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Abstract

Video prediction is the process of learning necessary information from
historical frames to predict future video frames. How to focus and effi-
ciently learn features from historical frames is a critical step in this pro-
cess. For any sequence of video frames, the background changes little or
remains almost constant, while the foreground changes significantly and is
the main focus of our video prediction learning. However, current known
video prediction learning methods do not consider how to utilize the dif-
ferent characteristics of the foreground and background to further improve
prediction accuracy. To fully leverage the different characteristics of the
foreground and background and enhance prediction accuracy, we propose
a Foreground-Background Separation Video Prediction (FBSVP) model
in this paper. Through the foreground and background separation mod-
ule, historical video frames are separated into foreground and background
frames. In the video prediction module, the foreground and background
frames are predicted and learned separately. First, the features of historical
frames are fused into the current frame through a historical attention fusion
module using an attention mechanism. Then, the complementary tempo-
ral and spatial features are fused through a spatio-temporal fusion module.
Finally, the learned foreground and background features are fused in the
foreground and background fusion module to predict the final video frame.
Experimental results show that our proposed FBSVP model achieves the
best performance on popular video prediction datasets, demonstrating its
significant competitiveness in this field.

1 Introduction

Video can be seen as a special type of temporal data that is well-suited for modeling using
Recurrent Neural Networks (RNNs). The work by Ranzato et al) (2014) first utilized RNNs
to model the spatiotemporal dynamics of videos in_an unsupervised manner, which inspired
a_series of subsequent studies Finn et al) (2016); Srivastava et al) (2015); Oliu et al} (R018);
Zhang et al) (2019). However, RNN-based approaches primarily focus on capturing tem-
poral features of videos while overlooking spatial information. To address this limitation,
Convolutional Neural Networks (CNNs) were introduced Shi et al] (2015) to complement
the RNNs, resulting in the widely adopted hybrid architecture of convolutional and recur-
rent, layers in_most video predjction_models Shi et al) (2017); Wang et al| (2017; 2018h;
2019); Guen & Thome (2020); Ballas et al| (2015). This hybrid architecture allows models
to leverage the ability of convolutional units to model spatial relationships and the potential
of recurrent units to capture temporal dependencies. Although popular in the literature,
these classical video prediction architectures still have two main limitations. Firstly, in dense
prediction tasks like video prediction, models need to have a sufficiently large receptive field
to capture rich contextual information. Previous works attempted to enlarge the receptive
field of prediction units through 3D convolutions Wang et al| (20184); Yu et al| (2020), but
the receptive field is primarily determined by the kernel size of the integrated convolutional
operators. Increasing the receptive field would significantly increase the model’s memory
consumption and computational cost. Secondly, existing video prediction models struggle
to effectively fuse captured spatial and temporal features to enhance prediction accuracy.
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Many current_approaches simplify the training process by independently modeling these two
features Villegas et al| (2017); Denton et al} (2017), only performing simple fusion when gen-
erating predicted frames. In reality, spatial and temporal features are complementary, and
fully integrating both features during training is crucial to better understand the patterns
of video variations and improve the model’s perception ability.

To address the above issues, we propose a video prediction model based on Foreground-
Background Separation (FBSVP). Due to the differences in the characteristics of the video
frame foreground and background, we separate the foreground and background of the video
frames and then predict them separately. This allows for more effective video prediction
tailored to their respective characteristics and enables more focused and efficient learning of
video frame motion patterns. It avoids the interference caused by different feature changes,
which can lead to a decrease in prediction performance. Since separate prediction for the
foreground and background reduces the complexity of the prediction, it helps to lower the
difficulty of prediction, naturally improving the accuracy. Finally, the more accurately
predicted foreground and background features are effectively fused to produce the final
predicted video frame. Experimental results show that the proposed FBSVP outperforms
other state-of-the-art methods in major video prediction tasks.

2 Related Work

2.1 Video Prediction

The latest research progress in video prediction provides some useful insights into how to
predict future visual frames based on historical observations. In this section, we will discuss
recent advancements in video prediction methods. Ranzato et al| (R014) utilized recurrent
neural networks (RNN) to model videos based on a language model. Srivastava et al) (2015)
proposed FC-LSTM, an improved variant of RNN with long short-term memory (LSTM)
that_enhances the model’s ability to capture temporal dependencies in videos. Shi et al
(2015) introduced ConvLSTM, which replaces the fully connected layers in FC-LSTM with
convolutional layers to improve perception of visual data and save parameters. Similarly,
Ballas et al| (2015) employed conyolutional layers with gated recurrent units (GRU) for video
prediction. However, Wang et al] (2017) argued that both temporal and spatial information
should be equally considered and proposed ConvLSTMs (ST-LSTM) with spatial modules
to model the spatial representation of each frame. They further introduced Casual LSTM
Wang et al| (20184 to increase the temporal depth of the model and Gradient, Highway Unit
to alleviate gradient propagation issues in deep prediction models. Guen & Thomd (2020)
introduced PhyCell, which separates physical dynamics from unknown factors to predict
more reliable motion. Additionally,Wu et al| (2021) proposed Motion-GRU to independently
model transient changes and motion trends for more satisfactory predictions.

Despite the significant achievements of the aforementioned methods, the models still have
relatively narrow receptive fields, making it challenging to capture rich contextual informa-
tion and improve the perception ability of video features.

2.2 Foreground-Background Separation

Foreground-background separation methods have been designed and proposed in many com-
puter vision tasks (Cristani et all, 2010; Garcia-Garcia_et al), 2020; Zhao et all, 2023; Ding
et all, 2022; Yang et al, 2020; Liu et al), 2023). Shao et al. (2022) proposed a foreground-
background separation (FBS) X-ray contraband detection framework, using an attention
module to make the detection framework more focused on the foreground. The proposed
framework can separate contraband items as the foreground from other irrelevant items us-
ing only available bounding box labels and accurately identify contraband items in severely
occluded and overlapped X-ray images. This demonstrates that separating the foreground
and background and focusing more on the foreground can effectively improve model perfor-
mance. Zhang et al) (2022) proposed a foreground-background separation mutual generative
adversarial network (FSM-GAN) framework for video anomaly event detection, which can
identify the spatio-temporal features of the foreground under background conditions and



Under review as a conference paper at ICLR 2025

achieve satisfactory results even on large-scale datasets. |Yang et all (lZOQ]J) believe that
the foreground and background should be treated equally and proposed a collaborative
video object segmentation method through a multi-scale foreground-background integra-
tion (CFBI+) approach, improving the results of video object segmentation. This indicates
that the relationship between the foreground and background is inseparable and comple-

al Si aforen rs e are also other related excellent papers(
t all, 2023; LLi et al), 2023; Moayeri et all, 2022).

Inspired by the excellent performance of foreground-background separation methods in
various applications, this paper proposes a video prediction model based on foreground-
background separation (FBSVP) to enhance video prediction performance.

3  Method
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Figure 1: The structure of the single-layer stacked FBSVP.
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Figure 2: The structure of the predictive network with stacked FBSVPs.

3.1 Foreground-background video frame extraction
Currently, the methods for extracting the foreground and background mainly come from the

open- i i penCV, which includes seven different algorithms: KNN
(Zivkovic & Van Der Heijden, 2006) (K-nearest neighbors) based on the K-nearest neighbors

algorithm, MOG (KaewTraKulPong & Bowder|, 2002)/MOG2 (Zivkovid, ) (Mixture of

Gaussians) based on the mi ian orithm, CNT (Counting) based on pixel
counting algorithm, GMG (Godbehere et al|, 2012) based on pixel color feature algorithm,
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LSBP (Guo et al), 2016)(Local SVD Binary Pattern) based on local SVD binary pattern
algorithm, and GSOC (Google Summer of Code) algorithm similar to LSBP. Among these,
KNN and MOG2 have the best practical application results. This paper chooses MOG2
because this algorithm can more flexibly adjust parameters according to the scene to adapt
to different situations.

3.2 Encoder

As shown on the left side of Figure m, FBSVP uses a 2D convolutional encoder to process
the input video frames, encoding the original video frames, foreground video frames, and
background video frames separately. The output of each layer is connected to the decoder
through residual connections, providing the decoder with the necessary residual features.

3.3 Foreground-background Separation Prediction

In this section, we will provide a detajled description of the structural details of FBSVP, as
shown in the middle part of Figure [l. The Foreground-background Separation Prediction
Module consists of three fusion modules: Single-layer Historical Attention Fusion Module,
Single-layer Spatiotemporal Fusion Module, and Foreground-background Spatiotemporal
Fusion Module. Typically, to enhance the model’s expressive and perceptual capabilities,
multiple FBSVPs are stacked, as depicted in Figure . It is important to note that at time
step t in the kth layer, FBSVP has a total of three inputs: spatial features Stk*l from the
k — 1th layer, accumulated spatial features SF _, ;| from the kth layer over the previous
7 time steps, and accumulated temporal features 7/ ., ; from the kth layer over the
previous 7 + 1 time steps.

Here is a unified convention for the symbol notation: S represents spatial features, T" rep-
resents temporal features, the superscript s denotes parameters related to spatial feature
calculations, the superscript ¢ denotes parameters related to temporal feature calculations,
the superscript k& denotes the k-th layer, and the subscript ¢ denotes the time instant. In
the superscript or subscript, (i) with ¢ = 1,2,3... is used to distinguish the different states
of the same algorithmic symbol at different stages of the model.

3.3.1 Single-layer Historical Attention Fusion Module

Spatial feature information and temporal feature information complement each other. To
fully capture both temporal and spatial features, we introduce an attention mechanism. The
goal is to assist prediction units in giving different attention to different historical temporal
and spatial features. Since temporal and spatial features influence each other, the attention
given to temporal features helps capture a portion of spatial features, while the attention
given to spatial features helps capture a portion of temporal features. This way, spatial and
temporal features can learn from each other, enhancing the model’s perceptual capabilities.

Based on the above analysis, the attention score M7 for temporal features can be represented
as follows, j represents the j-th attention score. Among them i=1,...,7,j=1,...,7
! k—1 k emj
Sp=Wgy *SFt  mi =SUM (Sf,©8;) M =2776 (1)
i=1

Similarly, the attention score M Jt for spatial features can be represented as follows:

/HLtv
k k e
=Wy s Ty omi=SUM (T}, 0Ty_y) \Mj =
Di—p €™
Where SUM, ®, and * represent summation, Hadamard product, and convolution opera-
tions, respectively. By using the computed attention scores, we obtain a portion of spatial
feature information Sgit pert and temporal feature information Tyt pare.

(2)

Tatt?pm“t ZMS Ttk] 1 att __part — ZMt S (3)
j=1
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we integrate the attention-based spatial feature Sqst pert and the attention-based temporal
feature information Tgs pert into the corresponding spatial and temporal features, respec-
tively.

F(tl) = sigmoid (Ttl—l) , F(Sl) = sigmoid (Sé) (4)
1

Tt( ) = F(tl) ® T;t]il + (]. — F(tl)) © Tattﬁpart (5)

S}gl) = F(‘Sl) ® Sfil + (1 — F(Sl)) © Sattjart (6)

3.3.2 Single-layer Spatiotemporal Fusion Module

Temporal and spatial features are inseparable components of video features, reflecting the
changing patterns of video features from two different perspectives. They complement each
other, and the fusion of spatio-temporal features promotes mutual perception and learning
between the two. This further enhances the model’s perception capabilities. To optimize
the integration of temporal and spatial features, we apply a convolutional transformation
to the previously fused temporal feature Tt(l) and spatial feature St(l) obtained from the
previous module.

T =Wy =TV, S =Wy« 5" (7)
Subsequently, we merge the temporal and spatial features.
Fly) = sigmoid (T}") , F(y) = sigmoid (S}') (8)
T = Fly o T} + (1 - F(‘;)) © S/, 8% = Fgy o8/ + (1 - F(SQ)) T/ (9)
S = Fgy 0 Sy + (1 - F(g)) o1/ (10)

It is important to note that the main difference between historical attention fusion and
spatiotemporal fusion is that historical attention fusion requires calculating attention scores
based on the temporal and spatial features of the current video frame and several past video
frames, based on their interrelatedness. This guides the model to learn key features from
the past video frames with different weights. In contrast, spatiotemporal feature fusion is
relatively straightforward, where a portion of the temporal features and a portion of the
spatial features are computed and summed together to ensure the mutual integration of
features.

3.3.3 Foreground-background Spatiotemporal Fusion Module

In the first half of the process, to reduce the mutual interference of features learned by the
model, the foreground and background features are trained separately, which helps to focus
more on learning the motion patterns of video frames and enhances the model’s prediction
capabilities. To predict the actual video frames, it is necessary to fuse the learned foreground
and background features. The foreground and background features are two important and
inseparable characteristics of a video frame, influencing and complementing each other. The
foreground features can indirectly reflect the characteristics of the background features, and
similarly, the background features can indirectly reflect the characteristics of the foreground
features.

Therefore, for models that adopt separate training for the foreground and background, it
is crucial to thoroughly fuse the learned foreground and background features. Since we
have designed a model that learns three features simultaneously, it is important to consider
learning the fusion of these features while learning the foreground and background features.
This approach enables better prediction of the actual video frames.

In this segment, to enhance clarity of expression, the following conventions are made:
{ foreground|merge|background} represents a choice between foreground, merge, or back-
ground levels but for a complete formula, only one can be selected - either all fore-
ground, all merge, or all background. To simplify the expression of formulas, we use
f to represent foreground, m to represent merge, and b to represent background. Thus,
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{foreground|merge|background} is simplified to {f|m|b}. In the following text, f, m, or b
appearing in superscripts or subscripts will represent foreground, medium, or background,
respectively. The subscript ¢ {f|m|b} level represents an abstract feature at one of the
foreground, medium, or background levels at time instant ¢, superscript s_ { f|m|b}_level or
t_{f|m|b}_level represents computational parameters related to spatial or temporal feature
computation at one of the foreground, merge, or background levels, Both {S|T'} and {s|t}
represent either selecting spatial features or temporal features, but for a complete formula
or diagram, either all S and s are chosen or all 7" and ¢ are chosen.

Prior to fusion, a convolutional transformation is applied to the abstract features at each
layer.

(3) _ t_{f|m|b}_level (2)
L fimivy_tever = W) T, fmipy_tevel (11)
(3) _ s_{f|Im|b}_level (2)
Stf{flm\b}flevel - W<3) * St?{flmlb}flevel (12)
st m|b}_level . . 3
FI=mD et — sigmoid ({SITY, 1y tevet) (13)

The spatiotemporal features of the foreground are integrated separately with the fused fea-
tures and the spatiotemporal features of the background, as shown in Figure B: The fused

3) (s]6)f _tevel (Sl
ST 7 tever ‘T’ Fiay ’—(j)f F(;) m_leve
@)
SIT}e 7 tever
o —(D— 16)f tevel (©)] (s16).m_tevel
I m tever 1= FGHAT (SIS v —<L— 1-Fg)

Figure 3: The algorithmic diagram illustrating the fusion of foreground features with the
fused and background features shows the fusion process across these three levels, following
the direction of the arrows.

spatiotemporal features are fused separately with the foreground and background spatiotem-
poral features, as shown in Figure . The spatiotemporal features of the background are

3) (s]t).m_tevel (s]¢)_f _tevel
1T} tever TF 3) ,—T Fa)
ST ever
(3] t} m_l 1 3 {s|t)_f _level
BN o —O— 1= FG™ e SITY et —J:— 1-F)

Figure 4: The diagram illustrating the fusion of fused features with the foreground and
background features shows the fusion process across these three levels, following the direction
of the arrows.

sed separately with the fused and foreground spatiotemporal features, as shown in Figure
. In this case, the extracted spatiotemporal features go through three fusion modules: the

3) {s]t}_b_tevel {s]t)_m_level
(ST sever *(r’ S ’—T' Figy
I SITYS sever
3) {s]t}_b_level 3) {s|t).m_tevel
SIT} m tever 1= F 2 SITYS tever 4<L» 1-F3)

Figure 5: The diagram illustrating the fusion of background features with the fused and
foreground features shows the fusion process across these three levels, following the direction
of the arrows.

single-layer historical attention feature fusion module, the single-layer spatiotemporal fusion
module, and the multi-layer foreground-background spatiotemporal fusion module. It can
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be observed that this model fully perceives and integrates the spatiotemporal features of
the video. The foreground and background are trained and predicted separately, signifi-
cantly reducing interference in feature learning. This allows for a more focused approach
to feature learning, resulting in more accurate predictions and demonstrating the model’s
powerful perception and prediction capabilities.

3.4 Decoder

As shown on the right side of Figure E], the decoder architecture corresponds to a mirrored
version of the convolutional encoder. It encodes the predicted original video frames, fore-
ground video frames, and background video frames separately. The features in the residual
connections are fused with the decoded feature maps through channel concatenation. Due
to the extensive feature fusion, the most recent spatial feature maps already incorporate
temporal feature maps. To maintain consistency with the encoder, the decoder ignores
predicted temporal feature maps that are absent in the encoder’s input. Ultimately, the de-
coder generates the next predicted video frame for the original, foreground, and background
video frames separately. These three predicted frames serve as the basis for preparing the
prediction of the next frame.

4 Experiments

4.1 Experimental Setups

In this section, extensive experiments will be conducted to evaluate the performance of the
proposed model compared to state-of-the-art methods. We evaluate the proposed FBSVP
on_five different video datasets with _varying levels of complexity, namely Moving MNIST
(Srivastava et all, 2015), TrafficBJ (Zhang et all, 2017), KTH (Schuldt et all, 2004), KITTI
(Geiger et all, R013), Caltech Pedestrian (Dollar et all, 2009). Furthermore, all models are
implemented using PyTorch and optimized uging the Adam optimizer (Kingma & Ba, 2014)
on a single Tesla P100 (16GB) GPU. Tablesalsummarizes the more detailed experimental
settings for the aforementioned tasks, In this context, Train and Test represent the number
of input and predicted frames during training and testing, respectively. Layers indicate the
number of stacked prediction units.

4.2 Video Prediction

4.2.1 Moving MNIST
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Figure 6: Predictions on the Moving MNIST dataset (10 frames — 10 frames) by different
methods.
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Moving MNIST

Method SSIM/framet MSE/framel
ConvLSTM (NeurP$2015)(Bhi cf al. B01d) 0.707 ;
FRNN(ECCV2018)(Dlin et all, R01) 0.819 68.4 TrafficBJ
VPN(ICML2017) (Kalchbrenner et all, R017) 0.870 70.0 Method MSE x 100, MAE] SSIM{
PredRNN(NeurIPS2017) (Wang et all. 2017) 0.869 56.8 ConvLSTM(NeurIPS2015)(Bhi et all, B013) 185 177 0.978
PredRNN++(NeurIPS2018) (Wang et _all. R0184) 0.898 46.5 PredRNN(NeurIPS2017)(Wang et all, R017) 46.4 171 0971
MIM(CVPR2019)(Wang et all. 2019) 0.910 44.2 PredRNN-++(NeurIPS2018) (Wang et _all, R0184) 44.8 16.9  0.977
E3D-LSTM(ICLR2019)(Wang et all, R018H) 0.910 41.3 MIM(CVPR2019)(Wang et all. 2019) 42.9 16.6  0.971
Conv-TT-LSTM(NeurlP$2020)(Su.ct all, 202() 0.915 53.0 E3D-LSTM(ICLR2019)(Wang et all, P018H) 16.9  0.979
MAU(NeurIPS2021)(Chang et all, 2021) 0.937 27.6 PhyDNet(ICLR2020 Thomd, 202() 4 16.2  0.982
PhyDNet(ICLR2020)(Guen & Thomd, 202() 0.947 244 SimVP(CVPR2(22) et all, R027) 41.4 16.2  0.982
SimVP(CVPR2022)(Gao et all, 2022) 0.948 23.8 SimVPv2([lan gt all. 2022) 34.8 156 0.984
MMVP(CVPR2023)(Zhone, et all. 2021) 0.952 22.2 TAU(CVPR2023) (an et all, 202]) 34.4 156 0.983
SimVPv2([lan et all. 2022) 0.952 21.81 "BSVP w/o FBS - 55
TAU(CVPR2023)(Canci.all. 2023 0.957 19.8 ! /"Ifﬁ; S
SwinLSTM(ICCV2023) ([Tang et all, p0231)) 0.962 177
FBSVP w/o FBS 0.958 189
FBSVP w/ FBS 0.963 162 Table 2: Quantitative results of differ-

ent methods on the TrafficBJ dataset(4

Table 1: Quantitative results on the Mov- frames — 4 frames)

ing MNIST dataset (10 frames — 10
frames) for different methods

Figure E illustrates prediction examples from different methods, and compared to other
methods, the proposed FBSVP (Foreground-Background Separation Video Prediction)
achieves predictions with the best visual quality, significantly outperforming other meth-
ods. Particularly, it obtains notably better results in the last two time steps, indicating
the superior expressive power of the proposed model. Additionally, Table E summarizes
detailed quantitative results, where Mean Squared Error (MSE) and Structural Similarity
Index (SSIM) are used to indicate the visual quality of the predictions. Lower MSE and
higher SSIM scores suggest better visual quality. Compared to other existing methods, the
proposed FBSVP achieves the best performance.

Figure 7: Qualitative visualization of the prediction results on the TrafficBJ dataset.

4.2.2 TrafficBJ

input

target

predicted

|targe-
predicted|

We present the quantitative results in Table E and qualitative results in Figure H Despite
the significant differences between the given frames and the future frames, our model can
still generate accurate and reliable frames. To make the comparisons more evident, we also
visualize the differences between the actual frames and the predicted frames in the last row.
Clearly, FBSVP exhibits the best performance among all the compared models, with the
lowest intensity of differences in all predicted frames.

4.2.3 KTH

We used Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) as
evaluation metrics to measure the quality of frame prediction from a perceptual perspective.
The quantitative results are shown in Table B. It can be observed that FBSVP outperforms
other methods in both PSNR and SSIM metrics. Furthermore, FBSVP even demonstrates
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accurate prediction of future frames in long-range scenarios, such as 10 frames — 40 frames,
showcasing its ability to predict future frames with flexible lengths.

11~30 sampling frames

17 19 21 23 25 27 29|31

31~50 sampling frames
33 35 37 39 41 43 45 47 49 |sequence

13 15

(Ground Truth

FBSVP

SimVPv2
TAU
PredRNN++

ConvLSTM

Figure 8: Prediction samples of KTH dataset, forecasting 40 future frames based on observ-
ing 10 frames.

KTH Caltech Pedestrian
_KTH(10 — 20) KTH(10 — 40) Method MSE(10~%) SSIM{ PSNR?
Method SSIMT PSNRT SSIM{ PSNRT _
Menet(ICLR2017) (Villegas cf.a 0804 2595 0.730 23.89 BeyondMSE(ICLR201 () bak ) 34 0847 -
c : ; e MCnet(ICLR2017) (Villega 2.50 0879 -
onvLSTM (NeurIPS2015)(hi cf a 0712 2358 0639 2285 o CL RIS 000 265
DFN(Neur[PS2016) mm 201 0.794 2726 0.652  23.01 .“ en( ) y - -0
FRNN(ECCVZOlS)( Zli!‘ 0771 2612 0687 2377 PredNet(ICLR2017) (Lt » 242 0.905  27.6
PredRNN(NewrTPS2017) (Wane | 0.839 27.55 0.703 24.16 ContextVP(ECCV2018) ) 1.94 0.921  28.7
PredRNN-+(NeurTPS2018) (Wane ¢ d) 0865 2847 0741 2521 E3D-LSTM(ICLR2019) ) 2.12 0.914 281
E3D-LSTM(ICLR2019) (Wane . 2018 0.879 2931 0.810 27.24 rCycleGan(CVPR2019) (K 9) 1.61 0.919 292
STMFANet(CVPR2020)(Jin_ct all, 0.893 2085 0851 27.56 CrevNet(ICLR2020) 1.55 0925 29.3
SwinLSTM(CVPR2023)([Tang ct ) d) 0903 3431 0879 33.15 STMFANet(CVPR20! a ) 1.59 0927 29.1
SimVP(CVPR2022) 2 0.905 3372 0.886 3293 MAU(NeurTP$2021)(Chang ct.a ) 1.34 0939 29.4
MMVP(CVPR2023)(Zhong ct, all. 2 0.906 27.54 0.888 26.35 SimVP(CVPR2022), 3) 1.56 0.940  33.1
TAU(CVPR2023)(Lan et all. 2029) 0.911 3413 0.897 33.01 TAU(CVPR20; ) 1.52 0.946 337
SimVPv2([lan et all, 2029) 0913 3424 0895 3335 SimVPv( 148 0949 332
FBSVP w/o FBS 0916 3045 0902 2972 FBSVP w/o FBS 121 0952 312
FBSVP w/ FBS 0917 3092 0903 29.84 FBSVP w/ FBS I 0953 521
Table 3: Quantitative results of different Table 4: Quantitative results of differ-
methods on the KTH dataset(10 frames ent methods on the Caltech Pedestrian
— 20 frames and 10 frames — 40 frames) dataset (10 frames — 1 frame)

In Figure E, we present prediction samples from different methods. Compared to other
methods, our proposed FBSVP demonstrates more accurate prediction of human actions
in long-term forecasting, with the best visual quality and a clear superiority over other
methods. This indicates that the proposed model possesses strong capabilities in long-term
prediction.

4.2.4 KITTI and Caltech Pedestrian

The quantitative results presented in Table H indicate that our proposed method achieves
state-of-the-art performance in the generalization evaluation task, as measured by the MSE,
SSIM, and PSNR metrics. In Figure {, we present qualitative visualization results, where
the last column showcases the visual differences between actual frames and predicted frames.
It can be observed that our model accurately predicts changes in lighting conditions and
lane markings, with minimal disparities between the predicted and actual frames. This
demonstrates the strong predictive capabilities of FBSVP.
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Figure 9: Qualitative visualization of prediction results on the Caltech Pedestrian dataset.

5 Ablation Study

5.1 FBSVP model architecture

We investigated the importance of different module design choices in the FBSVP model.
Specifically, we studied the relevance of the temporal and spatial hierarchical structures
and the impact of different fusion methods used in the prediction unit on the prediction
results. For our ablation study, we focused on the Moving MNIST dataset. The results

of our ablation study are listed in Table fj, with the best-performing results highlighted in
bold and the second-best results underlined. As shown in Tablelrg, s_att__fuse represents

Table 5: Ablation experiment results

FBSVP Modules Results
rownum s_att_fuse st fuse t_att fuse b_s t fuse f s t fuse f b s t fuse MSE| SSIMT PSNRt LPIPS|

1 v - - - - - 31.1 0.929 22.27 6.52

v v - - - - 27.8 0.938 22.77 5.32
3 v v v 23.8 0.947 23.63 4.61
4 v v v v - - 20.8 0.953 23.78 4.27
5 ' v v v - 17.7 0.959 24.19 3.39
6 v v v - v 16.2 0.963 24.78 3.11

the historical spatial attention fusion module, ¢_att_fuse represents the historical tem-
poral attention fusion module, st fuse represents the single-layer spatio-temporal fusion
module, b_s_t_ fuse represents feature fusion of only the background, f_s ¢ fuse rep-
resents feature fusion of only the foreground, f b s t fuse represents feature fusion of
both the foreground and the background. Additionally, v' represents the model selecting
the corresponding module, - represents the model not selecting the corresponding module.

10
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From the comparison of the last three rows in the table, it is easy to discover that foreground
features contribute more to improving prediction accuracy than background features. It is
necessary to pay more attention to foreground features. At the same time, foreground and
background features complement each other and are inseparable. Combining both together
can better enhance the performance of the prediction model.

5.2  Generalization capability

We selected relatively easy-to-modify video prediction models: ConvLSTM (Shiet all, 2015),
PredRNN++(Wang_et._all, 20184), MIM(Wang et all, 2019), E3D-LSTM(Wang et all,
20184), and MAU(Chang et all, 2021). We modified these models according to the FB-
SVP model approach, allowing them to predict separately using foreground and background
separation and then fuse the results to obtain the final prediction. All experiments were
conducted on the Moving MNIST dataset, and we use SE SSIM as comparison met-
rics. The experimental results are shown in Figures and [L1. In these figures, "RAW?”
represents the training results of the original models, and "FBSVP” represents the train-
ing results of the modified models. From the experimental results, it can be seen that the
prediction performance of all modified models has been significantly improved, indicating
that the proposed FBSVP model can serve as a general method to enhance the accuracy of
video prediction.

= AW
®  FSBVP o
:

= RAW
®  FSBVP|

ConvLSTM  PredR\N MM E3D-LSTM it ConvSTH  PredR\N un E3D-LSTH AU
Method Method

Figure 10: Experimental results of MSE Figure 11: Experimental results of SSIM
metrics for different models metrics for different models

6 Conclusion

In this paper, we propose a video prediction model based on foreground-background separa-
tion (FBSVP). By training the foreground and background features separately, FBSVP can
effectively avoid the mutual interference that occurs during the joint learning of different
features, which often leads to a decrease in prediction performance. This approach also al-
lows the model to focus more on the relatively important foreground features, enabling it to
better learn the motion characteristics of video frames. To fully learn and fuse the features
of video frames, we designed three different fusion modules: the historical attention fusion
module, the spatio-temporal fusion module, and the foreground-background spatio-temporal
fusion module. The latter module re-fuses the previously separately trained foreground and
background features to predict the actual video frames. The proposed model was evaluated
on major video prediction tasks, and the experimental results demonstrate that our FBSVP
model achieves the best performance on popular video prediction datasets, showcasing its
significant competitiveness in the field.
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A Preliminaries

The spatiotemporal prediction learning problem is defined as follows. Given a video sequence

GtT = {gi}i_T_H at time t with the past T' frames, the goal is to predict the subsequent
T’ frames PIH1T" = {gi}iEJrT
P is the predicted future frames and g' € RE*#*W ig typically an image with channels C,

height H, and width W. In practice, video sequences are often represented as tensors, i.e.,
GtT ¢ RTXCxHxW 454 Pt+1,T' e RT'XCXHXW'

from time t 4 1, where G is the past ground-truth frames,

The model with learnable parameters © learns the mapping Fo : GtT — PHLT by
exploring spatial and temporal dependencies. In this paper, the mapping Fe is a neural
network model that is trained to minimize the difference between predicted future frames
and actual future frames. The optimal parameters are denoted as @*.

O = arg mgnﬁ (]-'@ (Gt’T) ,PHLT/)

Where L is the loss function used to evaluate such differences.

B  MORE DETAILS ABOUT DATASETS

B.1 Moving MNIST

The Moving MNIST dataset is a standard dataset for video prediction. Each sequence in the
dataset consists of 20 consecutive frames with a resolution of 64x64. Each sequence shows
how two random digits move at a constant speed and bounce within the 64x64 frames.
The handwritten digits are randomly sampled from the MNIST dataset (LeCun, 1998).
By assigning different initial positions and velocities to each digit, an infinite number of
sequences can be generated, allowing us to accurately evaluate the performance of each
model without worrying about data scarcity. In the default setting, the models are trained
to predict the future 10 frames after observing the first 10 frames in the sequence. Although
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the movement in Moving MNIST may seem simple at first glance, generating consistent
future frames in long-term prediction tasks can be quite challenging, as the digits may
frequently bounce or occlude each other. We use a Moving MNIST generation script to
generate Moving MNIST sequences from the standard MNIST training set. The models are
tested on the official Moving MNIST test set.

B.2 TrafficBJ

Traffic flow prediction is of great significance for traffic management and public safety, while
being highly challenging due to various complex factors. We consider traffic flow prediction
as a fundamental problem in spatio-temporal forecasting. Previous methods for traffic flow
prediction have suffered from low prediction quality due to the complex dependencies on
road networks and nonlinear dynamics.

Traffic flow data is collected from the chaotic real-world environment. They do not change
uniformly over time, and there is a strong temporal dependency between the traffic condi-
tions at adjacent timestamps. We use the TrafficBJ dataset (Zhang et all, 2017) to evaluate
the traffic prediction capability of our proposed model. TrafficBJ contains trajectory data
of Beijing collected from taxi GPS, where each frame is a 32x32x2 image grid with two
channels, namely inflow and outflow as defined in Zhang et al| (2017). Following previous
works Wang et all (2019); Guen & Thom¢ (2020), we normalize the data to [0,1] using
min-max normalization. The training model predicts the subsequent 4 frames by observing
the previous 4 frames.

B.3 KTH

The KTH Action Dataset (Schuldt et all, 2004) consists of six types of human actions
(walking, jogging, running, boxing, waving, and clapping), performed multiple times by 25
subjects in four different scenarios: outdoors, outdoors with scale variation, outdoors with
different clothing, and indoors. All video clips were recorded with a static camera at a frame
rate of 25fps on a homogeneous background, with an average duration of four seconds. To
ensure_comparability, we followed the experimental settings in Wang et al) (2017; 2018h);
Villegas et al| (2017) by resizing the video frames to 128 x 128 pixels. The dataset was
divided into a training set (persons 1-16) and a test set (persons 17-25), with all models
trained on the training set using all six action categories. The models were trained to predict
the next 20 or 40 frames based on observations from the previous 10 frames. The challenge
of this human motion prediction task lies not only in its flexible prediction length but also
in the complex dynamics involving the randomness of human intention.

B.4 KITTI and Caltech Pedestrian

Generalization ability is one of the fundamental challenges in artificial intelligence technol-
ogy, particularly in unsupervised environments, which is a core research focus in machine
learning. To evaluate the generalization ability of the proposed FBSVP model, we assess
its prediction results across different datasets through spatiotemporal forecasting learning.
KITTI (Geiger et all, 013) is one of the most popular datasets for mobile robotics and au-
tonomous driving. It consists of seyeral hours of traffic scenes recorded using high-resolution
RGB images. Caltech Pedestrian (Dolldr et all, 009) is a driving dataset focused on pedes-
trian detection, containing approximately 10 hours of 640 x 480 30 FPS videos captured
from vehicles driving in urban environments. Following the experimental setup in [Yu et al.
(2020); Lotter et al) (2016), the proposed model is trained on the KITTI dataset and tested
on the Caltech Pedestrian dataset. The frame rate of the Caltech Pedestrian dataset is
adjusted to match KITTI (10 FPS). All frames in both datasets are center-cropped and
resized to 128 x 160. Furthermore, the proposed model is trained to predict the next frame
based on the previous 10 frames as input. During testing, the prediction time horizon is
extended to 10 frames.

C MORE DETAILS ABOUT EXPERIMENTAL SETTINGS

16



Under review as a conference paper at ICLR 2025

Table 6: Experimental settings for video prediction tasks on different datasets

Experimental Settings

Dataset Resolution Train Test Layers
Moving MNIST 64x64x1 10 — 10 10 — 10 4
TrafficBJ 32x32x1 44 44 2
10 — 20 10 — 20
KTH 128x128x1 10 — 40 10 — 40 4
KITTI 128 x160x 3 10 — 10 - 8
Caltech Pedestrian 128x 1603 - 10 — 10 8
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