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Abstract: Effective robot navigation in dynamic environments is a challenging
task that depends on generating precise control actions at high frequencies. Re-
cent advancements have framed navigation as a goal-conditioned control prob-
lem. Current state-of-the-art methods for goal-based navigation, such as diffusion
policies, either generate sub-goal images or robot control actions to guide robots.
However, despite their high accuracy, these methods incur substantial computa-
tional costs, which limits their practicality for real-time applications. Recently,
Conditional Flow Matching (CFM) framework has emerged as a more efficient
and robust generalization of diffusion. In this work, we explore using CFM to
learn action policies that help the robot navigate its environment. Our results
demonstrate that CFM can generate highly accurate robot actions. CFM not only
matches the accuracy of diffusion policies but also significantly improves runtime
performance. This makes it particularly advantageous for real-time robot naviga-
tion, where swift, reliable action generation is vital for collision avoidance and
smooth operation. By leveraging CFM, we provide a pathway to more scalable,
responsive robot navigation systems capable of handling the demands of dynamic
and unpredictable environments.

Keywords: Navigation, Diffusion, Continuous Normalizing Flows, Flow Match-
ing

1 Introduction

Mobile robots need fast action control outputs especially when dealing with dynamic obstacles and
for improved utility. While diffusion-based policies [1] for navigation [2] are effective for generating
multi-modal data they struggle when actions need to be quick. Recent work in training Continuous
Normalizing Flows (CNF) [3] using flow matching [4, 5, 6, 7] has proven to be quite successful
in other modalities and provides much faster inference times [7]. In our work, we show that using
the CFM framework instead of a diffusion-based policy for navigation improves the inference times
significantly (8x) while providing the same level of accuracy.

Navigation for mobile robots is an important and well-studied problem that requires a robot to move
from it’s current state to a goal state while avoiding obstacles and following a close-to-optimal path.
Robots first perceive the environment to find areas of interest as well as to map and localize within
their environment [8]. Then, based on optimizing some predetermined objective, the robot plans a
path to its target destination on the map and acts optimally to move along the planned path. This
technique has demonstrated success in various challenging scenarios [9] and has been deployed in



numerous applications. Despite these successes, mobile robots haven’t been as widely deployed as
one would have thought because of issues related to reliability, cost, safety, etc.

Recent work [2, 10, 11] tries to solve this problem by training models across different embodiments
and environments with large amounts of data. The aim of such an approach is to replicate the
successes seen in different modalities such as language and be able to train a visual navigation
foundation model [11]. Further work [2] tries to improve on this by using diffusion policies [1]
for action generation. Diffusion policy is a great choice because it provides the ability to train
multimodal action distributions and provides stable training[7].

Diffusion models have proven to be effective across multiple modalities [7, 12, 13, 14, 15] for
data generation. They approximate a stochastic differential equation that transforms the Gaussian
distribution into the desired distribution. Recent work [4, 5, 6, 7] has shown that CNF trained with a
flow matching framework leads to high-quality samples and the source distribution can be arbitrary
and does not necessarily have to be Gaussian. CNF can be trained with a regression over the drift of
the ODE and provides a stable objective similar to diffusion. CFM can use straighter flows which
can be integrated in fewer steps to get the output.

In the rest of the paper, we first introduce related work and talk about classical and learning-
based navigation. Next, we give some background on Denoising Diffusion Probabilistic Mod-
els (DDPM) [12] and how it is used in diffusion policy [1] and NoMaD [2]. We then present the
CFM framework and explain how we use it for training our navigation policy. Next, we explain our
experimental evaluations and their results and show that FlowNav is as effective as the state of the
art while being considerably faster.

2 Related Work

Robot navigation has been a central research area in robotics for decades, with various approaches
proposed to address the challenge of guiding robots through complex environments. Traditional
methods for navigation often relied on geometry-based algorithms such as Simultaneous Localiza-
tion and Mapping (SLAM) [8, 16] and path planning techniques like Dijkstra’s and the A∗ algo-
rithm [17, 18]. These methods typically involved constructing explicit maps of the environment and
planning paths based on the geometry of obstacles. However, these classical approaches struggle to
generalize across environments and become computationally expensive when dealing with dynamic
obstacles or unstructured terrains.

In recent years, there has been a shift toward learning-based methods [19] for robot navigation,
driven by advances in machine learning and the availability of large-scale data. One of the most
influential directions in this space is end-to-end learning, where deep neural networks are trained to
directly map sensory inputs, such as images, to actions that control the robot. A significant body
of work [2, 10, 11, 20] in learning-based methods focuses on general goal-conditioned vision-based
navigation. For instance, GNM [10] introduced the idea of training a single model on diverse data
collected across various robots. This model used a normalized action space, which allowed zero-shot
generalization to new robot embodiments.

Parallelly, advancements in generative modeling, particularly diffusion models [12, 21], have influ-
enced robot navigation. For example, ViNT [11], which builds upon GNM by leveraging transform-
ers to process visual input, uses a diffusion policy to generate sub-goal images. The idea of using
sub-goal images enables kilometer-scale navigation. However, sub-goal image generation can be
computationally expensive.

To do away with sub-goal image generation, diffusion models have been adapted to generate action
policies instead [1]. NoMaD [2] addresses this by using a diffusion policy to directly learn actions,
rather than generating sub-goal images. NoMaD also introduces a novel goal-masking idea to train
a single network for both goal-directed and exploratory navigation.
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While diffusion-based approaches have proven to be accurate in generating actions for navigation,
by virtue of being stochastic differential equations they require many passes through the network [7].
This can lead to significant computational overhead, making them less suitable for real-time appli-
cations where efficiency is critical. In contrast, the emergence of CFM [4, 5, 6, 7], which generalizes
diffusion, offers a promising alternative. CFM with simpler flows [7] eliminates the need for many
iterative denoising steps by learning a continuous flow that matches the target distribution. This
makes CFM a potentially more robust and computationally efficient way to generate action policies,
particularly in dynamic and time-sensitive environments.

3 Background

We provide an introduction to DDPM [12] which is the backbone of Diffusion Policy [1]. While
diffusion policies were used for object manipulation, NoMaD [2] extended the use of the diffusion
policy for action generation for robot navigation. We also provide a brief overview of NoMaD in
this section. In the later sections, we explain how we use CNF trained with CFM to generate actions
for robot navigation. Additionally, we draw parallels between CFM and DDPM and postulate why
using CFM is better.

3.1 Denoising Diffusion Probabilistic Models

Assume we have a set of n examples X = {x1, x2, . . . , xn} which are drawn from a probability
distribution p(x). We want to be able to sample from p(x). We will later also extend this problem
to sampling from p(x | z) for some latent variable z, but for now let us limit it to p(x). One way to
sample from this distribution is by using a denoising process [12], where noise is gradually removed
from an initial random sample to recover a clean sample that follows the target distribution. This
denoising process is also called Stochastic Langevin Dynamics [22].

DDPM operates by initially sampling from a Gaussian distribution and then progressively denoising
the sample using a learned noise prediction model, until it reaches a sample from the desired dis-
tribution. Assuming we need to denoise for k iterations, we first sample some xk

j from a Gaussian
distribution q(x). Given a trained model εθ(xk

j , k), with trainable parameters θ, which predicts the
noise added in the k-th step, we denoise the sample according to the equation 1.

x(k−1) = α
(
xk − γεθ(x

k
j , k) +N(0, σ2I)

)
(1)

where the predicted noise is removed while also adding a small amount of Gaussian noise, which
helps maintain the stochastic nature of the diffusion process.

To train a model for this denoising process, for each sample x0
i ∈ X , an iteration k is randomly

selected along with the corresponding noise εk. We then add this noise to the sample x0
i to obtain a

noisy sample xk
i . Next, we need to predict the noise at the k-th step, which can be achieved using

equation 2.
L = MSE(εk, εθ(xk

j , k)). (2)

This loss function has been shown to minimize the KL-Divergence between the generated data
distribution and the sample data distribution [12].

3.2 Diffusion Policy

The process of sampling from p(x) can also help us sample from p(x | z), where z is a latent
variable. This latent variable could be CLIP [23] embeddings which are used for text to image
generation or in the case of the diffusion policy [1], embeddings from the robot observations. More
specifically, the distribution from which we want to sample is P (At | Ot), where At and Ot are
the action and observation representations at time t. The policy takes a observation horizon of To

steps and has a prediction horizon of Tp steps and an action execution horizon of Ta steps. The
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only change required in equation 2 is that the noise prediction network now also processes the
observations as shown in equation 3.

L = MSE(εk, εθ(Ot, A
0
t + εk, k)) (3)

3.3 Navigation with Goal Masked Diffusion (NoMaD)

NoMaD [2] uses the diffusion policy to model task-agnostic exploratory actions as well as goal-
directed actions. The novelty in NoMaD was that a single model was trained in an end-to-end
manner to handle both, goal-directed and exploratory navigation. This is made possible by updating
the observation representation that is passed to the diffusion policy by using the provided goal image,
while also including an observation horizon for exploratory navigation. NoMaD also makes training
on datasets from different robots easier by following the action normalization idea presented in
[10]. This way, the model is trained on diverse datasets, with the only requirements that the dataset
contains frontal RGB images along with trajectories of the robot in its environment.

4 Methodology

We use the CFM framework [7] to train our action generation model. Conditional flow matching is
a simulation-free training-objective to train continuous normalizing flows [3].

4.1 ODEs and Probability Flows

We define a smooth time varying vector field u : [0, 1] × Rd → Rd defines an ordinary differential
equation 4:

dx = ut(x) dt (4)

The solution for this ODE is represented as ϕ. We define ϕ(0) as x, which means x0 moves based
on velocity ut, and ϕ(t) is the point it is moved to at time t. We want to be able to learn the velocity
ut(x) that moves from an initial distribution q0(x) to the desired distribution q1(x). As a result, this
will allow us to have a mapping that enables us to sample from q1(x).

4.2 Flow Matching Objective

At training time, we sample t, xt, and ut given some sample x1 ∼ q1(x). The time t is sampled
from N (0, 1), while xt and ut can be sampled in multiple ways. We use the strategy mentioned in
[6, 7] and is shown in equations 5 and 6:

pt(x | z) = N (x | tx1 + (1− t)x0, σ
2) (5)

ut(x | z) = x1 − x0 (6)

We however use σ = 0 and thus our xt becomes

xt = x1 + (1− t)x0 (7)

Given trainable parameters θ, we define a time dependent vector field vθ(x, t) that regresses to u
using equation 8 as given in [7]:

Et,q(z),pt(x|z) ∥vθ(x, t)− ut(x|z)∥2 (8)

4.3 FlowNav Architecture

Our architecture is based on the architecture used in [2]. We use the current observation, io, with
To = 5 past observation images, that is (i−To)o : (i−1)o, and process them through an image encoder
to generate image tokens. Additionally, tokens are generated from the goal image og depending on
whether the model is being trained for the goal-directed or exploratory case. These tokens are then
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passed to a transformer which creates the observation context embeddings ic. We now use two
prediction heads: the temporal distance head fd which predicts the temporal distance between io
and og and the flow prediction network that predicts vθ. Both the prediction heads are trained jointly
in a supervised manner. The overall architecture is shown in 1

Our main objective is to sample actions iat, where t is the time in [0, 1] that is used for sampling in
the CFM framework and i denotes the action at the ith robot step. We need these actions to also be
conditioned on the observation context embeddings ic. As a result, the flow matching objective in
equation 8 is transformed into the loss function shown in equation 9 that we use to train our network.

L = Et,ia0,ia1,ic

∥∥vθ(iat, ic, t)− ut

∥∥2 + λ · MSE(d(io, og), fd(ic)) (9)

where ia0 is from a tractable distribution and ia1 is from the set of real robot motions.

During inference, we first sample v0 ∼ N (0, 1). An ODE solver is employed to update v0 based
on the learned vθ(

iat,
ic, t). Although various solvers, such as RK-4, Dopri-5, etc are available, we

find that the first-order Euler update yields the best performance for our application. For the action
prediction, we use a prediction horizon of Tp = 8 which means that we have a set of Tp normalized
waypoints with respect to the ego at (0, 0). A robot-specific controller can be used to un-normalize
these waypoints to obtain embodiment-specific controls out of which Ta controls can be executed.
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Figure 1: Architecture for our FlowNav approach. We follow the architecture used in [2]. The
current and past observations, along with the goal image are tokenized using image encoders. These
tokens are processed by a transformer to create the observation context embedding ct. The context is
then used as an input to the temporal distance prediction network fd and the flow prediction network
vθ.

5 Experimental Evaluation

5.1 Training Strategy

We use the NoMaD [2] repository as our base software. We update the training and evaluation
pipelines to use CFM instead of diffusion policies. We implement this by using the TorchCFM [7,
24] library. Our model is trained end-to-end in a supervised manner using the loss function shown
in equation 9.

As we only modify the action generation part of NoMaD, we do not report results for the evaluation
of the temporal distance network. We train the model for 20 epochs with a batch size of 256 and
a learning rate of 1e−4. We use the Go Stanford (GS) [25] and RECON [26] datasets to create the
train and test splits. These datasets contain a set of trajectories of the robot in an environment and
the captured frontal RGB images. A part of a trajectory is selected as the observation horizon, while
a way-point in the future is chosen as the goal location.
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During the evaluation, we use the NoMaD [2] diffusion policy as our baseline. To compare inference
times, we pass a batch of inputs through the network and measure the time taken to generate actions
for the entire batch. Additionally, we evaluate the cosine similarity between the ground-truth actions
and the actions generated by each algorithm.

Table 1: Comparing action accuracies on the GS and RECON evaluation splits. Accuracies can
range between 0 and 1. We observe that CFM reaches comparable accuracies in a fewer number of
steps when compared to diffusion policies.

k-steps 1 2 4 8

GS NoMaD 0.70 0.73 0.87 0.95
Ours 0.41 0.92 0.92 0.92

RECON NoMaD 0.68 0.72 0.84 0.94

Ours 0.42 0.95 0.94 0.94

Table 1 shows the results for action accuracies for the GS and RECON evaluation splits. For the
diffusion policy, we observe that action accuracy steadily improves with an increasing number of
diffusion steps, reaching accuracies of 0.95 and 0.94 on the two datasets after eight diffusion steps.
This is expected since diffusion policies are designed to progressively de-noise the initial input,
leading to a cleaner, noise-free output over time. When using CFM for action generation, we observe
that it achieves accuracies of 0.92 and 0.95 on the two datasets within just two steps. This indicates
that CFM reaches comparable action accuracy in significantly fewer steps compared to the diffusion
policy.

Table 2: Comparing inference times (in ms) on a batch of inputs. We observe that CFM is faster
than diffusion, regardless of the number of evaluation steps for each algorithm.

k-steps 1 2 4 8

NoMaD 5.4 10.6 20.9 41

Ours 0.4 5.6 15.6 36

Table 2 compares the inference times (in ms) of both algorithms. We observe that CFM is faster
than diffusion, regardless of the number of steps each algorithm is evaluated for. Consequently,
when we combine our findings, we find that CFM reaches similar action accuracy in fewer steps
compared to the diffusion policy. This indicates that CFM reaches comparable action accuracy in
significantly fewer steps than the diffusion policy, leading to an 8x improvement in inference times.
This reduction in run-time makes CFM potentially more suitable for real-world deployment.

Figure 8 presents the frontal RGB observations and goal images for two episodes, alongside plots
comparing the ground truth actions with the predicted actions for each of these episodes. The initial
position of the robot (assumed to be at (0, 0)) is marked by the green “x” while the goal location is
indicated by the red “x”. The ground truth action is shown in green. We compare the ground truth
action with the action generated by the diffusion policy run for eight steps (represented by the dotted
blue line) and the action generated using CFM that uses two euler steps (shown as the solid magenta
line). In the plots for both episodes, we observe that CFM generates actions that bring the robot
close to the goal location. Additionally, the actions generated by CFM outperform those produced
by the diffusion policy. When combined with our results on inference times, this suggests that CFM
offers a more efficient way to generate actions and control the robot effectively.

6 Conclusion and Future Work

In this paper, we demonstrated that Conditional Flow Matching provides advantages in the context
of learning action policies for robot navigation. We also show that CFM achieves a comparable
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Figure 8: The top row shows the frontal RGB observation and goal images of two episodes from
the RECON and the GS datasets. The bottom row shows the plots that compare the ground truth
action and the generated actions. We compare our method (using CFM) with NoMaD, which uses
a diffusion policy for action generation. We observe that in both episodes, our method learns to
generate better actions that take the robot closer to the goal location.

action accuracy when compared to diffusion policies. Additionally, we show that diffusion policies
and CFM achieve similar action accuracies in eight and two steps respectively, leading to an eight
times faster inference when using CFM. The faster inference time translates to faster sensory in-
put processing. This is especially advantageous in navigation where there is a high likelihood of
dynamic objects in the environment. In future work, we would like to deploy our approach on a
real-world robot to analyze the real-time advantages ensured by our approach. Another direction we
want to focus on is the use of off-policy reinforcement learning to learn an optimal trajectory for
goal-based exploration that the robot learns over multiple explorations of a region of the map.
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