ij + · · · (14)

The kernel so constructed is supported by a second-order Sobolev space [Reich et al., 2009], which is80

a very broad and dense set of continuous functions.81

Building the kernel in this fashion effectively addresses the problem of generating the eigenfunctions82

from the KL decomposition: because all of the terms in (14) are based on the generative kernel (8),83

The KL decomposition of 14 will depend only on eigenfunctions of κ1. Additionally if all input84

features are normalized to an [0, 1] interval (we restrict the discussion to continuous input features85

for now), then it is only necessary to compute a single set of basis functions {φi}. The decomposed86

BSS-ANOVA GP is written:87

δ(x;β) = β0 +

n∑
i=1

∞∑
k=1

βikφk(xi) +

n−1∑
i=1

n∑
j=i+1

∞∑
k=1

∞∑
l=1

βik,jlφk(xi)φl(xj) + · · · (15)

Given the assumption88

σ2
0τ

2
0 = σ2

1τ
2
1 = σ2

2τ
2
2 = · · · = σ2τ2 (16)

then the priors for the coefficients β are iid normal89

β·k ∼ N(0, σ2τ2) (17)

Following [Reich et al., 2009] we generate the set {φi} by producing κ1 for a dense grid consisting90

of 500 intervals on [0, 1], eigendecompose and fit to cubic splines. Figure 1 shows the first 6 basis91

functions. These basis functions are nonparametric, pairwise orthogonal, and ordered: note the92

increase in frequency and decrease in amplitude as the orders increase.93

2 Variable selection94

It’s clear from (15) that the number of terms in the expansion can increase rapidly, even for low-95

dimensional input spaces. A key component of applying the GP to a modeling problem is thus the96

selection of terms. Effectively we seek to minimize the objective function97

Φ(β) = ||Z − δ(x;β)||2 + ζ(β) (18)

where ζ is a penalty function which leads to a sufficiently sparse solution.98
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Figure 1: The first six basis functions of the KL-decomposed BSS-ANOVA kernel. The basis is
nonparametric, spectral, pairwise orthogonal and ordered.

2.1 Indicator variable methods99

Reich et al. [2009] took a hierarchical Bayesian approach to the problem, estimating a separate100

variance τ2 for each term in the expansion, which is in turn expressed in terms of an indicator variable101

with a Bernoulli prior. This approach, like other ‘indicator variable’ methods, accomplishes the102

variable selection and the training simultaneously and comprehensively, at the cost of requiring a103

large number of variables in the prior model and a computationally onerous Markov chain Monte104

Carlo (MCMC) sampling procedure.105

Other sparse optimization methods such as ridge regression or LASSO share the limitation that many106

high-order terms must be included in the initial model before downselection occurs.107

2.2 Forward variable selection108

The ordered and orthogonal nature of the basis functions suggests a forward variable selection109

approach. Rewriting the model (15) for a basis function set of maximum order q,110

δ(x;β) = β0 +

n∑
i=1

q∑
k=1

βikφk(xi) +

n−1∑
i=1

n∑
j=i+1

q∑
k=1

q∑
l=1

βik,jlφk(xi)φl(xj) + · · · (19)

then considering a model building procedure which increases q stepwise starting with q = 1 reveals111

that each subsequent step adds nmain effect terms (each depending on a single input),
(
n
2

)
[2(q−1)+1]112

two-way interactions, and
(
n
3

)
[3(q − 1)2 + 3(q − 1) + 1] three-way interactions. As the model113

order increases the L2 truncation error for the full kernel decreases as (for the case of a single114

input)[Greengard and O’Neil, 2021]:115

||κ(x, x′)−
q∑
i=1

φi(x)φi(x
′)|| <

( ∞∑
i=q+1

λ2i

)1/2
(20)

Since the eigenvalues of the BSS-ANOVA kernel decomposition decrease quickly with increasing116

order, an approach to the optimization problem (18) focusing on low-order models will sacrifice little117

in the way of accuracy while realizing significant advantages in computing time.118

The design and implementation of such an approach is the main contribution of this work. It119

approaches the optimization of (18) with an iterative process, finding the most efficient truncation of120

the system while evaluating the cost function only for candidate models with fewer terms than the121

optimum truncation. The method is fully Bayesian, with a fast Gibbs sampling procedure at its core.122

As such the form of the cost function is also Bayesian in nature, taking the form of the Bayesian or123

Akaike information criteria (BIC/AIC), which incorporate L0 penalties.124

2.2.1 Gibbs sampling125

Given a statistical model126

zi = δi(xi;β) + ε (21)

with ε a white noise observation error, and a given truncation to the KL expansion (15), the model is127

linear in the coefficients β and Gibbs sampling can be used to estimate parameters in a fully Bayesian128

methodology.129

If the variance of the observation error is σ2, with inverse gamma prior σ2 ∼ IG(a, b), with a and b130

the shape and scale parameters, respectively; and if τ2 has inverse gamma prior τ2 ∼ IG(aτ , bτ ),131
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then an iterative Gibbs sampler can be devised such that for fixed {σ2, τ2}, β ∼MVN(µ,Σ), with132

µ = (XTX + 1/τ2I)−1XTZ (22)

133

Σ = σ2
(
XTX + 1/τ2I

)−1
(23)

where X ∈ RN×P is a matrix constructed from the basis functions, whose rows correspond to134

instances and columns to terms in the expansion. For fixed {β, τ2}, σ2 ∼ IG(a∗, b∗), with135

a∗ = a+ 1 +N/2 + P/2 (24)

136

b∗ = b+
1

2

[
(µ− β)T (XTX + 1/τ2I)(µ− β) + ZTZ − µTXTZ

]
(25)

For fixed {β, σ2}, τ2 ∼ IG(a∗τ , b
∗
τ ), with137

a∗τ = aτ + (P − 1)/2 (26)

138

b∗τ = bτ +
1

2σ2
βTβ (27)

This algorithm is implemented in the routine ‘gibbs_Xin’ in the supplement.139

2.2.2 Optimization algorithm140

The algorithm constructs models with terms having up to three-way interactions. Terms are added141

in stages labeled by an integer “index” that initializes at 1. At each stage, a series of substages142

cycle through all permutations of basis function orders that sum up to that stage’s index. Stage 1143

adds only first order main effects. Stage 2 adds second order main effects and first order two way144

interactions – corresponding to φ1(xi)φ1(xj) – in two separate substages. The substages always145

occur such that terms involving lower-order basis functions (for example in the case of stage 2, this is146

the first order two-way interactions) come first. Each substage adds at once all combinations of inputs147

and all permutations among each combination, such that each substage adds
(
n
2

)
terms for two-way148

interactions and
(
n
3

)
terms for three-way interactions. Then the sampler is called and the BIC or AIC149

is calculated. Because there is not a monotonic decrease / increase pattern for the objective function,150

a “tolerance” setting controls how many substages the algorithm can iterate through without finding a151

new minimum BIC or AIC before it terminates. The algorithm returns the optimum model.152

This algorithm appears in the routine ‘emulator_Xin’ in the supplement.153

3 Experiments: Dynamic system identification154

3.1 Procedure155

BSS-ANOVA regression – as is the case for other GPs – is most effective for tabular datasets with156

continuous inputs and targets of moderate dimensionality. This suggests an application in dynamic157

systems identification. Indeed BSS-ANOVA GPs have been utilized as components of other models158

(“intrusively”) for this purpose in a number of applications [Bhat et al., 2017, Lei et al., 2019, Ostace159

et al., 2020]. We demonstrate here that they may also be used directly to identify dynamics in more160

general cases, without the aid of an accompanying model.161

The procedure is a concurrent one, in that derivatives estimated from the datasets are modeled directly162

using BSS-ANOVA with forward variable selection, using the concurrent values of the system states163

and other inputs; for example a two-state system is modeled using two separate GPs:164

ẋ1 = δ1(x1, x2, u) (28)
ẋ2 = δ2(x1, x2, u) (29)

The identified system is then integrated to yield predictions with uncertainty.165

The procedure was demonstrated on two nonlinear dynamic datasets: a synthetic dataset derived from166

the susceptible, infected, recovered model (SIR model) for infectious disease, and the ‘Cascaded167
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Algorithm 1 BSS-ANOVA forward variable selection algorithm

1: procedure FWDVARSELECT(x, Z, φ, tol, h) . h is a vector of hyperparameters.
2: ind = 1
3: count = 0
4: while count < tol do
5: if ind is new then
6: Find all combinations of integers that sum up to ind, ordering them by the maximum
7: integer appearing in each combination, with the lowest maximum first.
8: 1. Select the next combination in the set and place the integers into a vector with as many
9: elements as there are model inputs, buffering out with zeroes.

10: 2. Produce a matrix Md the rows of which contain all permutations of that vector.
11: . Each row corresponds to a term in the GP expansion.
12: 3. Produce an input matrix Xd where columns are model terms and rows are experiments,
13: for all terms appearing in Md.
14: 4. Recursively concatenate: X = [XXd], M = [M ;Md]
15: 5. β, BIC = gibbs_Xin(X , Z, φ, h)
16: if the BIC is a minimum for all models then
17: save the model
18: count = 0
19: else
20: count++
21: if all combinations for ind have been utilized then
22: ind++
23: Return M , β, BIC

Tanks’ experimental benchmark dataset. In both cases comparisons were made to long short term168

memory (LSTM) and gated recurrent unit (GRU) neural netowrks for timeseries prediction. In the169

case of the cascaded tanks benchmark comparisons were made against random forest (RF), a residual170

neural network (ResNet) and the state-of-the-art OAK inducing points scalable GP [Lu et al., 2022]171

for the static derivative estimation problem.172

3.2 Experimental benchmark: Cascaded tanks173

The cascaded tanks nonlinear benchmark dataset is an experimental nonlinear dynamic system174

[Wigren and Schoukens, 2013]. The experiment consists of a set of two tanks and a reservoir of water.175

An upper tank is filled by a pump from the reservoir. An outlet in the upper tank empties into the176

lower tank, which in turn empties through an outlet back into the reservoir. A signal sent to the pump177

serves as the forcing function for the system, with the tank water level heights the two states of the178

system.179

We first compared the performance of BSS-ANOVA with RF, ResNet and OAK static regressors.180

Derivatives were calculated via direct finite differences for the relatively noise-free dataset, yielding181

10000 instances. Each method was trained on concurrent values of both states and the forcing function182

for each derivative. For the GP we used hyperparameters of a = 1000, b = 1.001, aτ = 4 and183

bτ = 55 for ḣ1 and 69.1 for ḣ2, with tolerances of 3 for ḣ1 and 5 for ḣ2, and the AIC as discriminator.184

Of 2000 draws the first 1000 were discarded. Only two-way interactions were required. For the RF185

100 trees were used with a leaf size of 5. The ResNet had a depth of 6 (filter sizes ranging from 16186

to 64) and in between each fully connected layer is a batch normalization and relu layer. The mini187

batch size is 16, initial learn rate is 0.001, the data was shuffled every epoch for a total of 30 epochs,188

and the validation frequency was 1000. OAK was applied at a maximum dimension of 3 and with189

the default value of 200 inducing points. The 5-fold cross-validated results appear in Table 1. OAK190

performed best for both outputs, followed closely by BSS-ANOVA. Both GPs outperformed the RF191

and the ResNet by clear margins.192

Timeseries predictions follow for the GP via a 4th-order Runge-Kutta integration routine. These were193

compared with LSTM and GRU recurrent neural networks (RNNs). For the LSTM there was one194

LSTM layer and a total of 128 hidden layers, the data was shuffled every epoch for a maximum of195

125 epochs, verbose was equal to 0, and the sequence was padded to the left. The GRU had one196
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Table 1: Cascaded tanks 5-fold cross validated accuracies: derivatives

Method ḣ1 (MAE/10−4) ḣ2 (MAE/10−4)

OAK 17±4.7 36±2.4
BSS-ANOVA 18±6.5 39±3.6
ResNet 36±14 61±15
RF 30±9.4 49±4.9

Table 2: Cascaded tanks 5-fold cross validated accuracies: timeseries
Method h1 (MAE/MAPE) h2 (MAE/MAPE)

BSS-ANOVA 0.1167±0.0382 / 4.67±1.58 0.1577±0.0334 / 5.99±1.75
LSTM 0.2345±0.1006 / 9.46±4.87 0.2296±0.0378 / 9.58±3.32
GRU 0.3243±0.1092 / 12.16±5.02 0.2481±0.0402 / 9.89±3.40

GRU layer and 150 total hidden layers, the data was shuffled every epoch for a total of 150 epochs,197

verbose was equal to zero and the sequence was padded to the left. The 5-fold cross-validated results198

(datapoints were not randomized before creating the folds so as to preserve the timeseries order)199

appear in Table 2. BSS-ANOVA is most accurate, followed by the LSTM and the GRU. Figure 2200

shows the predictions of the GP and the LSTM for the upper tank for one of the test folds. The GP201

predictions are superior near the sharp inflection and critical points where nonlinearities are strongest.202

Note that the first 50 points of each test set, which were provided to the LSTM and GRU as a start-up203

set in the prediction phase, were removed from the calculation of error for both methods.204

While it is reasonable to expect that OAK with 200 inducing points would outperform BSS-ANOVA205

in the time integration, it was not practical to make this comparison for reasons of computing time. A206

comparison with a reduced number of inducing points and increased time step in the integrator was207

made – results are discussed in section 3.4.208

3.3 Synthetic benchmark: Susceptible, infected, recovered model209

The susceptible, infected, recovered model (SIR model) is a common simulation for infectious disease.210

Though there are several versions, the simplest is three states, only two of which are independent.211

The system is written212

Ṡ = −BIS/NP (30)

İ = BIS/NP − γI (31)

Ṙ = γI (32)

Figure 2: (a) BSS-ANOVA and (b) LSTM predictions vs. test set data for the water level height in
tank 1 of the cascaded tanks dataset. Shaded regions in (a) are 95% confidence bounds as estimated
from a draw of 40 curves.
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where S(t) is the susceptible population, I(t) the infected, R(t) the recovered, B(t) is the transmis-213

sibility rate (which we utilize as a forcing function), γ is the recovery rate (which we leave fixed at214

0.5) and NP is the total population. Because NP is fixed and S + I +R = NP , only two states are215

independent, so the system dynamics can be captured by modeling only two of the three. We chose216

I(t) and R(t).217

The training data consists of 58 curves. All curves in the training set have a fixed B value ranging218

from 0.5 to 9, in six intervals of 1.7. For each value of B there are 8-10 siumulations corresponding219

to different initial conditions designed in such a way to provide coverage of the state space. (Exact220

initial conditions used appear in the supplement.) Each simulation used NP = 1000.221

The test data consists of 24 curves, each of which features a temporally changing transmissibility222

B(t). There are three initial B0 values: 1.35, 4.75 and 8.15. For each starting point there are two223

types of transmissibility curves: a ramp and a sinusoid. The B0 = 1.35 and B0 = 4.75 starting224

points have ramps with a positive slope of 1, while the B0 = 8.15 curves have a slope of -1. All225

ramps run from t=0 to t=4, where they level off. The sinusoids have amplitudes between 0.5 and 3226

and a period of 1.227

Hyperparameters for BSS-ANOVA were: a = aτ = 4 for both states, bτ,R = 8.95 and bτ,I = 72.1,228

while bI = 1.25 and bR = 20. 2000 draws were taken and the first 1000 discarded. The tolerance229

was 6. Hyperparameters for the LSTM and GRU were the same as for the Cascaded Tanks.230

A partial display of the results are shown in Figures 3 for BSS-ANOVA and 4 for the GRU, which231

was the better performing of the two neural nets on this dataset. For the GP, the total test set MAE232

was 5.2739±4.0138 for I and 11.8345±21.7337 for R, corresponding to MAPEs of 8.99±4.92 for I233

and 2.80±2.52 for R. Statistics were not calculated for the GRU as it failed to replicate the dynamics234

in most test cases and was obviously inferior in a quantitative sense in every instance, as shown in235

Figure 4.236

(a) (b) (c)

(d) (e) (f)

Figure 3: BSS-ANOVA results for 3 curves in the test set: (a)-(b) sine wave transmissibility with
low initial infections; (c)-(d) sine wave transmissibility with moderate initial infections; (e)-(f) ramp
transmissibility. Shaded regions are 95% confidence bounds for the predictions as estimated from a
draw of 40 curves.

3.4 Training and inference times237

Training and inference times for BSS-ANOVA were fast, with a mean total train time of 6.3 seconds238

for the cascaded tanks and 10.8 seconds for the SIR, with 8,000 and 20,000 training data points,239

respectively, on a 2019 6-core i7 processor with 16 GB of RAM. The routines were implemented in240

MATLAB, but not parallelized or optimized for speed. Models for ḣ1 contain between 23 and 41241
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(a) (b) (c)

(d) (e) (f)

Figure 4: GRU results for 3 curves in the test set: (a)-(b) sine wave transmissibility with low
initial infections; (c)-(d) sine wave transmissibility with moderate initial infections; (e)-(f) ramp
transmissibility

terms, while ḣ2 has between 38 and 57 terms. Prediction times for 2000 static points for the cascaded242

tanks averages 0.5437 s, and the time for evaluating integrals over the test set averages 20.22 s. For243

the SIR model the İ model had 81 terms and the Ṙ model 9 terms, with a mean integration time of 5.3244

s. Analyses have shown that the rate limiting step in BSS-ANOVA build algorithms are the O(NP )245

construction of the X matrix from the inputs and basis functions. The neural networks were native246

MATLAB functions, parallelized and optimized for speed. Nonetheless train times were considerably247

longer, with mean train times of 130s for the ResNet and 175 and 123 s, respectively, for training the248

LSTM and GRU for the cascaded tanks. This is to be expected given that the number of weights in249

the neural nets are on the order of 104.250

It was not feasible to integrate OAK at the level of 200 inducing points to the same standard as251

that of BSS-ANOVA because of time considerations. A reduced set of 40 inducing points yielded252

accuracies in the static estimation problem that were approximately the same as BSS-ANOVA. A253

reduced time step (500 vs. 20,000 integration steps) brought the integration time down to 51 minutes254

for OAK, with MAE/MAPE of 0.1554/6.3 for h1 and 0.2378/9.1 for h2. Reducing the integration255

step to the same level as BSS-ANOVA (where we could expect comparable integration accuracies)256

would require approximately 33 hours.257

4 Limitations and future work258

The two examples presented in this paper were the only two attempted for dynamic systems identi-259

fication. Other benchmark dynamic systems, especially those chaotic in nature, will be examined260

in future work. Desipite the advance in variable selection represented by this routine, datasets with261

higher dimensionalities in the feature space are more challenging and require additional methods262

for variable selection, which are already in development. More experiments and comparisons will263

be performed for dynamic systems as well, with larger datasets and more difficult identification264

problems. Like any GP BSS-ANOVA is inaccurate in extrapolation: when test set inputs exceed265

the bounds of the training set the resulting extrapolation sometimes causes instabilities causing the266

integration procedure to fail. These failures were eliminated by preventing extrapolation even in267

instances where the inputs exceeded the bounds, but more stable extrapolation strategies will possibly268

become necessary for longer prediction windows where extrapolation is unavoidable.269
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