
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FBSVP: Video Prediction Based on Foreground-
Background Separation

Anonymous authors
Paper under double-blind review

Abstract

Video prediction is the process of learning necessary information from
historical frames to predict future video frames. How to focus and effi-
ciently learn features from historical frames is a critical step in this pro-
cess. For any sequence of video frames, the background changes little or
remains almost constant, while the foreground changes significantly and is
the main focus of our video prediction learning. However, current known
video prediction learning methods do not consider how to utilize the dif-
ferent characteristics of the foreground and background to further improve
prediction accuracy. To fully leverage the different characteristics of the
foreground and background and enhance prediction accuracy, we propose
a Foreground-Background Separation Video Prediction (FBSVP) model
in this paper. Through the foreground and background separation mod-
ule, historical video frames are separated into foreground and background
frames. In the video prediction module, the foreground and background
frames are predicted and learned separately. First, the features of historical
frames are fused into the current frame through a historical attention fusion
module using an attention mechanism. Then, the complementary tempo-
ral and spatial features are fused through a spatio-temporal fusion module.
Finally, the learned foreground and background features are fused in the
foreground and background fusion module to predict the final video frame.
Experimental results show that our proposed FBSVP model achieves the
best performance on popular video prediction datasets, demonstrating its
significant competitiveness in this field.

1 Introduction

Video can be seen as a special type of temporal data that is well-suited for modeling using
Recurrent Neural Networks (RNNs). The work by Ranzato et al. (2014) first utilized RNNs
to model the spatiotemporal dynamics of videos in an unsupervised manner, which inspired
a series of subsequent studies Finn et al. (2016); Srivastava et al. (2015); Oliu et al. (2018);
Zhang et al. (2019). However, RNN-based approaches primarily focus on capturing tem-
poral features of videos while overlooking spatial information. To address this limitation,
Convolutional Neural Networks (CNNs) were introduced Shi et al. (2015) to complement
the RNNs, resulting in the widely adopted hybrid architecture of convolutional and recur-
rent layers in most video prediction models Shi et al. (2017); Wang et al. (2017; 2018b;
2019); Guen & Thome (2020); Ballas et al. (2015). This hybrid architecture allows models
to leverage the ability of convolutional units to model spatial relationships and the potential
of recurrent units to capture temporal dependencies. Although popular in the literature,
these classical video prediction architectures still have two main limitations. Firstly, in dense
prediction tasks like video prediction, models need to have a sufficiently large receptive field
to capture rich contextual information. Previous works attempted to enlarge the receptive
field of prediction units through 3D convolutions Wang et al. (2018a); Yu et al. (2020), but
the receptive field is primarily determined by the kernel size of the integrated convolutional
operators. Increasing the receptive field would significantly increase the model’s memory
consumption and computational cost. Secondly, existing video prediction models struggle
to effectively fuse captured spatial and temporal features to enhance prediction accuracy.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Many current approaches simplify the training process by independently modeling these two
features Villegas et al. (2017); Denton et al. (2017), only performing simple fusion when gen-
erating predicted frames. In reality, spatial and temporal features are complementary, and
fully integrating both features during training is crucial to better understand the patterns
of video variations and improve the model’s perception ability.
To address the above issues, we propose a video prediction model based on Foreground-
Background Separation (FBSVP). Due to the differences in the characteristics of the video
frame foreground and background, we separate the foreground and background of the video
frames and then predict them separately. This allows for more effective video prediction
tailored to their respective characteristics and enables more focused and efficient learning of
video frame motion patterns. It avoids the interference caused by different feature changes,
which can lead to a decrease in prediction performance. Since separate prediction for the
foreground and background reduces the complexity of the prediction, it helps to lower the
difficulty of prediction, naturally improving the accuracy. Finally, the more accurately
predicted foreground and background features are effectively fused to produce the final
predicted video frame. Experimental results show that the proposed FBSVP outperforms
other state-of-the-art methods in major video prediction tasks.

2 Related Work

2.1 Video Prediction

The latest research progress in video prediction provides some useful insights into how to
predict future visual frames based on historical observations. In this section, we will discuss
recent advancements in video prediction methods. Ranzato et al. (2014) utilized recurrent
neural networks (RNN) to model videos based on a language model. Srivastava et al. (2015)
proposed FC-LSTM, an improved variant of RNN with long short-term memory (LSTM)
that enhances the model’s ability to capture temporal dependencies in videos. Shi et al.
(2015) introduced ConvLSTM, which replaces the fully connected layers in FC-LSTM with
convolutional layers to improve perception of visual data and save parameters. Similarly,
Ballas et al. (2015) employed convolutional layers with gated recurrent units (GRU) for video
prediction. However, Wang et al. (2017) argued that both temporal and spatial information
should be equally considered and proposed ConvLSTMs (ST-LSTM) with spatial modules
to model the spatial representation of each frame. They further introduced Casual LSTM
Wang et al. (2018a) to increase the temporal depth of the model and Gradient Highway Unit
to alleviate gradient propagation issues in deep prediction models. Guen & Thome (2020)
introduced PhyCell, which separates physical dynamics from unknown factors to predict
more reliable motion. Additionally,Wu et al. (2021) proposed Motion-GRU to independently
model transient changes and motion trends for more satisfactory predictions.
Despite the significant achievements of the aforementioned methods, the models still have
relatively narrow receptive fields, making it challenging to capture rich contextual informa-
tion and improve the perception ability of video features.

2.2 Foreground-Background Separation

Foreground-background separation methods have been designed and proposed in many com-
puter vision tasks (Cristani et al., 2010; Garcia-Garcia et al., 2020; Zhao et al., 2023; Ding
et al., 2022; Yang et al., 2020; Liu et al., 2023). Shao et al. (2022) proposed a foreground-
background separation (FBS) X-ray contraband detection framework, using an attention
module to make the detection framework more focused on the foreground. The proposed
framework can separate contraband items as the foreground from other irrelevant items us-
ing only available bounding box labels and accurately identify contraband items in severely
occluded and overlapped X-ray images. This demonstrates that separating the foreground
and background and focusing more on the foreground can effectively improve model perfor-
mance. Zhang et al. (2022) proposed a foreground-background separation mutual generative
adversarial network (FSM-GAN) framework for video anomaly event detection, which can
identify the spatio-temporal features of the foreground under background conditions and
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achieve satisfactory results even on large-scale datasets. Yang et al. (2021) believe that
the foreground and background should be treated equally and proposed a collaborative
video object segmentation method through a multi-scale foreground-background integra-
tion (CFBI+) approach, improving the results of video object segmentation. This indicates
that the relationship between the foreground and background is inseparable and comple-
mentary.Besides the aforementioned papers, there are also other related excellent papers(An
et al., 2023; Li et al., 2023; Moayeri et al., 2022).
Inspired by the excellent performance of foreground-background separation methods in
various applications, this paper proposes a video prediction model based on foreground-
background separation (FBSVP) to enhance video prediction performance.

3 Method

Figure 1: The structure of the single-layer stacked FBSVP.

Figure 2: The structure of the predictive network with stacked FBSVPs.

3.1 Foreground-background video frame extraction

Currently, the methods for extracting the foreground and background mainly come from the
open-source toolkit provided by OpenCV, which includes seven different algorithms: KNN
(Zivkovic & Van Der Heijden, 2006) (K-nearest neighbors) based on the K-nearest neighbors
algorithm, MOG (KaewTraKulPong & Bowden, 2002)/MOG2 (Zivkovic, 2004)(Mixture of
Gaussians) based on the mixture of Gaussians algorithm, CNT (Counting) based on pixel
counting algorithm, GMG (Godbehere et al., 2012) based on pixel color feature algorithm,
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LSBP (Guo et al., 2016)(Local SVD Binary Pattern) based on local SVD binary pattern
algorithm, and GSOC (Google Summer of Code) algorithm similar to LSBP. Among these,
KNN and MOG2 have the best practical application results. This paper chooses MOG2
because this algorithm can more flexibly adjust parameters according to the scene to adapt
to different situations.

3.2 Encoder

As shown on the left side of Figure 1, FBSVP uses a 2D convolutional encoder to process
the input video frames, encoding the original video frames, foreground video frames, and
background video frames separately. The output of each layer is connected to the decoder
through residual connections, providing the decoder with the necessary residual features.

3.3 Foreground-background Separation Prediction

In this section, we will provide a detailed description of the structural details of FBSVP, as
shown in the middle part of Figure 1. The Foreground-background Separation Prediction
Module consists of three fusion modules: Single-layer Historical Attention Fusion Module,
Single-layer Spatiotemporal Fusion Module, and Foreground-background Spatiotemporal
Fusion Module. Typically, to enhance the model’s expressive and perceptual capabilities,
multiple FBSVPs are stacked, as depicted in Figure 2. It is important to note that at time
step t in the kth layer, FBSVP has a total of three inputs: spatial features Sk−1

t from the
k − 1th layer, accumulated spatial features Sk

t−τ :t−1 from the kth layer over the previous
τ time steps, and accumulated temporal features T k

t−τ−1:t−1 from the kth layer over the
previous τ + 1 time steps.
Here is a unified convention for the symbol notation: S represents spatial features, T rep-
resents temporal features, the superscript s denotes parameters related to spatial feature
calculations, the superscript t denotes parameters related to temporal feature calculations,
the superscript k denotes the k-th layer, and the subscript t denotes the time instant. In
the superscript or subscript, (i) with i = 1, 2, 3... is used to distinguish the different states
of the same algorithmic symbol at different stages of the model.

3.3.1 Single-layer Historical Attention Fusion Module

Spatial feature information and temporal feature information complement each other. To
fully capture both temporal and spatial features, we introduce an attention mechanism. The
goal is to assist prediction units in giving different attention to different historical temporal
and spatial features. Since temporal and spatial features influence each other, the attention
given to temporal features helps capture a portion of spatial features, while the attention
given to spatial features helps capture a portion of temporal features. This way, spatial and
temporal features can learn from each other, enhancing the model’s perceptual capabilities.
Based on the above analysis, the attention score Ms

j for temporal features can be represented
as follows, j represents the j-th attention score. Among them i = 1, . . . , τ , j = 1, . . . , τ :

S′
t = W s

(1) ∗ S
k−1
t ,ms

i = SUM
(
Sk
t−i � S′

t

)
,Ms

j =
em

s
j∑τ

i=1 e
ms

i
(1)

Similarly, the attention score M t
j for spatial features can be represented as follows:

T ′
t−1 = W t

(1) ∗ T
k
t−1 ,mt

i = SUM
(
T k
t−i−1 � T ′

t−1

)
,M t

j =
em

t
j∑τ

i=1 e
mt

i

(2)

Where SUM , �, and ∗ represent summation, Hadamard product, and convolution opera-
tions, respectively. By using the computed attention scores, we obtain a portion of spatial
feature information Satt_part and temporal feature information Tatt_part.

Tatt_part =

τ∑
j=1

Ms
j · T k

t−j−1, Satt_part =

τ∑
j=1

M t
j · Sk

t−j (3)
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we integrate the attention-based spatial feature Satt_part and the attention-based temporal
feature information Tatt_part into the corresponding spatial and temporal features, respec-
tively.

F t
(1) = sigmoid

(
T ′
t−1

)
, F s

(1) = sigmoid (S′
t) (4)

T
(1)
t = F t

(1) � T k
t−1 +

(
1− F t

(1)

)
� Tatt_part (5)

S
(1)
t = F s

(1) � Sk−1
t +

(
1− F s

(1)

)
� Satt_part (6)

3.3.2 Single-layer Spatiotemporal Fusion Module

Temporal and spatial features are inseparable components of video features, reflecting the
changing patterns of video features from two different perspectives. They complement each
other, and the fusion of spatio-temporal features promotes mutual perception and learning
between the two. This further enhances the model’s perception capabilities. To optimize
the integration of temporal and spatial features, we apply a convolutional transformation
to the previously fused temporal feature T

(1)
t and spatial feature S

(1)
t obtained from the

previous module.
T ′′
t = W t

(2) ∗ T
(1)
t , S′′

t = W s
(2) ∗ S

(1)
t (7)

Subsequently, we merge the temporal and spatial features.

F t
(2) = sigmoid (T ′′

t ) , F
s
(2) = sigmoid (S′′

t ) (8)

T
(2)
t = F t

(2) � T ′′
t +

(
1− F t

(2)

)
� S′′

t , S
(2)
t = F s

(2) � S′′
t +

(
1− F s

(2)

)
� T ′′

t (9)

S
(2)
t = F s

(2) � S′′
t +

(
1− F s

(2)

)
� T ′′

t (10)

It is important to note that the main difference between historical attention fusion and
spatiotemporal fusion is that historical attention fusion requires calculating attention scores
based on the temporal and spatial features of the current video frame and several past video
frames, based on their interrelatedness. This guides the model to learn key features from
the past video frames with different weights. In contrast, spatiotemporal feature fusion is
relatively straightforward, where a portion of the temporal features and a portion of the
spatial features are computed and summed together to ensure the mutual integration of
features.

3.3.3 Foreground-background Spatiotemporal Fusion Module

In the first half of the process, to reduce the mutual interference of features learned by the
model, the foreground and background features are trained separately, which helps to focus
more on learning the motion patterns of video frames and enhances the model’s prediction
capabilities. To predict the actual video frames, it is necessary to fuse the learned foreground
and background features. The foreground and background features are two important and
inseparable characteristics of a video frame, influencing and complementing each other. The
foreground features can indirectly reflect the characteristics of the background features, and
similarly, the background features can indirectly reflect the characteristics of the foreground
features.
Therefore, for models that adopt separate training for the foreground and background, it
is crucial to thoroughly fuse the learned foreground and background features. Since we
have designed a model that learns three features simultaneously, it is important to consider
learning the fusion of these features while learning the foreground and background features.
This approach enables better prediction of the actual video frames.
In this segment, to enhance clarity of expression, the following conventions are made:
{foreground|merge|background} represents a choice between foreground, merge, or back-
ground levels but for a complete formula, only one can be selected - either all fore-
ground, all merge, or all background. To simplify the expression of formulas, we use
f to represent foreground, m to represent merge, and b to represent background. Thus,
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{foreground|merge|background} is simplified to {f |m|b}. In the following text, f , m, or b
appearing in superscripts or subscripts will represent foreground, medium, or background,
respectively. The subscript t_{f |m|b}_level represents an abstract feature at one of the
foreground, medium, or background levels at time instant t, superscript s_{f |m|b}_level or
t_{f |m|b}_level represents computational parameters related to spatial or temporal feature
computation at one of the foreground, merge, or background levels, Both {S|T} and {s|t}
represent either selecting spatial features or temporal features, but for a complete formula
or diagram, either all S and s are chosen or all T and t are chosen.
Prior to fusion, a convolutional transformation is applied to the abstract features at each
layer.

T
(3)
t_{f |m|b}_level = W

t_{f |m|b}_level
(3) ∗ T (2)

t_{f |m|b}_level
(11)

S
(3)
t_{f |m|b}_level = W

s_{f |m|b}_level
(3) ∗ S(2)

t_{f |m|b}_level
(12)

F
{s|t}_{f |m|b}_level
(3) = sigmoid

(
{S|T}(3)t_{f |m|b}_level

)
(13)

The spatiotemporal features of the foreground are integrated separately with the fused fea-
tures and the spatiotemporal features of the background, as shown in Figure 3: The fused

Figure 3: The algorithmic diagram illustrating the fusion of foreground features with the
fused and background features shows the fusion process across these three levels, following
the direction of the arrows.

spatiotemporal features are fused separately with the foreground and background spatiotem-
poral features, as shown in Figure 4. The spatiotemporal features of the background are

Figure 4: The diagram illustrating the fusion of fused features with the foreground and
background features shows the fusion process across these three levels, following the direction
of the arrows.

fused separately with the fused and foreground spatiotemporal features, as shown in Figure
5. In this case, the extracted spatiotemporal features go through three fusion modules: the

Figure 5: The diagram illustrating the fusion of background features with the fused and
foreground features shows the fusion process across these three levels, following the direction
of the arrows.

single-layer historical attention feature fusion module, the single-layer spatiotemporal fusion
module, and the multi-layer foreground-background spatiotemporal fusion module. It can
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be observed that this model fully perceives and integrates the spatiotemporal features of
the video. The foreground and background are trained and predicted separately, signifi-
cantly reducing interference in feature learning. This allows for a more focused approach
to feature learning, resulting in more accurate predictions and demonstrating the model’s
powerful perception and prediction capabilities.

3.4 Decoder

As shown on the right side of Figure 1, the decoder architecture corresponds to a mirrored
version of the convolutional encoder. It encodes the predicted original video frames, fore-
ground video frames, and background video frames separately. The features in the residual
connections are fused with the decoded feature maps through channel concatenation. Due
to the extensive feature fusion, the most recent spatial feature maps already incorporate
temporal feature maps. To maintain consistency with the encoder, the decoder ignores
predicted temporal feature maps that are absent in the encoder’s input. Ultimately, the de-
coder generates the next predicted video frame for the original, foreground, and background
video frames separately. These three predicted frames serve as the basis for preparing the
prediction of the next frame.

4 Experiments

4.1 Experimental Setups

In this section, extensive experiments will be conducted to evaluate the performance of the
proposed model compared to state-of-the-art methods. We evaluate the proposed FBSVP
on five different video datasets with varying levels of complexity, namely Moving MNIST
(Srivastava et al., 2015), TrafficBJ (Zhang et al., 2017), KTH (Schuldt et al., 2004), KITTI
(Geiger et al., 2013), Caltech Pedestrian (Dollár et al., 2009). Furthermore, all models are
implemented using PyTorch and optimized using the Adam optimizer (Kingma & Ba, 2014)
on a single Tesla P100 (16GB) GPU. Table 6 summarizes the more detailed experimental
settings for the aforementioned tasks, In this context, Train and Test represent the number
of input and predicted frames during training and testing, respectively. Layers indicate the
number of stacked prediction units.

4.2 Video Prediction

4.2.1 Moving MNIST

Figure 6: Predictions on the Moving MNIST dataset (10 frames → 10 frames) by different
methods.
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Moving MNIST
Method SSIM/frame↑ MSE/frame↓

ConvLSTM(NeurIPS2015)(Shi et al., 2015) 0.707 103.3
FRNN(ECCV2018)(Oliu et al., 2018) 0.819 68.4

VPN(ICML2017)(Kalchbrenner et al., 2017) 0.870 70.0
PredRNN(NeurIPS2017)(Wang et al., 2017) 0.869 56.8

PredRNN++(NeurIPS2018)(Wang et al., 2018a) 0.898 46.5
MIM(CVPR2019)(Wang et al., 2019) 0.910 44.2

E3D-LSTM(ICLR2019)(Wang et al., 2018b) 0.910 41.3
Conv-TT-LSTM(NeurIPS2020)(Su et al., 2020) 0.915 53.0

MAU(NeurIPS2021)(Chang et al., 2021) 0.937 27.6
PhyDNet(ICLR2020)(Guen & Thome, 2020) 0.947 24.4

SimVP(CVPR2022)(Gao et al., 2022) 0.948 23.8
MMVP(CVPR2023)(Zhong et al., 2023) 0.952 22.2

SimVPv2(Tan et al., 2022) 0.952 21.81
TAU(CVPR2023)(Tan et al., 2023) 0.957 19.8

SwinLSTM(ICCV2023)(Tang et al., 2023b) 0.962 17.7
FBSVP w/o FBS 0.958 18.9
FBSVP w/ FBS 0.963 16.2

Table 1: Quantitative results on the Mov-
ing MNIST dataset (10 frames → 10
frames) for different methods

TrafficBJ
Method MSE × 100↓ MAE↓ SSIM↑

ConvLSTM(NeurIPS2015)(Shi et al., 2015) 48.5 17.7 0.978
PredRNN(NeurIPS2017)(Wang et al., 2017) 46.4 17.1 0.971

PredRNN++(NeurIPS2018)(Wang et al., 2018a) 44.8 16.9 0.977
MIM(CVPR2019)(Wang et al., 2019) 42.9 16.6 0.971

E3D-LSTM(ICLR2019)(Wang et al., 2018b) 43.2 16.9 0.979
PhyDNet(ICLR2020)(Guen & Thome, 2020) 41.9 16.2 0.982

SimVP(CVPR2022)(Gao et al., 2022) 41.4 16.2 0.982
SimVPv2(Tan et al., 2022) 34.8 15.6 0.984

TAU(CVPR2023)(Tan et al., 2023) 34.4 15.6 0.983
FBSVP w/o FBS 33.5 15.5 0.982
FBSVP w/ FBS 32.1 15.2 0.984

Table 2: Quantitative results of differ-
ent methods on the TrafficBJ dataset(4
frames → 4 frames)

Figure 6 illustrates prediction examples from different methods, and compared to other
methods, the proposed FBSVP (Foreground-Background Separation Video Prediction)
achieves predictions with the best visual quality, significantly outperforming other meth-
ods. Particularly, it obtains notably better results in the last two time steps, indicating
the superior expressive power of the proposed model. Additionally, Table 1 summarizes
detailed quantitative results, where Mean Squared Error (MSE) and Structural Similarity
Index (SSIM) are used to indicate the visual quality of the predictions. Lower MSE and
higher SSIM scores suggest better visual quality. Compared to other existing methods, the
proposed FBSVP achieves the best performance.

4.2.2 TrafficBJ

Figure 7: Qualitative visualization of the prediction results on the TrafficBJ dataset.

We present the quantitative results in Table 2 and qualitative results in Figure 7. Despite
the significant differences between the given frames and the future frames, our model can
still generate accurate and reliable frames. To make the comparisons more evident, we also
visualize the differences between the actual frames and the predicted frames in the last row.
Clearly, FBSVP exhibits the best performance among all the compared models, with the
lowest intensity of differences in all predicted frames.

4.2.3 KTH

We used Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) as
evaluation metrics to measure the quality of frame prediction from a perceptual perspective.
The quantitative results are shown in Table 3. It can be observed that FBSVP outperforms
other methods in both PSNR and SSIM metrics. Furthermore, FBSVP even demonstrates
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accurate prediction of future frames in long-range scenarios, such as 10 frames → 40 frames,
showcasing its ability to predict future frames with flexible lengths.

Figure 8: Prediction samples of KTH dataset, forecasting 40 future frames based on observ-
ing 10 frames.

KTH

Method
KTH(10 → 20) KTH(10 → 40)
SSIM↑ PSNR↑ SSIM↑ PSNR↑

Mcnet(ICLR2017)(Villegas et al., 2017) 0.804 25.95 0.730 23.89
ConvLSTM(NeurIPS2015)(Shi et al., 2015) 0.712 23.58 0.639 22.85

DFN(NeurIPS2016)(Jia et al., 2016) 0.794 27.26 0.652 23.01
FRNN(ECCV2018)(Oliu et al., 2018) 0.771 26.12 0.687 23.77

PredRNN(NeurIPS2017)(Wang et al., 2017) 0.839 27.55 0.703 24.16
PredRNN++(NeurIPS2018)(Wang et al., 2018a) 0.865 28.47 0.741 25.21

E3D-LSTM(ICLR2019)(Wang et al., 2018b) 0.879 29.31 0.810 27.24
STMFANet(CVPR2020)(Jin et al., 2020) 0.893 29.85 0.851 27.56

SwinLSTM(CVPR2023)(Tang et al., 2023a) 0.903 34.34 0.879 33.15
SimVP(CVPR2022)(Gao et al., 2022) 0.905 33.72 0.886 32.93

MMVP(CVPR2023)(Zhong et al., 2023) 0.906 27.54 0.888 26.35
TAU(CVPR2023)(Tan et al., 2023) 0.911 34.13 0.897 33.01

SimVPv2(Tan et al., 2022) 0.913 34.24 0.895 33.35
FBSVP w/o FBS 0.916 30.45 0.902 29.72
FBSVP w/ FBS 0.917 30.92 0.903 29.84

Table 3: Quantitative results of different
methods on the KTH dataset(10 frames
→ 20 frames and 10 frames → 40 frames)

Caltech Pedestrian

Method MSE(10−3)↓ SSIM↑ PSNR↑

BeyondMSE(ICLR2016)(Mathieu et al., 2015) 3.42 0.847 -
MCnet(ICLR2017)(Villegas et al., 2017) 2.50 0.879 -

CtrlGen(ICLR2018)(Hao et al., 2018) - 0.900 26.5
PredNet(ICLR2017)(Lotter et al., 2016) 2.42 0.905 27.6

ContextVP(ECCV2018)(Byeon et al., 2018) 1.94 0.921 28.7
E3D-LSTM(ICLR2019)(Wang et al., 2018b) 2.12 0.914 28.1
rCycleGan(CVPR2019)(Kwon & Park, 2019) 1.61 0.919 29.2

CrevNet(ICLR2020)(Yu et al., 2020) 1.55 0.925 29.3
STMFANet(CVPR2020)(Jin et al., 2020) 1.59 0.927 29.1
MAU(NeurIPS2021)(Chang et al., 2021) 1.34 0.939 29.4

SimVP(CVPR2022)(Gao et al., 2022) 1.56 0.940 33.1
TAU(CVPR2023)(Tan et al., 2023) 1.52 0.946 33.7

SimVPv2(Tan et al., 2022) 1.48 0.949 33.2
FBSVP w/o FBS 1.21 0.952 31.2
FBSVP w/ FBS 1.17 0.953 32.1

Table 4: Quantitative results of differ-
ent methods on the Caltech Pedestrian
dataset (10 frames → 1 frame)

In Figure 8, we present prediction samples from different methods. Compared to other
methods, our proposed FBSVP demonstrates more accurate prediction of human actions
in long-term forecasting, with the best visual quality and a clear superiority over other
methods. This indicates that the proposed model possesses strong capabilities in long-term
prediction.

4.2.4 KITTI and Caltech Pedestrian

The quantitative results presented in Table 4 indicate that our proposed method achieves
state-of-the-art performance in the generalization evaluation task, as measured by the MSE,
SSIM, and PSNR metrics. In Figure 9, we present qualitative visualization results, where
the last column showcases the visual differences between actual frames and predicted frames.
It can be observed that our model accurately predicts changes in lighting conditions and
lane markings, with minimal disparities between the predicted and actual frames. This
demonstrates the strong predictive capabilities of FBSVP.
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Figure 9: Qualitative visualization of prediction results on the Caltech Pedestrian dataset.

5 Ablation Study

5.1 FBSVP model architecture

We investigated the importance of different module design choices in the FBSVP model.
Specifically, we studied the relevance of the temporal and spatial hierarchical structures
and the impact of different fusion methods used in the prediction unit on the prediction
results. For our ablation study, we focused on the Moving MNIST dataset. The results
of our ablation study are listed in Table 5, with the best-performing results highlighted in
bold and the second-best results underlined. As shown in Table 5, s_att_fuse represents

Table 5: Ablation experiment results
FBSVP Modules Results

rownum s_att_fuse s_t_fuse t_att_fuse b_s_t_fuse f_s_t_fuse f_b_s_t_fuse MSE↓ SSIM↑ PSNR↑ LPIPS↓
1 ✓ - - - - - 31.1 0.929 22.27 6.52
2 ✓ ✓ - - - - 27.8 0.938 22.77 5.32
3 ✓ ✓ ✓ - - - 23.8 0.947 23.63 4.61
4 ✓ ✓ ✓ ✓ - - 20.8 0.953 23.78 4.27
5 ✓ ✓ ✓ - ✓ - 17.7 0.959 24.19 3.39
6 ✓ ✓ ✓ - - ✓ 16.2 0.963 24.78 3.11

the historical spatial attention fusion module, t_att_fuse represents the historical tem-
poral attention fusion module, s_t_fuse represents the single-layer spatio-temporal fusion
module, b_s_t_fuse represents feature fusion of only the background, f_s_t_fuse rep-
resents feature fusion of only the foreground, f_b_s_t_fuse represents feature fusion of
both the foreground and the background. Additionally, ✓ represents the model selecting
the corresponding module, - represents the model not selecting the corresponding module.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

From the comparison of the last three rows in the table, it is easy to discover that foreground
features contribute more to improving prediction accuracy than background features. It is
necessary to pay more attention to foreground features. At the same time, foreground and
background features complement each other and are inseparable. Combining both together
can better enhance the performance of the prediction model.

5.2 Generalization capability

We selected relatively easy-to-modify video prediction models: ConvLSTM(Shi et al., 2015),
PredRNN++(Wang et al., 2018a), MIM(Wang et al., 2019), E3D-LSTM(Wang et al.,
2018b), and MAU(Chang et al., 2021). We modified these models according to the FB-
SVP model approach, allowing them to predict separately using foreground and background
separation and then fuse the results to obtain the final prediction. All experiments were
conducted on the Moving MNIST dataset, and we used MSE and SSIM as comparison met-
rics. The experimental results are shown in Figures 10 and 11. In these figures, ”RAW”
represents the training results of the original models, and ”FBSVP” represents the train-
ing results of the modified models. From the experimental results, it can be seen that the
prediction performance of all modified models has been significantly improved, indicating
that the proposed FBSVP model can serve as a general method to enhance the accuracy of
video prediction.

Figure 10: Experimental results of MSE
metrics for different models

Figure 11: Experimental results of SSIM
metrics for different models

6 Conclusion

In this paper, we propose a video prediction model based on foreground-background separa-
tion (FBSVP). By training the foreground and background features separately, FBSVP can
effectively avoid the mutual interference that occurs during the joint learning of different
features, which often leads to a decrease in prediction performance. This approach also al-
lows the model to focus more on the relatively important foreground features, enabling it to
better learn the motion characteristics of video frames. To fully learn and fuse the features
of video frames, we designed three different fusion modules: the historical attention fusion
module, the spatio-temporal fusion module, and the foreground-background spatio-temporal
fusion module. The latter module re-fuses the previously separately trained foreground and
background features to predict the actual video frames. The proposed model was evaluated
on major video prediction tasks, and the experimental results demonstrate that our FBSVP
model achieves the best performance on popular video prediction datasets, showcasing its
significant competitiveness in the field.
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A Preliminaries

The spatiotemporal prediction learning problem is defined as follows. Given a video sequence
Gt,T =

{
gi}t

t−T+1
at time t with the past T frames, the goal is to predict the subsequent

T ′ frames P t+1,T ′
=

{
gi}t+1+T ′

t+1
from time t+ 1, where G is the past ground-truth frames,

P is the predicted future frames and gi ∈ RC×H×W is typically an image with channels C,
height H, and width W . In practice, video sequences are often represented as tensors, i.e.,
Gt,T ∈ RT×C×H×W and P t+1,T ′ ∈ RT ′×C×H×W .
The model with learnable parameters Θ learns the mapping FΘ : Gt,T 7→ P t+1,T ′ by
exploring spatial and temporal dependencies. In this paper, the mapping FΘ is a neural
network model that is trained to minimize the difference between predicted future frames
and actual future frames. The optimal parameters are denoted as Θ∗.

Θ∗ = argmin
Θ

L
(
FΘ

(
Gt,T

)
, P t+1,T ′

)
Where L is the loss function used to evaluate such differences.

B MORE DETAILS ABOUT DATASETS

B.1 Moving MNIST

The Moving MNIST dataset is a standard dataset for video prediction. Each sequence in the
dataset consists of 20 consecutive frames with a resolution of 64×64. Each sequence shows
how two random digits move at a constant speed and bounce within the 64x64 frames.
The handwritten digits are randomly sampled from the MNIST dataset (LeCun, 1998).
By assigning different initial positions and velocities to each digit, an infinite number of
sequences can be generated, allowing us to accurately evaluate the performance of each
model without worrying about data scarcity. In the default setting, the models are trained
to predict the future 10 frames after observing the first 10 frames in the sequence. Although
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the movement in Moving MNIST may seem simple at first glance, generating consistent
future frames in long-term prediction tasks can be quite challenging, as the digits may
frequently bounce or occlude each other. We use a Moving MNIST generation script to
generate Moving MNIST sequences from the standard MNIST training set. The models are
tested on the official Moving MNIST test set.

B.2 TrafficBJ

Traffic flow prediction is of great significance for traffic management and public safety, while
being highly challenging due to various complex factors. We consider traffic flow prediction
as a fundamental problem in spatio-temporal forecasting. Previous methods for traffic flow
prediction have suffered from low prediction quality due to the complex dependencies on
road networks and nonlinear dynamics.
Traffic flow data is collected from the chaotic real-world environment. They do not change
uniformly over time, and there is a strong temporal dependency between the traffic condi-
tions at adjacent timestamps. We use the TrafficBJ dataset (Zhang et al., 2017) to evaluate
the traffic prediction capability of our proposed model. TrafficBJ contains trajectory data
of Beijing collected from taxi GPS, where each frame is a 32×32×2 image grid with two
channels, namely inflow and outflow as defined in Zhang et al. (2017). Following previous
works Wang et al. (2019); Guen & Thome (2020), we normalize the data to [0,1] using
min-max normalization. The training model predicts the subsequent 4 frames by observing
the previous 4 frames.

B.3 KTH

The KTH Action Dataset (Schuldt et al., 2004) consists of six types of human actions
(walking, jogging, running, boxing, waving, and clapping), performed multiple times by 25
subjects in four different scenarios: outdoors, outdoors with scale variation, outdoors with
different clothing, and indoors. All video clips were recorded with a static camera at a frame
rate of 25fps on a homogeneous background, with an average duration of four seconds. To
ensure comparability, we followed the experimental settings in Wang et al. (2017; 2018b);
Villegas et al. (2017) by resizing the video frames to 128 × 128 pixels. The dataset was
divided into a training set (persons 1-16) and a test set (persons 17-25), with all models
trained on the training set using all six action categories. The models were trained to predict
the next 20 or 40 frames based on observations from the previous 10 frames. The challenge
of this human motion prediction task lies not only in its flexible prediction length but also
in the complex dynamics involving the randomness of human intention.

B.4 KITTI and Caltech Pedestrian

Generalization ability is one of the fundamental challenges in artificial intelligence technol-
ogy, particularly in unsupervised environments, which is a core research focus in machine
learning. To evaluate the generalization ability of the proposed FBSVP model, we assess
its prediction results across different datasets through spatiotemporal forecasting learning.
KITTI (Geiger et al., 2013) is one of the most popular datasets for mobile robotics and au-
tonomous driving. It consists of several hours of traffic scenes recorded using high-resolution
RGB images. Caltech Pedestrian (Dollár et al., 2009) is a driving dataset focused on pedes-
trian detection, containing approximately 10 hours of 640 × 480 30 FPS videos captured
from vehicles driving in urban environments. Following the experimental setup in Yu et al.
(2020); Lotter et al. (2016), the proposed model is trained on the KITTI dataset and tested
on the Caltech Pedestrian dataset. The frame rate of the Caltech Pedestrian dataset is
adjusted to match KITTI (10 FPS). All frames in both datasets are center-cropped and
resized to 128 × 160. Furthermore, the proposed model is trained to predict the next frame
based on the previous 10 frames as input. During testing, the prediction time horizon is
extended to 10 frames.

C MORE DETAILS ABOUT EXPERIMENTAL SETTINGS
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Table 6: Experimental settings for video prediction tasks on different datasets
Experimental Settings

Dataset Resolution Train Test Layers

Moving MNIST 64×64×1 10 → 10 10 → 10 4

TrafficBJ 32×32×1 4 → 4 4 → 4 2

KTH 128×128×1
10 → 20 10 → 20

410 → 40 10 → 40

KITTI 128×160×3 10 → 10 - 8

Caltech Pedestrian 128×160×3 - 10 → 10 8
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