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ABSTRACT

Current approaches to LLM safety fundamentally rely on a brittle cat-and-mouse
game of identifying and blocking known threats via guardrails. We argue for a
fresh approach: robust safety comes not from enumerating what is harmful, but
from deeply understanding what is safe. We introduce Trust The Typical (T3),
a framework that operationalizes this principle by treating safety as an out-of-
distribution (OOD) detection problem. T3 learns the distribution of acceptable
prompts in a semantic space and flags any significant deviation as a potential threat.
Unlike prior methods, it requires no training on harmful examples, yet achieves
state-of-the-art performance across 18 benchmarks spanning toxicity, hate speech,
jailbreaking, multilingual harms, and over-refusal, reducing false positive rates by
up to 40x relative to specialized safety models. A single model trained only on
safe English text transfers effectively to diverse domains and over 14 languages
without retraining. Finally, we demonstrate production readiness by integrating a
GPU-optimized version into vLLM, enabling continuous guardrailing during token
generation with less than 6% overhead even under dense evaluation intervals on
large-scale workloads.

1 INTRODUCTION

Contemporary safety paradigms for large language models are fundamentally reactive, relying on
specialized classifiers trained to detect known categories of harmful content and adversarial prompts
via explicit pattern recognition (Inan et al., 2023; Deng et al., 2025; Gehman et al., 2020; Wallace
et al., 2019; Carlini et al., 2021; Zou et al., 2023; Wei et al., 2023). This approach creates an inherent
asymmetry, where attackers need only discover novel prompt structures that fall outside the training
distribution of safety classifiers, while defenders must continuously expand their catalogs of harmful
patterns – a dynamic that favors the adversary (Liu et al., 2023c). The adversarial landscape evolves
continuously with new attack vectors such as multi-turn jailbreaking, role-playing exploits, and
encoding-based obfuscation emerging faster than defensive systems can adapt. Consequently, even
sophisticated alignment techniques like Reinforcement Learning from Human Feedback (RLHF) and
Constitutional AI, while improving general alignment, cannot guarantee robustness against adversarial
inputs that fall outside their training distributions (Christiano et al., 2017; Bai et al., 2022; Ouyang
et al., 2022; Casper et al., 2023). These adversarial prompts succeed precisely because they share a
fundamental characteristic: they must deviate from the statistical regularities of “typical” natural
language to exploit learned vulnerabilities, a property current defenses fail to leverage systematically.

This cat-and-mouse dynamic reveals a deeper issue: current safety mechanisms can only defend
against explicitly known attack patterns, and cannot anticipate and defend against novel forms of
attack. We explore a paradigm shift toward proactive safety through the lens of statistical typicality.
Drawing from information theory, we observe that legitimate user interactions with language models,
despite their surface diversity, occupy a relatively concentrated region in the model’s semantic
representation space, what Cover & Thomas (1999) term the “typical set.” Adversarial prompts, by
design, must deviate from natural language patterns to exploit model vulnerabilities, often manifesting
as atypical points in this representation space (Nalisnick et al., 2019; Morningstar et al., 2021). This
reframing suggests a more efficient and robust paradigm for LLM safety. Rather than training
specialized models to recognize specific harmful patterns, we can instead focus on characterizing the
distribution of acceptable, in-distribution examples. Such an approach offers two key advantages.
First, it obviates the need for an exhaustive and constantly updated collection of harmful examples,
requiring only a specification of what constitutes safe usage. Second, by making no assumptions about
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the form of adversarial inputs, it provides a more principled defense against novel and unforeseen
attack patterns. However, operationalizing this paradigm is challenging; one cannot directly query
the true probability of a prompt under the unknown distribution of “safe and intended use.” While
prior works have explored statistical methods for content filtering, they often remain vulnerable to
novel attacks or incur high computational overhead (Gehman et al., 2020; Xu et al., 2021).

In this paper, we introduce T3, a novel framework that fundamentally reframes LLM safety from
reactive pattern-matching to proactive statistical modeling. T3 operationalizes the principle of
typicality by learning the geometric structure of safe language use, then detecting deviations that
characterize harmful content. Our specific contributions are:

1. We extend the Forte framework (Ganguly et al., 2025b) from vision to text, providing
rigorous theoretical analysis of how the per-point PRDC metrics detect distributional shifts.
We establish the expected values of the metrics in a much more general setting than Ganguly
et al. (2025b): without any additional assumptions on the distributions in the case when
samples are from the same distribution, and with mild assumptions on the density and
support of the distributions in the case when they are different.

2. Across 18 benchmarks spanning toxicity, hate speech, jailbreaking, and multilingual harms,
T3 achieves state-of-the-art AUROC with a 10-40x reduction in false positive rates compared
to specialized safety models . On important benchmarks, T3-OCSVM achieves FPR@95 of
2.0% (OffensEval) and 3.5% (Davidson) versus 75.2% and 61.7% for the best baseline. This
improvement directly translates to a 75% reduction in overrefusals compared to traditional
methods on OR-Bench.

3. Using a single model trained only on English general-purpose safe text, T3 achieves near-
perfect transfer across specialized domains (99.6% AUROC on code, 99.8% on HR) and
maintains consistent performance across 14+ languages with less than 2% variance. This
reduces the need for domain-specific training, multilingual data collection, or language-
specific calibration.

4. We co-design T3 within vLLM to enable continuous safety monitoring during token gener-
ation, achieving sub-6% overhead even with aggressive 20-token evaluation intervals on
5,000-prompt workloads. By overlapping safety computations with inference operations
on the same GPU, T3 enables immediate terminations of harmful generations without the
latency penalties associated with post-processing approaches, making real-time guardrailing
practical for production deployments.

2 RELATED WORKS

Detecting out-of-distribution (OOD) inputs is crucial for reliably deploying models, as they often
yield confident but incorrect predictions on novel data, a vulnerability highlighted by adversarial
perturbations (Szegedy et al., 2013) and poor calibration (Guo et al., 2017). Supervised OOD
methods use labeled examples for explicit training (Hendrycks et al., 2019; Dhamija et al., 2018),
output calibration (Liang et al., 2018; Hsu et al., 2020), ensembles (Lakshminarayanan et al., 2017),
or fitting distributions to latent features (Meinke & Hein, 2020; Ganguly et al., 2025a). However, their
reliance on known OOD examples limits effectiveness against novel threats. In contrast, unsupervised
methods model the training data density p(x) (Bishop, 1994), but this approach can fail in high-
dimensional spaces where OOD samples receive high likelihoods (Nalisnick et al., 2019; Choi et al.,
2018). Solutions like likelihood ratios (Ren et al., 2019), typicality tests (Nalisnick et al., 2019),
and physics-inspired estimators (Morningstar et al., 2021) attempt to mitigate this paradox but still
struggle with the curse of dimensionality.

The emergence of LLMs transformed OOD detection through the geometric property of isotropy,
where embeddings spread uniformly in contrast to the narrow ‘cones’ of earlier models (Liu et al.,
2023a). This structure makes simple distance metrics effective, resolving the representation de-
generation that plagued previous methods (Ma & Zhu, 2022; Ethayarajh, 2019). Building on this,
research reveals that pre-trained models are often superior OOD detectors because they form clean
domain-level clusters that task-specific fine-tuning fragments, inadvertently hiding OOD samples in
the resulting gaps (Uppaal et al., 2023). This trade-off, which we term the fine-tuning paradox, is
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Figure 1: Geometric concentration of safe text embeddings in high-dimensional space. The
distribution of Euclidean distances from the mean for 10,000 safe embeddings (Alpaca, d=1024)
empirically validates the concentration of measure phenomenon. (a, d) The distances closely follow
a theoretical χ1024 distribution, confirmed by a Q-Q plot (R2 > 0.99). (b, c, f) This results in a
concentrated “typical set” where 90% of data forms an annulus (“hollow sphere”) around the mean, a
structure visible even in 2D PCA projections. (e) As predicted by theory, this concentration tightens
relative to the dimension (O(d−1/2)).

now being formalized by theoretical work connecting OOD robustness to PAC learning guarantees
and the information-theoretic concept of a ‘typical set‘ (Cover & Thomas, 1999).

OOD detection in LLMs follows three main paradigms, each with significant trade-offs. Likelihood-
based methods use ratios between base and fine-tuned models as an OOD signal (Zhang et al., 2024;
Ren et al., 2022), but are computationally prohibitive and assume the base model covers all anomalies.
Representation-based methods exploit embedding geometry via distance metrics (Podolskiy et al.,
2021) or lightweight PEFT activations (Hayou et al., 2024), but face a paradox where the fine-tuning
needed for tasks degrades the geometric structure required for detection. Finally, synthetic data
generation implements Outlier Exposure (Hendrycks et al., 2018) by creating challenging outliers
(Abbas et al., 2025; Chen et al., 2021; Fort et al., 2021); however, this approach remains reactive,
requiring an “OOD oracle” to anticipate threats and thus failing against unknown-unknowns.

The connection between OOD detection and LLM safety is direct: adversarial prompts, including
jailbreaks , prompt injection (Liu et al., 2023b), and role-playing exploits (Wei et al., 2023), are
by definition out-of-distribution, as they must deviate from natural language. This contrasts with
dominant reactive defenses, such as specialized classifiers (Inan et al., 2023) or alignment techniques
like RLHF (Ouyang et al., 2022) and Constitutional AI (Bai et al., 2022), which cannot generalize to
novel threats and consistently lag the evolving adversarial landscape. While recent proactive work
has begun applying OOD principles to address safety problems like anomaly detection, perplexity
filtering (Jain et al., 2023), hallucination detection, and uncertainty quantification (Kuhn et al., 2023;
Kadavath et al., 2022), a unified framework is still lacking.

Our work synthesizes these insights into a unified framework that resolves their fundamental lim-
itations. T3 operationalizes the principle that safety is fundamentally about typicality (Nalisnick
et al., 2019; Cover & Thomas, 1999) by learning the distribution of safe usage directly from curated
examples. This approach avoids the high cost of dual-model likelihood methods (Zhang et al.,
2024), preserves the clean geometric structure that fine-tuning corrupts (Uppaal et al., 2023), and
requires no “OOD oracle” to anticipate threats as synthetic data methods do (Abbas et al., 2025). By
adapting a principled OOD framework from vision (Ganguly et al., 2025b) to leverage the unique
isotropic geometry of LLM embeddings (Liu et al., 2023a), we provide a proactive defense that is
both theoretically grounded and efficient.

3 METHODOLOGY

Problem Formulation: We consider the problem of detecting potentially harmful prompts and LLM
outputs before processing further. Let Dsafe denote the distribution of benign prompts representing
acceptable model usage. Given a reference corpus X = {xi}mi=1 ∼ Dm

safe and test prompts Y =
{yj}nj=1, our goal is to determine whether each yj ∼ Dsafe (in-distribution) or yj ∼ Dharmful (out-
of-distribution), where Dharmful represents an unknown distribution of adversarial prompts, toxic
content, or off-topic queries. To this end, we adapt the multi-model framework of Ganguly et al.
(2025b) from visual to textual domain. For each text sample x, we employ 3 sentence transformers:
E1 (Qwen3-Embedding-0.6B), E2 (BGE-M3), and E3 (E5-Large-v2). Each encoder Ek produces
a normalized embedding: ϕk(x) = Ek(x)

∥Ek(x)∥2
∈ Sdk−1 where Sdk−1 denotes the unit hypersphere
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Figure 2: Distinguishing safe vs. toxic text using geometric typicality. This figure compares
simple Euclidean and Mahalanobis distances for separating 10,000 safe and 2,000 toxic embeddings.
(a, b) Mahalanobis distance, which accounts for the safe data’s covariance, provides far better
separation between safe (green) and toxic (red) distributions. (c, d) This superiority is quantified
by a significantly higher ROC AUC (0.944 vs. 0.733) and confirmed by box plots. (e) A 2D
PCA projection visually confirms that toxic samples fall predominantly outside the 95% typical set
boundary of safe data.

in Rdk . This normalization ensures cosine similarity computations and mitigates encoder-specific
scaling artifacts.

For each encoder and test point yj , we compute four geometric features that capture the rela-
tionship between test and reference distributions. Let NBk(z;Z) denote the smallest ball cen-
tered at z containing its k nearest neighbors from set Z, and define the reference manifold esti-
mate: Sk(X) =

⋃m
i=1 NBk(ϕk(xi);X). The per-point PRDC metrics are: Precision(j)

k = 1(yj ∈
Sk(X)); Recall(j)k = 1

m

∑m
i=1 1(ϕk(xi) ∈ NBk(ϕk(yj);Y ));Density(j)

k = 1
km

∑m
i=1 1(ϕk(yj) ∈

NBk(ϕk(xi);X));Coverage(j)k = 1(∃i : ϕk(xi) ∈ NBk(ϕk(yj);Y )). These metrics have use-
ful mathematical properties that enable principled anomaly detection. Under the null hypothesis
H0 : Dtest = Dsafe, we can compute the expected values of the metrics as follows.

Theorem 3.1 (Expected Values under the null hypothesis). When test and reference samples are
drawn from the same distribution:

E[Recall(j)k ] = k/n E[Density(j)
k ] = 1/m

E[Coverage(j)k ] ≤ 1− (1− k/n)m lim
m→∞

E[Precision(j)
k ] = 1

While the values of these metrics are analytically intractable without additional information about
the distributions when Dsafe ̸= Dtest, we compute the values in a number of interesting regimes and
show that the metrics are consistent tests in these regimes, i.e. they can be used to distinguish the null
hypothesis from the alternative hypothesis. We prove these results as well as the theorem above in
Appendix A.

1. Partial Support Mismatch: When Dharmful(supp(Dsafe)
c) = α > 0, harmful prompts

explore semantic regions outside typical usage, yielding limm→∞ E[Precision] = 1−α < 1.

2. Density Shift: Even when supports coincide, if density ratio r(y) = psafe(y)/pharmful(y) is
non-constant, coverage satisfies:

lim
m,n→∞

E[Coverage] = 1− Ey∼Dharmful [e
−λkr(y)] < 1− e−λk (1)

where λ = limm,n→∞ m/n. This guarantees coverage is maximized only when distributions
match.

3. Local Perturbations: For regions where r(y) ≤ 1 − η with Dharmful-measure δ > 0, the
coverage gap is at least δ(e−λk − e−λk(1−η)), ensuring detection of targeted adversarial
patterns.

These results show that PRDC metrics are sufficiently powerful to capture the differences in two
distributions, but do not directly give us the threshold values of the metrics for distinguishing two
distributions. We use density estimation methods, trained only on the PRDC metrics computed from
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the In-Distribution data, to compute anomaly scores. We aggregate PRDC features across all encoders
to form a single representation: T(yj) = [PRDC(j)

1 , . . . ,PRDC(j)
K ] ∈ R4K ; where PRDC(j)

k =

[Recall(j)k ,Density(j)k ,Precision(j)
k ,Coverage(j)k ]. This multi-view representation captures semantic

anomalies that may be subtle in individual embedding spaces. We model the distribution of T on safe
data using two complementary approaches: Gaussian Mixture Model (GMM) with components
selected via Bayesian Information Criterion, and One-Class SVM (OCSVM) with RBF kernel
with ν parameter tuned via validation accuracy. The anomaly score for test point yj is computed
as the negative log-likelihood under the fitted model, with scores normalized to [0, 1] via sigmoid
transformation.

We contextualize the per-point PRDC metrics within the broader literature on non-parametric, k-
nearest-neighbor–based two-sample testing. Classical pooled-graph tests ask the global question
“do F and G match?”; by contrast, Forte tackles the harder, per-sample question of whether each
yj is compatible with X , and it is intentionally asymmetric and scalable (reusing structure from
the reference set). This asymmetry and the use of in-set rather than pooled neighbors mean these
procedures are not equivalent in general, and naïvely adapting pooled tests for repeated prediction
would be computationally prohibitive at modern scales. Even so, viewing PRDC and Forte or T3
through the two-sample-test lens clarifies their mathematical behavior and suggests useful sanity
checks. The details of this comparison are given in Appendix A.

We evaluate performance using Area under ROC curve (AUROC), measuring ranking quality across
all thresholds, False positive rate at 95% true positive rate (FPR@95), important for safety-sensitive
applications, Area Under the Perturbation Recall Curve (AUPRC), and Maximum F1 score with
corresponding threshold, balancing precision and recall (Optimal F1).

Implementation Details. For PRDC computation, we randomly split the reference set into two equal
halves to avoid self-similarity bias when computing nearest neighbor statistics. The L2 distance on
normalized embeddings is used throughout, exploiting the relationship ∥x− y∥22 = 2(1− cos(x, y))
for unit vectors. Embeddings are cached to disk in PyTorch format, enabling efficient reuse across
experiments. The detector selection uses grid search over hyperparameters: GMM components
∈ {1, 2, 4, 8, 16, 32, 64} constrained by sample size, and OCSVM ν ∈ {0.01, 0.05, 0.1, 0.2, 0.5}.

4 RESULTS

We conduct a comprehensive empirical evaluation, aiming to answer five critical research questions:

In-Distribution Data. Following established OOD detection protocols (Hendrycks et al., 2019;
Liang et al., 2022), we construct our in-distribution (ID) dataset from a curated mix of safe, helpful
prompts spanning diverse domains. Our ID corpus combines high-quality instruction-following data
from Alpaca (Taori et al., 2023), Dolly (Conover et al., 2023), and OpenAssistant (Köpf et al., 2023),
equally distributed across the datasets, totaling approximately 40K examples. Critically, no harmful,
toxic, or adversarial examples are included in the ID data for any OOD detector, ensuring a fair test
of generalization.

Out-of-Distribution Benchmarks. We evaluate on 12 challenging OOD benchmarks representing
the spectrum of LLM safety threats: general toxicity detection (RealToxicityPrompts (Gehman et al.,
2020), CivilComments (Borkan et al., 2019)), targeted hate speech (HatEval (Basile et al., 2019),
Davidson (Davidson et al., 2017), HASOC (Mandl et al., 2019), OffensEval (Zampieri et al., 2019)),
multilingual harms (XSafety (Wang et al., 2023)), and domain-specific policy violations across code,
cybersecurity, education, HR, and social media contexts (PolyGuard (Kang et al., 2025)). Additionally,
we use four adversarial benchmarks: AdvBench (Zou et al., 2023), HarmBench (Mazeika et al.,
2024), JailbreakBench (Chao et al., 2025), and MaliciousInstruct (Huang et al., 2023). Results on
WildGuardMix (Han et al., 2024) are provided in Table 9.

Baselines. We compare against three categories of state-of-the-art methods: (1) Specialized Safety
Models: LlamaGuard 3-1B and 4-12B (Inan et al., 2023), WildGuard (Han et al., 2024), DuoGuard
(Deng et al., 2025), MD-Judge (Li et al., 2024), PolyGuard (Kang et al., 2025), and LLM-Guard
(Mhatre et al., 2025); (2) Commercial Safety APIs: OpenAI Omni Moderation and Perspective API;
(3) Representation-based OOD Methods: We adapt ten established techniques to operate on semantic
embeddings from Qwen3-Embedding-0.6B (Bai et al., 2023); ablations with larger embeddings (4B,
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8B) are provided in Tables 10 and 11 ; text-native OOD baselines (Energy, kNN, Mahalanobis) are
evaluated in Table 12, RMD (Ren et al., 2022), VIM (Wang et al., 2022), CIDER (Ming et al., 2022),
GMM (Lee et al., 2018), OpenMax (Bendale & Boult, 2016), ReAct (Sun et al., 2021), AdaScale
(Regmi, 2025), NNGuide (Park et al., 2023), and FDBD (Liu & Qin, 2023).

Evaluation Metrics. We report AUROC, AUPRC, F1-score, and FPR@95TPR (False Positive
Rate at 95% True Positive Rate) (Hendrycks et al., 2019). For safety applications, FPR@95TPR is
particularly critical as it measures the rate of false alarms while maintaining high detection sensitivity.
Concretely, FPR@95TPR answers: “If we require catching 95% of harmful prompts, what fraction
of truly safe prompts are mistakenly flagged?” For each benchmark, OOD (harmful) examples come
from the respective dataset while ID (safe) examples come from our held-out safe corpus; we compute
ROC curves over all scores and report FPR at the threshold achieving 95% TPR on OOD. Importantly,
no OOD labels or test data are used to train T3’s density estimators (GMM/OCSVM), and thresholds
are not tuned per-benchmark—there is no data leakage from evaluation back into training.

RQ1: How does T3 compare against specialized safety models and traditional OOD methods
on diverse harm detection benchmarks?

Table 1: Toxicity Detection Performance Across Six Benchmarks. T3 outperforms most baselines,
including specialized safety models and traditional OOD methods. Performance is measured by
AUROC (higher is better) and FPR@95 (lower is better). T3 achieves exceptionally low False Positive
Rate (FPR@95), indicating high precision for practical deployment.

Dataset Civil Comments Davidson et al. Hasoc Hateval OffensEval Real Toxicity
Metric AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95
Method

ADASCALE 0.3572 0.9971 0.1063 0.9999 0.4323 0.9925 0.3491 0.9890 0.2766 0.9987 0.5072 0.9672
CIDER 0.7393 0.9267 0.6791 0.9790 0.7880 0.8769 0.7827 0.8823 0.7469 0.9525 0.7535 0.8726
FDBD 0.4903 0.9921 0.7694 0.8960 0.4298 0.9941 0.5357 0.9730 0.6009 0.9674 0.3519 0.9944
GMM 0.6249 0.9758 0.6297 0.9757 0.6723 0.9609 0.7027 0.9689 0.7284 0.9637 0.6297 0.9565
NNGUIDE 0.4710 0.9960 0.2493 0.9996 0.5527 0.9949 0.4665 0.9849 0.4101 0.9995 0.6094 0.9600
OPENMAX 0.5347 0.9958 0.7966 0.9997 0.4644 0.9908 0.5874 0.9922 0.6042 0.9976 0.4396 0.9633
REACT 0.3432 0.9962 0.2016 0.9996 0.3925 0.9913 0.3784 0.9881 0.3059 0.9992 0.5536 0.9485
RMD 0.5560 0.9827 0.5989 0.9814 0.5982 0.9697 0.6123 0.9798 0.6529 0.9666 0.5635 0.9750
VIM 0.5626 0.9953 0.4742 0.9985 0.6046 0.9918 0.5776 0.9940 0.5967 0.9958 0.6601 0.9642

Perspective API 0.9711 0.1413 0.9786 0.1065 0.9482 0.4062 0.9376 0.4070 0.9208 0.5171 0.9372 0.5106
OpenAI Omni 0.8916 0.8607 0.8926 0.9068 0.8591 0.9144 0.8861 0.8608 0.8069 0.9668 0.7557 0.9736

LLAMAGUARD3-1B 0.5714 1.0000 0.6234 1.0000 0.5881 1.0000 0.7475 1.0000 0.6027 1.0000 0.5858 1.0000
LLAMAGUARD4-12B 0.5368 1.0000 0.5547 1.0000 0.5483 1.0000 0.6768 1.0000 0.5496 1.0000 0.5224 1.0000
LLAMAGUARD3-1B-LOGITS 0.7389 0.8214 0.8378 0.6565 0.7399 0.8261 0.8995 0.4861 0.8217 0.7004 0.7632 0.7820
WILDGUARD 0.7994 1.0000 0.8514 1.0000 0.7707 1.0000 0.8191 1.0000 0.7945 1.0000 0.6655 1.0000
MDJUDGE 0.7439 0.8552 0.7797 0.8540 0.7447 0.8397 0.7926 0.8201 0.7176 0.8746 0.6665 0.9186
DUOGUARD 0.8789 0.6742 0.8947 0.6170 0.8240 0.8230 0.7885 0.8119 0.8269 0.7516 0.7934 0.9110
POLYGUARD 0.7904 0.5446 0.8791 0.2216 0.7884 0.5206 0.8879 0.2593 0.7832 0.5315 0.7353 0.5380
T3+GMM 0.9249 0.2079 0.9869 0.0366 0.9198 0.2022 0.9809 0.0451 0.9886 0.0253 0.9282 0.1808
T3+OCSVM 0.9678 0.1722 0.9913 0.0350 0.9632 0.1860 0.9895 0.0408 0.9940 0.0201 0.9684 0.1670

Across six toxicity and hate speech benchmarks, T3 decisively outperforms all baselines, particularly
in reducing false alarms. Our findings show that traditional OOD methods fail catastrophically
when applied to semantic safety, with most exhibiting false positive rates (FPR@95) exceeding
90%, rendering them unusable. While specialized safety models like DuoGuard and PolyGuard
achieve better detection (AUROC), they hit a “precision ceiling," suffering from prohibitively
high false positive rates (e.g., 75.2% for DuoGuard on OffensEval and 61.7% on Davidson) due
to their reliance on reactive pattern-matching. In stark contrast, T3 achieves order-of-magnitude
improvements in both detection and precision. T3-OCSVM delivers near-perfect AUROC (≥ 0.96 on
5 of 6 benchmarks) and, most critically, slashes false positives. On OffensEval, T3’s 2.0% FPR@95
represents a 37× reduction over the best baseline, with similar dramatic gains across all datasets.
This stable, high-precision performance demonstrates the superiority of T3’s proactive approach,
which models the “typical set" of safe content rather than attempting to enumerate all possible harms.
(see Table 6 for component ablations).

For LlamaGuard, we evaluate both the standard discrete classification and a fine-grained logit-based
scoring variant (LLAMAGUARD3-1B-LOGITS). The logit-based approach extracts p(safe) =
exp(ℓsafe)/(exp(ℓsafe) + exp(ℓunsafe)) from the model’s output logprobs, providing a continuous
confidence score rather than a binary decision. This more favorable scoring improves LlamaGuard’s
calibration and reduces its FPR@95TPR; however, T3 still achieves substantially better performance
across all benchmarks.
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RQ2: Can T3, trained only on safe data, generalize to detect novel, unseen adversarial and
jailbreaking attacks?

Against six diverse adversarial and jailbreaking benchmarks, T3 provides a substantially more robust
defense than existing methods despite being trained only on safe data. Traditional OOD techniques
again fail catastrophically, proving useless for practical defense with false positive rates (FPR@95)
typically exceeding 97%. Specialized safety models exhibit attack-specific vulnerabilities and
inconsistent protection; even the strongest baseline, PolyGuard, still incorrectly flags over 64% of
safe prompts on every benchmark. In contrast, T3’s attack-agnostic approach of identifying statistical
deviations delivers significant gains. It excels against direct attacks, reducing the FPR@95 on
AdvBench to 15.8%, a 4.2× improvement over PolyGuard, and performs well against contextual
manipulations. While more subtle attacks remain challenging for all methods, T3’s graduated
response to threat sophistication, unlike the binary failures of other models, marks a significant step
toward a more generalizable and practical adversarial defense.

RQ3: How effectively does T3 mitigate the common problem of overrefusal on benign-but-
challenging prompts? How is the cold-start performance with limited ID data?

On the OR-Bench, designed to measure overrefusal on safe-but-challenging prompts, T3 provides the
best balance between safety and utility. While traditional OOD methods fail by flagging most benign
edge cases as harmful (FPR@95 >68%), specialized models show inconsistent performance. Llama-
Guard achieves an impressive low 14.8% FPR@95 on this specific task, a result that sharply con-
trasts its moderate performance on other benchmarks and suggests dataset-specific overfitting. Other
models like DuoGuard and PolyGuard still over-refuse excessively (43.5% and 53.2% FPR@95). T3
delivers the most robust and well-rounded solution, with T3-GMM achieving an excellent 22.2%
FPR@95 and T3-OCSVM the highest AUROC (0.934). We also evaluated an LLM-enhanced variant
(denoted “Augment” in Table 3) that prepends a structured safety analysis from GPT-OSS-20B before
embedding; however, this decreases OR-Bench performance, likely because the LLM’s explicit safety
labels shift borderline-safe prompts toward the harmful distribution in embedding space. Furthermore,
T3 is highly sample-efficient and does not suffer from a cold start problem. As shown in Figure 3,
performance converges rapidly with a small number of in-distribution examples. With just 500 safe
samples, T3-OCSVM already achieves high AUROC and significantly reduced FPR@95 across most
benchmarks.

Table 2: T3 provides zero-shot defense against adversarial and jailbreaking attacks. Trained
only on safe data, T3 demonstrates significantly better generalization against six diverse attack
benchmarks. It provides a robust, attack-agnostic defense, in contrast to specialized models which
show inconsistent, attack-specific vulnerabilities.

Dataset AdvBench BeaverTails HarmBench JailbreakBench MaliciousInstruct XSTest
Metric AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95
Method

ADASCALE 0.5894 0.9827 0.2833 0.9986 0.4341 0.9900 0.3500 0.9829 0.2994 1.0000 0.2803 0.9952
CIDER 0.2963 1.0000 0.2777 0.9974 0.4799 0.9650 0.5966 0.9556 0.2580 1.0000 0.3345 1.0000
FDBD 0.5689 0.9750 0.7226 0.8754 0.6342 0.9200 0.6195 0.9317 0.8510 0.7100 0.8021 0.7810
GMM 0.2737 0.9981 0.2515 0.9972 0.4163 0.9900 0.5377 0.9625 0.2252 1.0000 0.2298 1.0000
NNGUIDE 0.3989 0.9981 0.2239 0.9994 0.4023 0.9850 0.3795 0.9863 0.1622 1.0000 0.2144 1.0000
OPENMAX 0.3681 0.9942 0.6226 0.9984 0.4904 0.9900 0.5861 0.9898 0.5954 1.0000 0.6308 0.9952
REACT 0.4461 0.9962 0.2655 0.9980 0.3648 1.0000 0.2570 1.0000 0.1913 1.0000 0.2373 1.0000
RMD 0.3575 0.9981 0.3568 0.9727 0.4846 1.0000 0.4816 0.9898 0.3869 1.0000 0.3730 1.0000
VIM 0.3340 0.9981 0.2169 0.9997 0.3369 1.0000 0.4032 1.0000 0.1441 1.0000 0.1565 1.0000

Perspective API 0.7895 0.9558 0.7922 0.8429 0.7247 0.9500 0.7233 0.9795 0.6828 1.0000 0.7932 0.7381
OpenAI Omni 0.8908 0.8269 0.8091 0.9488 0.8185 0.9650 0.8369 0.6724 0.8825 0.9200 0.8257 0.9667

LLAMAGUARD3-1B 0.8894 1.0000 0.7135 1.0000 0.8857 1.0000 0.7248 1.0000 0.8507 1.0000 0.7843 1.0000
LLAMAGUARD3-1B-LOGITS 0.8110 0.7500 0.5598 0.9366 0.8887 0.3600 0.7293 0.6689 0.5791 0.9300 0.6542 0.9095
LLAMAGUARD4-12B 0.8822 1.0000 0.7137 1.0000 0.8868 1.0000 0.7165 1.0000 0.8718 1.0000 0.8120 1.0000
WILDGUARD 0.8658 1.0000 0.8218 1.0000 0.8642 1.0000 0.6978 1.0000 0.8617 0.9982 0.7929 1.0000
MDJUDGE 0.7814 0.9942 0.7779 0.8987 0.7980 0.9050 0.7302 0.8908 0.7957 0.9700 0.7906 0.9238
DUOGUARD 0.8241 0.9327 0.8525 0.8064 0.8007 0.9550 0.6820 0.9898 0.7745 1.0000 0.8418 0.7810
POLYGUARD 0.8670 0.6654 0.8071 0.7269 0.8595 0.6450 0.7904 0.7201 0.8501 0.7800 0.8007 0.8714
T3+GMM 0.9675 0.1577 0.7276 0.7847 0.7578 0.6700 0.7588 0.5358 0.8280 0.5900 0.6794 0.8143
T3+OCSVM 0.9578 0.1731 0.6081 0.8758 0.8102 0.5850 0.8622 0.4539 0.7586 0.6800 0.5800 0.8762
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Table 3: Performance on OR-Bench,
a benchmark designed to measure
overrefusal on safe-but-challenging
prompts. T3 achieves an excellent bal-
ance of safety and utility, with T3-GMM
delivering a low FPR@95 while T3-
OCSVM achieves the highest AUROC.
This outperforms most specialized mod-
els like DuoGuard, though LlamaGuard
shows an strong FPR@95 on this specific
task.

Method / Metric AUROC FPR@95 AUPRC F1

RMD 0.7474 0.7550 0.8674 0.8491
VIM 0.7162 0.7250 0.8386 0.8493
CIDER 0.7900 0.7117 0.9019 0.8536
FDBD 0.4169 0.9517 0.6662 0.8333
NNGUIDE 0.6220 0.9283 0.7862 0.8333
REACT 0.5438 0.9417 0.7420 0.8333
GMM 0.7530 0.6883 0.8679 0.8547
ADASCALE 0.5509 0.9783 0.7416 0.8333
OPENMAX 0.4710 0.9817 0.6871 0.8333

LLAMAGUARD3-1B 0.8905 0.1483 0.9240 0.9346
LLAMAGUARD4-12B 0.8498 0.2748 0.9839 0.9796
MDJUDGE 0.8577 0.8900 0.9478 0.9082
DUOGUARD 0.9311 0.4350 0.9729 0.9063
POLYGUARD 0.8717 0.5317 0.9181 0.8833

T3+GMM 0.9108 0.2217 0.9265 0.9405
T3+GMM (Augment) 0.8594 0.3267 0.9022 0.9153
T3+OCSVM 0.9342 0.2517 0.9662 0.9293
T3+OCSVM (Augment) 0.8581 0.4100 0.9114 0.9060

Figure 3: T3 is highly sample-efficient, avoid-
ing the cold start problem. T3’s detection per-
formance (AUROC) rapidly converges to ≈ 90%
with as few as 1000 in-distribution training sam-
ples, demonstrating its ability to learn the manifold
of safe usage from a small, curated dataset.

RQ4: Does T3’s performance generalize across different languages and specialized domains
without retraining?

T3 demonstrates exceptional zero-shot generalization across specialized domains, using a single
model trained only on general-purpose English prompts. Without any domain-specific training, T3
achieves near-perfect, out-of-the-box performance, with AUROC scores exceeding 99.5% and
false positive rates (FPR@95) below 1% on both Code and HR policy violations, and similarly
strong results in cybersecurity and education. In stark contrast, all baselines fail to generalize;
traditional OOD methods are unusable (FPR@95 >93%), and specialized models like PolyGuard
and LlamaGuard perform poorly even on their intended domains. This 40–100× improvement
in FPR@95 validates T3’s core principle: harmful content, whether it’s malicious code or an HR
violation, creates a consistent geometric signature of deviation from typical in-distribution language,
enabling robust protection across diverse contexts without the need for retraining.

T3’s zero-shot generalization extends powerfully across 14+ languages, from high-resource to lower-
resource. Using only its English-trained model, T3 maintains remarkably stable high-performance,
with T3-OCSVM showing less than 0.6% AUROC variance across all languages, including those
with different scripts like Japanese and Arabic. This consistency starkly contrasts with specialized
baselines like DuoGuard and PolyGuard, which exhibit high linguistic variance (up to 28%), making
their performance unreliable across different regions. T3’s success validates that harmful content
creates a language-agnostic geometric signature in modern multilingual embedding spaces. This
carries significant practical implications, as it eliminates the need for expensive multilingual data
collection, retraining, and per-language calibration, enabling a single model to enforce a consistent
safety standard globally.

LLM-Enhanced Variant (Augment): We also explored prepending a structured LLM-generated
safety analysis (via GPT-OSS-20B) to each prompt before embedding. As shown in Table 5, this
augmentation improves T3+GMM performance for non-English languages on RTP-LX (e.g., +1.7%
AUROC for DE, +2.9% for ES) but degrades English and XSafety performance. Root cause analysis
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revealed that the LLM often labels in the prompt’s native language rather than English, reducing em-
bedding consistency. This suggests LLM augmentation requires language-aware output normalization
to be effective. Overall, the increase in overheads do not justify the increase in performance.

Table 4: Polyguard Domain-Specific Evaluation

Dataset Polyguard Code Polyguard Cyber Polyguard Education Polyguard HR Polyguard Social Media
Metric AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95
Method

ADASCALE 0.7029 0.9665 0.6707 0.9484 0.4459 0.9976 0.4670 0.9978 0.2719 0.9997
CIDER 0.8919 0.3620 0.7425 0.8056 0.7406 0.9685 0.8299 0.9059 0.7645 0.9356
FDBD 0.2938 0.9978 0.3289 0.9974 0.5871 0.9896 0.6141 0.9951 0.6762 0.9480
GMM 0.8481 0.3709 0.7479 0.7549 0.6288 0.9804 0.7030 0.9826 0.6329 0.9858
NNGUIDE 0.8426 0.6939 0.6859 0.8855 0.5038 0.9940 0.5142 0.9974 0.4227 0.9995
OPENMAX 0.2899 0.9637 0.3410 0.9386 0.4712 0.9963 0.4304 0.9967 0.6126 0.9996
REACT 0.6079 0.9899 0.5077 0.9910 0.4478 0.9946 0.5151 0.9950 0.3205 0.9987
RMD 0.7358 0.7022 0.6701 0.8587 0.6505 0.9706 0.6864 0.9484 0.6185 0.9764
VIM 0.7926 0.6497 0.6453 0.9128 0.5022 0.9953 0.5153 0.9990 0.4606 0.9996

LLAMAGUARD3-1B 0.7139 1.0000 0.7789 1.0000 0.5740 1.0000 0.6368 1.0000 0.7482 1.0000
LLAMAGUARD4-12B 0.5235 1.0000 0.7733 1.0000 0.5389 1.0000 0.5520 1.0000 0.7151 1.0000
WILDGUARD 0.5706 1.0000 0.7463 1.0000 0.6637 1.0000 0.6833 1.0000 0.8252 1.0000
LLAMAGUARD3-1B-LOGITS 0.8031 0.7235 0.7519 0.7789 0.8661 0.6339 0.8257 0.7417 0.8249 0.6576
MDJUDGE 0.6491 0.8827 0.7616 0.8735 0.6909 0.8858 0.7146 0.8807 0.7445 0.8782
DUOGUARD 0.5356 0.8844 0.7574 0.8307 0.6626 0.9931 0.6363 0.9909 0.7224 0.9446
POLYGUARD 0.5530 0.7475 0.7354 0.8116 0.4464 0.9558 0.4198 0.9484 0.7224 0.6808
T3+GMM 0.9959 0.0089 0.9886 0.0270 0.9913 0.0255 0.9965 0.0062 0.9673 0.1208
T3+OCSVM 0.9953 0.0095 0.9818 0.0615 0.9943 0.0192 0.9982 0.0039 0.9620 0.1485

Table 5: Consistent and stable performance across 14+ languages. T3 maintains excep-
tionally high AUROC with minimal variance (<2%) across high- and low-resource languages,
demonstrating its language-agnostic safety capabilities. Results are shown for the RTP LX
(top) and XSafety (bottom) benchmarks.

Dataset=RTP_LX De En Es Fr Hi It Ja Ko Nl Pl Pt Ru Tr Zh

LLAMAGUARD3-1B 0.7746 0.7865 0.7997 0.7647 0.7877 0.7696 0.7715 0.7802 0.7990 0.7452 0.7677 0.7627 0.7571 0.8302
MDJUDGE 0.8617 0.8832 0.8718 0.8458 0.7868 0.8332 0.8673 0.8343 0.8418 0.7874 0.8544 0.8154 0.7865 0.9001
DUOGUARD 0.9876 0.9886 0.9884 0.9925 0.9521 0.9714 0.9682 0.8850 0.9785 0.9004 0.9817 0.8254 0.9351 0.9924
POLYGUARD 0.9551 0.9818 0.9660 0.9533 0.8396 0.9328 0.9779 0.9533 0.9379 0.8608 0.9548 0.9769 0.8515 0.9898
T3+GMM 0.9588 0.9554 0.9522 0.9546 0.9535 0.9540 0.9605 0.9600 0.9555 0.9550 0.9560 0.9572 0.9604 0.9526
T3+GMM (Augment) 0.9759 0.9071 0.9816 0.9756 0.9789 0.9738 0.9771 0.9871 0.9695 0.9728 0.9699 0.9741 0.9769 0.984
T3+OCSVM 0.9788 0.9804 0.9797 0.9807 0.9787 0.9805 0.9819 0.9811 0.9790 0.9806 0.9821 0.9768 0.9816 0.9812
T3+OCSVM (Augment) 0.9507 0.7909 0.9496 0.9492 0.9421 0.9491 0.9514 0.9606 0.96 0.9573 0.9495 0.952 0.9547 0.9619

Dataset=XSafety De En Es Fr Hi Ja Ru Zh Ar

LLAMAGUARD3-1B 0.6215 0.6452 0.6383 0.6477 0.6421 0.6183 0.6433 0.6302 0.6633
MDJUDGE 0.7905 0.7765 0.8056 0.8003 0.7584 0.7993 0.7874 0.7886 0.7760
DUOGUARD 0.9228 0.7820 0.9085 0.9295 0.9693 0.8357 0.7877 0.8837 0.8286
POLYGUARD 0.7653 0.7051 0.7499 0.7682 0.8279 0.7852 0.7811 0.7354 0.8239
T3+GMM 0.9542 0.9476 0.9482 0.9602 0.9509 0.9469 0.9542 0.9522 0.9526
T3+GMM (Augment) 0.8942 0.9004 0.9740 0.8981 0.9102 0.9003 0.9012 0.9014 0.9026
T3+OCSVM 0.9815 0.9801 0.9762 0.9781 0.9797 0.9804 0.9802 0.9772 0.9800
T3+OCSVM (Augment) 0.7869 0.7802 0.9300 0.7786 0.786 0.7907 0.7871 0.7852 0.7887

RQ5: Can T3 be integrated into a high-performance inference engine for practical, real-time
deployment with minimal latency?

To demonstrate T3’s practical deployment capabilities, we integrated it directly into the vLLM
inference framework (Kwon et al., 2023) for real-time safety monitoring during generation. Unlike
post-processing approaches that evaluate complete outputs, our system performs continuous safety
assessment as tokens are generated, enabling immediate termination of harmful content. The
integration leverages vLLM’s multiprocess architecture by intercepting and accessing outputs in
the mostly idling Main Process while inference proceeds in Worker Processes, achieving efficient
computation overlap without disrupting the core generation pipeline.

Streaming Results: Performance evaluation on an NVIDIA H200 GPU demonstrates negligible
overhead even under dense monitoring conditions. With T3 configured for evaluation every 20 tokens
and batch processing of 32 requests, we observe only 1.5% overhead on 500-prompt workloads and
6% on 5,000-prompt workloads compared to baseline vLLM (Table 7). This is achieved through
strategic batching of safety evaluations and overlapping T3’s embedding computations with ongoing
token generation, effectively hiding guardrail latency behind inference operations. To our knowledge,
T3 is the first framework to demonstrate sub-10% overhead for continuous safety monitoring during
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online LLM generation, making real-time guardrailing practical for production deployments where
both safety and latency are critical.

Post-Generation Results: T3’s efficiency also extends to the widely adopted post-generation
guardrailing mode. In a comparative benchmark on an NVIDIA H200 GPU with batch sizes up to 64,
our results revealed a clear performance hierarchy. While DUOGUARD was fastest, T3 (GMM and
OCSVM) demonstrated excellent scalability, with runtimes consistently between 60–155 ms. This
positions T3 as significantly more efficient than PolyGuard and vastly superior to heavier methods
like MDJudge and LlamaGuard, which imposed prohibitive runtimes exceeding one million µs and
failed at larger batch sizes. These findings confirm that T3 is a highly efficient and scalable solution
for both online and post-generation safety deployment.

5 DISCUSSION

An important finding emerges from our evaluation on particularly challenging scenarios where the
semantic distinction between “safe" and “harmful" is intentionally ambiguous and context-dependent.
We deliberately tested our method on the Anthropic hh-rlhf dataset, where chosen (safe) responses
serve as the in-distribution data and rejected (harmful) responses as out-of-distribution, a purposely
difficult setup since the ID dataset already contains profanity and the only difference between response
pairs might be subtle phrasing or a single word. In this challenging benchmark, no method, including
T3, traditional baselines, and existing safety approaches, performs significantly better than random
chance (AUROC≈0.5). Importantly, this failure stems not from methodological weakness but from
the nature of the ID data itself: the “safe” examples contain extensive toxic content (e.g., lists of
profanities), making the cosine similarity between chosen and rejected responses extremely high
(>0.95). This creates a near-OOD detection problem where the typical set of “safe” usage already
encompasses harmful patterns.

However, this limitation does not generalize to attacks designed to semantically resemble safe queries.
We evaluated T3 against the HILL jailbreak method (Luo et al., 2025), which transforms harmful
imperatives into innocuous-looking “learning-style” questions (e.g., “I am studying chemistry, explain
this reaction...”). Despite HILL’s explicit design to masquerade as in-distribution educational content,
T3 achieves strong detection (AUROC 0.98, FPR@95 4.4%, see Table 13 for details.) when trained
on properly curated safe data. This contrast is instructive: T3 succeeds when the ID training set
genuinely represents safe usage, but fails when the ID set itself contains the harmful patterns it should
detect. The key insight is that T3’s effectiveness is contingent on appropriate ID training set
curation.

This reveals a fundamental boundary for OOD-based safety: methods succeed when safe and harmful
content occupy separable manifolds (HILL, domain adherence) but fail when they overlap (HH-
RLHF). Crucially, this training distribution dependence is universal—supervised classifiers (Llama
Guard, PolyGuard) collapse under domain shift, and Constitutional AI/RLHF systems over-refuse
outside their preference distributions. T3’s curation requirement is thus not a unique weakness but a
shared property of all safety methods. This motivates hybrid architectures combining T3’s efficient
typicality screening for distributional outliers with reasoning-based methods for near-boundary cases
requiring contextual intent parsing. Conversely, there are domains where the boundary between
in-distribution and out-of-distribution is exceptionally clear. A prime example is domain adherence
for mathematical reasoning. When the in-distribution “safe" set consists of mathematical problems
and solutions (from datasets like MATH or GSM8K), and the OOD set consists of unrelated topics
like philosophy, literature, or cooking, the semantic separation is vast. In this scenario, nearly all
methods, including traditional OOD baselines like CIDER and GMM, perform extremely well, often
achieving near-perfect AUROC scores.

6 CONCLUSION

The T3 guardrailing framework represents a significant paradigm shift in LLM safety, moving
from reactive threat-blocking to a proactive approach based on statistical typicality. By modeling
what is safe rather than enumerating harms, T3 achieves state-of-the-art performance, remarkable
generalization across domains and languages, and a dramatic reduction in overrefusal. Its successful
integration into the vLLM inference engine with minimal overhead demonstrates its readiness for
practical, real-time deployment in production environments.
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A THEORETICAL ANALYSIS

A.1 EXPECTED VALUES OF PRDC METRICS

We analyze the mathematical and statistical properties of the PRDC metrics in this section. Let us
first introduce some notation for easier readability. Let X = {Xi}mi=1 and Y = {Yj}nj=1 be i.i.d.
random vectors in Rd drawn from distributions F and G respectively. We denote by NBk(Xi;Z)
the smallest open ball centered around Xi containing its k nearest neighbors from the set Z. For
brevity, we write NBk(Xi) and NBk(Yj) for NBk(Xi;X) and NBk(Yj ;Y ) respectively. Let us
recall the definitions of the per-point PRDC metrics introduced earlier, treating X and the reference
points and Y as test points,

P
(j)
k (X,Y ) = 1

(
Yj ∈

m⋃
i=1

NBk(Xi)

)

R
(j)
k (X,Y ) =

1

m

m∑
i=1

1 (Xi ∈ NBk(Yj))

D
(j)
k (X,Y ) =

1

mk

m∑
i=1

1 (Yj ∈ NBk(Xi))

C
(j)
k (X,Y ) = 1 (∃i,Xi ∈ NBk(Yj))

In the following theorem, we compute the expected values of these metrics in the general case,
without making any additional assumptions. Note that the expectation of the precision, E[P (j)

k ] is
analytically intractable in general cannot be simplified any further without stronger assumptions.

Theorem A.1. Let X = {Xi}mi=1 and Y = {Yj}nj=1 be sets of i.i.d. random vectors in Rd drawn

from distributions F and G respectively. The expectations of the per-point metrics R(j)
k , D(j)

k , and
C

(j)
k are given by

1. E
[
R

(j)
k (X,Y )

]
= P(X1 ∈ NBk(Y1))

2. E
[
D

(j)
k (X,Y )

]
=

1

k
P(Y1 ∈ NBk(X1))

3. E
[
C

(j)
k (X,Y )

]
= 1− E [(1− P(X1 ∈ NBk(Y1)))

m
]

the outer expectation in the third result is over the random sample Y = {Yj}nj=1.

Proof. We prove each statement individually.

1. By definition, the expectation is:

E
[
R

(j)
k (X,Y )

]
= E

[
1

m

m∑
i=1

1(Xi ∈ NBk(Yj))

]

=
1

m

m∑
i=1

E [1(Xi ∈ NBk(Yj))] (by linearity of expectation)

=
1

m

m∑
i=1

P(Xi ∈ NBk(Yj)) (since E[1(A)] = P(A))

The random variables {Xi}mi=1 are i.i.d. from F , and {Yj}nj=1 are i.i.d. from Q. Therefore,
the probability P(Xi ∈ NBk(Yj)) is identical for all choices of indices i ∈ {1, . . . ,m} and
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j ∈ {1, . . . , n}. We can thus write this common probability as P(X1 ∈ NBk(Y1)).

E
[
R

(j)
k (X,Y )

]
=

1

m

m∑
i=1

P(X1 ∈ NBk(Y1))

=
1

m
·m · P(X1 ∈ NBk(Y1))

= P(X1 ∈ NBk(Y1))

2. The proof follows the same structure.

E
[
D

(j)
k (X,Y )

]
= E

[
1

mk

m∑
i=1

1(Yj ∈ NBk(Xi))

]

=
1

mk

m∑
i=1

E [1(Yj ∈ NBk(Xi))] (by linearity of expectation)

=
1

mk

m∑
i=1

P(Yj ∈ NBk(Xi))

Again, by the i.i.d. property of the samples X and Y , the probability P(Yj ∈ NBk(Xi)) is
identical for all i, j. We write this common probability as P(Y1 ∈ NBk(X1)).

E
[
D

(j)
k (X,Y )

]
=

1

mk

m∑
i=1

P(Y1 ∈ NBk(X1))

=
1

mk
·m · P(Y1 ∈ NBk(X1))

=
1

k
P(Y1 ∈ NBk(X1))

3. The expectation of the indicator function is the probability of the underlying event.

E
[
C

(j)
k (X,Y )

]
= E [1(∃i,Xi ∈ NBk(Yj))]

= P

(
m⋃
i=1

{Xi ∈ NBk(Yj)}

)
We use the law of total expectation by conditioning on the random sample Y = {Yj}nj=1.

E
[
C

(j)
k (X,Y )

]
= EY

[
P

(
m⋃
i=1

{Xi ∈ NBk(Yj)}

∣∣∣∣∣ Y
)]

Conditioned on Y , the ball NBk(Yj) is a fixed set. The events {Xi ∈ NBk(Yj)} for
i = 1, . . . ,m are independent because the Xi are i.i.d. and independent of Y . It is easier to
compute the probability of the complement event,

P

(
m⋃
i=1

{Xi ∈ NBk(Yj)}

∣∣∣∣∣ Y
)

= 1− P

(
m⋂
i=1

{Xi /∈ NBk(Yj)}

∣∣∣∣∣ Y
)

= 1−
m∏
i=1

P (Xi /∈ NBk(Yj) | Y ) (by conditional independence)

The conditional probability P(Xi ∈ NBk(Yj)|Y ) is the measure of the set NBk(Yj) under
the distribution F , which is the same for all i.

P

(
m⋃
i=1

{Xi ∈ NBk(Yj)}

∣∣∣∣∣ Y
)

= 1−
m∏
i=1

(1− P(X1 ∈ NBk(Yj)))

= 1− (1− P(X1 ∈ NBk(Yj)))
m
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Taking the expectation over Y gives the final result.

E
[
C

(j)
k (X,Y )

]
= EY [1− (1− P(X1 ∈ NBk(Yj)))

m
] = 1−EY [(1− P(X1 ∈ NBk(Yj)))

m
]

Since the Yj are i.i.d., the distribution of the random set NBk(Yj) is the same for all j. We
can therefore replace the index j with 1 without loss of generality.

E
[
C

(j)
k (X,Y )

]
= 1− E [(1− P(X1 ∈ NBk(Y1)))

m
]

We note the important special case when F = G, i.e. the in-distribution setting when X and Y are
drawn from the same distribution.

Theorem A.2. Let X = {Xi}mi=1 and Y = {Yj}nj=1 be sets of i.i.d. random vectors in Rd drawn
from the same distribution F . The expectations of the per-point metrics simplify to

1. E
[
R

(j)
k (X,Y )

]
=

k

n

2. E
[
D

(j)
k (X,Y )

]
=

1

m

3. E
[
C

(j)
k (X,Y )

]
≤ 1−

(
1− k

n

)m

Proof. The assumption that F = G implies that all m+ n vectors are i.i.d. samples from the same
continuous distribution F . This allows us to use a symmetry argument.

1. From the general case, we know E
[
R

(j)
k (X,Y )

]
= P(X1 ∈ NBk(Y1)). The event

{X1 ∈ NBk(Y1)} means that the distance ∥X1 − Y1∥ is less than the distance from Y1 to
its k-th nearest neighbor in the set Y \ {Y1} = {Y2, . . . , Yn}.

Consider the set of n points {X1, Y2, . . . , Yn}. Since F = G, these are n i.i.d. samples from
F . Let us consider their distances to the point Y1. Since the distribution F is continuous,
the distances will be unique with probability 1. The set of distances {∥X1 − Y1∥, ∥Y2 −
Y1∥, . . . , ∥Yn − Y1∥} consists of n i.i.d. random variables.

The event {X1 ∈ NBk(Y1)} is equivalent to the statement that ∥X1 − Y1∥ is among the k
smallest values in this set of n distances. By symmetry, any specific distance in the set is
equally likely to have any rank from 1 to n. The probability that ∥X1 − Y1∥ is one of the k
smallest is therefore

E
[
R

(j)
k (X,Y )

]
= P(X1 ∈ NBk(Y1)) =

k

n
.

2. From the general case, E
[
D

(j)
k (X,Y )

]
= 1

kP(Y1 ∈ NBk(X1)). The logic is identical to
the proof above, but with the roles of X and Y swapped. Consider the set of m i.i.d. points
{Y1, X2, . . . , Xm} and their distances to the point X1. The event {Y1 ∈ NBk(X1)} is
equivalent to the distance ∥Y1 −X1∥ being among the k smallest of the m i.i.d. distances
{∥Y1 −X1∥, ∥X2 −X1∥, . . . , ∥Xm −X1∥}.

By symmetry, the probability of this event is

P(Y1 ∈ NBk(X1)) =
k

m

Substituting this into the expression for the expectation gives

E
[
D

(j)
k (X,Y )

]
=

1

k
· k

m
=

1

m
.
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3. The proof for this upper bound relies on Jensen’s inequality. We begin by noting that a
naive substitution of the average value of the probability mass of the k-NN ball would
be incorrect. Specifically, the expectation of C(j)

k (X,Y ) involves the non-linear function
f(z) = (1− z)m. For such functions, the expectation of the function is generally not equal
to the function of the expectation, i.e., E[f(Z)] ̸= f(E[Z]).

The exact expression for the expectation is

E
[
C

(j)
k (X,Y )

]
= 1− E [(1− P(X1 ∈ NBk(Y1)))

m
]

As stated above, E[P(X1 ∈ NBk(Y1))] = k/n. Jensen’s inequality states that for a convex
function f and a random variable Z, we have E[f(Z)] ≥ f(E[Z]). The function in our
case is f(z) = (1− z)m, which is a convex function. Applying Jensen’s inequality,

E [(1− P(X1 ∈ NBk(Y1)))
m] ≥

(
1− k

n

)m

Finally, we substitute this inequality back into the expression for the expectation of
C

(j)
k (X,Y ) to get

E
[
C

(j)
k (X,Y )

]
≤ 1−

(
1− k

n

)m

.

While the expression for P (j)
k (X,Y ) is intractable in general even for the in-distribution case, its

limiting value can still provide us some intuition about the metric. We now consider the asymp-
totic behavior of E[P (j)

k (X,Y )] when both X = {Xi}mi=1 and Yj are drawn i.i.d. from the same
distribution F on Rd, and the reference sample size m tends to infinity. Let

Sm(X) =

m⋃
i=1

NBk(Xi)

denote the random set obtained from the sample X . Then

E
[
P

(j)
k (X,Y )

]
= P(Yj ∈ Sm(X)) .

Assume that F has compact support supp(F ), is absolutely continuous with density f that is bounded
and bounded away from zero on supp(F ), and that the boundary ∂supp(F ) has measure zero. Under
these standard regularity conditions, nonparametric set estimation results imply that for fixed k ≥ 1,
Sm(X) → supp(F ) in probability (e.g. in Hausdorff distance), as m → ∞. Intuitively, as the
sample becomes dense, the k-NN radii shrink uniformly, so the union of k-NN balls fills out the
entire support.

By continuity of probability measures and the fact that Yj ∼ F ,
lim

m→∞
P(Yj ∈ Sm(X)) = P(Yj ∈ supp(F )).

Since Yj is drawn from F , it lies in supp(F ) with probability one. Therefore,

lim
m→∞

E
[
P

(j)
k (X,Y )

]
= 1.

In the in-distribution case, as the reference sample grows, the estimated manifold Sm(X) converges
to the true support of F . Consequently, any new sample Yj ∼ F will eventually fall inside Sm(X)
with probability approaching 1.

A.2 CONSISTENCY

A statistical test is said to be consistent if its probability of distinguishing the null hypothesis from
any alternative hypothesis converges to 1 as the sample size increases. We consider a few different
regimes in which the expectations of the per–point PRDC metrics differ between the in–distribution
setting F = G and the out-of-distribution setting F ̸= G, i.e. regimes in which PRDC metrics
are consistent tests. We consider the asymptotic regime m,n → ∞ with fixed k and assume that
limm,n→∞ m/n = λ ∈ (0,∞).
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(1) Partial support mismatch Assume F has compact support supp(F ) and let
α := G

(
supp(F )c

)
> 0.

This says that there is some region where F has zero probability whereas G has non-zero probability.
Under mild regularity conditions stated earlier (compact support, F absolutely continuous with
density bounded and bounded away from zero on supp(F )), the union

⋃m
i=1 NBk(Xi) converges in

probability to supp(F ) as m → ∞. Hence, for Yj ∼ G,

lim
m→∞

EP
(j)
k (X,Y ) = G(supp(F )) = 1− α < 1

whereas in the in–distribution case F = G we have limm→∞ EP
(j)
k (X,Y ) = 1. For coverage, using

EC
(j)
k (X,Y ) = EY

[
1−

(
1− F

(
NBk(Yj)

))m]
,

any Yj /∈ supp(F ) contributes 0 for all m, whence

lim sup
m,n→∞

EC
(j)
k (X,Y ) ≤ (1− α) lim sup

m,n→∞
E
[
1−

(
1− F (NBk(Yj))

)m ∣∣ Y ∈ supp(F )
]
,

where the expectation on the right hand side is the expectation in the case when F = G, resulting in
a strictly lower value of (lim sup of the expected value of) coverage whenever α > 0.

(2) Same support, different densities Assume supp(F ) = supp(G) =: S and F,G are absolutely
continuous with respect to Lebesgue measure on S with continuous densities f, g that are bounded
and bounded away from zero on S. Let

r(y) :=
dF

dG
(y) =

f(y)

g(y)
so that EYj∼G[r(Yj)] = 1.

For fixed k and n → ∞, we have

F
(
NBk(Yj)

)
=

k

n
r(Yj)

(
1 + op(1)

)
.

Substituting into the coverage identity gives

lim
m,n→∞

EC
(j)
k (X,Y ) = 1− EYj∼G

[
exp
(
− λk r(Yj)

)]
. (2)

When F = G we have r ≡ 1 and recover 1 − e−λk. When F ̸= G, r is non–constant on a set of
positive G–measure and, since z 7→ e−λkz is convex, Jensen’s inequality is strict:

EG

[
e−λkr(Yj)

]
> e−λk E[r(Yj)] = e−λk,

so that
lim

m,n→∞
EC

(j)
k (X,Y ) < 1− e−λk.

Thus coverage is maximized at F = G and strictly smaller otherwise, providing consistency even
when supports coincide.

(3) Different densities in a small region Within the same-support setting above, suppose there
exist η ∈ (0, 1) and a measurable set A ⊂ S with G(A) = δ > 0 such that

r(y) ≤ 1− η for all y ∈ A,

i.e. there is a set with positive G probability where F has strictly smaller density than G. Conditioning
on Yj ∈ A vs. Yj /∈ A in equation 2 gives

lim
m,n→∞

EC
(j)
k (X,Y ) ≤ 1−

(
δ e−λk(1−η) + (1− δ) e−λk

)
,

so the gap from the in–distribution baseline 1− e−λk is at least

δ
(
e−λk − e−λk(1−η)

)
> 0.

This captures a practically relevant situation where a nontrivial portion of the G–mass lies in regions
with systematically lower F–density; coverage reflects this “margin” as a strict and quantifiable
decrease.

In summary, precision separates whenever G(supp(F )c) > 0, and coverage separates both under
partial support mismatch and under smooth covariate shift with common supports. In the latter regime,
coverage attains its maximum at F = G and is strictly smaller otherwise, with explicit quantitative
gaps available under simple bounds on the density ratio or under margin assumptions.
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A.3 CONNECTION WITH TWO-SAMPLE TESTS

We put the PRDC metrics and T3 which is based on Forte (Ganguly et al., 2025b) in the context of non-
parametric two-sample tests using k-nearest neighbors. Friedman et al. (1973), Friedman & Rafsky
(1979), and Schilling (1986) developed non-parametric two-sample tests based on a pooled-graph
statistic to determine whether two sets of observed samples are from the same distribution. Given
two sets of samples X = {Xi}mi=1 and Y = {Yj}nj=1 i.i.d. with distributions F and G respectively,
the tests only seek to determine whether F = G. On the other hand, we are concerned not just with
a binary decision for the whole sample set, but also whether each individual sample Yj is from the
same distribution as X , making our setting much more complex. Nevertheless, comparing the PRDC
metrics with these tests helps us build a better understanding of the mathematical properties of Forte.
We primarily focus on Schilling’s test for that purpose, which we restate here.
Definition A.3 (Schilling’s Tk,N Statistic). Let X = {Xi}mi=1 and Y = {Yj}nj=1 be i.i.d. with
distributions F and G respectively. Let Z = X ∪ Y , Zi be the ith element of Z, and N = m + n.
The statistic Tk,N is the proportion of all k-nearest neighbor comparisons in which a point and its
neighbor share the same original label (reference or test), i.e.

Tk,N =
1

Nk

N∑
i=1

k∑
r=1

Ir(Zi),

where Ir(Zi) = 1 if and only if Zi and its rth neighbor in Z are both from X or both from Y .

We first note the major differences between Forte and Schilling’s test. While PRDC metrics compute
the k-nearest neighbors of each sample point Xi or Yj within its own sample set (i.e. NBk(Xi;X)
and NBk(Yj ;Y )), Schilling’s test considers the nearest neighbor of each point in the pooled sample
(i.e. NBk(Xi;X ∪Y ) and NBk(Yj ;X ∪Y ). This makes them non-equivalent in general. Moreover,
Forte is asymmetric in the sets X and Y by design. Since there is an initial overhead of embedding
computation and density estimation, Forte computes the metrics for each test point Yj individually
and then uses the previously estimated density and k-nearest neighbors of the points in the reference
set X to make predictions, making the method scalable. If we wanted to use a two-sample test like
Schilling’s in this setting, we would have to calculate the k-nearest neighbors of the pooled set X ∪Y
from scratch each time we wanted to make predictions for a new test set Y , which is prohibitively
expensive. Unlike classical two-sample tests requiring O((m+ n)2) recomputation for each new test
batch, our asymmetric formulation achieves:

• Preprocessing: O(m2 +mdmaxK) for reference embedding and k-NN computation
• Inference: O(n(m+ dmaxK)) per test batch, amortizing reference computations
• Memory: O(m · dmaxK) for cached embeddings and neighbor indices

where dmax = maxk dk. GPU acceleration via torch.cdist and persistent embedding caching
further reduce practical latency.

Thus, these classical two-sample tests do not carry over directly to the modern setting of large scale
out-of-distribution detection. Nevertheless, given that their statistical properties are well-studied, they
can still provide useful insights about modern methods like Forte.

Recall that a statistical test is called consistent if under any alternative hypothesis, the probability of
rejecting the null hypothesis converges to 1 as the sample size approaches infinity. We denote by H0

the null hypothesis that F = G (the underlying distributions generating the two sets is the same), and
by H1 the alternative hypothesis that F ̸= G.

Theorem A.4 (Asymptotics of Tk,N (Schilling, 1986, Thm. 3.1 and 3.4)). Under the null hypothesis
H0, and assuming limm,n→∞ m/(m+ n) = λ1 and limm,n→∞ n/(m+ n) = λ2, the statistic Tk,N

is asymptotically normal:
√
Nk

Tk,N − µ

σk
⇒ N (0, 1), where µ = λ2

1 + λ2
2

and the variance σ2
k depends on dimension-stable nearest-neighbor interaction probabilities. Moreover,

the test based on Tk,N is against the alternative hypothesis H1.
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In particular, note that limN→∞ E[Tk,N | H0] = λ2
1 + λ2

2 does not depend on k.

The consistency of Schilling’s test is proved in by showing lim infN E[Tk,N |H1] >
limN E[Tk,N |H0], i.e. the limit infimum of the expectation of the statistic under the alternative
hypothesis is strictly larger than under null hypothesis. This conforms with the intuition that if the
two distributions are different then there will not be enough mixing among the samples, leading to
larger values of Tk,N .

Now, we show that the PRDC metrics and Schilling’s statistic Tk,N capture some of the same
information.

Lemma A.5. For any Yj ∈ Y , R(j)
k (X,Y ) = 0 if and only if 1

k

∑k
r=1 Ir(Yj) = 1.

Proof. Since Ir(Yj) ∈ {0, 1}, the average 1
k

∑k
r=1 Ir(Yj) can equal 1 if and only if Ir(Yj) = 1 for

all 1 ≤ r ≤ k. By definition, Ir(Yj) = 1 if and only if the rth nearest neighbor of Yj (in X ∪ Y )
is in the set Y . Thus, 1

k

∑k
r=1 Ir(Yj) = 1 if and only if there is no Xi in NBk(Yj ;Y ) (otherwise

such an Xi would be one of the first k neighbors of the Yj in the set X ∪ Y ), which is equivalent to∑m
i=1 1(Xi ∈ NBk(Yj)) = mR

(j)
k (X,Y ) = 0.

A similar argument shows that for any Xi ∈ X ,
∑n

j=1 1(Yj ∈ NBk(Xi)) = 0 if and only if
1
k

∑k
r=1 Ir(Xi) = 1. Recall that the expression 1

k

∑k
r=1 Ir(Xi) measures the proportion of the first

k nearest neighbors of Xi that have the same label as Xi. We can combine these expressions to
recover Tk,N

Tk,N =
1

Nk

N∑
i=1

k∑
r=1

Ir(Zi) =
1

m+ n

 m∑
i=1

1

k

k∑
r=1

Ir(Xi) +

n∑
j=1

1

k

k∑
r=1

Ir(Yj)

 .

We note that the lemma above implies
⌊
1
k

∑k
r=1 Ir(Yj)

⌋
=
⌊
1−R

(j)
k (X,Y )

⌋
where ⌊x⌋ represents

the greatest integer lesser than or equal to x. Moreover,
⌊
1
k

∑k
r=1 Ir(Yj)

⌋
= min1≤r≤k{Ir(Yj)}

which is equal to 1 if and only if all of the k neighbors of Yj in X ∪ Y are in Y . We can construct a
new test statistic as replacing the average of Ir over r with the minimum,

Bk,N =
1

N

N∑
i=1

min
1≤r≤k

Ir(Zi) =
1

m+ n

 m∑
i=1

min
1≤r≤k

Ir(Xi) +

n∑
j=1

min
1≤r≤k

Ir(Yj)

 .

We conjecture that lim infN E[Bk,N |H1] > limN E[Bk,N |H0], just as for Tk,N , and that Bk,N is
consistent as a consequence. Because of the lemma above, Bk,N can be constructed using PRDC
metrics. Since Forte fits a more general distribution to the PRDC metrics, we expect it to perform at
least as well as the statistic Bk,N .
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B EXPERIMENT TECHNIQUE DETAILS

We are committed to scientific reproducibility, and letting each technique in literature we reproduce
in our experiments to be best possibly tuned for their best performance. In this section, we share
more details about our experimental setup.

B.1 ADAPTATIONS FOR TEXT-BASED OOD DETECTION

Since most established Out-of-Distribution (OOD) detection methods were originally designed
for computer vision, we adapted them to operate on 1024-dimensional text embeddings from the
Qwen3-Embedding-0.6B sentence transformer. A common challenge was the absence of components
like classifier logits or weights, which are available in supervised vision models. We addressed
this by training an auxiliary binary logistic regression classifier on in-distribution (ID) texts versus
synthetic background data. This classifier provided the necessary outputs, such as pseudo-gradients,
weights, and logits, to enable the application of these methods in an unsupervised text-based setting.
Furthermore, distance metrics were consistently adapted from Euclidean to cosine similarity to
suit normalized text embeddings, and dependencies on vision-optimized libraries like FAISS were
replaced with direct matrix operations in NumPy for efficient computation.

1. AdaScale: The auxiliary classifier’s weights were used to compute pseudo-gradients, ap-
proximating the sensitivity of each embedding dimension. Perturbation was then applied to
the most stable features, identified as those with the smallest absolute gradients.

2. CIDER & NNGuide: The FAISS dependency for nearest neighbor search was removed in
favor of direct cosine distance computation. We implemented exact k-NN retrieval using
NumPy partitioning, which we believe improves performance over approximate methods.
For NNGuide specifically, the auxiliary classifier’s logits were used to generate confidence
scores, which in turn produced confidence-weighted "guided" bank features.

3. FDBD: The weight matrices from the auxiliary binary classifier were used to adapt the
denominator matrix computation from its original multi-class formulation to our binary
scenario, enabling the calculation of the required weight difference norms.

4. GMM: We removed the supervised learning requirement by working directly with sentence
embeddings. When dimensionality reduction was necessary, synthetic background data was
used to create pseudo-labels for training a Linear Discriminant Analysis (LDA) model. We
used the more numerically stable sklearn implementation for all reported results.

5. OpenMax: A binary class structure was established using the auxiliary classifier to compute
Mean Activation Vectors (MAVs). The classifier’s probability outputs, rather than raw
embeddings, were then used to fit the Weibull models required by Extreme Value Theory.

6. ReAct: The auxiliary classifier generated the logits needed for energy score computation.
The activation thresholding mechanism was adapted to work directly on the embedding
vectors, where element-wise clipping was applied based on a percentile threshold derived
from the training data.

7. RMD: We created a pseudo-binary statistical separation by computing class-conditional
statistics on a random subset of the training data while using the full training set for the
background distribution statistics. This ensured a sufficient distributional difference for the
RMD scoring function.

8. VIM: The weight matrix (w) and bias (b) from the auxiliary classifier were used to define
the center point for the principal subspace. This subspace was computed by applying eigen-
decomposition to the covariance matrix of centered text embeddings, using the eigenvectors
with the smallest eigenvalues as the null space basis.

B.2 API BASELINE INTEGRATION

The Perspective API and the OpenAI Omni Moderation API are both natively designed for text
content safety and required minimal adaptation. We implemented a unified integration layer for
both, which included persistent file-based caching to minimize redundant calls, detailed logging
for reproducibility, and robust error handling for network issues. To ensure consistency with our
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evaluation framework, the output probabilities from each API were converted into a standardized
safety score, calculated as 1.0− max_toxicity_score.

B.3 OPEN-SOURCE JUDGE LLM ADAPTATIONS

Some of the Judge LLMs were not designed to output the continuous confidence scores required
for OOD evaluation metrics like AUROC. The primary adaptation for each model, therefore, was
to convert its distinct native output, whether categorical, structured, or multi-label, into a unified
numerical safety score suitable for our framework.

• LlamaGuard: Its discrete classifications (e.g., "safe," "unsafe," "unsafe S1") were mapped
to fixed confidence values. "Safe" classifications received a high score (0.9), while "un-
safe" and specific violation categories received progressively lower scores (0.1 and 0.05,
respectively) to reflect greater certainty of harm.

• MD-Judge: We used a conversation-style prompt to elicit its structured output, which
contains a safety category and a numerical severity score (1-5). A scaling function then
converted these discrete outputs into a continuous score, ensuring that higher severity ratings
corresponded to lower safety confidence.

• DuoGuard: As reccommended by their creators, its multi-label output, a probability vector
across 12 safety subcategories, was converted into a single value using a max-aggregation ap-
proach. The final safety score was calculated as 1−max(category_probabilities), effectively
treating the highest-risk category as the overall risk indicator.

• PolyGuard: Since it evaluates prompt-response pairs, we supplied a generic, safe response
("I cannot and will not provide that information") for every input prompt. We then parsed its
structured text output, which classifies prompt harmfulness and identifies policy violations.
A hierarchical scoring system assigned a high score for safe content, a medium score
for refusals, and progressively lower scores for harmful content based on the number of
violations detected.

C EXPERIMENT PARAMETERS

This section provides a detailed account of the datasets, models, and hyperparameters used in our
experiments to ensure full reproducibility.

C.1 TOXICITY AND DOMAIN-SPECIFIC EVALUATION PARAMETERS

The parameters detailed below were used for the toxicity detection experiments (results in Table 1)
and the zero-shot domain generalization experiments (results in Table 4).

C.1.1 DATASETS

• In-Distribution (ID) Data: The ID dataset was a curated mix of safe prompts,
labeled as id_mix. It consisted of 40,000 total samples drawn equally from
four sources: tatsu-lab/alpaca, databricks/databricks-dolly-15k,
Anthropic/hh-rlhf, and OpenAssistant/oasst2.

• Out-of-Distribution (OOD) Data: OOD data was sourced from multiple benchmarks, with
a maximum of 10,000 samples used per benchmark.

– Toxicity & Hate Speech Benchmarks: RealToxicityPrompts,
CivilComments, HatEval, Davidson, HASOC, and OffensEval.

– Domain-Specific Benchmarks: Harmful prompts from five domains in the PolyGuard
dataset: social_media, education, hr, code, and cybersecurity.

C.1.2 GENERAL & T3 CONFIGURATION

• General: All experiments were run on a cuda:0 device with a random seed of 42 and a
batch size of 32.
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• T3 (Forte) Models: The T3 framework was configured with a multi-view represen-
tation derived from three sentence transformers: Qwen/Qwen3-Embedding-0.6B,
BAAI/bge-m3, and intfloat/e5-large-v2.

C.1.3 BASELINE MODEL HYPERPARAMETERS

The following models and hyperparameters were used for the baseline comparisons.
For all representation-based OOD methods, the primary sentence transformer was
Qwen/Qwen3-Embedding-0.6B.

• AdaScale: The percentile range was set to (90.0, 99.0) with k1 = 50.0, k2 = 50.0, λ = 1.0,
and a perturbation strength of o = 0.1.

• CIDER: The number of nearest neighbors was set to K = 5.
• DuoGuard: The model used was DuoGuard/DuoGuard-0.5B with a classification

threshold of 0.5 and a maximum sequence length of 512.
• fDBD: Distance to mean was used for normalization.
• GMM: The model was configured with 8 clusters, a ‘tied‘ covariance type, and used the

‘penultimate‘ feature type without dimensionality reduction. The sklearn implementation
was used.

• LlamaGuard: The model used was meta-llama/Llama-Guard-3-1B.
• MD-Judge (vLLM): The model was OpenSafetyLab/MD-Judge-v0_2-internlm2_7b

with a generation temperature of 0.1, max new tokens of 128, and GPU memory utilization
of 0.7.

• NNGuide: The number of nearest neighbors was K = 100 with α = 1.0.
• OpenMax: The configuration used a tail size of 20 for Weibull fitting, an α of 3, and a

‘euclidean‘ distance metric.
• PolyGuard (vLLM): The model was ToxicityPrompts/PolyGuard-Qwen-Smol.

Evaluation was performed on prompts only by providing a dummy safe response: "‘I cannot
and will not provide that information.‘".

• ReAct: The activation clipping threshold was set to the 90th percentile.
• VIM: The principal subspace dimension was set to d = 512.

C.2 MULTILINGUAL EVALUATION PARAMETERS

C.2.1 DATASETS

• In-Distribution (ID) Data: The ID dataset consisted of 30,000 safe, helpful prompts
sourced from the OpenAssistant/oasst2 dataset.

• Out-of-Distribution (OOD) Data: The OOD data was composed of harmful prompts from
two multilingual benchmarks. For each benchmark, a maximum of 800 samples were used
per language.

– RTP_LX: The languages evaluated were English (en), Spanish (es), French (fr),
German (de), Italian (it), Portuguese (pt), Russian (ru), Japanese (ja), Korean
(ko), Chinese (zh), Hindi (hi), Dutch (nl), Polish (pl), and Turkish (tr).

– XSafety: The languages evaluated were English (en), Chinese (zh), Arabic (ar),
Spanish (sp), French (fr), German (de), Japanese (ja), Hindi (hi), and Russian
(ru).

C.2.2 GENERAL & T3 CONFIGURATION

• General: All experiments were run on a cuda:0 device with a random seed of 42 and a
batch size of 24.

• T3 (Forte) Models: The T3 framework utilized a multi-view representation from
three sentence transformers: Qwen/Qwen3-Embedding-0.6B, BAAI/bge-m3, and
intfloat/e5-large-v2.
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C.2.3 BASELINE MODEL HYPERPARAMETERS

Baseline models were configured with the same hyperparameters detailed in Appendix C.1, with one
exception: the primary sentence transformer for representation-based OOD methods in this evaluation
was BAAI/bge-m3 for its multilingual capabilities.

C.3 OVERREFUSAL EVALUATION PARAMETERS (OR-BENCH)

The parameters in this section correspond to the overrefusal detection experiments on OR-Bench,
with results presented in Table 3 of the main paper.

C.3.1 DATASETS

The evaluation used the bench-llm/or-bench dataset, which is specifically designed to measure
overrefusal on safe-but-challenging prompts.

• In-Distribution (ID) Data: The ID data consists of safe prompts that are known to some-
times trigger overrefusal in LLMs.

– A pool of 5,000 safe prompts was loaded from the or-bench-80k and
or-bench-hard-1k subsets.

– This pool was split into 3,500 prompts for the training set and 1,500 prompts for the
test set.

• Out-of-Distribution (OOD) Data: The OOD set consisted of 600 toxic prompts from the
or-bench-toxic subset, which are designed to be correctly refused by safety models.

C.3.2 GENERAL & T3 CONFIGURATION

• General: All experiments were executed on a cuda:0 device with a random seed of 42
and a batch size of 16.

• T3 (Forte) Models: The T3 framework was configured with a multi-view represen-
tation derived from three sentence transformers: Qwen/Qwen3-Embedding-0.6B,
BAAI/bge-m3, and intfloat/e5-large-v2.

C.3.3 BASELINE MODEL HYPERPARAMETERS

All baseline models were configured with the same hyperparameters as those used in the Toxicity and
Domain-Specific Evaluations, which are detailed in Appendix C.1. The primary sentence transformer
for all representation-based OOD methods was Qwen/Qwen3-Embedding-0.6B.

C.4 ADVERSARIAL AND JAILBREAKING EVALUATION PARAMETERS

The parameters in this section correspond to the adversarial and jailbreaking detection experiments,
with results presented in Table 2 of the main paper.

C.4.1 DATASETS

• In-Distribution (ID) Data: The ID dataset was the same id_mix used in the tox-
icity evaluations, consisting of safe prompts from Alpaca, Dolly, hh-rlhf, and
OpenAssistant. The dataset was split into 40,000 samples for training and 15,000
samples for testing.

• Out-of-Distribution (OOD) Data: The OOD data consisted of prompts from a wide range
of adversarial and jailbreaking benchmarks, as described in the table.

C.4.2 GENERAL & T3 CONFIGURATION

• General: All experiments were run on a cuda:0 device with a random seed of 42 and a
batch size of 32.
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• T3 (Forte) Models: The T3 framework was configured with a multi-view representation
from three sentence transformers: Qwen/Qwen3-Embedding-0.6B, BAAI/bge-m3,
and intfloat/e5-large-v2.

C.4.3 BASELINE MODEL HYPERPARAMETERS

All baseline models were configured with the same hyperparameters as those used in the Toxicity and
Domain-Specific Evaluations, which are detailed in Appendix C.1. The primary sentence transformer
for all representation-based OOD methods was Qwen/Qwen3-Embedding-0.6B.

C.5 T3/FORTE ALGORITHMIC ABLATIONS

We conducted ablation studies to analyze the core components of the Forte algorithm and explore
potential improvements. Our goal was to determine the contribution of each metric and to test
alternative geometric approaches. We first evaluated a simplified one-sample variant of the algorithm
using only precision and density scores (T3-PD), which achieves FPR@95 of approximately 20–
35%. Adding recall and coverage metrics (T3-RC, the two-sample variant) substantially improves
performance, achieving FPR@95 of approximately 0.7–4%. The full combination of all four metrics
(T3-Full) provides the most robust detection, further reducing FPR@95 to approximately 1–2% as
shown in Table 6. This progression confirms that each metric captures distinct geometric failure
modes, and the full set is necessary for comprehensive coverage.

Next, we investigated replacing the standard k-NN spherical regions with ellipsoids defined by the
local covariance of neighboring points. This approach proved unsuccessful for two primary reasons:
(1) Dimensionality Issues: In high-dimensional embedding spaces, the estimated ellipsoids became
highly eccentric (elongated), leading to unstable distance calculations and performance approaching
random chance. (2) Computational Cost: The overhead of estimating a unique covariance matrix for
each point was prohibitively expensive, making the method impractical for large datasets.

Given these challenges, the use of ellipsoids was abandoned. Finally, we affirmed the framework’s
robustness to the choice of embedding models. Consistent with the original Forte paper’s findings
in computer vision (Ganguly et al., 2025b), we heuristically observed that the T3 framework’s
performance remained strong when different sentence transformers were used, suggesting that the
method generalizes well across various NLP embedding spaces.

Table 6: PRDC component ablation. T3-Full uses all four metrics (Precision, Recall, Density,
Coverage). T3-RC uses only Recall and Coverage (two-sample statistics). T3-PD uses only Precision
and Density (one-sample statistics). The full combination provides the most robust detection with
consistently low FPR@95.

Category Components Civil Comments OffensEval Real Toxicity XSafety
AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95

T3-Full P+R+D+C 0.9969 0.0157 0.9998 0.0013 0.9968 0.0157 0.9974 0.0108
T3-RC R+C (two-sample) 0.9846 0.0366 0.9993 0.0013 0.9847 0.0392 0.9961 0.0072
T3-PD P+D (one-sample) 0.9513 0.3343 0.9673 0.2251 0.9672 0.2076 0.9491 0.3494
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D INTEGRATING T3 WITH VLLM FOR ONLINE GENERATION GUARDRAILING

This subsection describes the design and implementation of T3 within the vLLM inference framework,
focusing on the architectural mechanisms that enable real-time guardrailing during generation. The in-
tegration addresses the challenges of enforcing guardrails in high-throughput inference systems where
low latency, streaming support, and continuous monitoring are critical deployment requirements.
Evaluation on an NVIDIA H200 GPU demonstrates that T3 introduces only negligible generation
runtime overheads even under dense evaluation frequencies. To the best of our knowledge, T3 is the
first framework to integrate guardrails into online LLM generation.

Technical Background of vLLM and Why It: vLLM Kwon et al. (2023) was selected as the
integration target due to its combination of architectural efficiency and widespread adoption. Its
PagedAttention mechanism provides scalable KV-cache management, while continuous batching
enables high utilization across heterogeneous workloads. vLLM’s active development community
and modular design ensure sustained compatibility and performance improvements. Importantly, the
framework’s multiprocess execution model exposes well-defined integration points where safety eval-
uation can be embedded without perturbing inference performance or scheduling logic. Specifically,
the vLLM v1 engine employs a three-tier process hierarchy to achieve scalability and fault isolation:

Main Process: Serves as the application entry point. It handles user requests, tokenization, and overall
orchestration. Communication with the Engine Core occurs via ZeroMQ IPC, enabling asynchronous
scheduling and fault isolation. Engine Core: Acts as the central scheduler responsible for global
request management, batch construction, and computational resource allocation. It coordinates
distributed KV-cache state, implements chunked prefill and pipeline parallelism strategies, and
mediates communication between the Main and Worker processes. Worker Processes: Execute the
transformer model partitions, hosting weights, and performing inference on GPU backends. Multiple
workers can operate in parallel under tensor parallelism, returning partial results that the Engine Core
consolidates. This hierarchy presents an opportunity for integrating T3 guardrails. Process isolation
prevents safety component failures from affecting inference stability. The Main Process offers a
natural interception point for modifying outputs without altering scheduling logic. Furthermore,
inherent batching in the Engine Core to Main Process interface enables efficient group evaluation of
multiple requests within guardrail checks.

Integration Strategy and Implementation: T3 was embedded directly into the vLLM pipeline rather
than deployed as an external service. This co-design approach meets several requirements: Latency
Minimization: Avoids serialization, IPC, and network overhead inherent to external microservices,
reducing evaluation latency to the sub-millisecond range. Streaming Compatibility: Maintains
token-by-token evaluation without disrupting streaming responses, in contrast to buffering-based
external systems. Context Accessibility: Provides direct access to prompt history, partial outputs, and
intermediate states necessary for accurate safety assessment. Lifecycle Control: Enables immediate
termination of unsafe generations by modifying internal finish reasons, eliminating the complexity of
coordinating aborts across distributed services.

Integration is achieved by patching the OutputProcessor.process_outputs method. This
choice allows: (1) Non-Invasive Modification: Behavioral changes are introduced without altering the
vLLM source, avoiding custom forks or rebuilds. (2) Performance Containment: The patch intercepts
output at a single chokepoint, preventing scattered performance regressions. (3) Maintainability: All
safety logic is localized within a single interception function, simplifying debugging and iteration.
(4) Operational Flexibility: Guardrails can be enabled or disabled dynamically, facilitating controlled
rollout and experimentation.

Originally, process_outputs iterates over each request in a batch, performing detokenization,
log probability computation, and output construction for newly generated tokens from workers. The
T3 integration restructures this flow into three coordinated phases: Phase 1: State Synchronization:
Standard processing tasks such as detokenization, log probability computation, and request state
updates are performed. Newly generated text segments are accumulated into an injected class-level
tracking structure (self.reqs) for later evaluation. Phase 2: Guardrail Evaluation: Candidate
requests are selected using multi-tier scheduling policies that balance detection frequency with
computational efficiency. Batches of candidate texts are passed through safety classifiers, and unsafe
requests are flagged by setting their finish_reason to ABORT. Phase 3: Conditional Output
Generation: Final outputs are constructed. For requests flagged in Phase 2, the system produces
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termination responses annotated with explicit stop reasons, while all other requests continue through
the normal generation path.

Listing 1: T3 Integration via Monkey Patching vLLM’s process_outputs Function
1

2 def process_outputs_with_T3(self, engine_core_outputs, **kwargs):
3 if not hasattr(self, ’reqs’):
4 self.reqs = {}
5 req_outputs = [] reqs_to_abort = []
6

7 # Phase 1: Standard vLLM processing + text accumulation
8 for engine_core_output in engine_core_outputs:
9 # ... Standard vLLM processing (stats, detokenization, logprobs)

10

11 # Track accumulated text metadata for T3
12 current_text = req_state.detokenizer.output_text
13 self.reqs[req_id] = {
14 ’text’: current_text, ’word_count’: len(current_text.split()),
15 ’last_predicted_at’: 0, ’finish_reason’: finish_reason
16 }
17

18 # Phase 2: T3 processing depending on batch size satisfaction
19 texts, req_ids = assemble_evaluation_batch(self.reqs)
20 if len(texts) >= min_batch_size:
21 predictions = guardrails.predict(texts)
22 for i, req_id in enumerate(req_ids):
23 if predictions[i] < 1: # Toxic detected
24 mark_request_for_abort(engine_core_outputs, req_id)
25

26 # Phase 3: Output creation with guardrails decisions
27 for engine_core_output in engine_core_outputs:
28 # ... Standard vLLM output creation and cleanup ...
29 req_outputs.append(req_state.make_req_output(engine_core_output))
30 reqs_to_abort.append(req_output if req_output.finished else None)
31

32 return OutputProcessorOutput(req_outputs, reqs_to_abort)
33

34 # Apply the patch
35 OutputProcessor.process_outputs = process_outputs_with_T3

The integration is designed to minimize computational overhead: Candidate Schedul-
ing: Configurable T3 evaluations are enforced using hierarchical scheduling policies (via
assemble_evaluation_batch). Primary selection identifies requests that reach predefined
(word_count−last_predicted_at) thresholds. Secondary policies expand candidate sets
to near-threshold requests or those nearing completion, thereby stabilizing batch sizes and ensuring
efficient GPU utilization. When sufficient batch size cannot be achieved, the system either defers
evaluation to subsequent iterations or proceeds with a reduced candidate set under a fallback policy
that balances safety responsiveness against computational efficiency. Memory Efficiency: Request
metadata structures (self.reqs) track only essential information (text buffers, counts, evaluation
timestamps, and safety flags). Memory pooling and cleanup policies prevent fragmentation and
overhead accumulation during long-running deployments. Overlapping Computation in Resource-
Constrained Settings: T3 evaluation, executed in the Main Process, runs concurrently with continuous
inference in the Worker Processes. When both share the same accelerator, concurrency is achieved
either through true parallel execution with CUDA Multi-Process Service (MPS) or through temporal
slicing when MPS is unavailable. Guardrailing workloads are opportunistically scheduled into idle
GPU cycles, allowing their latency to be effectively hidden behind inference kernels while minimizing
contention.

Runtime Performance Evaluation on Integration: We evaluated the runtime impact of integrating
online guardrails into vLLM (v0.10.2) through detailed profiling with NVIDIA Nsight Systems, using
NVTX range annotations to isolate initialization and generation phases. Experiments were conducted
on an NVIDIA H200 GPU, employing T3 with three embedding models (Qwen3-Embedding-0.6B,
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BGE-M3, and E5-Large-V2) trained on 1,000 safe instruction samples from the Alpaca dataset.
Generation was benchmarked on Facebook’s OPT-125M model, a relatively small LLM chosen to
enable rapid inference and thus stress the guardrail system. T3 was configured with a dense evaluation
interval of 20 tokens and a prediction batch size of 32 requests, representing a computationally
intensive safety configuration.

Worker
Process

Main
Process

Worker
Process

vLLM

vLLM
+ T3

...

...

Inference Kernels T3 Prediction Kernels

Main Process

Main ProcessWorker Process

Worker Process

Inference Kernel Annotations

Inference Kernel Annotations

T3 Kernel Annotations

Kernel ConcurrencyGPU Bubble Reduction

(a)

(b)

(c)

T3 Init Annotations

GPU Bubbles GPU Bubbles

Figure 4: NVIDIA Nsight Systems profiling of vLLM baseline vs. vLLM+T3. (a) Full execution
timeline comparison. (b) Zoomed-in view showing kernel concurrency and reduced GPU bubbles in
vLLM+T3. (c) Conceptual illustration of overlapping inference kernels (Worker Processes) with T3
prediction kernels (Main Process). The integration reduces idle GPU periods between consecutive
generations, improving utilization while preserving low-latency inference.

As shown in Table 7, two workload scales were examined. In the 500-prompt experiment, baseline
vLLM completed generation in 6.342 seconds, while the guardrail-enabled system took 6.439 seconds
for generation, reflecting a mere 1.5% overhead. In the larger 5,000-prompt experiment, baseline
vLLM completed in 38.011 seconds compared to 40.292 seconds with guardrails, corresponding
to only 6% overhead (2.281 seconds) while providing continuous safety monitoring across 5,000
requests. The nearly identical initialization times (10.5s in the 500-prompt case vs. 9.8s in the
5,000-prompt case) confirm that one-time setup costs are independent of workload size. Profiling
further reveals that T3’s prediction workload in the Main Process is almost entirely overlapped with
token generation in the Worker Processes, improving overall GPU utilization and reducing idle
periods (GPU bubbles) between consecutive generations (Figure 4). These results demonstrate that
the three-phase architecture and batching strategies preserve vLLM’s high-throughput characteristics
on modern accelerators while sustaining real-time guardrail enforcement even under dense evaluation
intervals.

D.1 POST-GENERATION GUARDRAILING WITH VLLM

While online detection intervenes during generation, post-generation guardrailing evaluates outputs
after completion, rendering it a drop-in post-processor to any LLM serving framework. This mode is
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Table 7: Runtime performance of baseline vLLM vs. T3 integration running concurrently on an
NVIDIA H200 GPU. T3 is configured with a 20-word guardrail interval and a batch size of 32. Given
that the generation overhead is negligible in this shared-resource setting, we anticipate virtually no
overhead when T3 is deployed with more aggressive settings on dedicated accelerators.

Workload System T3 Init (s) Inference (s) Inference Overhead

500 prompts vLLM baseline – 6.34 –
vLLM + T3 10.5 6.44 1.5%

5,000 prompts vLLM baseline – 38.01 –
vLLM + T3 9.8 40.29 6.0%

particularly suited for high-throughput batch inference, retrospective auditing, and multi-pass evalua-
tion pipelines where responses must be filtered or scored without disrupting the decoding process.
To remain practical at scale, such checks must impose minimal overhead to avoid degrading overall
throughput. We benchmarked T3 alongside several representative guardrail methods, DUOGUARD,
POLYGUARD, MDJUDGE, and LLAMAGUARD using the OR-Bench dataset on an NVIDIA H200
GPU. The vLLM engine was configured to load the OPT-125M model and generate responses of up to
256 tokens, with these guardrail techniques as post-processors. Batch sizes ranged from 8 to 64. The
runtime was measured by averaging over 20 runs, following 5 warm-up iterations. LLAMAGUARD
did not support batch sizes ≥ 32.

Table 8: Runtime (in milliseconds) of post-generation guardrailing. Methods are applied post-
inference with vLLM, configured with OPT-125M and a maximum generation length of 256 tokens.
Batch sizes range from 8 to 64 using OR-Bench. Runtime was measured with the Torch Profiler,
averaging 20 runs after warm-up.

Batch Size T3_GMM T3_OCSVM DUOGUARD POLYGUARD MDJUDGE LLAMAGUARD

8 68.73 68.79 40.78 255.97 1105.33 676.98
16 60.08 59.84 48.55 273.60 1262.26 1376.42
32 85.27 59.84 48.55 312.21 1439.38 2675.74
64 155.81 146.49 108.04 373.74 1524.49 N/A

As shown in Table 8, the six methods exhibit a clear efficiency hierarchy. DUOGUARD achieves
the lowest latency, remaining under 110 ms, but its lightweight design offers more limited detection
capability compared to T3. The two T3 variants (GMM and OCSVM) deliver runtimes between
60–156 ms, scaling moderately with batch size while maintaining substantially higher detection
fidelity. This positions T3 as an efficient yet accurate alternative, striking a balance between speed
and robustness. POLYGUARD introduces significantly higher overheads, while MDJUDGE and
LLAMAGUARD are prohibitively expensive for large-scale use: MDJUDGE exceeds one second
even at small batches and grows to over 1.5 s at batch size 64, while LLAMAGUARD more than
doubles at each step and fails beyond batch size 32. Overall, T3 provides a practical middle ground,
retaining competitive efficiency while delivering stronger safety guarantees than lightweight filters
and avoiding the prohibitive costs of heavyweight evaluators, making it well-suited for post-generation
pipelines where throughput and accuracy must be jointly preserved.
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E ADDITIONAL EXPERIMENTS

E.1 EVALUATION ON WILDGUARDMIX

We evaluate T3 on WildGuardMix (Han et al., 2024), using both the training and test
splits provided by allenai/wildguardmix. For each example, we read the prompt,
prompt_harm_label, and adversarial flag. A prompt is treated as harmful (OOD) if
prompt_harm_label="harmful" OR adversarial=True. The Test split is human-
annotated (higher quality), while the Train split is GPT-4-labeled (larger). The ID (safe) half
of the evaluation is drawn from our standard held-out safe mixture (Alpaca/Dolly/OpenAssistant).

Table 9: Performance on WildGuardMix.
T3 achieves the best AUROC and lowest
FPR@95 on both splits, outperforming all
baselines including WildGuard and Poly-
Guard. The Test split (human-annotated)
provides a stricter evaluation than the Train
split (GPT-4-labeled).

Dataset WildGuardMix Test WildGuardMix Train
Metric AUROC FPR@95 AUROC FPR@95
Method

ADASCALE 0.4299 0.9869 0.3259 0.9907
CIDER 0.7909 0.5993 0.7414 0.6586
DUOGUARD 0.7366 0.8446 0.7661 0.8975
FDBD 0.4626 0.9812 0.5112 0.9707
GMM 0.7094 0.8585 0.6809 0.8730
LLAMAGUARD3-1B 0.654 1.0000 0.7032 1.0000
MDJUDGE 0.6715 0.8512 0.8024 0.7620
NNGUIDE 0.5798 0.9583 0.4796 0.9849
OPENMAX 0.4937 0.9828 0.6077 0.9938
POLYGUARD 0.7837 0.7686 0.8721 0.4686
REACT 0.3286 0.9918 0.2662 0.9961
RMD 0.6415 0.9419 0.6018 0.9587
VIM 0.5595 0.9763 0.5241 0.9829

T3+GMM 0.8623 0.381 0.8971 0.2422
T3+OCSVM 0.8882 0.3663 0.8853 0.2802

E.2 EMBEDDING MODEL ABLATION

To verify that our choice of Qwen3-Embedding-0.6B does not unfairly disadvantage baseline OOD
methods, we conducted additional experiments using larger embedding models (4B and 8B param-
eters). These ablations demonstrate that while larger embeddings provide modest improvements
for baseline methods, T3 maintains its substantial performance advantage, confirming that the
performance gap is due to T3’s methodology rather than the embedding backbone.

Table 10: Embedding ablation with 4B model. Baseline OOD methods using a 4B parameter
embedding model. Despite the larger embedding capacity, traditional OOD methods still exhibit high
false positive rates, while T3 maintains strong performance.

Dataset Civil Comments Davidson et al. Hasoc Hateval OffensEval Real Toxicity
Metric AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95
Method

ADASCALE 0.3959 0.995 0.1851 0.9998 0.4865 0.9928 0.3834 0.9943 0.3356 0.9963 0.4965 0.9838
CIDER 0.7263 0.918 0.6112 0.9814 0.783 0.8774 0.7734 0.8208 0.6913 0.9760 0.7756 0.8161
FDBD 0.565 0.9853 0.7601 0.9454 0.4822 0.9938 0.5537 0.9689 0.6448 0.9551 0.4191 0.9947
GMM 0.6667 0.9802 0.7020 0.9419 0.7113 0.9609 0.7979 0.8578 0.6741 0.9869 0.7152 0.9213
NNGUIDE 0.4221 0.9926 0.225 0.9999 0.5212 0.9882 0.4642 0.9883 0.3607 0.9987 0.5419 0.9819
OPENMAX 0.5091 0.9967 0.711 0.9997 0.4238 0.9938 0.5282 0.9954 0.5719 0.9976 0.4240 0.9836
REACT 0.4403 0.9944 0.216 0.9997 0.5227 0.9913 0.4009 0.9929 0.3684 0.9963 0.5438 0.9769
RMD 0.6179 0.9891 0.6598 0.9737 0.664 0.9787 0.7337 0.9515 0.6423 0.9856 0.6539 0.9632
VIM 0.5518 0.9954 0.5517 0.9974 0.5945 0.9897 0.6467 0.9830 0.5492 0.9987 0.6663 0.9581

T3+GMM 0.7010 0.4633 0.8863 0.1780 0.7061 0.4173 0.8898 0.1723 0.8270 0.3139 0.6961 0.4628
T3+OCSVM 0.8807 0.3959 0.9332 0.2267 0.8793 0.4132 0.9450 0.1859 0.8913 0.4106 0.8795 0.4051

These ablation results confirm that T3’s performance advantage stems from its manifold-based
methodology rather than the choice of embedding model. Even when baseline methods are given
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Table 11: Embedding ablation with 8B model. Baseline OOD methods using an 8B parameter
embedding model. Even with significantly larger embeddings, traditional methods fail to approach
T3’s performance, particularly in FPR@95.

Dataset Civil Comments Davidson et al. Hasoc Hateval OffensEval Real Toxicity
Metric AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95
Method

ADASCALE 0.4315 0.9839 0.1961 0.9818 0.5075 0.9568 0.4023 0.9625 0.3751 0.9775 0.5152 0.9602
CIDER 0.7746 0.8748 0.6347 0.9467 0.7967 0.8329 0.7873 0.7877 0.7352 0.9378 0.8007 0.8021
FDBD 0.6101 0.9593 0.7827 0.9266 0.5184 0.9439 0.5795 0.9385 0.6914 0.9415 0.4525 0.9822
GMM 0.6936 0.9567 0.7205 0.9084 0.7429 0.9417 0.8371 0.839 0.6921 0.9741 0.73 0.9018
NNGUIDE 0.4421 0.9632 0.2719 0.9814 0.5489 0.9622 0.5087 0.976 0.3927 0.9735 0.5858 0.9336
OPENMAX 0.5413 0.9804 0.7497 0.9513 0.44 0.9806 0.5501 0.978 0.6206 0.9638 0.4541 0.9498
REACT 0.4671 0.9815 0.2493 0.9714 0.5536 0.9414 0.4483 0.9431 0.3866 0.9834 0.5664 0.9521
RMD 0.6612 0.9748 0.6979 0.9416 0.6985 0.9578 0.7832 0.9173 0.6785 0.9469 0.6693 0.9194
VIM 0.5787 0.9492 0.5728 0.9656 0.6046 0.9463 0.6875 0.9497 0.5847 0.9828 0.6793 0.9121

T3+GMM 0.7508 0.4352 0.9175 0.1298 0.7549 0.3723 0.9342 0.1518 0.8375 0.2839 0.7106 0.4284
T3+OCSVM 0.9212 0.3508 0.9386 0.1788 0.9204 0.3998 0.9504 0.1565 0.9013 0.3978 0.9018 0.3845

access to embeddings with 8× more parameters, they still exhibit FPR@95 rates exceeding 90% on
most benchmarks, while T3 consistently achieves FPR@95 below 45%.

E.3 TEXT-NATIVE OOD BASELINE COMPARISON

We additionally evaluated classic text-native OOD detection methods—Energy, kNN, and
Mahalanobis—applied directly to text embeddings without any vision-to-text adaptation. Energy
scores are computed from classifier logits; Mahalanobis distances are computed in the feature space;
and kNN uses distances in the embedding space. All methods are trained on ID-only data and
evaluated on the same splits as T3.

As shown in Table 12, these methods achieve moderate AUROC on toxicity benchmarks (kNN
reaches ∼0.80–0.84), but consistently suffer from unacceptably high false positive rates (FPR@95
typically exceeding 80%). On jailbreaking benchmarks, performance degrades further with FPR@95
approaching 95–100%. In contrast, T3 achieves FPR@95 in the 1–5% range on the same benchmarks.
These results confirm that the high false positive rates observed in OOD baselines are inherent
limitations of these methods for LLM safety detection, rather than artifacts of implementation choices.
See the main results tables for detailed comparisons.

Table 12: Text-native OOD baseline comparison. Energy, kNN, and Mahalanobis methods applied
directly to text embeddings. While kNN achieves reasonable AUROC on toxicity benchmarks, all
methods exhibit unacceptably high FPR@95 (>80%), confirming inherent limitations for LLM safety
detection.

Dataset AdvBench BeaverTails HarmBench JailbreakBench MaliciousInstruct XSTest
Metric AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95
Method

ENERGY 0.5488 0.9827 0.5167 0.9634 0.5807 0.9600 0.4782 0.9761 0.5313 1.0000 0.4582 0.9810
KNN 0.4249 1.0000 0.2212 0.9968 0.5595 0.9550 0.6720 0.9556 0.3786 1.0000 0.4499 1.0000
MAHALANOBIS 0.2719 0.9981 0.2517 0.9973 0.4145 0.9900 0.5355 0.9625 0.2241 1.0000 0.2294 1.0000

Dataset Civil Comments Davidson et al. Hasoc Hateval OffensEval Real Toxicity
Metric AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95
Method

ENERGY 0.5682 0.9238 0.5076 0.9634 0.5768 0.9252 0.5586 0.9339 0.5770 0.9355 0.5898 0.9221
KNN 0.8002 0.8789 0.7715 0.9430 0.8306 0.8235 0.8368 0.8057 0.8034 0.9002 0.8040 0.8295
MAHALANOBIS 0.6232 0.9768 0.6289 0.9762 0.6699 0.9620 0.7007 0.9702 0.7256 0.9653 0.6263 0.9582

E.4 EVALUATION ON HILL JAILBREAK ATTACKS

The HILL method (Luo et al., 2025) represents a particularly challenging class of jailbreak attacks
that transform harmful imperatives into innocuous-looking “learning-style” questions (e.g., “I am
studying chemistry, explain this reaction...” instead of “How to make a bomb...”). If such attacks
successfully masquerade as benign educational queries, they may fall inside the “typical set” of safe
content.
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To evaluate T3’s robustness against HILL attacks, we use 1,500 safe prompts sampled from Dolly as
in-distribution data (1,250 for training, 250 held out for testing) and the 46 HILL jailbreak prompts
from Luo et al. (2025) as OOD data. Despite HILL’s semantic similarity to educational content,
T3 robustly identifies these attacks with near-perfect AUROC (>0.98) and very low false positive
rates (4.35%). Our intuition is that HILL prompts contain atypical patterns in how harmful intent is
expressed, which push them outside the typical set formed by standard safe chat data.

Table 13: Performance on HILL jailbreak attacks (Luo et al., 2025). Despite HILL’s design to
semantically resemble benign educational queries, T3 achieves near-perfect detection with AUROC
>0.98 and FPR@95 of only 4.35%, demonstrating robustness against attacks specifically crafted to
evade OOD detection.

Method AUROC FPR@95 AUPRC F1

T3+GMM 0.9803 0.0435 0.9954 0.9881
T3+OCSVM 0.9783 0.0435 0.9926 0.9861
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