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Abstract

In order to attain optimal rates, state-of-the-art
algorithms for non-parametric regression require
that a hyperparameter be tuned according to the
smoothness of the ground truth (Tibshirani, 2014).
This amounts to an assumption of oracle access
to certain features of the data-generating pro-
cess. We present a parameter-free algorithm
for offline non-parametric regression over TV1-
bounded functions. By feeding offline data into
an optimal online denoising algorithm styled after
(Baby et al., 2021), we are able to use change-
points to adaptively select knots that respect the
geometry of the underlying ground truth. We call
this procedure AKORN (Adaptive Knots gener-
ated Online for RegressioN splines). By combin-
ing forward and backward passes over the data,
we obtain an estimator whose empirical perfor-
mance is close to Trend Filtering (Kim et al.,
2009; Tibshirani, 2014), even when we provide
the latter with oracle knowledge of the ground
truth’s smoothness.

1. Introduction
When estimating a nonparametric function with noisy data,
the key challenge is knowing where to smooth observations
and by how much. Because the “wiggliness” of the ground
truth is unknown, practitioners are almost always left with a
hyperparameter to tune, which corresponds to the wiggliness
of the fit. Attaining optimal statistical rates often requires
this parameter to be tuned with oracle knowledge of the
ground truth. In this paper, we propose a (near)-optimal,
parameter-free algorithm for non-parametric regression that
uses techniques from online learning to automatically adapt
to the smoothness of the ground truth.
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Consider the problem of non-parametric regression over
total variation smoothness classes. For some covariates
{xi}ni=1, we observe data

yi = f(xi) + ϵi (1)

where {ϵi} are i.i.d. N (0, σ2) random variables and f has
bounded k-th order total variation, which means that the
variation in its kth derivative is controlled.

Traditionally, the best solutions to this problem solve func-
tional risk-minimization objectives with regularization on
TVk-smoothness (Tibshirani, 2014). In order to enjoy opti-
mal statistical rates, such methods require the regularization
to be tuned in correspondence with a tight upper-bound on
the TVk of the ground truth. This makes it difficult for prac-
titioners to be sure that they are benefiting from the powerful
theory already established in the literature (Tibshirani, 2014;
Guntuboyina et al., 2020).

Recent work uses algorithms from the Online Learning (OL)
literature (Hazan et al., 2006; Baby et al., 2021; Chatterjee &
Goswami, 2023) to treat the online version of this regression
problem, where points (xi, yi) are revealed one at a time.
Thanks to the powerful oracle inequalities enjoyed by OL
algorithms, these methods attain optimal1 statistical rates
while obviating the necessity for a priori knowledge of the
smoothness of f .

When applied directly in the offline setting, however, exist-
ing OL-based methods have serious drawbacks. Principal
among these is the fact that their output is not a function
f̂ , but rather a highly non-smooth sequence of predictions,
{ŷ1, ...ŷn}. This is problematic because inferring a smooth,
functional form is one of the key goals in the regression liter-
ature (Donoho & Johnstone, 1994). At the same time, each
prediction, ŷt, is made with only knowledge of y1, ...yt−1,
making it harder to pick up patterns in the data. The result
is that, when specialized to the offline setting (for instance,
by interpolating the predictions ŷ1, ...ŷn), online algorithms
are badly outperformed by traditional methods in terms of
both MSE and attractiveness of fit (Baby et al., 2021).

Is it possible to inject the instance-dependent knowledge
acquired by online algorithms into inherently offline algo-

1Optimal rates for online and offline regression over TV
classes differ only in lower-order terms

1



AKORN: Adaptive Knots generated Online for RegressioN splines

Local Linear Regression ADDLE AKORN

Figure 1. “Attention Map” for AKORN compared to ADDLE and Local Linear Regression for noisy evaluations of the Doppler function of
(Donoho & Johnstone, 1994). Observe that ADDLE and AKORN can select the appropriate “bandwidth” for the local linear fit adaptively.

rithms? In this paper, we present an OL-based algorithm
called AKORN (Adaptive Knots generated Online for Re-
gressioN splines) for offline non-parametric regression that
retains some of the best properties of online and offline
methods:

1. AKORN adapts to the smoothness of the ground truth
with no need for hyperparameter tuning. That is, with-
out any knowledge of TV1[f ], AKORN outputs a linear
spline, f̂ , satisfying

1

n

n∑
i=1

(f̂(xi)− f(xi))
2 = ÕP (n

−4/5TV1[f ]
2/5)

Furthermore, f̂ is guaranteed to have a number of knots
scaling as Õ(n1/5TV1[f ]

2/5).

2. AKORN learns a function, f̂ , rather than a sequence of
point predictions. As such, AKORN offers a principled
way of using online methodology for inference, rather
than pure prediction.

3. We can visualize AKORN’s “attention map” as in Fig-
ure 1. This highlights AKORN’s ability to optimize a
bias-variance tradeoff in a neighborhood of each covari-
ate xi – a property inherited from its online subroutines.
Details on the attention map are in Section 5.1.

4. AKORN enjoys the optimal statistical rate for the of-
fline regression problem without requiring us to re-
strict our attention to functions whose TV1 is bounded
by a known constant. That is, the rate in item 1 is
an instance-dependent rate that holds over the set of
ground truths {f : TV1[f ] < ∞} rather than just
a minimax rate over {f : TV1[f ] ≤ α} for some
α ∈ R.

5. Empirically, AKORN is competitive with state of the
art offline methods, even when they are artificially
provided with the best possible hyperparameters.

1.1. Key Techniques and Other Contributions

1. We reduce knot-selection to optimal online denoising.
By suitably measuring the stationarity of an online
learner’s predictions, AKORN adaptively generates a
set of knots, which, when used to fit a linear regression
spline, gives optimal statistical rates.

2. To this end, we introduce ADDLE (Adaptive Denois-
ing with Linear Experts), which optimally solves the
online non-parametric denoising problem for functions
of bounded 1st-order TV: an extension of “Aligator”
from (Baby et al., 2021).

3. We carry out the analysis for AKORN by introducing
a fictitious estimator which allows us to deal with the
statistical dependence between the adaptive knots and
the data. This technique may be useful in other work
on knot-selection.

2. Related Work
Regression over total variation classes is well-studied in
the literature (Muller, 1992; Donoho & Johnstone, 1994;
1998; Tibshirani, 2014). Optimal techniques include wavelet
smoothing (Donoho & Johnstone, 1994; 1998), Locally
Adapive Regression Splines (Mammen & van de Geer,
1997), and the now state-of-the-art Trend Filtering estimate
(Kim et al., 2009; Tibshirani, 2014). Crucially, most of these
methods require an injection of a priori knowledge of the
smoothness of f via hyperparameter, unlike AKORN.

Some work makes use of Stein’s Unbiased Risk Estima-
tor (SURE) to select hyperparameters (Tibshirani & Taylor,
2012; Tibshirani, 2015; Donoho & Johnstone, 1995). These
methods are typically heuristic, as extracting provable guar-
antees involves proving uniform convergence of SURE. The
exception is (Donoho & Johnstone, 1995), which obtains
this uniform convergence for wavelet smoothing. Though
wavelets enjoy powerful adaptivity properties from a the-
oretical perspective, Trend Filtering achieves much better
results in practice (Tibshirani, 2014).
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There has also been interest in the online nonparametric
regression setting, which surprisingly is not much harder
than the offline setting (Rakhlin & Sridharan, 2014). Re-
cently, Baby et al. (2021) uses oracle inequalities from the
online literature (Hazan et al., 2006) to design an optimal
parameter-free algorithm called “Aligator” for the online
regression problem over TV0. Unfortunately, when special-
ized to the offline setting, Aligator cannot compete with
Trend Filtering empirically.

All minimax optimal estimates for TV classes must be non-
linear functions of the responses in order to display local
adaptivity, as shown in Donoho & Johnstone (1998). For
our method, this means knots must be adaptively spaced
according to the change-points of the ground truth. Many
algorithms have been proposed for knot selection (Fried-
man, 1991; Luo & Wahba, 1997; Wand, 2000), typically
by choosing a large knotset and recursively purging knots
(Goepp et al., 2025). To our knowledge, AKORN is the first
knot selection algorithm with provable guarantees.

A more detailed discussion of related work is available in
Appendix A.

3. Problem Setup
We now instantiate the model in Equation 1 by defining our
assumption on f . We impose regularity on the ground truth
θ = [f(x1), ...f(xn)] as measured by its 1st-order total
variation.
Definition 3.1. The 1st-order total variation of a vector
θ ∈ Rn with respect to the points DX = {x1, ...xn} is
defined as

TV1[θ;DX ] =

n∑
i=3

∣∣∣∣ θi − θi−1

xi − xi−1
− θi−1 − θi−2

xi−1 − xi−2

∣∣∣∣
By extension, we define the discrete total variation of a
function f with respect to the points DX = {x1, ..., xn} as

TV1[f ;DX ] = TV1[θ;DX ]

where θ = [f(x1), ...f(xn)].

As we shall be computing TV1 with respect to fixed covari-
ates, we tend to suppress DX in the above notation.
Remark 3.2. The definitions adopted above, while standard
(Guntuboyina et al., 2020), differ subtly from the definition
of the true 1st-order total variation seminorm, ∥ · ∥TV1

, de-
fined for weakly differentiable functions (Tibshirani, 2014).
To our knowledge, neither is more general than the other.
However for g differentiable, we have

TV1[g;DX ] ≤ ∥g∥TV1

for allDX , implying that TV1[f ] can be replaced by ∥f∥TV1

in our bound when f is differentiable. Throughout this pa-

per, we use only the discrete total variation from Definition
3.1.

We assume that we are given data of the form {(xi, yi)}ni=1

according to Equation 1 where f has bounded TV1. We
reserve the letter C to denote C := TV1[f ; {xi}ni=1].

Remark 3.3. Why TV1[·]? While TV0-functions can be
approximated by a sparse combination of Heaviside func-
tions, TV1-functions are well approximated by linear splines
with a sparse number of knots. Thus, in the TV0 setting, it
is “proper” to output a discontinuous, piecewise constant
estimate ((Baby et al., 2023) provides a recipe for doing
this with a sparse number of segments). On the other hand,
“proper” estimates for TV1 functions (and TVk≥1) should be
continuous, in addition to having a sparse number of change
points. Thus, TV1 is the first level at which the mismatch
between inherently discontinuous online predictions and an
inherently continuous ground truth must be addressed in
offline-to-online reductions.

In the online setting, each data point comes to us one at a
time, and the goal is to produce a sequence of predictions ŷt
so that

∑n
t=1(ŷt − θt)

2 is as small as possible. In Section
4.1, we describe an optimal parameter-free algorithm for the
online problem.

In the offline setting (our main target), we wish to produce
a model f̂ such that

∑n
i=1(f̂(xi) − f(xi))

2 is small, as-
suming simultaneous access to all data points. Though the
asymptotic rates for the offline setting and online setting are
the same (up to lower-order terms) (Rakhlin & Sridharan,
2014; Baby & Wang, 2019), algorithms for the offline set-
ting typically substantially outperform algorithms for the
online setting. In Section 4.2, we propose a reduction from
the offline setting to the online setting that mitigates the em-
pirical drawbacks typically suffered by online algorithms.

3.1. Additional assumptions

We assume that f is bounded by an unknown constant,
|f | ≤ B. As mentioned in (Baby et al., 2021), this as-
sumption is typically not made in the literature (Donoho &
Johnstone, 1994; Tibshirani, 2014). When f is continuous,
this assumption is vacuous. Without loss of generality, we
let B = 1.

In the body of this paper, we assume that the covariates are
equally spaced: xi = i/n. This assumption is rather strong,
but has been the starting point for many non-parametric
regression algorithms, including Trend Filtering (Donoho
& Johnstone, 1994; Tibshirani, 2014), where it was subse-
quently relaxed (Wang et al., 2014; Sadhanala & Tibshirani,
2019). In Appendix F, we show how a modified version of
AKORN can handle uneven and random covariates.
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3.2. Additional Notation

For a single natural number, a, we let [a] := {1, 2, ..., a}.
For a real number, z, we let (z)+ = max{z, 0}. Let ei ∈
Rn be the ith standard basis vector.

We introduce the notation DX = {x1, ...xn} and DY =
{y1, ...yn}. When k, k′ ∈ DX with k < k′, we define
[k, k′] = {x ∈ DX : k ≤ x ≤ k′}.

We also notate θ = [θ1, ...θn]
T = [f(x1), ...f(xn)]

T . We
assume that, for all i ∈ [n], xi = i/n. Strictly speaking,
each xi is a scalar. However, as a matter of convenience,
we will sometimes notate [1, xi] as xi when the distinction
is clear from context. We define the truncated power basis,
{gi : [0, 1]→ R}ni=1 as follows:

gj(x) = (x− xj)+ ; 1 ≤ i < n− 1

gn(x) = 1

For any i, we vectorize the evaluations of gj on the data as
gj = [gj(x1), ...gj(xn)]

T .

Finally, for any set of (non-repeating) knots K =
{k1, ...kl} ⊂ DX , we let G(K) = {g1, gn} ∪ {gj}j∈K .
For this K, we also let HK be the matrix whose columns are
{[1, (xi−x1)+, gk1(xi), ...gkl

(xi)]
T }ni=1. We use S(K) =

span G(K) to denote the space of (evaluations of) linear
splines with knotset K. We use F (K) = span{G(K) ∪
{ξ1, ...ξ|K|}}, where ξj =

∑n
i=j ei to denote the space of

(evaluations of) piecewise linear functions with knotset K.

We sometimes abuse notation by identifying functions
p : [0, 1] → R with the finite-dimensional vector of their
evaluations on DX , [p(x1), ..., p(xn)]

T . This is done only
when the underlying function p is clear from context, as is
the case when we are discussing the ground truth (f :=: θ),
or any linear spline (

∑n
j=1 βjgj(x) :=:

∑n
j=1 βjgj).

4. ADDLE and AKORN
4.1. ADDLE: Online Denoising for TV1

We first introduce ADDLE (ADaptive Denoising with Lin-
ear Experts) to treat the online problem of denoising the se-
quence of responses {y1, ...yn} with a sequence {ŷ1, ...ŷn},
where the responses come from the data model in Equation
1.

ADDLE operates by running Follow-the-Leading-History
(FLH) (Hazan et al., 2006) with experts given by online
linear regression2 (Algorithm 3 in Appendix B) and loss
functions ft(·) = (· − yt)

2. FLH predicts a weighted com-
bination of the predictions by each expert, and uses an ex-

2Strictly speaking, ADDLE actually runs a clipped version of
linear regression. See Appendix B for details

ponential reweighting scheme to update its weights at each
time-step according to observed losses. A formal descrip-
tion of FLH/ADDLE appears in Appendix B.

Since our end goal is to address offline data, we assume the
data is revealed in isotonoic order (i.e., our t-th observation
is yt), though this assumption can be relaxed by means
of a geometric cover (Baby et al., 2021). Furthermore,
the algorithm can be generalized to handle any TVk by
augmenting the experts to perform online regression with
kth degree polynomials.
Remark 4.1. Though ADDLE has not, to our knowledge,
appeared in the literature, much of the technical scaffolding
for online denoising over TV classes via expert aggregation
appeared in (Baby et al., 2021). As such, the main technical
contribution of this paper is AKORN.

4.2. AKORN

As we have mentioned, one issue with ADDLE is that the
predictions, {ŷi}, are not very useful in the offline setting.
We now present AKORN, which uses online forward and
backward passes together with an adaptive restarting rule in
order to curate a set of knots, K = {k1, ...kl} ⊂ DX . With
these knots in hand, AKORN then returns the best linear
regression spline with knots in K:

f̂(x) = [1, (x− x1)+, gk1
(x), ...gkl

](HKHT
K)−1HKY

=: PS(K)Y (x)

where we recall from Section 3.2 that gki
is the truncated

power basis function (x − xki
)+ and HK is the data-

matrix whose columns are the features [1, (· − x1)+, (· −
k1)+, ...(· − kl)+]

T and we have engaged in the aforemen-
tioned abuse of notation f̂ = PS(K)Y .

To form K, AKORN begins by generating a forward knot-
set, Kf , and a backward knotset, Kb. These are generated
by feeding the data to Algorithm 1 in isotonic and reverse-
isotonic order respectively. Algorithm 1 is inspired by Al-
gorithm 5 in (Baby et al., 2023), which was designed to
impose a low-switching constraint on online predictions.
Essentially, every time ADDLE starts (say, at time b ∈ [n]),
the predictions of ADDLE are compared to a linear regres-
sion that also starts at time b. When the total square distance
between these sequences drifts above a certain constant, we
conclude that we have exited the interval in which we can
linearly approximate f , and we put down a knot. The effect
is that ADDLE restarts only when a noisy surrogate of the
TV1 within the interval exceeds n/(Interval Size)3/2 (see
Lemma C.1).

To complete the construction of K, we generate preliminary
fits g = PF (Kf )Y ∈ Rn and h = PF (Kb)Y ∈ Rn and form
K̃, the set of all crossover points of g and h. Crossover
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Algorithm 1 FindKnots
Input: data {(xt, yt}nt=1, variance σ2

b← 0
K ← {}
Start ADDLE instance A
for t ∈ {1, ..., n} do
θ̃t ← prediction for xt from A
ât ← LinearLeastSquares(zb:(t−1)) {∈ R2}
For all j ∈ [b, ...t] set ŵt

j ← âTt xj

s←
∑t

j=b(ŵ
t
j − θ̃t)

2

if s > 5σ2 log 2n2

δ then
K = K ∪ {xt−1}
b = t
Restart A

end if
Update A with yt

end for
output K

Algorithm 2 AKORN
Input: data {xt, yt}nt=1, variance σ2

Kf ← FindKnots({xt, yt}nt=1, σ
2)

Kb ← FindKnots({xt, yt}1t=n, σ
2)

g ← PF (Kf )Y
h← PF (Kb)Y

K̃ ← Crossovers(g, h, {xt}nt=1)
Kcollision ← {xt : (t < n− 1) ∧ xt+1 ∈ Kf ∩Kb}
K = Kf ∪Kb ∪ K̃ ∪Kcollision

output f̂ = PS(Kf∪Kb∪K̃)Y

points are defined as covariates zt where either of the fol-
lowing holds

1. h(zt) ≥ g(zt) and g(zt+1) > h(zt+1)

2. g(zt) ≥ h(zt) and h(zt+1) > g(zt+1)

We then report K = Kf∪Kb∪K̃ and perform least-squares
regression of Y onto the space S(K).

In effect, AKORN is forced to first think about the data from
an online perspective – at this step it forms a qualitative
understanding of the ground truth f , summarized by the
knot sets Kf and Kb. It then combines this understanding
with offline access to the data in order to produce a fit that
is simultaneously attractive and adaptive.
Remark 4.2. Strictly speaking, our proofs require that we
also add to K all points in the set Kcollision := {xt : (t <
n− 1) ∧ xt+1 ∈ Kf ∩Kb}. When n, the number of data
points, is large and σ > 0, it is rare that Kf and Kb share
knots, so we mention this step only parenthetically.

4.3. Computational Complexity

Using an O(1)-time update rule for each linear expert, AD-
DLE can be implemented in O(n2) time. AKORN also runs
in O(n2). As an aside, we observe that Algorithm 1 can
be viewed as an optimized form of ADDLE that adaptively
purges the pool of experts. Using a Geometric Cover as
in (Baby et al., 2021), it is straightforward to reduce the
run-time of ADDLE to O(n log n). However, this does not
immediately lead to an O(n log n) runtime for AKORN.

For comparison, the worst-case computational complexity
of Trend Filtering is O(n3/2 log 1

ϵ ) to find an ϵ-approximate
solution (Tibshirani, 2014). This does not take into account
the cost of parameter tuning. If we tune parameters heuristi-
cally using Stein’s Unbiased Risk Estimator at a discretiza-
tion level ∆, we need to solve trend filtering C/∆ times
and compute the the effective degrees of freedom (dof) of
each fit. In general, the only possible a-priori upper bound
on C is C = O(n2), leading to a generic complexity of
O(n7/2 log 1/ϵ). In practice, algorithms for solving trend
filtering are extremely fast, and the main computational
burden comes from computing dof for several candidate fits.

5. Experimental Results
5.1. Local adaptivity

As a matter of interest, we begin by noting that the fitted
values from ADDLE can be expressed as

Ŷaddle = WaddleY

for some hat-matrix Waddle that depends on the weights of
the ADDLE instance. We can do the same for AKORN:

Ŷakorn = WakornY

where Wakorn = HT
K(HKHT

K)−1HK . Because the band-
width of these matrices around each diagonal elment (i, i)
corresponds to the neighborhood of the data used in forming
the ith prediction, ŷi, we dub Waddle and Wakorn “attention
maps.”

It is informative to compare these learned attention maps to
the static attention induced by local linear regression, as we
do in Figure 1 for Donoho & Johnstone (1994)’s “Doppler”
function. Unlike local linear regression, we can see that
that ADDLE has learned how to adaptively optimize a bias-
variance trade-off in the neighborhood of each data point
by choosing a spatially varying “bandwidth”. Similarly, we
see that AKORN inherits ADDLE’s learned knowledge of
the geometry of the ground truth. It is well-known that this
kind of local adaptivity is essential to getting optimal rates
over TV classes (Donoho & Johnstone, 1994).
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Empirical Rates
PW-Lin Doppler Jump

Oracle TF -0.95 -0.84 -0.37
AKORN -1 -0.91 -0.7

Table 1. Estimated rates as determined as the slopes of the lines
corresponding to Oracle TF and AKORN in Figure 2. Each entry
in the table gives the exponent, γ, in the rate O(nγ)

5.2. Performance comparison

While ADDLE’s ability to learn the local smoothness of
the ground truth is remarkable, it performs comparatively
poorly on offline datasets, as we demonstrate in Figure 5
in Appendix G.2. In this section, we show that AKORN is
able to use ADDLE’s adaptivity while efficiently leveraging
offline data. We compare several policies.

1. Oracle linear trend filtering. We solve the variational
problem described in Section A for a grid of possible
λ. We then measure the true MSE against the ground
truth, and return the best fit. We emphasize that this
policy requires oracle knowledge of the ground truth.

2. DoF linear trend filtering. We solve the same trend
filtering optimization problem for the same set of possi-
ble λ. We then form the Stein estimate of the risk by es-
timating the degrees of freedom of each model (Tibshi-
rani & Taylor, 2012), and choose the best fit. Note that
this procedure has no theoretical guarantees, is com-
putationally intensive, and can require high-precision
arithmetic when the dataset is large.

3. Wavelets. We use the soft-thresholding estimator
of (Donoho & Johnstone, 1998) with Debauchies 2
wavelets. To our knowledge, apart from AKORN, this
is the only optimal and parameter-free algorithm for
estimating TV1 functions.

4. AKORN. We run AKORN as described in Section 4.2,
with failure probability δ = 0.1.

In Figure 2, we display a log-log plot of the error of each
policy for various ground truths, against exponentially in-
creasing values of n. In Table 1, we report the slope of the
lines corresponding to Oracle Trend Filtering and AKORN,
as estimated by the Linear Least Squares fit. This gives the
approximate rate of each estimator. Across all ground truths,
we observe that AKORN competes closely with Trend Fil-
tering, despite the fact that the latter is provided with access
to the ground truth.

The first example in Figure 2, together with the first col-
umn in Table 1, suggests that AKORN adaptively achieves
the parametric rate 1

n on piecewise linear functions, as
does trend filtering. The second example in Figure 2 and

MSEs for Doppler Function (n = 1000)
σ Oracle TF DoF TF AKORN Wavelets
0 0 0 0 0

0.1 0.0004 0.0006 0.0008 0.005
0.2 0.0012 0.0016 0.0023 0.014
0.3 0.0023 0.003 0.0039 0.024
0.4 0.0034 0.0041 0.0052 0.034
0.5 0.0057 0.007 0.007 0.046

Table 2. Values averaged over 20 runs and rounded to the nearest
10−4

Table 1 validates that AKORN achieves the claimed rate
of Õ(n−4/5) on spatially heterogenous functions like the
Doppler function of (Donoho & Johnstone, 1994).

The final example in Figure 2 represents runs of each policy
on the ground truths θn = [0T ∈ R1×n−5, 1, 2, 3, 4, 5]T .
In this setting, the fast rates for Trend Filtering from (Gun-
tuboyina et al., 2020) do not apply, because the final lin-
ear segment of the ground truth is small. Notice that in
this case, TV1[θ] = Θ(n), which means that the rate pre-
dicted both by our theory and that of Trend Filtering is
Õ(n−4/5n2/5) = Õ(n−2/5). While this rate seems to be
accurate for Oracle Trend Filtering, our experimental results
seem to indicate that AKORN outperforms this rate substan-
tially, as the least-squares slope of the orange line is about
−0.7 (Table 1). These results indicate that AKORN’s en-
hanced adaptivity leads to favorable performance on highly
irregular problem instances. Visually, we see that AKORN’s
proposed model is much more attractive than that of Trend
Filtering.

In Table 2, we report the MSEs of each policy for fixed n
and various noise levels σ. From the table, we gather that
AKORN is competitive with both Oracle and DoF Trend
Filtering, especially for larger values of σ. Wavelets is
substantially behind all other policies.

In summary, AKORN’s performance is very close to both
Oracle Trend Filtering and DoF Trend Filtering across
all tests, and it outperforms even Oracle Trend Filtering
on such pathologies as the jump function of Figure 2.
Wavelet denoising, which is the only other method we
know of that provides adaptivity to TV1[f ], is behind the
pack empirically. Code is available at github.com/
SunilMadhow/AKORN.

6. Theoretical Results
We begin by confirming that ADDLE achieves the optimal
total square error, Õ(n1/5C2/5). Note that this implies that
the average square error (nearly) matches the optimal rate,
Õ(n−4/5C2/5)

Theorem 6.1 (Bound on ADDLE error). Consider equally
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Figure 2. Estimated rates for AKORN and Oracle Trend Filtering
formed using 20 Monte-Carlo runs for each n, together with rep-
resentative fits for n = 5000. σ = 0.3, δ = 0.1. Top left: PW
Linear function; Top Right: Doppler function; Bottom: Jump func-
tion.

spaced design points {xi}ni=1 and any f with C :=
TV1[f ;DX ] <∞. Let responses {yt} come from the model
in Equation 1. Let {ŷt}nt=1 be the the predictions gener-
ated by ADDLE when fed the data in isotonic order. With
probability 1− δ, the total squared error satisfies:

n∑
t=1

(ŷt − f(xt))
2 = Õ(n1/5C2/5)

where Õ hides constants (including σ) and polylog factors
of n and δ.

With this result in hand, we are able to prove that the func-
tion, f̂ , outputted by AKORN also adaptively achieves the
rate of Õ(n−4/5C2/5).

Theorem 6.2 (Bound on AKORN MSE). Consider equally
spaced design points, {xt = t/n}nt=1 and f such that
C := TV1[f ;DX ] < ∞. Let responses {yt} come from
the model in Equation 1. Let f̂ be the function returned by
AKORN. Then, with probability 1− δ, the average square
error satisfies:

1

n

n∑
t=1

(f̂(xt)− f(xt))
2 = Õ(n−4/5C2/5)

where Õ hides constants (including σ) and polylog factors
of n and δ.

Let us emphasize the message of Theorem 6.2 by comparing
it with the standard guarantees of Locally Adaptive Regres-
sion Splines and Trend Filtering (Donoho & Johnstone,
1998; Mammen & van de Geer, 1997; Tibshirani, 2014),
each of both of which provide an algorithm Aλ with hyper-
parameter λ so that for any α ∈ R, there exists λ(α) so that
Aλ(α) (nearly) achieves the minimax rate O(α2/5n−4/5)
over {f : ∥f∥TV1 ≤ α}.

On the other hand, Theorem 6.2 says that AKORN is
not only (nearly) minimax over {f : TV1[f ] ≤ α} in a
parameter-free way, but it achieves the instance-dependent
rate Õ(TV1[f ]

2/5n−4/5) over {f : TV1[f ] <∞}.

In Appendix F, we describe how a modified version of
ADDLE can achieve the same rate (up to log terms) when
the covariates {xi}ni=1 satisfy maxi=2,...,n |xi − xi−1| ≤
logn
p0n

. This condition is satisfied with high probability when

xi
iid∼ pX(·), where pX is a density with support on [0, 1]

that satisfies pX(x) ≥ p0 > 0 for x ∈ [0, 1] (Wang et al.,
2014). This implies an optimal variant of AKORN under the
same conditions. Detailed theorem statements and proofs
can be found in Appendix F.

7. Proof Sketches
7.1. Proof Sketch of Theorem 6.1

The proof of Theorem 6.1 follows along the lines of (Baby
et al., 2021). The crucial component is the following classi-
cal Lemma from (Hazan & Seshadhri, 2007).

Proposition 7.1 ((Hazan & Seshadhri, 2007) informal).
For any interval I = [r, s] in time, the algorithm FLH
(Fig.4) with learning rate ζ = α applied to the loss func-
tions ℓt(·) = (· − yt)

2 gives O(α−1(log r+ log |I|)) regret
against the best base learner in hindsight, where α upper
bounds the parameter of exp-concavity for all ℓt.

For any fixed partition P of [n] into intervals, this Lemma

7
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directly controls the quantity∑
p=[r,s]∈P

∑
t∈p

(ŷt − yt)
2 − (ẑr(t)− yt)

2 (2)

where ẑr(t) is the prediction at time t of an online linear re-
gression expert that starts at time r (Specifically, an instance
of Algorithm 3 in Appendix B).

Appendix D concerns itself with establishing:

1. The existence of a partition,P∗, of f into O(n1/5C2/5)
roughly linear chunks, such that Equation (2) is Õ(1)
for each p ∈ P∗.

2. A statistical control on the difference between Equation
2 and the corresponding quantity with noisy responses
yt replaced by the ground truth θt = f(xt).

One appealing aspect of such proofs is that the heavy lifting
is done by approximation theoretic analysis. That is, we can
encode oracle knowledge about the structure of f into the
partition P∗ while proving theorems, and be sure that FLH
will discover this structure without any additional algorith-
mic input. This type of adaptivity is the core contribution
that online learning can make to statistics. The complete
proof for ADDLE is in Appendix D

7.2. Proof Sketch of Theorem 6.2

In order to prove the optimality of f̂ = PS(K)Y , we begin
by establishing properties about the knotset K. Recall that
K = Kf ∪ Kb ∪ K̃, where Kf and Kb are generated
according to the online passes of Algorithm 1. Using the
optimality of ADDLE (Theorem 6.1), we can prove the
following “Change-point Detection Lemma,” which tells us
that Kf (and Kb) divide f into a small number of piecewise
linear chunks.

Lemma 7.2 (Change-point Detection Lemma (Lemma C.1
informal)). With high probability, we have

|Kf | ≲ max{n1/5C2/5, 1}

and for all kfi ∈ Kf there is a linear function wi defined on
[kfi , k

f
i+1)such that

kf
i+1−1∑
t=kf

i

(wi(xt)− θt)
2 ≲ 1 + n

1/5
i TV1[θ

i]2/5

While the adaptivity an online algorithm is typically eval-
uated on the basis of its regret bound, the Change-point
Detection Lemma tells us that online algorithms are im-
plicitly making fairly deep inferences about their data. In

particular, ADDLE provides not only predictions with small
error, but access to a sparse set of change-points that encode
an optimal bias/variance tradeoff around each covariate.

The properties established in the Change-point Detection
Lemma quickly imply that back-fitting piecewise linear
functions on either Kf or Kb gives the optimal rate. In
particular, the smallness of Kf (resp. Kb) allows us to
control the variance of PF (Kf )Y (resp. PF (Kb)Y ), while
the approximate linearity property allows us to control
∥E[PF (Kf )Y ] − θ∥22 (resp. ∥E[PF (Kb)Y ] − θ∥22) (Lem-
mas C.3, C.4 and C.5 in the Appendix). This certifies
that g = PF (Kf )Y and h = PF (Kb) have MSE scaling
as Õ(n1/5C2/5). While g and h are, in general, discontinu-
ous (and therefore improper estimates of the ground truth f ),
we rely on their existence later in the proof. We summarize
in the following Lemma:

Lemma 7.3. [Corollary C.6 (informal)] With high proba-
bility, we have

∥PF (Kf )Y − θ∥22 = Õ(n1/5C2/5)

and
∥PF (Kb)Y − θ∥22 = Õ(n1/5C2/5)

Turning our attention to f̂ = PS(K)Y , Lemma C.2 provides
us with the following bound, which relates the square error
of f̂ = PS(K)Y with that of a fictitious estimator f̂f =
PF (K)Y .

∥PS(K)Y − θ∥22 ≤ 2∥PF (K)Y − θ∥22 + 2∥PS(K)θ − θ∥22
(3)

This is crucial because we are able to cover the space of
possible knot sets K in the first term on the right hand
side by covering intervals independently. The first term is
easily bounded using the methodology of Lemma 7.3. The
second term is free from dependence on the responses, Y ,
and is bounded using the following approximation theoretic
lemma, which asserts the existence of a linear spline s ∈
S(Kf ∪Kb ∪ K̃) whose curve lies in between the curves
of any two functions g ∈ F (Kf ) and h ∈ F (Kb).

Lemma 7.4. [Lemma C.7 (Informal)] If Kf∩Kb = {} then
for all g ∈ F (Kf ) and h ∈ F (Kb) there exists s ∈ S(K)
so that for all x ∈ DX there exists λx ∈ [0, 1] with

s(x) = λxg(x) + (1− λx)h(x)

Finally, we apply Lemma 7.4 with g = PF (Kf )Y and h =
PF (Kb)Y , in order to assert the existence of s ∈ S(K) with
small error. Concretely, by the convexity of square loss, we
have in Equation 3

∥PS(K)θ − θ∥22 ≤ ∥s− θ∥22 ≤

∥g − θ∥22 + ∥h− θ∥22 = Õ(n1/5C2/5)
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in Equation 3. The complete proof for Theorem 6.2 is in
Appendix C.

8. Conclusion and Future Work
The main contribution of this paper is AKORN, a parameter-
free algorithm which uses ideas from online learning to
produce a function f̂ that (a) empirically competes with the
output of linear Trend Filtering, even when the latter is given
oracle access to the ground truth for hyperparameter tuning
(b) achieves the optimal rate for TV1-bounded functions
by adapting to the local smoothness of f (c) operates by
means of a reduction from knot-selection to adaptive online
prediction.

A major limitation of AKORN is that it does not handle
higher order TVk classes. An extension to arbitrary k > 1
would place AKORN on even footing with Trend Filter-
ing theoretically. They key challenge here is generalizing
Lemma 7.4 to splines of higher degree. Another limitation
of AKORN is its O(n2) runtime. We believe that a more
careful reduction to a geometric cover version of ADDLE
(Baby et al., 2021) may lead to an O(n log n) algorithm,
though in practice this may come at the cost of additional
MSE.

Online methods have long been promising to expand the
scope of theory by eliminating assumptions on optimally
tuned parameters and enhancing adaptivity to problem in-
stances (Cutkosky & Orabona, 2018; Cutkosky et al., 2023).
If, as AKORN suggests, such methods can be modified
to compete ex-situ with state-of-the-art offline algorithms,
offline-to-online reductions could yield new theorems whose
hypotheses are more likely to hold in real-world scenarios.
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1. For t = 1...T

(a) Player plays an action zt ∈ V

(b) Universe chooses a loss function ft

(c) Player suffers loss ft(zt)

Figure 3. Online interaction protocol

A. More Background on Related Work
One solution to the non-parametric problem of Equation 1 is given by k-th order trend filtering (Kim et al., 2009; Tibshirani,
2014), which efficiently solves the minimization problem

f̂tf = argmin
g∈Uk

n

n∑
i=1

(yi − g(xi))
2 + λTVk(g) (4)

where Uk
n is the span of a certain collection of functions called the falling factorial basis functions (Wang et al., 2014;

Tibshirani, 2022). For λ = Φ(n
1

2k+3C
−(2k+1)

2k+3 ), the loss of f̂tf satisfies

1

n

n∑
i=1

(f(xi)− f̂(xi))
2 = ÕP (n

−(2k+2)
(2k+3) C

2
2k+3 )

where C is an upper bound on TVk(f), which is known to be the minimax-optimal rate. Crucially, in order to benefit
from tight bounds, a practitioner would need to choose λ with knowledge of the smoothness of the the ground truth, f .
Said another way, Trend Filtering is optimal only over the class of functions Fk(C) = {f : TVk(f) ≤ C} and requires
knowledge of C. For a comprehensive treatment of the theory underlying Trend Filtering, which is the state of the art
solution for regression over TVk classes, we refer the reader to (Tibshirani, 2022).

Regression over non-parametric classes is a much broader field, with a well-developed theory of minimaxity (Donoho &
Johnstone, 1994; Mammen & van de Geer, 1997; Rakhlin & Sridharan, 2014; Tibshirani, 2014; Baby & Wang, 2019). In
particular, (Rakhlin & Sridharan, 2014) observes that the complexity of the online problem typically does not differ too
much from that of the offline problem.

TVk function classes admit functions whose smoothness varies spatially, which makes the estimation problem especially
challenging. While Holder or Sobolev functions can be optimally estimated by linear smoothers, optimal estimators for TVk

must display local adaptivity to the smoothness of the ground truth (Muller, 1992; Donoho & Johnstone, 1994; Mammen &
van de Geer, 1997; Tibshirani, 2014).

A.1. Online learning

Online learning studies algorithms for playing the game in Figure 3.

The goal is to choose actions such that the cumulative loss is small (with respect to some comparator). This setting is
entirely non-stochastic, and we therefore measure an algorithm’s performance in terms of the regret of its predictions against
a comparator:

Regret(z1, ...zn|u) =
T∑

t=1

(ft(zt)− ft(u))

If we let ft(·) = (· − yt)
2, we have a stochastic relaxation of the adversarial setting. When specialized to stochastic/batch

settings, OL algorithms often enjoy remarkable adaptivity to problem features (Orabona, 2014; Baby et al., 2021; Wu
et al., 2021; Cutkosky et al., 2023). In our setting, particularly relevant is the Aligator algorithm (Baby et al., 2021),
which addresses online nonparametric denoising over TV0 by using an expert aggregation algorithm to adaptively select
the best window in which to perform averaging for each xt. For k = 0, Aligator’s predictions incur the optimal error of
Õ(n1/3C1/3).
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Central to our work is the theory of adaptivity in OL (Hazan & Seshadhri, 2009; Daniely et al., 2015), which seeks to
guarantee that the regret within each interval is small with respect to some set of comparators. In particular, we will make
use of the Follow-the-Leading-History expert aggregation algorithm from (Hazan et al., 2006), which has the remarkable
property that, in any interval, the aggregate prediction competes with each individual expert.

Online forecasting over TVk-bounded sequences has also been addressed for k = 0, 1 in the fully adversarial setting in a
sequence of papers by (Baby & Wang, 2021; Baby et al., 2021; Baby & Wang, 2023).

More broadly, it is widely believed that hyperparameters, which can typically only be tuned heuristically, are responsible for
large gaps between learning theory and practice across the entire discipline of Machine Learning (Chaudhuri et al., 2009).
This has led to a growing movement to design parameter-free algorithms, whose theoretical guarantees can reasonably be
expected to hold in real-world scenarios (Cutkosky & Orabona, 2018; Chaudhuri et al., 2009; Orabona, 2014).

B. Algorithm descriptions
The following algorithm, due to Hazan & Seshadhri (2007), is called Follow-the-Leading-History (FLH). ADDLE operates
by running FLH with online linear regression experts.

FLH: inputs - Learning rate ζ and n base learners E1, . . . , En

1. For each t, vt = (v
(1)
t , . . . , v

(t)
t ) is a probability vector in Rt. Initialize v

(1)
1 = 1.

2. In round t, set ∀j ≤ t, xj
t ← Ej(t) (the prediction of the jth bas learner at time t). Play

xt =
∑t

j=1 v
(j)
t x

(j)
t .

3. After receiving ft, set v̂(t+1)
t+1 = 0 and perform update for 1 ≤ i ≤ t:

v̂
(i)
t+1 =

v
(i)
t e−ζft(x

(i)
t )∑t

j=1 v
(j)
t e−ζft(x

(j)
t )

(5)

4. Addition step - Set v(t+1)
t+1 to 1/(t+ 1) and for i ̸= t+ 1:

v
(i)
t+1 = (1− (t+ 1)−1)v̂

(i)
t+1 (6)

Figure 4. FLH algorithm (copied verbatim from (Baby & Wang, 2021))

In the course of the paper, we will make references to both bounded linear regression experts and unbounded linear regression
experts, described in Algorithms 3 and 4 respectively.

Algorithm 5 gives the full description of ADDLE, which technically requires us to use the bounded linear regression expert.

Algorithm 3 Bounded Linear Regression Expert
Input: historyH ⊂ (X × [0, 1])∗, feature x, bound B {Generates B-bounded prediction given historyH}
ifH is empty then

Output 0
else ifH = {(xH

1 , yH1 )} then
Output [yH1 ][−B,B] {z[A,B] clips a real number z between A and B}

else
l̂← linear least squares fit onH
Output l̂(x)[−B,B]

end if
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Algorithm 4 Linear regression expert
Input: historyH ⊂ (X × [0, 1])∗, feature x{Generates prediction given historyH}
ifH is empty then

Output 0
else ifH = {(xH

1 , yH1 )} then
Output yH1

else
l̂← linear least squares fit onH
Output l̂(x)

end if

Algorithm 5 ADDLE
input D, σ
B ← maxi |yi|+max{σ

√
2 log 4n/δ, 1}

Run FLH with learning rate η = 1

8(1+σ
√

log 2n/δ)2
, base learners Ej(t) =Predict({(xk, yk}t−1

k=j , xt, B)

C. Proofs for AKORN
C.1. Properties of Knot Selection

For θ fixed, and some interval I = [r, s] ⊂ [n], we introduce the notation TV1(I) := TV1[θ[r : s])] In the following lemma,
we prove that Algorithm 1 induces a not-too-large partition of f into roughly linear segments.

Lemma C.1 (Compare to Theorem 18 in (Baby et al., 2023)). Consider the set of knots, K0 = {k1, ...kl, kl+1 := xn+1},
outputted by Algorithm 1 when exposed to data isotonically, as well as the induced partition

P = {pi := [ki, ...ki+1 − 1]| i ∈ [l]}

Let ni be the size of pi.

Then, for any δ > 0, there is an event E1(δ) which holds with probability at least 1− δ and upon which

|P| ≲ max{n1/5C2/5, 1}

and
∀i ∃ wi linear :

∑
t∈pi

(wi(xt)− θt)
2 ≲ 1 + n

1/5
i TV1(pi)

2/5

where ≲ hides constants and polylog factors of δ, n.

Proof. We follow the methodology of Theorem 18 from (Baby et al., 2023). Suppose that for time t, line the condition
inside the if-statement of Algorithm 1 is executing for the ith time. We start by bounding Ci := TV1([b, t]).

t∑
j=b+1

(ŵt
j − θ̃j)

2 ≤
t∑

j=b+1

(ŵt
j − E[ŵt

j ] + E[ŵt
j ]− θj + θj − θ̃j)

2

≤ 2

t∑
j=b+1

(ŵt
j − E[ŵt

j ])
2 + 4

t∑
j=b+1

(E[ŵt
j ]− θj)

2 + 4

t∑
j=b+1

(θj − θ̃j)
2 (7)

By Lemma C.10, the first term is bounded by 4σ2 log (1/δ) with probability 1−δ. The second term is bounded by C2
i n

3
i /n

2,
which can be shown by direct computation, as in Appendix E. By Theorem D.1 (Optimality of ADDLE), the final term is
bounded (with probability 1− δ) by ιn

3/5
i C

2/5
i /n2/5, where ι contains constants and log-factors. Union bounding and then

combining this with the condition inside the if statement, we see that with probability 1− δ we have:
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4σ2 log (4/δ) + 4max{ιC2/5
i n

3/5
i /n2/5, C2

i n
3
i /n

2} ≥ 5σ2 log 4/δ (8)

Regardless of which value the maximum takes, we conclude that

Ci ≳ n/n
3/2
i (9)

At the same time, on this same event, we have by definition that

t∑
j=b+1

(ŵt
j − θk)

2 ≤ 2

t∑
j=b+1

(ŵt
j − θ̃k)

2 + 2

t∑
j=b+1

(θ̃j − θj)
2 ≲ 1 + n

1/5
i C

2/5
i

We may now cover all n2 possible intervals, which amounts to adding an n2 in the log and yields E1(δ).

Now let M − 1 be the total number of times that the if-block is executed. So M = |P| is the number of bins spawned.
Returning to Equation 9, Jensen’s inequality with ϕ : x 7→ x−3/2 gives

C ≥
M−1∑
i=1

Ci

≳
M−1∑
i=1

n

n
3/2
i

=

M−1∑
i=1

ϕ(
ni

n
2
3 (M − 1)

2
3

)
1

(M − 1)

≥ ϕ(

M−1∑
i=1

ni

n
2
3 (M − 1)

5
3

)

≥ ϕ(n
1
3 /(M − 1)

5
3 ) = (M − 1)

5
2 /n

1
2

So for M > 1, we have
|P| = M ≲ M − 1 ≲ C2/5n1/5

C.2. Introducing the fictitious estimator: PS(K)Y versus PF (K)Y

In our analysis, it is necessary to introduce a fictitious estimator that conducts independent fits within each partition. This
will allow us to cover knot-sets more efficiently. The following lemma relates the error of f̂ to the fictitious estimator, f̂f .
Recall the definitions of F (K) and S(K) for knotsets K from Section 3.2. Note that, in the following lemma, we abuse
notation by identifying f̂ with [f̂(x1), ...f̂(xn)]

T (and likewise for f̂f ), which allows us to use the notation PS(K)f(z) for
[1, (z − x1)+, gk1(z), ...gkl

(z)](HKHT
K)−1HKθ = EDY

[f̂(z)] for fixed K.

Lemma C.2. Let K = {k1, ...kl} be a (possibly random) set of knot points in the data, and Y be the vector of responses.

Let F (K) be the subspace of vectors in Rn representable as evaluations piecewise-linear functions with optional disconti-
nuities at points K. Let S(K) be the subspace of vectors in Rn representable as evaluations (on the data) of linear splines
with knots in K. Let P(·) be the projection map. Now consider the following two estimators:

1. f̂f is the fictitious estimator, whose predictions are given by:

[f̂f (x1)...f̂f (xn)]
T = PF (K)Y

14
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2. f̂ is AKORN’s output, whose predictions are given by:

[f̂(x1)...f̂(xn)]
T = PS(K)Y

Then the following holds deterministically

n∑
i=1

(f̂(xi)− f(xi))
2 ≤ 2

n∑
i=1

(f̂f (xi)− f(xi))
2 + 2

n∑
i=1

(PS(K)f(xi)− f(xi))
2

Proof. We abuse notation by letting f̂ := [f̂(x1), ...f̂(xn)] and f̂f = [f̂f (x1), ...f̂f (xn)] and suppressing the dependence
of the spaces S(K) and F (K) on K. Now, with ∥ · ∥ = ∥ · ∥2, we obtain

∥f̂f − f∥ ≥ ∥PS f̂f − PSf∥ = ∥PSPFY − PSf∥ =

∥PSY − PSf∥ = ∥f̂ − PSf∥

≥ |∥f̂ − f∥ − ∥PSf − f∥|

Where the first inequality is because projections are contractions, the second equality is because S ⊂ F . By the reverse
triangle inequality, we obtain

Thus
∥f̂ − f∥ ≤ ∥f̂f − f∥+ ∥PSf − f ]∥

C.3. Analysis for Piecewise Linear Estimates: ∥PF (Kr)Y − θ∥22
For any random knot-set Kr, we now analyze the quality of the fit PF (Kr)Y . This is necessary in two parts of our proof: for
providing certificates g and h to be plugged into Lemma C.7 (with Kr = Kf and Kr = Kb respectively) and for bounding
the error of the fictitious estimator in Lemma C.2 (with Kr = K = Kf ∪Kb ∪ K̃).

The next Lemma gives a bias-variance decomposition of ∥PF (Kr)Y − θ∥22.

Lemma C.3. There exists an event E0(δ) which holds with probability at least 1− δ upon which the following holds for all
knot-sets Kr = {k1, ...kl, kl+1 := n} with their associated fit f̂f = PF (Kr)Y

n∑
t=1

(f̂f (xt)− f(xt))
2 ≲

l∑
i=1

(

ki+1−1∑
t=ki

(f(xt)− µt)
2 +

ki+1−1∑
t=ki

σ2
t log(

n3

δ
))

where µt and σ2
t are the mean and variance of f̂f (xt) respectively, treating the knots as fixed.

Proof. Begin by fixing a static interval pi = [ki, ki+1 − 1]. Further, fix some t ∈ pi.

For any vector q ∈ Rn, let qi = [qki , ...qki+1−1]
T . Let Xi collect only the covariates in pi. Now note that

f̂f (xt) = xT
t (XiX

T
i )

−1XiY
i ∼ N (µt, σ

2
t )

where µt = ⟨xt, (XiX
T
i )

−1Xiθ
i⟩ and σ2

t = σ2xT
t (XiX

T
i )

−1xt.

Thus, letting Wt :=
f̂f (xt)−µt

σt
, we have that

Pr[|Wt| ≤
√
2 log (2n/δ)] > 1− δ/n

Or equivalently
Pr[|f̂f (xt)− µt| ≤ σt

√
2 log (2n/δ)] > 1− δ/n (10)

15
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By reverse triangle inequality,

|f̂f (xt)− µt| = |f̂f (xt)− θt − (µt − θt)| > |f̂f (xt)− θt)| − |µt − θt|

So that Equation (10) implies
|f̂(xt)− θt| ≤ |µt − θt|+ σt

√
2 log (2n3/δ)

holds with probability at least 1− δ/n3

Squaring each side and summing (and union bounding) over t from ki to ki+1 − 1, this implies that with probability
1− δ/n2:

ki+1−1∑
t=ki

(f̂(xt)− θt)
2 ≤ 2

ki+1−1∑
t=ki

(µt − f(xt))
2 + 4

ki+1−1∑
t=ki

σ2
t log(

2n3

δ
)

where we have used (a+ b)2 ≤ 2a2 + 2b2.

To finish, cover all n2 realizations of pi. This means that with probability 1− δ, for all ki, ki+1:

ki+1−1∑
t=ki

(f̂(xt)− θt)
2 ≤ 2

ki+1−1∑
t=ki

(µt − f(xt))
2 + 4

ki+1−1∑
t=ki

σ2
t log(

2n3

δ
)

In particular, we have the claimed decomposition for all Kr.

We elaborate on the bias and variance terms in the following two lemmas.

Lemma C.4. [Variance of PF (Kr)Y ] Within the setting of Lemma C.3, we have that for each ki ∈ Kr

ki+1−1∑
t=ki

σ2
t log(

2T

δ
)) ≲ σ2

Proof.
ki+1−1∑
t=ki

σ2
t = σ2

ki+1−1∑
t=ki

xT
t (XiX

T
i )

−1xt = 2σ2

because the sum of the leverage scores is the number of parameters in the model.

For Kr = K0 a knot-set from Lemma C.1 (on either a forward or backward pass), we have a control on the total bias of
PF (K0)Y .

Lemma C.5. [Bias] In the setting of Lemma C.1, we have the following on the good event E1(δ):

∥PF (K0)θ − θ∥22 = Õ(n1/5C2/5)

Proof. Lemma C.1’s success event guarantees that there is a vector η ∈ F (K0) with

∥η − θ∥22 =≲
l∑

i=1

1 + n
3/5
i ∥D

2θi∥2/52

≲ l +

l∑
i=1

n
3/5
i ∥D

2θi∥2/52

16



AKORN: Adaptive Knots generated Online for RegressioN splines

Now using Holder’s inequality with the dual norm pair (5/3, 5/2), we obtain

l∑
i=1

∥D2θi∥2/51 n
3/5
i ≤ (

l∑
i=1

∥D2θi∥1)2/5(
l∑

i=1

ni)
3/5 ≤ ∥D2θ∥2/51 n3/5 ≤ C2/5n1/5

An application of the previous three lemmas shows that PF (K0)Y has small error for K0 coming from the knot selection
algorithm (i.e. both with K0 = Kf and K0 = Kb).

Corollary C.6. Let E0(δ/2) be the good event from Lemma C.3 and E1(δ/2) be the good event from Lemma C.1. Then on
E0(δ/2) ∩ E1(δ/2) we have

∥PF (K0)Y − θ∥22 = Õ(n1/5C2/5)

Proof. On E0(δ/2) we have

∥PF (K0)Y − θ∥22 ≤
n∑

t=1

(f̂f (xt)− f(xt))
2 ≲

l∑
i=1

(

ki+1−1∑
t=ki

(f(xt)− µt)
2 +

ki+1−1∑
t=ki

σ2
t log(

n

δ
))

On the event E1(δ/2) from Lemma C.5 we can bound the bias term by Õ(n1/5C2/5). On this same event, we can bound the
variance term by Õ(σ2n1/5C2/5) = Õ(n1/5C2/5) by Lemma C.4.

C.4. Spline Existence

Lemma C.7. Suppose g ∈ F (Kf ) and h ∈ F (Kb) for Kf ∩Kb = {}. Let K = Kf ∪Kb ∪ K̃ where K̃ contains all the
crossover points between g and h. Then there exists f ∈ S(K) such that for all x ∈ [0, 1] there exists λx ∈ [0, 1] such that

f(x) = λxg(x) + (1− λx)h(x) (11)

The idea behind the proof is simple. We construct a linear spline left-to-right that greedily sticks with whichever function of
g and h is furthest from a change point, transitioning linearly between the two as necessary. We must include crossover
points in order to ensure we do not exit the region between the curves g and h when we perform a “slide” from one to the
other.

Proof. Assume K = k1, ...kl is ordered. Let kl+1 = 1 for convenience.

We prove a stronger result, where we enforce the following additional requirements at each knot ki.

1. f(ki) = g(ki) or f(ki) = h(ki)

2. If i ∈ [l − 1] is such that ki ∈ K̃ and ki+1 ∈ Kf , we have that f(ki) = h(ki).

3. If i ∈ [l − 1] is such that ki ∈ K̃ and ki+1 ∈ Kb, we have that f(ki) = g(ki).

We construct f in cases while iterating over knots.

Base case: If k1 ∈ Kf , let f(z) = h(z) for z ∈ [0, k1]. If k1 ∈ Kb, let f(z) = g(z) for z ∈ [0, k1]. If k1 ∈ K̃, then let
f(z) = g(z) for z ∈ [0, k1] if k2 ∈ Kb and f(z) = h(z) for z ∈ [0, k1] if k2 ∈ Kf .

“Inductive” step: Assume that (f : [0, ki−1]→ R) ∈ S([k1, ...ki−1]) is constructed such that the above requirements are
satisfied for all knots k1, ...ki−1. We now extend f to (f : [0, ki]→ R) ∈ S([k1, ...ki]).

Case 0: f(ki−1) = g(ki−1) and ki−1 is the last knot (i− 1 = l)

We can extend f to [0, kl+1] = [0, 1] by letting f(z) = g(z) for z ∈ [ki−1, ki]. Because g is linear on [ki−1, ki], f is in
S(K). Equation 11 holds by construction, and requirements 1, 2 and 3 all hold by our iterative hypothesis.

Case 1: f(ki−1) = g(ki−1) and ki ∈ Kb

17
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Extend f by letting f(z) = g(z) for all z ∈ [ki−1, ki]. Because g is linear on [ki−1, ki] and g(ki−1) = f(ki−1), we still
have that f ∈ S([k1, ...ki]). We also have f(z) = g(z) for all z ∈ [ki−1, ki] and f(ki) = g(ki).

Case 2: f(ki−1) = g(ki−1) and ki ∈ Kf

Extend f by letting f(z) = g(z) + (h(z) − g(z)) z−ki−1

ki−ki−1
for z ∈ [ki−1, ki]. By construction, we are also assured that

ki−1 /∈ K̃ (because otherwise we would have f(ki−1) = h(ki−1)). Because g and h do not cross on the interval [ki−1, ki],
we have that f is in S([k1, ki]) and satisfies Equation 11 (with x restricted to [0, ki] ∪ [ki−1, ki]). By construction, we
also have that f(ki) = h(ki) (satisfying requirement 1). By our inductive hypothesis, the extended version of f satisfies
requirements 2 and 3.

Case 3: f(ki−1) = g(ki−1) and ki ∈ K̃ and ki+1 ∈ Kb ∪ {kl+1}

Define f(z) = g(z) for all z ∈ [ki−1, ki]. Because g is linear on [ki−1, k], we still have that f ∈ S([k1, ...ki]). We also
have f(z) = g(z) for all z ∈ [ki−1, ki] and f(ki) = g(ki) = h(ki).

Further, by construction we have that requirements 1 and 3 hold after extension. By hypothesis, requirement 2 still holds.

Case 4: f(ki−1) = g(ki−1) and ki ∈ K̃ and ki+1 ∈ Kf

Define f(z) = g(z) + (h(z) − g(z)) z−ki−1

ki−ki−1
for z ∈ [ki−1, ki]. Because ki ∈ K̃, we know that g and h do not cross on

the interval [ki−1, ki]. Because g and h do not cross on the interval [ki−1, ki], we have that f satisfies Equation 11 (with x
restricted to [0, ki] ∪ [ki−1, ki]).

Furthermore, by construction, requirements 1 and 2 hold after extension. By hypothesis, requirement 3 still holds.

The remaining cases are symmetric to the above ones (i.e. the orders of g and h and Kf and Kb are flipped). We can iterate
this scheme left-to-right over all knots k ∈ K to prove the result.

Generally speaking, the odds of Kf and Kb sharing knots when generated according to AKORN are not high. However, the
following corollary shows that we can handle this case should it occur.

Corollary C.8. Suppose g ∈ F (Kf ) and h ∈ F (Kb), with Kf ∩ Kb ̸= {}. Let K = Kf ∪ Kb ∪ K̃ ∪ Q, where
Q = {xi−1 : xi ∈ Kb ∩Kf} and K̃ is the set of crossover points of g and h. Then there exists s ∈ S(K) such that for all
x ∈ [0, 1] there exists λx ∈ [0, 1] such that

s(x) = λxg(x) + (1− λx)h(x) (12)

Proof. Let Q = xq1 , ...xqw be ordered. On each interval [xqi , xqi+1−1] we may construct a corresponding linear spline si
using Lemma C.7. We can then construct s by linearly interpolating between the various si using the knots in Q.

C.5. Proof of Theorem 6.2

Theorem C.9 (Theorem 6.2).

Proof. Let f̂ = PS(K)f . Let E0(δ/2) be the event from Lemma C.3. On E0(δ/2), the following holds for all knot-sets
K = {k1, ...kl}, l > 0 with P [E0] ≥ 1− δ/2.

n∑
t=1

(f̂(xt)− f(xt))
2 ≤

n∑
t=1

(f̂f (xt)− f(xt))
2 +

n∑
t=1

(PS(K)f(xt)− f(xt))
2

≤
l∑

i=1

ki+1−1∑
t=ki

(f(xt)− E[f̂f (xt)])
2 +

l∑
i=1

ki+1−1∑
t=ki

σ2
t ι(δ) +

n∑
t=1

(PS(K)f(xt)− f(xt))
2

≤
l∑

i=1

ki+1−1∑
t=ki

(f(xt)− E[f̂f (xt)])
2 + 2σ2l +

n∑
t=1

(PS(K)f(xt)− f(xt))
2 (13)
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where the first line holds deterministically by Lemma C.2, the second line holds on the event E0 from Lemma C.3, and the
third line holds by Corollary C.4.

Now, let Kf and Kb be the random knot-sets from isotonic and reverse isotonic runs of Algorithm 1 and let K = Kf∪Kb∪K̃.
Let Ef1 (δ/4) be the event from Lemma C.1 applied to the forward run of AKORN. By the conclusion of Lemma C.1, we
have |Kf | = Õ(n1/5C2/5). By corollary C.5, we also have ∥f−PF (Kf )f∥22 ≤ Õ(n1/5C2/5) on Ef1 (δ/4). Similarly, we let
Eb1(δ/4) be the event from Lemma C.1 applied to the backward run of AKORN, upon which we have |Kb| = Õ(n1/5C2/5)
on Eb1(δ/4) and ∥f − PF (Kb)f∥22 ≤ Õ(n1/5C2/5).

Let E1 = Ef1 ∩ Eb1 . By union bound, Pr[E1] ≥ 1− δ/2. On E1, we may bound the first term in Equation 13 as

l∑
i=1

ki+1−1∑
t=ki

(f(xt)− E[f̂f (xt)])
2 = ∥f − PF (K)f∥22 ≤ ∥f − PF (Kf )f∥

2
2 = Õ(n1/5C2/5)

because F (Kf ) ⊂ F (K)

and the second term as 2σ2|K| ≤ 2σ2(4× |K|) = Õ(n1/5C2/5).

All that remains is to bound the final term of Equation 13. To do this, first define E3 = E0 ∩ E1. By construction,
all the previous bounds still hold on E3, and we have Pr[E3] > 1 − δ (by a union bound). Now apply Lemma C.7
to g = PF (Kf )Y and h = PF (Kb)Y to get a function s ∈ S(K) that lies in between g and h for all x ∈ [0, 1] (i.e.
s(xi) = λxi

g(xi) + (1− λxi
)h(xi) for λxi

∈ [0, 1]). Using convexity of square loss and the bounds on the error of g and h
from the previous paragraph, we have

∥PS(K)f − f∥22 ≤ ∥s− f∥22 =

n∑
i=1

(λxig(xi) + (1− λxi)h(xi)− f(xi))
2

≤
n∑

i=1

λxi(g(xi)− f(xi))
2 +

n∑
i=1

(1− λxi)(h(xi)− f(xi))
2 = Õ(n1/5C2/5)

Where the inequality holds by convexity of ℓ2-loss and the final bound holds on E3 due to Lemma C.6, which guarantees
small error for g and h on E0 ∩ Ef1 ⊂ E3 and E0 ∩ Eb1 ⊂ E3 respectively.

C.6. Helper Lemmas

Lemma C.10. [Simplification of Lemma 4 from (Rhee & Talagrand, 1986)] Let Z ∼ N (0,Σ). Then

Pr[∥Z∥ ≥ t] ≤ exp
−t2

2tr(Σ)

D. Proofs for ADDLE
The proofs in this section represent fairly straightforward extensions of those found in (Baby et al., 2021).

We will prove the following theorem. If N = n, then Theorem D.1 becomes Theorem 6.1.
Theorem D.1. Consider equally spaced design points, {xt = t/n}p+N

t=p , for p ≥ 1 and p + N ≤ n. Let
C := TV1[f |[xp,xp+N ]]. Let {ŷt}nt=1 be the the predictions generated by Algorithm 5 when fed these data in order.
With probability 1− δ, the total squared error satisfies:

n∑
t=1

(ŷt − f(xt))
2 = Õ(N

3
5C2/5/n2/5)

where Õ hides constants (including σ) and polylog factors of n and δ.
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Proof Sketch: The proof of the bound for ADDLE in Theorem 6.1 follows along the same lines as the proof of Aligator in
(Baby et al., 2021). The idea is that, for any f , there exists a not-too-large partition of {x1, ...xn} into intervals such that f
is approximately linear within each interval (as measured by TV1). On each of these intervals, the linear expert who starts at
the beginning of the interval achieves low error. Furthermore, by the adaptivity property of FLH (Proposition D.2 below),
ADDLE competes with the best expert on each interval. Thus, summing over intervals, we observe that ADDLE achieves
the optimal rate.

Beginning of formal proof

The main tool is the following lemma, which states that FLH competes with each expert in each interval.

Proposition D.2 ((Hazan & Seshadhri, 2007)). Suppose the loss functions are exp-concave with parameter α. For any
interval I = [r, s] in time, the algorithm FLH Fig.4 with learning rate ζ = α gives O(α−1(log r + log |I|)) regret against
the base learner in hindsight.

The following lemma follows instantly from a subgaussian tail bound and a union bound.

Lemma D.3 (Lemma 16 from (Baby et al., 2021)). Let V be the event that |ϵt| ≤ σ
√
2 log 4n/δ. Then Pr[V] ≥ 1− δ/2

Note that, conditioned on V , the quantity B from Algorithm 5 upper bounds θt for all t.

Define the filtration Fj = σ{y1, ...yj−1} and let Ej [·] = E[·|Fj ] and Varj [·] = Var[·|Fj ].

Let ŷt be ADDLE’s prediction at time t. Let ẑrt be the prediction at time t of the linear expert that starts at time r. Let
Rσ = 16(1 + σ

√
log 4n/δ)2. Let σ̃ = max{σ

√
log 4n/δ, 1}.

The following Lemma ensures that B, as defined in Algorithm 3 is an upper-bound on f .

Lemma D.4. Let B = maxi |yi|+ σ̃. On the event V , we have that |f(xi)| ≤ B ≤ 1 + 2σ̃ for every i ∈ [n]

Proof. On V , we have that, for any i, yi ∈ (f(xi) − σ̃, f(xi) + |σ̃). Therefore, B ≥ |yi| + σ̃ ≥ |f(xi)|. Also,
B ≤ maxi |yi|+ σ̃ ≤ 1 + 2σ̃.

Lemma D.5. Let I = [r, s] be any interval. On the event V , the predictions ŷj made by ADDLE satisfy:

s∑
j=r

(ŷj − yj)
2 ≤

s∑
j=r

(ẑrj − yj)
2 +

2 log n

Rσ

Proof. On the event V , each loss function (· − yt)
2 is R−1

σ := η exp-concave.

Now apply Lemma D.2 and bound r, s− r ≤ n.

The following Lemma is proved as Lemma 18 in (Baby et al., 2021), recalling that |ẑrj − θj | ≤ 2(1 + σ̃).

Lemma D.6. For any j ∈ [n], we have

1. Ej [(yj − ẑrj )
2 − (yj − θj)

2|V] = Ej [(ẑ
r
j − θj)

2|V].

2. Varj [(yj − ẑrj (j))
2 − (yj − θj)

2|V] ≤ RσEj [(ẑ
r
j (j)− θj)

2|V].

Lemma D.7. (Freedman type inequality, (Beygelzimer et al., 2011)) For any real valued martingale difference sequence
{Zt}Tt=1 with |Zt| ≤ R it holds that,

T∑
t=1

Zt ≤ η(e− 2)

T∑
t=1

Vart[Zt] +
R log(1/δ)

η
, (14)

with probability atleast 1− δ for all η ∈ [0, 1/R].
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We use these Lemmas to define and bound two Martingale Difference Sequences (MDS). Again, compare to Lemma 19 in
(Baby et al., 2021).

Lemma D.8. Condition on V . For any interval [r, s], it holds with probability at least 1− δ that

1.
∑s

j=r(yj − ẑrj )
2 − (yj − θj)

2 ≤ (e− 1)
∑s

j=r(ẑ
r
j − θj)

2 +R2
σ log 4/δ,

2.
∑s

j=r(yj − ŷj)
2 − (yj − θj)

2 ≥ (3− e)
∑s

j=r(ŷj − θj)
2 −R2

σ log 4/δ.

Proof. We continue to condition on V . By Lemma D.6, Zj := (ẑrj − yj)
2 − (yj − θj)

2 − (ẑrj − θj)
2 = 2ϵj(ẑ

r
j − θj) is an

MDS. Note that, because of the truncation step, |Zj | = 2|(ẑrj − θt)(θt − yt)| ≤ 2(2B)σ̃ ≤ 4(1 + 2σ̃)σ̃ ≤ Rσ

By Lemma D.7 with η = 1
Rσ

, we therefore obtain

s∑
j=r

(ẑrj − yj)
2 − (yj − θj)

2 − (ẑrj − θj)
2 ≤ (e− 2)

s∑
j=r

(ẑrj − yj)
2 +R2

σ log
1

δ

with probability 1− δ.

We obtain the second inequality by an identical argument with the MDS

s∑
j=r

(ŷj − θj)
2 + (yj − θj)

2 − (ŷj − yj)
2

Union bounding over 1 and 2 gives the result.

Now, note that by Lemma D.5, we have that

s∑
j=r

(ŷj − yj)
2 − (yj − θj)

2 ≤
s∑

j=r

(ẑrj − yj)
2 − (yj − θj)

2 +
2 log n

Rσ

So that, by Lemma D.8

(3− e)

s∑
j=r

(ŷj − θj)
2 −R2

σ log
4

δ
≤

s∑
j=r

(ŷj − yj)
2 − (yj − θj)

2 ≤
s∑

j=r

(ẑrj − θj)
2 +R2

σ log
4

δ
+

2 log n

Rσ

which (for fixed r, s) leads to the following high-probability relation:

s∑
j=r

(ŷj − θj)
2 ≤ (e− 1)

(3− e)

s∑
j=r

(ẑrj − θj)
2 + 2R2

σ log 4/δ + 2 log n/Rσ

Let’s union bound over the n2 possibilities for r, s to get that, with probability 1− δ for all intervals [r, s]

s∑
j=r

(ŷj − θj)
2 ≤ (e− 1)

(3− e)

s∑
j=r

(ẑrj − θj)
2 + 2R2

σ log 4n
2/δ + 2 log n/Rσ (15)

Since we’re conditioning on V , observe that, if ŵr
j = Predict({xt, yt}j−1

t=r , xj} is the prediction from a hypothetical
unbounded linear expert (Algorithm 4), (ẑrj − θj)

2 ≤ (ŵr
j − θj)

2. Thus, from this point forward, we consider ŵr
j instead of

ẑrj .

Now, noting that (for j > r + 1) ŵr
j ∼ N (wr

j , σ
2xT

j (Xj−1X
T
j−1)xj︸ ︷︷ ︸

σ2
j

), we have by direct computation (Lemma E.2 in

Appendix E)
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s∑
j=r

(ŵr
j − θj)

2 ≤ 3σ2 log 2n/δ log en+

s∑
j=r+2

(wr
j − θj)

2

Plugging this result into Equation 15, we summarize in the following lemma.

Lemma D.9. Condition on V . Within this conditioning, With probability 1 − δ/2, the following bound holds over all
intervals [r, s]

s∑
j=r

(ŷj − θj)
2 ≤ Õ(1 +

s∑
j=r+2

(wr
j − θj)

2 + σ2
j )

where Õ(·) hides only constants, as well as log factors of n and δ, and where the sum is considered to be zero if s ≤ r + 1.

We can also now uncondition on V , and union bound over Vc and V ∩ Cc, where C is the good event from Lemma D.9

Lemma D.10. With probability 1− δ, the following bound holds over all intervals [r, s]

s∑
j=r

(ŷj − θj)
2 ≤ Õ(1 +

s∑
j=r+2

(wr
j − θj)

2 + σ2
j )

where Õ(·) hides only constants, as well as log factors of n and δ, and where the sum is considered to be zero if s ≤ r + 1.

As compute in Appendix E (Equation 16 of Lemma E.2),
∑s

j=r σ
2
j = Õ(1). By Lemma E.1 we obtain

∑s
j=r+2(w

r
j−θj)2 =

TV1(θ[r : s])2|r − s|3/n2 for equally spaced {xj = j/n}sj=r. This leads to the follow lemma.

Lemma D.11. Let P = [r1 = 1, r2] ∪ {[ri, ri+1 − 1]}l−2
i=2 ∪ [rl−1, rl − 1] be any partition of [n] into contiguous intervals

with rl = n + 1. Let ni = ri+1 − ri be the length of the ith interval, and TV1(i) := TV1(θ[ri : ri+1 − 1]). Then, with
probability 1− δ:

n∑
j=1

(ŷj − θj)
2 ≤ Õ(

l−1∑
i=1

(TV1(i)
2n3

i /n
2 + 1))

Now consider the partitioning scheme that scans left to right from p to p + N , and adds points to the current bin so
long as TV1(θ[current bin]) < n

current bin size3/2 . It follows immediately that, the TV1 inside each bin satisfies TV1(bin)2 ≤
n2/(bin size)3. This is analagous to the TV0 case from (Baby et al., 2021). As can be seen in Lemma 23 in (Baby & Wang,
2020), the total number of bins in this partition is bounded by O(N3/5C2/5/n2/5). Thus, letting P be this partition, Lemma
D.11 becomes Theorem D.1.

E. Some missing computations
Lemma E.1 (Bias of linear regression). Suppose x1, ...xn are sorted covariates such that maxj=2,...n(xj − xj−1) ≤
log n/(p0n) for some constant p0 > 0. Let θj := f(xj), so that our data is {(xi, θi)}ni=1. Further, consider some subset
{(xi, θi)}Ni=r. Let l̂(z) = â+ b̂x be the linear least squares fit trained on this subset. Then the error of l̂ is bounded as

N∑
i=r

(l̂(xi)− θi)
2 ≤ N3TV1(θ[r : N ])2 log2 n/(p20n

2)

In the special case where xi = i/n for i = 1, ..., n, we have

N∑
i=r

(l̂(xi)− θi)
2 ≤ N3TV1(θ[r : N ])2/n2

Proof. WLOG suppose r = 1.
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Define ā to be equal to θ1 and b̄ to be 1
N

∑N
j=1 sj , where for j > 1 we let sj =

θj−θj−1

xj−xj−1
be the slope from the datapoint

j − 1 to j. We then have
N∑
i=1

(â+ b̂xi − θi)
2

(1)

≤
N∑
i=1

(ā+ b̄(xi − x1)− θ1 −
i∑

k=2

sk(xk − xk−1))
2

=

N∑
i=1

(b̄

i∑
k=2

(xk − xk−1)−
i∑

k=2

(xk − xk−1)sk)
2

=

N∑
i=1

(

i∑
k=2

(b̄− sk)(xk − xk−1))
2

≤
N∑
i=1

i∑
k=2

(b̄− sk)
2

i∑
k=2

(xk − xk−1)
2

(2)

≤
N∑
i=1

NTV1(θ[1 : N ])2 × N log2 n

p20n
2

≤ N3TV1(θ[1 : N ])2 × log n2/(p20n
2)

(1) holds because â, b̂ minimize square loss among linear functions. (2) holds because for any vector z ∈ Rd, we have∑d
i=1(z[i] − z̄)2 ≤ dTV0(z)

2, where z̄ =
∑d

i=1 zi/d. This fact is applied with zj = sj for j = 1, ...n, which leads to
TV0(z) = TV1(θ[1 : N ]).

The equal-spacing case follows from an identical argument where (xk − xk−1)
2 is instead set to 1

n2

Lemma E.2 (Running variance for ADDLE). Consider a set of covariates, {xt = t/n}nt=1, and responses {yt =
f(xt)+ ϵt}nt=1. For any interval [a, b] ⊂ [1, n] with length l > 2, consider ẑt to be the prediction of online linear regression
(Algorithm 4) at time t after starting at time a. Let zt = E[ẑt]. Then with probability 1− δ:

b∑
t=a

(ẑt − zt)
2 ≤ 2σ2 log (

2n

δ
) log en+ σ2 log 2/δ

Proof. Without loss of generality let [a, b] = [1, l]. Start by fixing t ∈ [3, l−1]. Let Xt ∈ R2×t have columns {[xi, 1]
T }ti=1.

ẑt+1 − zt+1 = xT
t+1(XtX

T
t )

−1Xt(Y − θ) ∼ N (0, σ2xT
t+1(XtX

T
t )

−1xt+1)

Letting σ2
t = σ2xt+1(XtX

T
t )

−1xt+1, and applying a gaussian tail bound, we obtain:

Pr[|ẑt+1 − zt+1| ≤ σt

√
2 log 2n/δ] ≥ 1− δ/n

So that

Squaring each side, then union bounding over t ∈ [3, l] and summing up, we have that, with probability 1− δ:

l∑
t=3

(ẑt+1 − zt+1)
2 ≤ 2σ2 log (2n/δ)

l∑
t=3

xT
t (XtX

T
t )

−1xt (16)

Thus, we need to analyze the “out-of-sample leverage scores”. Observe that (XtX
T
t )

−1 is given by:
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(XtX
T
t )

−1 =
1

t2 × 1
t ×

∑
i(xi − x)2

[
t −

∑t
i=1 xi

−
∑t

i=1 xi

∑t
i=1 x

2
i

]
If we assume equally spaced points with pairwise distance 1/n, we can compute

n2

t2(t+ 1)(t− 1)

[
t −t(t+ 1)/2n

−t(t+ 1)/2n t(t+ 1)(2t+ 1)/6n2

]
=

[
n2/t(t+ 1)(t− 1) −n/2t(t− 1)
−n/2t(t− 1) (2t+ 1)/6t(t− 1)

]
So that

xT
t+1Ztxt+1 =

(t+ 1)2

n2
× n2

t(t+ 1)(t− 1)
− 2× (t+ 1)

2t(t− 1)
+

2t+ 1

6(t− 1)t
=

2t+ 1

6t− 1)
× 1

t
≤ 1

t

Thus, using
∑l

t=1
1
t ≤ log n+ 1 = log(en) when we plug in to Equation 16, we are left with:

l∑
t=3

(ẑt+1 − zt+1)
2 ≤ 2σ2 log (2n/δ) log en (17)

To finish, recall that for t = 1, online regression predicts 0 deterministically, so that ẑt − zt = 0. For t = 2, it predicts y1,
which will yield a N (0, σ2) summand, which can be bounded with high probability. We tack these terms onto the above
display after a union bound.

F. Uneven and Random Covariates
F.1. Theorem statements for uneven covariates

In this section, we explain how ADDLE can be generalized to handle the case of uneven covariates. These proofs rely
on a minor algorithmic change: We replace each clipped online linear regression expert of Figure 4 by a clipped Vovk-
Azoury-Warmuth (VAW) forcaster with the same start-point (see (Baby & Wang, 2020; Cesa-Bianchi & Lugosi, 2006) for
descriptions of the VAW forcaster).

We show how to prove the following generalization of Theorems 6.1

Theorem F.1. For some p0 > 0, consider sorted design points 0 ≤ x1, ...xn ≤ 1 such that maxj=2,...n |xj −xj−1| ≤ logn
p0n

.
Let f be a function with C := TV1[f,DX ], and consider responses {yt} coming from the regression model. Let {ŷt}nt=1 be
the the predictions generated by ADDLE, now with (clipped) VAW forcasters as experts. With probability 1− δ, the total
squared error satisfies:

n∑
t=1

(ŷt − f(xt))
2 = Õ(n1/5C2/5)

where Õ hides constants (including σ) and polylog factors of n and δ.

This leads directly to the corresponding generalization of Theorem 6.2.

Theorem F.2. For some p0 > 0, consider sorted design points 0 ≤ x1, ...xn ≤ 1 such that maxj=2,...n |xj −xj−1| ≤ logn
p0n

.

Let f be a function with C := TV1[f,DX ], and consider responses {yt} coming from the regression model. Let f̂ be the
function returned by AKORN. Then, with probability 1− δ, the average square error satisfies:

1

n

n∑
t=1

(f̂(xt)− f(xt))
2 = Õ(n−4/5C2/5)

where Õ hides constants (including σ) and polylog factors of n and δ.
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F.2. Proof steps for Theorem’s F.1 and F.2

Steps for Theorem F.1

We now consider as our experts clipped linear Vovk-Azoury-Warmuth (VAW) forecasters ((Cesa-Bianchi & Lugosi, 2006))
starting at time r for each r ∈ [n]. This is a very minor change from the original linear regression experts, and does not
affect computational or statistical efficiency. The VAW expert starting at r is fed data Dr,s := {(xj , yj)}sj=r in an online
fashion, and produces estimates ŵr

r , ...ŵ
r
s .

Notice that, even with these changes to our setting, we can run the proof of Appendix D up until Equation (15), where now
ẑrj is the clipped VAW expert that starts at time r. We can still replace this expert with a hypothetical unclipped expert, ŵr

j .

By Lemma 24 of (Baby & Wang, 2020), we have:

s∑
j=r

(θj − ŵr
j )

2 ≤
s∑

j=r

(θj − lr:s(xj))
2 + ∥u∥22 + Õ(1)

where lr:s(xi) = uTxi is the offline linear least squares estimate trained on noiseless data (xj , θj) j = r, ...s. From
Corollary 40 of (Baby & Wang, 2020), we have ∥u∥22 = O(1). By Lemma E.1 we have that the first term is bounded by
|r − s|3TV1(θ[r : s])2/n2.

Plugging this argument into Equation (15), we recover Lemma D.11’s statement that, with high probability, for any partition
P = p1, ...pl with pi = [xri , xri+1−1]

n∑
j=1

(ŷj − θj)
2 ≤ Õ(

l∑
i=1

(TV1(i)
2n3

i /n
2 + 1))

To complete the proof, we may now construct the oracle partition in the same way as before, where TV1 of a bin is computed
with respect to realized covariate spacing.

Steps for Theorem F.2

All of the spline approximation results of Appendix C go through without technical changes. Now that ADDLE has been
generalized to the uneven covariate setting, Lemma C.1. also goes through by an application of Lemma E.1 to the bias of
the linear fits ât (concentration is not an issue, as we still have

∑n
j=1 x

T
j (XXT )−1xj = 2σ2).

F.3. Theorem for random covariates

First, we cite a result that tells us that draws are roughly evenly spaced when they come from a distribution whose density is
bounded below on [0, 1]. We do not have control over the probability of the good event in this lemma.

Lemma F.3 (Lemma 5 of (Wang et al., 2014)). Suppose p is a pdf with support in [0, 1] and such that p(x) ≥ p0 > 0. Let
x1, ...xn be a sorted list of iid draws from p. Then, with probability at least 1− 2p0n

−10, the maximum gap between two
draws satisfies

max
i>1
|xi − xi−1| ≤

c log n

p0n

where c is a universal constant.

By including the bad event of Lemma F.3 in a union bound, we have the following corollary of Theorem F.1. Notice that
now, TV1[f ;DX ] is a random variable depending on the sampled covariates. In the special case where f is differentiable,
then TV1[f ;DX ] ≤ ∥f∥TV1 a.s.

Corollary F.4. Suppose the same setting as Theorem F.1, except that x1, ..., xn are sorted draws from a pdf p with support
in [0, 1] and such that p(x) ≥ p0 > 0. Then, with probability at least 1− p0n

−10 − δ, the error satisfies

n∑
t=1

(ŷt − f(xt))
2 = Õ(n1/5TV1[f ;DX ]2/5)

where Õ hides constants (including σ) and polylog factors of n, p0 and δ.
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Similarly, for AKORN’s Theorem F.2:

Corollary F.5. Suppose now that x1, ..., xn are sorted draws from a pdf p with support in [0, 1] and such that p(x) ≥ p0 > 0.
Then, with probability at least 1− p0n

−10 − δ, the error of f̂ satisfies

n∑
t=1

(f̂(xt)− f(xt))
2 = Õ(n1/5TV1[f ;DX ]2/5)

where Õ hides constants (including σ) and polylog factors of n, p0 and δ.

G. Experimental Details and Additional Simulations
G.1. Details

A single run of AKORN, Oracle Trend Filtering, and DoF Trend Filtering is performed as follows

1. Generate ϵ ∼ N (0, σ2In)

2. Get f̂ = AKORN({xi, f(xi) + ϵi}, σ)

3. Get f̂λ
tf for data {xi, f(xi) + ϵi} and parameter λ,We use the library glmgen: https://github.com/glmgen/glmgen.

4. Let f̂o−tf be the f̂λ
tf which has the smallest MSE with respect to the noiseless data

5. Let f̂s−tf = f̂λ
tf where λ = argminλ∈E{∥f̂λ

tf − Y ∥22 + 2σ2L(f̂λ
tf )} where L(g) gives the number of linear pieces of

g.

6. Produce fitted values ŷ = [f̂(x1)...f̂(xj)] and ŷo−tf = [f̂o−tf (x1)...f̂o−tf (xj)] and ŷs−tf = [f̂s−tf (x1)...f̂s−tf (xj)]
for comparison

This procedure is used as a subroutine for producing Tables 1, 2, and Figure 2.

G.2. ADDLE is worse than AKORN

In this appendix, we back up the statement made in Section 5.2 that ADDLE is not competitive with offline methods. In
Figure 5, we reproduce a couple entries of Figure 2, substituting TF-DoF with ADDLE.

26



AKORN: Adaptive Knots generated Online for RegressioN splines

Figure 5. Same methodology as Figure 2 applied to the Doppler function and Jump Function, but this time comparing ADDLE to AKORN
and Trend Filtering. There is roughly an order of magnitude difference in the MSEs for all n
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