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Abstract

Grünwald and Van Ommen (2017) show that Bayesian inference for linear regression can
be inconsistent under model misspecification. In this paper, we extend their analysis to
Bayesian neural networks (BNNs), investigating if they too can be inconsistent under mis-
specification. We find that BNNs exhibit the same inconsistency when Hamiltonian Monte
Carlo is used for posterior inference. However, variational inference changes this behav-
ior. Surprisingly, we find that variational Bayes leads to BNNs that are consistent in the
setting studied by Grünwald and Van Ommen (2017). We conjecture that the success of
variational Bayes is due to its optimization objective: the evidence lower bound (ELBO)
implicitly encourages the posterior approximation to concentrate, mitigating the ill-effects
of the misspecification.

1. Introduction

Neural networks (NNs) are well known to exhibit pathological behaviors such as overconfi-
dence (Nguyen et al., 2015). Bayesian inference is often pointed to as a way to ameliorate
these pathologies by allowing for principled uncertainty quantification. The only apparent
obstacle is performing scalable approximate inference, and consequently this topic has re-
ceived much attention (Graves, 2011; Blundell et al., 2015; Hernández-Lobato and Adams,
2015; Osawa et al., 2019). However, the story is not so simple. Grünwald and Van Ommen
(2017) show that Bayesian inference can perform poorly—specifically, be inconsistent—for
lightly misspecified linear models (homoskedastic model, heteroskedastic data). In this pa-
per, we ask the same question of Bayesian NNs: are they also inconsistent in the setting
studied by Grünwald and Van Ommen (2017)?

We find that Bayesian NNs are sometimes inconsistent in Grünwald and Van Ommen
(2017)’s regression setting. Their behavior depends on which posterior inference strategy is
employed. Under strong posterior inference algorithms such as Hamiltonian Monte Carlo,
BNNs are observed to be similarly inconsistent. However, under variational Bayes (Blei
et al., 2017), we observe that BNNs are consistent (in this particular setting). We con-
jecture that the success of variational Bayes is due to the evidence lower bound (ELBO).
Our explanation is supported empirically by the fact that the Laplace approximation—
which uses the same approximating family but a different optimization objective (MAP vs
ELBO)—results in inconsistency.
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2. Preliminaries

Below we describe the setting studied by Grünwald and Van Ommen (2017), summarizing
their methods and findings. We then extend their work to Bayesian NNs in the next section.

2.1. Simulated Data

Consider a regression problem with features x ∈ R and responses y ∈ R. The training
data is denoted D = {x,y} = {(xn, yn)}Nn=1, with (xn, yn) ∼ p∗(x, y) (independently and
identically distributed). The ground truth density is denoted p∗(x, y) = p∗(y) p∗(x). Fol-
lowing Grünwald and Van Ommen (2017), we consider two settings: homoskedastic vs
heteroskedastic response noise. In the homoskedastic setting, let p∗(x) = unif(−1, 1) and
p∗(y) = N (0, 0.025). In the heteroskedastic setting, we first flip a fair coin. If the coin
lands heads, then x ∼ unif(−1, 1) and y ∼ N (0, 0.05). If the coin lands tails, then we set
(y, x) = (0, 0). In both settings, y has the same marginal variance, but in the heteroskedas-
tic setting, the presence of the (0, 0) points changes the variance at the origin. As there
is no trend between x and y in either setting, the best predictive model in both cases is
simply the straight line at y = 0. Grünwald and Van Ommen (2017) expand the scalar
input x to a vector x via a 50-dimensional polynomial basis, defining the linear model on
that representation of x.

2.2. Model Misspecification

Consider a family of models {pθ(y|x) : θ ∈ Θ}. Model misspecification refers to when
the set of all candidate models (denoted Θ) does not contain the ground truth model,
i.e. p∗(y|x) /∈ {pθ(y|x) : θ ∈ Θ}. Grünwald and Van Ommen (2017) consider a form
of misspecification where the model assumes constant variance in x, while the variance
of the true density p∗(y|x) is not constant. For the regression setting above, this means
that the model assumes homoskedastic response noise but the true noise is heteroskedastic.
Grünwald and Van Ommen (2017) analyze this setting for linear models, finding that the
Bayesian posterior is not able to concentrate to the best predictive solution β∗ = 0 (the
straight line at y = 0) despite the Normal prior having its mode at β = 0.

2.3. Quantities of Interest

Predictive Performance We are concerned with the large-sample predictive perfor-
mance of our Bayesian regression model. In turn, two quantities of interest are the log-risk
and square-risk (Grünwald and Van Ommen, 2017). The first is defined as:

RISKlog(θ|D) = E(x∗,y∗)∼p∗
[
− logEθ|D [pθ(y∗|x∗)]

]
, (1)

and the latter is then defined as:

RISKsq(θ|D) = E(x∗,y∗)∼p∗
[
Eθ|D

[
(y∗ − fθ(x∗))2

]]
, (2)

where fθ is the mean of our parametric density model pθ(y|x) and (x∗,y∗) denotes held-out
data sampled from the true generative process.
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Hypercompression Let θ̃ denote the parameter setting that results in the closest model
to p∗ in terms of Kullback–Leibler (KL) divergence: θ̃ = arg min

θ∈Θ
KL (p∗(y|x) ‖ pθ(y|x)) .

Grünwald and Van Ommen (2017) define hypercompression to occur when the following
quantity is negative:

E(x∗,y∗)∼p∗
[
− logEθ|D [pθ(y∗|x∗)]

]︸ ︷︷ ︸
RISKlog(θ|D)

−E(x∗,y∗)∼p∗
[
− log pθ̃(y∗|x∗)

]
< 0, (3)

meaning that the posterior predictive is a better model of p∗ than the single best model
pθ̃. While this may seem to be a good thing—the boons of model uncertainty—Grünwald
and Van Ommen (2017) argue that the presence of hypercompression implies posterior
inconsistency. To elaborate, hypercompression arises when the posterior is not concentrating
around the KL-best model but the posterior predictive has very good log-risk. Since the KL-
best model does not have high probability, the good risk values do not stem from modeling
the function well, misleading us to think that the model is better than it really is.

Posterior Concentration To measure the degree of posterior concentration, Grünwald
and Van Ommen (2017) compare the difference between the R-log-risk and log-risk :

0 ≤ C (θ|D) = E(x∗,y∗)∼p∗Eθ|D [− log pθ(y∗|x∗)]︸ ︷︷ ︸
RISKR-log(θ|D)

−E(x∗,y∗)∼p∗
[
− logEθ|D [pθ(y∗|x∗)]

]︸ ︷︷ ︸
RISKlog(θ|D)

. (4)

The sensibility of C(θ|D) follows directly from Jensen’s inequality. C(θ|D) = 0 if and
only if the posterior concentrates to a point mass δ(θ0). Or intuitively, the R-log-risk can
be interpreted as measuring the predictive performance under samples from the posterior.
On the other hand, the log-risk quantifies the predictive performance of the aggregated
model space represented by the posterior predictive distribution. When the posterior is
concentrated, then C(θ|D) ≈ 0 as it should not matter if we make predictions using a
particular sample or the aggregate. Note that while C(θ|D) can measure concentration, it
is ambivalent to where the posterior is concentrating. For well-identified models, it would
be worthwhile to examine their convergence to θ̃, but for NNs, θ̃ is not identifiable. In
Appendix Figure 9, we provide convergence results of θ to θ̃ for Bayeisan linear models,
where θ̃ is uniquely identifiable.

3. Investigation of Misspecified Bayesian Neural Networks

We now turn to Bayesian NNs, examining if they demonstrate the same inconsistency that
Grünwald and Van Ommen (2017) identified for linear models. The full implementation
details are provided in Appendix C.

Bayesian NN Regression Model Following Grünwald and Van Ommen (2017)’s linear
model specification as closely as possible, we study the NN regression model:

β ∼ N (0,σ2I), σ2 ∼ Γ−1(α0, β0), y ∼ N
(
fβ(x),σ2

)
(5)

where fβ(x) is a feedforward NN with one hidden layer and 20 hidden units with ReLU
activations. Following Grünwald and Van Ommen (2017), we set the inverse-gamma hyper-
prior’s shape as α = 1.0 and scale as β = 0.025. Let β denote all of the weights. The full
model is denoted with the conditional density pθ(y|x) where θ = (β,σ2).
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(c) Full-Covariance VB

Figure 1: Misspecified Model Fits (N = 100). The above plots show the posterior predictive
distributions for the Bayesian NN when Hamiltonian Monte Carlo (a), mean field (Nor-
mal) variational Bayes (b), and full-covariance (Normal) variational Bayes (c) are used for
posterior inference. The shaded areas correspond to 95% prediction intervals.

Data and Misspecification We use the same data simulation process as described in
Section 2.1.1 The Bayesian NN described in Equation 5 is correctly specified in the case of
homoskedastic noise and misspecified in the case of heteroskedastic noise. Yet, even in the
misspecified case there exists the best available conditional density pθ̃(y|x) = N (0, 0.025)
that is closest to the true density p∗(y|x) in terms of KL divergence. While we know the
best conditional, the corresponding parameters θ̃ are not identifiable as many configurations
can lead to this conditional (e.g. all-zero first layer, all-zero second layer, all-ReLU units
evaluate to their inactive regime, etc.).

3.1. Hamiltonian Monte Carlo

We first examine our Bayesian NN’s performance when the posterior is obtained by Hamil-
tonian Monte Carlo (HMC). Firstly, Figure 1a shows the posterior predictive distribution
for the misspecified setting. We see that the predictive mean is wiggly and similar to the
fit of the Bayesian linear model shown in Figure 5a. Clearly, the posterior did not con-
centrate on the best predictive function, which confirms that the inconsistency identified
by Grünwald and Van Ommen (2017) can occur for Bayesian NNs as well. Figures 2a
and 2d show the predictive performance in terms of log-risk and square-risk respectively,
comparing the well-specified setting (orange) to the misspecified setting (blue). While the
misspecified model has a better or at least competitive log-risk, its square-risk is clearly
inferior, suggesting that hypercompression has likely occurred. Figure 3a confirms that
hypercompression indeed takes place for N < 200, suggesting that Grünwald and Van Om-
men (2017)’s explanation for linear models extends to NNs as well. Lastly, Figure 4a shows
that the misspecified model’s posterior is clearly less concentrated than the corresponding
well-specified model.

1. We do make one slight change from Grünwald and Van Ommen (2017): instead of a 50-dimensional
polynomial basis, we instead use a 101-dimensional Fourier basis, following Heide et al. (2020). This
choice was just to improve visualization of the model fits and changes the analysis in no other way.
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(c) Full-Covariance VB
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(e) Mean Field VB
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(f ) Full-Covariance VB

Figure 2: Predictive Performance. The above plots show the average log-risk (a-c) and
square-risk (d-f) for Bayesian NNs fit using Hamiltonian Monte Carlo (a, d), mean field
(Normal) variational Bayes (b, e), and full-covariance (Normal) varitaional Bayes. The
shaded areas correspond to ±1 standard deviation across 30 random seeds.

3.2. Variational Bayes

Having confirmed that inconsistency can occur for HMC-obtained posteriors, we next turn
to variational inference (Blei et al., 2017). As MCMC is usually impractical for NNs, this set-
ting is closer to typical Bayesian NN implementations. We consider the most popular form
of variational inference (VI): variational Bayes (VB). We implemented VB using two dif-
ferent variational families. The first uses a mean field factorization, q(θ) = N (µ, diag{Σ}),
and the second uses a full-covariance matrix, q(θ) = N (µ,Σ).

Figures 1b and 1c show the model fit under the mean field and full-covariance posteriors
respectively. Unlike the HMC fit, the VB posteriors do not seem to suffer from any inconsis-
tency as their mean is very near the y = 0 line and the 95% prediction interval captures the
response noise quite well. Examining the predictive quantities in Figures 2b, 2c (log-risk)
and 2e, 2f (square-risk), the risks of the specified and misspecified models nearly match in
all four plots. Moreover, the square-risk of both models comes quite close to the optimal
value—unlike the HMC-misspecified’s square-risk. The hypercompression plots in Figures
3b and 3c are positive for all sample sizes, meaning that hypercompression never occurs
(compare to HMC’s in 3a). Lastly, Appendix Figures 4b and 4c show the posteriors are
much more concentrated than for HMC.
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(b) Mean Field VB
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(c) Full-Covariance VB

Figure 3: Hypercompression. The above plots show the hypercompression inequality (Equa-
tion 3) for the three inferences strategies. HMC exhibits hypercompression (negative values)
where as VB does not (positive values). The shaded areas correspond to ±1 standard de-
viation across 30 random seeds.

4. Why is Variational Bayes Consistent Under Misspecification?

Comparison to Laplace Approximation Our first thought was to examine the ELBO,
as perhaps it introduces some beneficial inductive bias that leads to consistency. We tested
this hypothesis by fitting the Bayesian NN using the Laplace approximation (MacKay,
1992). As Laplace’s method also uses a Normal approximation of the posterior, this exper-
iment keeps the variational family the same while changing only the optimization objective
(ELBO vs MAP). Appendix Figure 5b shows the fit of the misspecified NN. We see that
the line is not similar to the optimal y = 0 line, showing signs of inconsistency and behavior
that is dissimilar to VB’s. Hence, our hypothesis is supported.

ELBO: Concentration and R-log-risk Inspecting the analytical form of the ELBO,
we notice that the expected likelihood Eq[log pθ(y|x)] looks similar to the R-log-risk defined
in Equation 4. It is not the same—primarily because the ELBO is evaluated on training
data, not held-out data. Yet, the expectation is similar in its placement outside of the log.
Also, by Jensen’s inequality we know that Eq [− log pθ(y|x)] ≥ − logEq [pθ(y|x)]. Thus, we
conjecture that the ELBO is optimizing the concentration of q, implicitly decreasing C(θ|D)
(Equation 4). This does not speak directly to whether or not hypercompression (Equation
3) occurs, but it does seem less likely for more concentrated posteriors. That is because the
posterior predictive will likely be close to the in-family, KL-optimal conditional pθ̃.

5. Conclusions

Inspired by Grünwald and Van Ommen (2017)’s analysis of Bayesian linear models, we
performed a similar inspection of Bayesian NNs. We found that while the same inconsistency
likely occurs for the true posterior, approximate inference can mitigate the inconsistency.
In fact, variational Bayes can recover the best predictive function while HMC and the
Laplace approximation could not. We suspect that the ELBO may be the cause of VB’s
success, as the Laplace approximation was observed to be inconsistent despite having the
same approximating family. For future work, we plan to analyze other variational inference
strategies, deep NN architectures, and the choice of prior.
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Appendix A. Additional Results for Bayesian NNs
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(b) Mean Field VB
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Figure 4: Posterior Concentration. The above plots characterize the posterior concentration
using C(θ|D), defined in Equation 4. Lower values imply a higher degree of concentration.
Subfigures (a-c) show the concentration of each of the three posterior inference strategies.
The shaded areas correspond to ±1 standard deviation across 30 random seeds.
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Figure 5: Misspecified Model Fits (N = 100). The above plots show the fits of three
misspecified models. Subfigure (a) shows the misspecified Bayesian linear model (BLM),
recreating the results of Grünwald and Van Ommen (2017). Subfigure (b) shows the poste-
rior predictive distribution for a misspecified Bayesian NN when the Laplace approximation
is used for posterior inference. Subfigure (c) shows the fit for a NN with maximum likelihood
estimation (no regularization). The shaded areas correspond to 95% prediction intervals.

Appendix B. Results for Bayesian Linear Models

To further understand the success of variational Bayes, we provide comprehensive results
and analysis for Bayesian linear models. In particular, there are two reasons to investigate
variational Bayes for Bayesian linear models. Firstly, since with Bayesian linear models, the
exact posteriors are obtainable for variational Bayes, it shows us evidence whether or not
the behaviors of variational Bayes for NNs are due to inaccurate posterior approximation.
Secondly, as discussed in Section 2.3, unlike with NNs, with linear models, there exists a
unique parameter setting θ̃ = (β̃ = 0, σ̃2 = 0.025) that results in the KL-optimal model
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(b) BLM, Well-Specified VB
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(c) BLM, Misspecified VB
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(e) BLM, Well-Specified VB
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(f ) BLM, Misspecified VB

Figure 6: Predictive Performance. The above plots show the average log-risk (a-c) and
square-risk (d-f) for Bayesian linear model (BLM) fit using exact posterior (a, d), well-
specified full-covariance (Normal) variational Bayes (b, e), and misspecified mean field
(Normal) varitaional Bayes. The shaded areas correspond to ±1 standard deviation across
30 random seeds.

to the true generative process p∗(x, y). This property allows us to validate the consistency
of VB posteriors: if the VB posteriors are consistent, they must not only concentrate,
but also concentrate to θ̃. To measure this, we use the expected squared `2-distance:

Eθ|D

[
||θ− θ̃||22

]
.

We further distinguish between two different settings: Bayesian linear models with well-
specified full covariance (Normal) VB posteriors and with misspecified mean field (Normal)
VB posteriors. The former is implemented by approximating p(β,σ2|D) with q(β)q(σ2),
where q(β) is a multivariate Gaussian distribution and q(σ2) is an inverse-gamma distribu-
tion. The latter is implemented by firstly running the former. While keeping the mean of
q(β) the same, we replace the covariance matrix of q(β) with one that is diagonal and has
a smaller trace. These two settings are designed to mimic the behaviors of VB with NNs:
while the first setting investigates the behaviors of VB when the posteriors are perfectly
approachable, the second setting could be similar to the situation with NNs, where the
approximate posteriors are more concentrated as they try to cover modes of the possibly
multi-modal true posteriors.

9



Inconsistency of Misspecified Bayesian Neural Networks

0 100 200 300 400
sample size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

av
er

ag
e

co
nc

en
tr

at
io

n

misspecified

well-specified

(a) BLM, Exact

0 100 200 300 400
sample size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

av
er

ag
e

co
nc

en
tr

at
io

n

misspecified

well-specified

(b) BLM, Well-Specified VB
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Figure 7: Posterior Concentration. The above plots characterize the posterior concentration
using C(θ|D) defined in Equation 4. Lower values imply a higher degree of concentration.
Subfigures (a-c) show the concentration of exact posterior of BLM, well-specified VB pos-
terior of BLM and misspecified VB posterior of BLM. The shaded areas correspond to ±1
standard deviation across 30 random seeds.
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(a) BLM, Exact
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(b) BLM, Well-Specified VB
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(c) BLM, Misspecified VB

Figure 8: Hypercompression. The above plots show the hypercompression inequality (Equa-
tion 3) for exact posterior of BLM, well-specified full-covariance VB posterior of BLM and
misspecified mean field VB posterior of BLM. Exact posterior exhibits hypercompression
(negative values) where as VB does not (positive values). The shaded areas correspond to
±1 standard deviation across 30 random seeds.
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(b) BLM, Well-Specified VB
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Figure 9: Expected `2-distance. The above plots show the expected `2-distance for exact
posterior of BLM, well-specified full-covariance VB posterior of BLM and misspecified mean
field VB posterior of BLM. The shaded areas correspond to ±1 standard deviation across
30 random seeds.

Appendix C. Implementation Details

In the experiments, we use NumPyro (Phan et al., 2019; Bingham et al., 2018) for HMC,
mean field VB, full-covariance VB and Laplace approximation. For HMC, we use 1000
warm-up steps. For all three variational inference strategies (mean field VB, full-covariace
VB and Laplace appproximation), we use Normal distribution to approximate the joint
posterior, making the appropriate transformation (log) to R for the variance σ2. Specially,
for Laplace approximation, we use NumPyro to calculate the MAP solution but as the
Hessian is usually not invertible, we approximate the Hessian using the Gaussian-Newton
matrix, which is guaranteed to be positive semidefinite. For all three variational inference
strategies, we use Adam (Kingma and Ba, 2014) to optimize ELBO with a learning rate of
0.005 and a step size of 20000. For all the model fits plot, we use a fixed sample size of
100. To compute all the quantities of interest numerically, we sample 1000 samples from
the true generative process p∗(x, y) together with 2000 samples from the posteriors for each
inference strategy.
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