
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

REVIVING ERROR CORRECTION IN MODERN DEEP
TIME-SERIES FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern deep-learning models have achieved remarkable success in time-series
forecasting. Yet, their performance degrades in long-term prediction due to error
accumulation in autoregressive inference, where predictions are recursively used
as inputs. While classical error correction mechanisms (ECMs) have long been
used in statistical methods, their applicability to deep learning models remains
limited or ineffective. In this work, we revisit the error accumulation problem
in deep time-series forecasting and investigate the role and necessity of ECMs
in this new context. We propose a simple, architecture-agnostic error correction
model that can be integrated with any existing forecaster without requiring retrain-
ing. By explicitly decomposing predictions into trend and seasonal components
and training the corrector to adjust each separately, we introduce the Universal
Error Corrector with Seasonal–Trend Decomposition (UEC-STD), which signifi-
cantly improves correction accuracy and robustness across diverse backbones and
datasets. Our findings provide a practical tool for enhancing forecasts while offer-
ing new insights into mitigating autoregressive errors in deep time-series models.

1 INTRODUCTION

Time-series forecasting is essential across numerous industries, including finance, healthcare, en-
ergy management, and supply chain optimization. In recent years, deep learning models have sig-
nificantly improved the accuracy of time-series forecasting (Wu et al., 2023; Zeng et al., 2023; Wang
et al., 2024a;b). They outperform traditional methods on real-world benchmarks by leveraging ad-
vanced feature extraction and data-driven representations (Siami-Namini & Namin, 2018; Qiu et al.,
2024). Despite these advances, long-term forecasting remains a persistent challenge. One approach
is to directly train the model to predict a fixed, large number of future steps in a single forward
pass. However, this requires significantly larger models, often exhibits degraded accuracy, and is
not scalable to arbitrary prediction lengths. A more flexible alternative is autoregressive inference,
which generates future steps sequentially by conditioning on previously predicted values. Yet, this
paradigm suffers from compounding errors, as inaccuracies introduced at earlier steps propagate and
amplify over time (Moreno-Pino et al., 2023).

Error modeling has been studied in traditional time-series forecasting, with classical Error Correc-
tion Models (ECMs) addressing long-term relationships by using cointegration and making adjust-
ments for deviations from equilibrium, defined as a stable long-run relationship that the system
gradually returns to after short-term fluctuations (Hansen, 2003; Barigozzi et al., 2024). Similarly,
classic methods like ARIMA, based on autoregressive processes, make forecasts by considering past
observations, predictions, and errors (Makridakis & Hibon, 1997). However, classical ECMs differ
fundamentally from the error correction needed in deep learning models. They adjust for deviations
from equilibrium across multiple time series, making them difficult to apply directly to modern deep
learning models, which require the correction of errors arising from internal processing and autore-
gressive prediction. While error correction has been explored for specific deep learning models in
recent research, solutions often involve predefined error functions to refine predictions (Zhang et al.,
2021) or the integration of error correction layers within forecasting pipelines (Liu et al., 2020; Li
et al., 2024), necessitating costly joint training of both the correction module and the forecasting
model. To our knowledge, there exists no error correction model (ECM) that reliably improves a
wide range of modern forecasters while treating the underlying forecasting backbone as a black-box.
The absence of such an ECM is potentially due to the already high performance of current forecast-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: (a) Chunk-based autoregressive (AR) forecasting in time series. Given a forecaster F
with a fixed prediction window length L, which equals the input window size, the model’s output
must be recursively fed as input to predict a future horizon of length 4L (here, using M = 4 AR
steps). (b) The relative increase in test prediction error when using model-predicted inputs instead
of ground-truth, across 4 standard forecasting lengths: 96, 192, 336, and 720. Results are based on
TimeMixer with L = W = 96 on the ETTh1 dataset.

ing methods, which makes ECMs redundant. Alternatively, it may stem from the risk of overfitting
ECMs to specific model or dataset characteristics, thereby hindering their ability to perform well on
test data (Nandutu et al., 2022). These considerations give rise to two key research questions under
the autoregressive inference setting: (1) Are ECMs necessary for deep learning-based forecasting
models? (2) How can ECMs be systematically integrated to generalize and improve the performance
of state-of-the-art forecasting architectures?

In this paper, we study the feasibility of integrating ECM into deep forecasters. We propose the Uni-
versal Error Corrector (UEC), a simple framework that learns correction vectors from the inputs and
outputs of pre-trained models. Once trained, UEC adjusts forecasts at inference to mitigate error ac-
cumulation over long horizons. While the UEC can be implemented as any machine learning model,
we propose a specialized variant for time-series data, the UEC with Seasonal-Trend Decomposition
(UEC-STD). Time-series forecasts often exhibit distinct long-term trends and short-term seasonal
patterns, and the backbone forecaster may struggle differently with each. UEC-STD explicitly sep-
arates these components and learns targeted corrections for both, optimizing a weighted loss that
balances trend and seasonal errors. The experimental results demonstrate that the UEC-STD consis-
tently reduces error accumulation and significantly improves the accuracy of 3 deep forecasters with
minimal additional computational cost. In summary, our contributions are: (i) We pioneer a uni-
versal error correction mechanism for modern forecasters without retraining the backbone; (ii) We
design UEC-STD, a lightweight plug-in module that explicitly corrects trend and seasonal errors in
time-series data; (iii) We validate UEC-STD across diverse datasets and models, showing consistent
error reduction, efficiency, and insightful model analyses.

2 METHOD

To begin, we briefly introduce time-series forecasting. Here, the objective is to predict future values
of a sequence based on historical observations. Let Dtrain = {Xt}Ttrain

t=1 represent the observed
multivariate time-series data, where Xt ∈ RD is the time-series values at time t, and D is the num-
ber of variates. The forecasting task involves predicting future values over a horizon L based on
historical time-series observations. Specifically, let the past window of observations be represented
as: Xt−W+1:t = {Xt−W+1, Xt−W+2, . . . , Xt} where W is the look-back window length. Given
this window, we aim to predict the future values of the time-series Xt+1, Xt+2, . . . , Xt+L using a
model F (·): X̂t+1:t+L = F (Xt−W+1:t). The objective is to minimize the forecast error, often de-
fined as the discrepancy between the predicted values X̂t+1:t+L and the true future values Xt+1:t+L,
by minimizing the forecasting loss functions such as MSE or Huber losses (Jadon et al., 2024).

2.1 CHUNK-BASED AUTOREGRESSIVE PREDICTION

Now, we formalize the autoregressive forecasting setup considered in this work. In this approach,
during inference, when ground-truth data are unavailable for long-term forecasting, the model feeds

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

its previous predictions back as inputs (Shi et al., 2025). This can cause error propagation, as small
prediction errors accumulate and amplify over time, leading to significant deviations.

Formerly, let X̂t be the predicted value at time t, and Xt the true value. In traditional autoregressive
models, assuming we do not have the true data Xt, the process is: X̂t+1 = F (Xt−W :t−1 ⊕ X̂t)

where Xt−W :t−1 is the history of observations up to time t − 1, X̂t is the prediction for step t,
and ⊕ is the concatenation of 2 time-series. In practice, we can apply a chunk-based autoregression
that forecasts a window of L time steps at a time (see Fig. 1 (a)). At the autoregression step
k = 0, 1, ...,M , the predicted chunk X̂t+kL+1:t+(k+1)L is fed back as input for the next prediction:

X̂t+kL+1:t+(k+1)L =

{
F (Xt−W+1:t) if k = 0

F (X̂t+kL−W+1:t+kL) if k ≥ 1
(1)

Here, M is the number of autoregressive steps needed to reach the desired horizon length M × L.
From now on, to simplify the notation, we set τ = t + kL as the chunk boundary at AR step k
starting from timestep t. Here, for any positive index j, if τ −W + 1 + j ≤ t:

X̂τ−W+1+j = Xτ−W+1+j . (2)

By optionally using an overlapping window for the final step, chunk-based autoregression allows any
model with a fixed prediction horizon L to produce forecasts of arbitrary length T . For example,
the last autoregressive step reads: X̂t+T−L+1:t+T = F (X̂t+T−L−W+1:t+T−L) where M =

⌈
T
L

⌉
is

the number of chunks and T is the desired forecast length. For convenience, we denote the whole
prediction using AR as:

X̂t+1:t+T = FAR(Xt−W :t−1|T) (3)
Despite its flexibility, this recursive formulation remains susceptible to error accumulation across
chunks. As seen in Fig. 1 (b), the forecasting error grows with the number of autoregressive steps,
compared to using ground-truth inputs at each step.

2.2 UNIVERSAL ERROR CORRECTION FRAMEWORK

Autoregressive Correction Mechanism Let X̂t+1:t+L represent the forecasted values, and let
∆X̂t+1:t+L be the error correction vector. We propose to compute ∆X̂t+1:t+L using a neural net-
work, namely Universal Error Corrector (UEC), which is trained to minimize the error between the
corrected values and the ground-truth values. Concretely, the UEC takes the past time-series win-
dow and the forecaster’s predictions as input and computes the error correction vector. First, using
the AR process in Eq. 3, we derive the whole predictions X̂t+1:t+T . Next, we iteratively generate
the corrections. Formerly, at k = 0:

∆X̂t+1:t+L = UEC(Xt−W+1:t, X̂t+1:t+L) (4)
For subsequent AR steps (k ≥ 1), we compute the correction vectors as:

∆X̂τ+1:τ+L = UEC(X̂τ−W+1:τ , X̂τ+1:τ+L) (5)

Finally, the whole correction vector ∆X̂t+1:t+T = {∆X̂t+1,∆X̂t+2, . . . ,∆X̂t+T } ∈ RT×D is
applied to the forecasted values as follows:

X̂corr
t+j = X̂t+j + β∆X̂t+j , for each j ∈ [1, T] (6)

where β ∈ [0, 1] is a scalar hyperparameter that controls the strength of the correction. Setting
β = 0 disables the correction entirely, while β = 1 applies full correction.

Training Data Preparation To train the UEC, we construct supervised training examples where
each sample consists of the input ∈ R(W+L)×D to the UEC and its corresponding ground-truth
output ∈ RL×D. To better reflect realistic deployment scenarios where the forecaster F is likely to
produce imperfect predictions, we avoid using the time series used to train F , which may lead to
overfitted predictions and artificially small errors. Instead, we sample from a held-out validation set,
which more accurately represents the model’s generalization behavior.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Specifically, we construct training examples for UEC by sampling time series from the validation
dataset Dval = {Xt}Ttrain+Tval

t=Ttrain
. First, we sample a historical window Xt−W+1:t of length W ,

along with a corresponding future window Xt+1:t+T ′ = {Xt+1, Xt+2, . . . , Xt+T ′}, where T ′ ≥ L
is a predefined prediction horizon used for training, which can be different than the horizon T during
inference. Then, the forecaster F is used to generate the predictions using AR:

X̂t+1:t+T ′ = FAR(Xt−W+1:t|T ′) (7)

Next, we sample the ground-truth values Xτ+1:t+(k+1)L ⊆ Xt+1:t+T ′ , and compute the ground-
truth correction vector as the error between the predicted and the ground-truth time series:

∆Xτ+1:τ+L = Xτ+1:τ+L − X̂τ+1:τ+L (8)

A training instance for UEC is then a tuple:

(X̂τ−W+1:τ , X̂τ+1:τ+L)︸ ︷︷ ︸
input

, ∆Xτ+1:τ+L︸ ︷︷ ︸
output


Standard Training Procedure We split the Dval data into a training set Utrain,
where the UEC is trained by minimizing a correction loss using the Adam opti-
mizer, and a validation set Uval used for early stopping evaluation. At each itera-
tion, we sample tuples

(
(X̂τ−W+1:τ , X̂τ+1:τ+L), ∆Xτ+1:τ+L

)
, predict corrections ∆X̂ =

UEC(X̂τ−W+1:τ , X̂τ+1:τ+L), apply them as:

X̂corr
τ+1:τ+L = X̂τ+1:τ+L +∆X̂, (9)

and compute the correction loss:

LUEC =
1

L

L∑
j=1

lec
(
X̂corr

τ+j , Xτ+j

)
, (10)

where lec can be any regression loss function, such as MSE or Huber loss. Gradients are backprop-
agated only through the UEC, keeping the forecaster fixed.

On Choosing the Correction Strength To select the correction strength β automatically, we pro-
pose a balanced validation strategy. We use the validation set Uval that is unseen by both the fore-
caster F and the UEC, and randomly sample data from the training set Dtrain, denoted Ds, which
the forecaster has seen, such that the combined size satisfies |Uval| + |Ds| = |Dval|, where | · |
denotes the number of samples in a dataset. This approach prevents bias in either direction: if β is
tuned only on unseen data, the UEC becomes overly pessimistic about the performance of the fore-
caster F and selects a high correction strength, which can apply excessive adjustments; if tuned only
on seen data, the UEC is too optimistic and selects a low strength. Combining both better reflects
realistic deployment conditions, where the forecaster encounters both familiar and unfamiliar data.
Additionally, we select separate β values depending on the optimization objective: one for MSE and
one for MAE, depending on which metric we aim to optimize for in the backbone forecaster F .

2.3 SEASONAL–TREND UEC ARCHITECTURE

While the UEC can be instantiated with any prediction model, we design an architecture specialized
for time-series data by explicitly modeling seasonal and trend components.

Seasonal–Trend Decomposition. Given the UEC input (X̂τ−W+1:τ , X̂τ+1:τ+L), we decompose
the backbone prediction part X̂τ+1:τ+L into trend and seasonal components:

X̂t = MA(X̂τ+1:τ+L), X̂
s = X̂τ+1:τ+L − X̂t (11)

where MA(·) denotes a moving-average filter. We decompose the backbone prediction into seasonal
and trend components because time-series data usually exhibit both long-term trends and short-term
seasonality. Since the backbone forecaster F may struggle more with one component than the other;
explicitly modeling this structure allows UEC to apply targeted corrections.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Input Forecast

Final Forecast

UEC D
ec

om
po

si
tio

n

S. Forecast

Trend Forecast

Concat M
LP

S. Error

Trend Error

Forecast

Forecast

Input

Ground-truth

Forecast

D
ec

om
po

si
tio

n S. Error GT

T. Error GT

Regression
Loss

(c)Training

(b) UEC-STD(a) Overall

Regression
Loss

Backpropagation
Forward pass

Figure 2: UEC-STD: (a) Overall UEC framework: the corrector takes the input and the forecasted
time series from a pre-trained forecaster F , and outputs a corrected forecast. (b) UEC-STD ar-
chitecture: the backbone forecast is decomposed into trend and seasonal components, which are
concatenated with historical inputs and fed into an MLP to produce separate correction vectors for
trend and seasonality. They are summed with the original forecast to make the final forecast. (c)
Training phase: the ground-truth error is computed as the difference between the forecast and the
true values, then decomposed into trend and seasonal error ground-truth components (T. Error GT
and S. Error GT) to supervise the corresponding correction outputs.

Next, we fit X̂t and X̂s together with the input X̂τ−W+1:τ into a multi-layer perceptron (MLP) to
produce seasonal and trend correction vectors:

∆X̂t, ∆X̂s = FFθ

(
X̂τ−W+1:τ , X̂

t, X̂s
)

(12)

where FFθ denotes a feed-forward neural network parameterized by θ, and both outputs ∈ RL×D.

Seasonal–Trend Correction. The corrected forecast is reconstructed by adjusting each compo-
nent and summing:

X̂corr
τ+1:τ+L = X̂τ+1:τ+L +∆X̂

t
+∆X̂

s
(13)

Seasonal–Trend Training. The corresponding ground truth correction vector ∆Xτ+1:τ+L is de-
composed into:

∆Xt = MA(∆Xτ+1:τ+L) , ∆Xs = ∆Xτ+1:τ+L −∆Xt (14)

The UEC parameters θ are learned by minimizing:

Lst
UEC = λt lec

(
∆X̂t, ∆Xt

)
+ λs lec

(
∆X̂s, ∆Xs

)
, (15)

where λt and λs control the trade-off between trend and seasonal losses. We refer to this variant as
UEC with Seasonal–Trend Decomposition (UEC-STD) to distinguish it from the general UEC.

3 EXPERIMENTAL SETUP

Implementation We conducted experiments using a standard time-series benchmark and code-
base1. Initially, we trained the backbone forecaster using the normal codebase training, with the
MSE as the loss function lfc. The specific hyperparameters used for training are consistent with
established best practices in the field. For example, we fix the batch size to 128, the learning rate
to 0.01, and use the Adam optimizer with default parameters (β1 = 0.9, β2 = 0.999, ϵ = 10−8),
and train for 10 epochs with early stopping patience of 10. For further details on the exact param-
eter settings, we refer the reader to the official codebase. This trained backbone was then used to

1https://github.com/thuml/Time-Series-Library

5

https://github.com/thuml/Time-Series-Library

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

generate data for the training of the UEC. For UEC, we found that using lec as the Huber loss led
to more stable training for the UEC (see Sec. 4.3), and we therefore adopted it for all subsequent
experiments. More details on UEC hyperparameters can be found in Appendix A.

Computing Requirement All experiments are conducted on a single NVIDIA V100 GPU. The
training cost of the proposed UEC modules is negligible compared to that of the backbone models.
For example, training the TimeMixer backbone on ETTh1 with L ∈ [96, 192, 336, 720] requires
approximately 10 minutes of GPU time, whereas training UEC-STD on that setting takes only about
1 minute, i.e., roughly one-tenth of the backbone training time. This demonstrates that our approach
introduces minimal computational overhead while maintaining efficiency.

Evaluation Protocol For each dataset and prediction length L, we (i) train the backbone forecaster
on the standard training split (70%) and use the validation split to get the best checkpoint, (ii) train
the UEC on the validation split (10%) to correct the backbone, and (iii) report results on the held-out
test split (20%). We report average Mean Squared Error (MSE) and Mean Absolute Error (MAE):

MSE =
1

NLD

N∑
i=1

L∑
j=1

D∑
d=1

(
X̂

(i)
t+j,d−X

(i)
t+j,d

)2
, MAE =

1

NLD

N∑
i=1

L∑
j=1

D∑
d=1

∣∣X̂(i)
t+j,d−X

(i)
t+j,d

∣∣
Here N is the number of test segments, L the forecast horizon, and D the dimensionality. We
compute metrics per prediction length and then take the mean across lengths.

4 EXPERIMENTAL RESULTS

This section aims to demonstrate the effectiveness of our proposed approach for enhancing autore-
gressive inference in long-term forecasting. We begin by establishing that autoregressive inference
is a strong baseline, warranting further investigation for targeted improvements. We then demon-
strate that the limitation of AR can be addressed by integrating UEC into the inference pipeline,
resulting in significant performance gains across various backbone forecasters. More specifically,
we evaluate multiple design choices for UEC and demonstrate that our proposed UEC-STD archi-
tecture consistently achieves the best results across all benchmarks. Finally, we conduct ablation
studies and model analyses to assess the contribution of each component in our approach.

4.1 RESULTS ON TIME-SERIES BENCHMARK

AUTOREGRESSION IS A STRONG BASELINE, BUT CORRECTING ITS ERRORS IS NECESSARY

We compare two paradigms for long-term forecasting: (i) Direct Forecasting (DF), which predicts
the entire horizon in one pass, and (ii) Autoregressive (AR), which generates predictions itera-
tively. DF requires horizon-specific models and a higher cost, while AR reuses the same module
across steps, making it more efficient and flexible. Experiments on ETTh1, Weather, and Electric-
ity with two backbones (TimeMixer (Wang et al., 2024a) and TimesNet (Wu et al., 2023)) show
that AR matches or outperforms DF in 7 of 12 cases (Appendix Table 9), particularly excelling on
ETTh1. However, AR suffers from error accumulation, where small early mistakes amplify into
high MSE/MAE (0.4–0.7) over long horizons (Fig. 1 (b)). This underscores the need for error cor-
rection to mitigate accumulation. Hence, we focus on AR as the main target for correction and omit
the DF baseline to save computation.

UEC-STD DELIVERS SUBSTANTIAL AND CONSISTENT IMPROVEMENTS TO AR

The purpose of this experiment section is to evaluate the effectiveness of our proposed UEC in mit-
igating the errors and improving the overall performance of modern deep forecasting models under
autoregressive inference. As such, we examine different UEC architectures on 3 forecasting back-
bones (TimeMixer (Wang et al., 2024a), TimesNet (Wu et al., 2023), and TimeXer (Wang et al.,
2024b)). They are chosen as efficient and recent strong baselines in time-series long-term fore-
casting. We select 7 datasets (ETTh1, ETTh2, ETTm1, ETTm2, Electricity, Weather, and Traffic),
which support a long-term prediction horizon up to 720 steps. Moreover, we evaluate 9 different
UEC architectures, ranging from classic machine learning models such as logistic regression and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1: Average Error Reduction in MSE compared to backbone for different UEC methods (the
lower the better, negative means improvement). N/A indicates that the method failed to converge or
crashed during training. Bold and underline denote best and second-best results, respectively.

Method ETTh1 ETTh2 ETTm1 ETTm2 Traffic Weather Electricity
AR (No Correction) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
UEC-MLP 0.71 0.05 -0.93 -1.20 -0.67 -1.34 0.17
UEC-Logistic 11.7 5.84 -3.49 0.25 N/A -3.61 N/A
UEC-Random Forest 1.10 -1.39 -0.92 -1.43 N/A 0.76 N/A
UEC-XGBoost 0.40 -0.46 -11.88 -0.51 N/A -2.48 N/A
UEC-LSTM 2.48 -0.08 -0.29 24.63 0.36 6.35 -0.52
UEC-GRU 3.49 -0.51 -0.29 4.32 -1.12 4.13 -0.26
UEC-CNN 0.94 -0.77 -0.76 1.96 0.06 4.99 0.04
UEC-Transformer 0.91 -1.22 -0.63 0.47 -0.18 -1.66 -1.19
UEC-STD -2.39 -1.49 -4.78 -1.78 -1.18 -2.10 -0.91

random forests, to simple neural networks like MLPs and LSTMs, and more sophisticated models
such as Transformers. These architectures follow the standard UEC framework (Sec. 2.2). We
denote these methods as UEC-X, where X refers to the underlying correcting architecture (see Ap-
pendix B). We also include the proposed UEC-STD variant (Sec. 2.3) to validate our special design
for time-series data. All UEC methods apply auto selection of β (Sec. 2.2). To see how UEC helps
the forecasters, we report the error reduction rate (%, Appendix Eq. 18) in MSE and MAE for vari-
ous UEC architectures compared to no correction (β = 0). The error reduction is then averaged over
3 backbones. Negative values indicate an improvement over the backbone model with no correction,
while positive values denote performance degradation.

Table 1 and Appendix Table 3 summarize the results for improvements in MSE and MAE, respec-
tively. Regarding MSE, overall, most architectures, particularly XGBoost and UEC-STD, achieve
consistent error reductions across multiple datasets. However, some classical machine learning mod-
els, such as XGBoost, Random Forest, and Logistic Regression, fail to scale effectively on large,
high-dimensional datasets like Traffic and Electricity, resulting in training convergence issues de-
spite extensive hyperparameter tuning. Therefore, UEC-STD achieves the best overall performance,
delivering both the greatest average error reduction and the highest consistency across datasets. In
terms of MAE, UEC-STD is the only method that can reliably correct the forecaster’s errors. On
average, across backbones and datasets, UEC-STD achieves MSE and MAE improvements of
2.1% and 0.8%, respectively, which is comparable to SOTA improvements in the field (Wang
et al., 2024b). Notably, for datasets like ETTm1, UEC-STD attains major error reductions of 4.78%
in MSE and 1.81% in MAE. We provide the details of these experimental results in Appendix C.

4.2 ABLATION STUDY ON UEC-STD

Seasonal-Trend Decomposition Components Here, we compare different design choices for sea-
sonal–trend decomposition (STD) by varying the choice of STD components in UEC input and out-
put (Table 2). We observe that adding trend or seasonal components to inputs only (No STD Output)
yields little improvement compared to not using STD at all (No STD), with gains of 1.1% MSE on
ETTh1 and 0.4% MSE on Weather, while Traffic shows no change. Modeling STD in UEC output
further improves the performance. In particular, when predicting only seasonal (No Trend Output)
or only trend (No Seasonal Output), we find that seasonal correction contributes more to ETTh1
(seasonal-only improves MSE by 5.3% vs trend-only 2.7%), whereas both Traffic and Weather ex-
hibit little to no improvement when relying on only one component. Our full setup (Full), which uses
both decomposed inputs and predicts separate errors for trend and seasonal components, achieves
the best overall performance, improving MSE/MAE by 5.99%/2.48% on ETTh1, 0.37%/0.30% on
Traffic, and 0.83%/1.45% on Weather compared to the No STD. These demonstrate the complemen-
tary benefits of jointly correcting trend and seasonality, leading to consistent gains across datasets.

Seasonal–Trend Coefficients We study different seasonal–trend (ST) coefficient settings λs–λt

across datasets (ETTh1, Weather, Traffic) and backbones (TimeMixer, TimesNet, TimeXer). In
Fig.3a, we fix β = 0.1 and vary coefficients from 0.2–0.8 to 0.8–0.2. Results show that higher

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 2: Comparison of different design variants for seasonal–trend decomposition (STD). Each
setting differs in the choice of inputs (raw series X̂ , seasonal X̂s, trend X̂t) and outputs (predicted
errors ∆X̂ , ∆X̂s, ∆X̂t). Bold denotes the best results.

Setting Input(s) Output(s) ETTh1 Traffic Weather
MSE MAE MSE MAE MSE MAE

No STD X̂τ−W+1:τ ∆X̂ 0.451 0.444 0.545 0.336 0.241 0.276
No STD Output X̂τ−W+1:τ , X̂

t, X̂s ∆X̂ 0.446 0.452 0.546 0.336 0.240 0.272
No Season Output X̂τ−W+1:τ , X̂

t, X̂s ∆X̂t 0.464 0.447 0.544 0.336 0.245 0.283
No Trend Output X̂τ−W+1:τ , X̂

t, X̂s ∆X̂s 0.427 0.437 0.547 0.338 0.244 0.276
Full (Our) X̂τ−W+1:τ , X̂

t, X̂s ∆X̂t,∆X̂s 0.424 0.433 0.543 0.335 0.239 0.272

0.2
-0.

8
0.3

-0.
7

0.4
-0.

6
0.5

-0.
5

0.6
-0.

4
0.7

-0.
3

0.8
-0.

2
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

SE

(a)
ETTh1
Weather
Traffic

TimeMixer TimesNet TimeXer
0.0

0.5

1.0

1.5

2.0

2.5

M
SE

 Im
pr

ov
em

en
t (

%
)

(b)

0.5-0.5 0.6-0.4 0.7-0.3 0.8-0.2

Figure 3: Seasonal-Trend (ST) Coefficient λs–λt analysis. (a) Normalized MSE (0–1) for 3 datasets,
ETTh1, Weather, and Traffic, using TimeMixer across different coefficients; lower values indicate
better performance. (b) Percentage MSE improvement on Weather for three backbones (TimeMixer,
TimesNet, TimeXer) with varying ST coefficients; higher values indicate greater improvement. The
plots show how emphasizing the correction of seasonal and trend affects forecasting performance.

seasonal weighting improves accuracy: ETTh1 and Traffic perform best with 0.8–0.2 (1.4%, 0.96%
improvements), while Weather prefers 0.6–0.4 (1.07%). Overweighting seasonality, however, can
hurt datasets dominated by long-term trends. In Fig. 3b, we repeat this analysis for Weather across
backbones. The trend holds broadly: emphasizing seasonality improves accuracy, though the opti-
mal balance depends on datasets and backbones. Overall, we recommend starting with 0.5–0.5 and
adjusting toward seasonality (e.g., 0.6–0.4 or 0.8–0.2) based on dataset characteristics.

4.3 MODEL ANALYSIS

In this section, we analyze the general behavior of the UEC framework. For simplicity and to reduce
the confounding effects of Seasonal–Trend components, we use UEC-MLP as the representative
architecture, while we expect UEC-STD to exhibit better behaviors.

Long-term Correction Behaviors We present four qualitative cases in Appendix Fig. 4 compar-
ing predictions with and without UEC on the Traffic dataset (prediction length = 720). Across all
cases, the UEC-enhanced forecasts closely follow the ground truth in level, trend, and oscillation,
whereas the no-UEC baseline exhibits collapse, which shows nearly flat, low-variance trajecto-
ries that remain anchored to early forecast values. In general, UEC helps long-horizon rollouts by
adding learned, context-aware residuals to the backbone forecast at each autoregressive step. These
corrections restore amplitude and phase, counter drift, and smooth chunk boundaries, so predictions
maintain appropriate variability and stay aligned with the target signal.

UEC Training Loss To examine the impact of training loss on UEC performance, we report re-
sults using different lec (Huber, L1, and MSE) in Appendix Table 10. Experiments use ETTh1

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

dataset with 2 backbones: TimeMixer and TimesNet. Overall, Huber loss achieves the lowest aver-
age MSE and MAE in four cases, the best among the three losses. While different losses may yield
gains in other cases, we adopt Huber loss as the default for training UEC to avoid costly tuning.

Improvement Gain with Extended Training. One question is whether UEC’s gains arise from
holding out validation data for training the corrector. To test this, we retrain backbones on both train-
ing and validation sets (so UEC has no data advantage) and then train UEC on the same validation
portion to correct the new backbones. Results on Traffic (Appendix Fig. 5) show UEC still improves
performance, confirming the benefits come from learning correction patterns rather than data with-
holding. Improvements vary by backbone: weaker models like TimesNet gain more, while stronger
ones like TimeMixer benefit less and may even overfit when retrained with extra data. Hence, we
recommend training backbones on the original data and reserving validation solely for UEC.

5 RELATED WORKS

Classical Error Correction Models Traditional Error Correction Models (ECMs) are widely used
in econometrics (Hansen, 2003; Barigozzi et al., 2024). These models explicitly capture deviations
from equilibrium and apply corrective terms to guide predictions back toward the expected state.
However, ECMs are designed for linear, low-dimensional systems and rely on statistical assumptions
that are difficult to transfer to the complex dynamics of modern deep-learning models. Their reliance
on multivariate co-integration prevents their applicability to high-dimensional forecasting scenarios.

Autoregressive Deep Learning and Error Accumulation Deep learning models have recently
achieved state-of-the-art performance in time-series forecasting (Liu et al., 2023; Zeng et al., 2023;
Wang et al., 2024a;b). These models often train with fixed input-output lengths, and to predict
longer horizons, they must rely on autoregressive decoding: using the prediction as the input for
the next forecasting step. Unfortunately, this recursive strategy leads to unavoidable compounding
errors over longer horizons (Moreno-Pino et al., 2023). A temporary workaround is to train separate
models for different prediction lengths. While this can help manage error accumulation, it incurs ad-
ditional training time, storage, and complexity costs. Thus, it is not suited for ultra-long or unknown
inference lengths, limiting its scalability and practical applicability.

Error Correction in Deep Learning for Time-Series Forecasting . Recent studies have explored
incorporating error correction mechanisms using deep learning to improve time-series forecasting
accuracy. Liu et al. (2020) propose modules that explicitly learn residual errors during training,
while Zhang et al. (2021) refine predictions using predefined loss-based error functions. Others
attempt to learn the error correction function, such as using LSTMs to model the residuals of clas-
sical ARIMA forecasts (Nandutu et al., 2022) or (Li et al., 2024), jointly training the forecasting
model with a diffusion process to refine its predictions. While promising, these methods are often
tied to specific architectures or training pipelines, limiting their generality. To date, no architecture-
agnostic error correction approach consistently improves modern forecasters. This work is the first
to address this gap by proposing a general and modular solution.

6 CONCLUSION

In this paper, we revisited the problem of error accumulation in deep autoregressive time-series
forecasting and proposed a simple, architecture-agnostic error correction mechanism that can be
integrated with any existing deep learning forecaster without retraining. Our proposed approach,
named Universal Error Correcter with Seasonal-Trend Decomposition (UEC-STD), consistently im-
proves long-term prediction accuracy across multiple benchmarks and backbone models, providing
both practical utility and novel insights into autoregressive error mitigation. While effective, our
method introduces a modest computational overhead due to the additional error correction predic-
tion. Future work will focus on designing more efficient UEC variants that minimize computational
overhead without compromising performance. Moreover, investigating adaptive correction mech-
anisms and extending our evaluation to diverse real-world scenarios, such as multi-modality and
irregularly sampled time series, offers promising avenues to improve the robustness and scalability
of deep time-series forecasting.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REPRODUCIBILITY STATEMENT

Details of implementations and experiments can be found in the Appendix. Upon publication,
we will release the implementation as open-source with the necessary instructions to ensure re-
producibility.

LLM USAGE

Large Language Models (LLMs) were not involved in the design, implementation, or analysis of
our method. They were only used to refine the presentation of the paper by correcting grammar and
improving writing clarity.

REFERENCES

Matteo Barigozzi, Giuseppe Cavaliere, and Lorenzo Trapani and. Inference in heavy-tailed nonsta-
tionary multivariate time series. Journal of the American Statistical Association, 119(545):565–
581, 2024. doi: 10.1080/01621459.2022.2128807. URL https://doi.org/10.1080/
01621459.2022.2128807.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Peter Reinhard Hansen. Structural changes in the cointegrated vector autoregressive model.
Journal of Econometrics, 114(2):261–295, 2003. ISSN 0304-4076. doi: https://doi.org/10.
1016/S0304-4076(03)00085-X. URL https://www.sciencedirect.com/science/
article/pii/S030440760300085X.

Aryan Jadon, Avinash Patil, and Shruti Jadon. A comprehensive survey of regression-based loss
functions for time series forecasting. In International Conference on Data Management, Analytics
& Innovation, pp. 117–147. Springer, 2024.

Yuxin Li, Wenchao Chen, Xinyue Hu, Bo Chen, baolin sun, and Mingyuan Zhou. Transformer-
modulated diffusion models for probabilistic multivariate time series forecasting. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=qae04YACHs.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In The Twelfth Inter-
national Conference on Learning Representations, 2023.

Yuxuan Liu, Jiangyong Duan, and Juan Meng. Difference attention based error correction lstm
model for time series prediction. In Journal of Physics: Conference Series, volume 1550, pp.
032121. IOP Publishing, 2020.

Spyros Makridakis and Michele Hibon. Arma models and the box–jenkins methodology. Journal
of forecasting, 16(3):147–163, 1997.

Fernando Moreno-Pino, Pablo M. Olmos, and Antonio Artés-Rodrı́guez. Deep autoregressive
models with spectral attention. Pattern Recognition, 133:109014, 2023. ISSN 0031-3203.
doi: https://doi.org/10.1016/j.patcog.2022.109014. URL https://www.sciencedirect.
com/science/article/pii/S0031320322004940.

Irene Nandutu, Marcellin Atemkeng, Nokubonga Mgqatsa, Sakayo Toadoum Sari, Patrice Okouma,
Rockefeller Rockefeller, Theophilus Ansah-Narh, Jean Louis Ebongue Kedieng Fendji, and
Franklin Tchakounte. Error correction based deep neural networks for modeling and predicting
south african wildlife–vehicle collision data. Mathematics, 10(21), 2022. ISSN 2227-7390. doi:
10.3390/math10213988. URL https://www.mdpi.com/2227-7390/10/21/3988.

10

https://doi.org/10.1080/01621459.2022.2128807
https://doi.org/10.1080/01621459.2022.2128807
https://www.sciencedirect.com/science/article/pii/S030440760300085X
https://www.sciencedirect.com/science/article/pii/S030440760300085X
https://openreview.net/forum?id=qae04YACHs
https://openreview.net/forum?id=qae04YACHs
https://www.sciencedirect.com/science/article/pii/S0031320322004940
https://www.sciencedirect.com/science/article/pii/S0031320322004940
https://www.mdpi.com/2227-7390/10/21/3988

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo,
Aoying Zhou, Christian S Jensen, Zhenli Sheng, et al. Tfb: Towards comprehensive and fair
benchmarking of time series forecasting methods. Proceedings of the VLDB Endowment, 17(9):
2363–2377, 2024.

Xiaoming Shi, Shiyu Wang, Yuqi Nie, Dianqi Li, Zhou Ye, Qingsong Wen, and Ming Jin. Time-
moe: Billion-scale time series foundation models with mixture of experts. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=e1wDDFmlVu.

Sima Siami-Namini and Akbar Siami Namin. Forecasting economics and financial time series:
Arima vs. lstm. arXiv preprint arXiv:1803.06386, 2018.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,
and Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. arXiv
preprint arXiv:2405.14616, 2024a.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jian-
min Wang, and Mingsheng Long. Timexer: Empowering transformers for time series forecasting
with exogenous variables. In The Thirty-eighth Annual Conference on Neural Information Pro-
cessing Systems, 2024b.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In The Eleventh International
Conference on Learning Representations, 2023.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121–11128, 2023.

Shuai Zhang, Yong Chen, Wenyu Zhang, and Ruijun Feng. A novel ensemble deep learning model
with dynamic error correction and multi-objective ensemble pruning for time series forecasting.
Information Sciences, 544:427–445, 2021. ISSN 0020-0255. doi: https://doi.org/10.1016/j.ins.
2020.08.053. URL https://www.sciencedirect.com/science/article/pii/
S0020025520308197.

11

https://openreview.net/forum?id=e1wDDFmlVu
https://openreview.net/forum?id=e1wDDFmlVu
https://www.sciencedirect.com/science/article/pii/S0020025520308197
https://www.sciencedirect.com/science/article/pii/S0020025520308197

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

APPENDIX

A DETAILS ON UEC-STD IMPLEMENTATIONS

A.1 TRAINING AND EVALUATION SUMMARY

For each dataset and prediction length L, the training and evaluation process consists of four stages:

1. Backbone training. The forecaster F is trained on the training split Dtrain (70%), and the
best checkpoint is selected based on performance on the validation split Dval (10%).

2. UEC-STD training. Supervised seasonal and trend correction data (U train and Uval) is
derived from the validation split Dval, where 70% is used for training and 30% is reserved
for early stopping and tuning the correction strength β. The UEC-STD is then trained
following the procedure described in Sect. 2.2 and Sect. 2.3, using 100 training steps with
a batch size of 64.

3. Correction strength selection. The correction weight β ∈ [0, 1] is tuned automatically
using the validation strategy described in Sect. 2.2.

4. Evaluation. The trained UEC-STD is applied autoregressively to backbone forecasts, and
corrected predictions are generated according to Eq. 6. Final performance is reported on
the held-out test split (20%).

A.2 SEASONAL–TREND MOVING AVERAGE DECOMPOSITION.

We decompose the backbone forecast X̂τ+1:τ+L into trend and seasonal components using moving
average decomposition:

X̂t = MA(X̂τ+1:τ+L), X̂s = X̂τ+1:τ+L − X̂t, (16)

where MA(·) is a 1D convolution-based centred moving average (default kernel size ks = 25),
computed as in Algorithm 1.

Algorithm 1 1D Moving-Average Trend Computation

1: Input: X̂τ+1:τ+L, kernel size ks (odd, default 25)
2: Output: Trend component of X̂τ+1:τ+L, same shape
3: pad← (ks− 1)/2
4: filt← 1D averaging filter of length ks with values 1/ks
5: X̂t ← conv1d(X̂τ+1:τ+L, filt, padding = pad)

6: Return X̂t

Next, we fit X̂t and X̂s together with the input X̂τ−W+1:τ into a multi-layer perceptron (MLP) to
produce seasonal and trend correction vectors:

∆̂Xt, ∆̂Xs = FFθ

(
X̂τ−W+1:τ , X̂

t, X̂s
)

(17)

A.3 MODEL ARCHITECTURE

FFθ is a lightweight two-stage MLP designed to refine base predictions by modeling seasonal and
trend errors. Assuming an input tensor x ∈ RB×T×D, it will be processed as follows.

Before entering Subnetwork 1, the input x is reshaped to (B×D,T) so that each feature dimension
can be processed independently along the temporal axis. Subnetwork 1 applies a two-layer MLP
with ReLU activation and dropout to capture temporal dependencies in a parameter-efficient manner:

Subnetwork 1:
h = Dropout

(
W2 σ(W1x)

)
,

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

where W1 ∈ RT×H , W2 ∈ RH×T , σ denotes the ReLU activation, and H is the hidden size (default
H = 32). This design allows the model to capture temporal dependencies in a parameter-efficient
manner while using dropout value of 0.5 for regularization.

The output of Subnetwork 1 is then permuted back to (B, T,D) before entering Subnetwork 2. This
second subnetwork is a two-layer MLP, which is responsible for aggregating feature information
and projecting into the output space:

Subnetwork 2:
y = Dropout

(
W4 σ(W3h)

)
,

where W3 ∈ RD×H and W4 ∈ RH×D. We then split y into ytrend = ∆̂Xt and yseasonal = ∆̂Xs

where both ytrend, yseasonal ∈ RB×L×D. These components are subsequently used in Eq. 13 to
compute the final correction value.

B DETAILS ON BASELINE IMPLEMENTATIONS

We implement a diverse set of baseline error correctors spanning traditional machine learning ap-
proaches and modern neural architectures. Throughout, each of these UEC models takes the input
sequence x = (X̂τ−W+1:τ , X̂τ+1:τ+L) where x ∈ RB×T×D and outputs y = ∆X̂τ+1:τ+L where
y ∈ RB×L×D. These baseline correctors were also trained on the correction data constructed from
the validation split Dval, similar to our proposed UEC-STD.

B.1 TRADITIONAL MODELS

UEC-Logistic. We implement a logistic regression model using scikit-learn’s pipeline (Pe-
dregosa et al., 2011), which combines feature scaling, PCA, and a ridge regression head. Specif-
ically, x is flattened into (B, T × D), normalized via StandardScaler, reduced using PCA to
retain 95% of variance, and finally fitted with a ridge regressor using the SAG solver to predict
flattened targets (B,L×D). The predicted output is then reshaped back to (B,L,D) to match the
original temporal and feature dimensions.

UEC-Random Forest. A random forest regressor using scikit-learn (Pedregosa et al., 2011)
is trained on flattened features (B, T ×D) to predict flattened targets (B,L×D). We use 20 trees
with a maximum depth of 6. The predicted outputs are reshaped back to (B,L,D) to recover the
original temporal structure.

UEC-XGBoost. We implement an XGBoost regressor with GPU acceleration
(tree method=gpu hist, device=cuda) using dmlc xgboost.XGB (Chen & Guestrin,
2016). Similar to Random Forest, x is flattened into (B, T ×D). The default configuration uses 20
boosting rounds, maximum depth 6, learning rate 0.3, and subsample ratio 1.0. After prediction,
outputs are reshaped from (B,L × D) back to (B,L,D) to maintain consistency with the input
dimensions.

B.2 NEURAL MODELS

UEC-MLP. As a simple neural baseline, we uses the same architecture as described in Sect. A.3,
but directly takes the original forecast X̂τ+1:τ+L as input without decomposing it into trend and
seasonal components.

UEC-LSTM & UEC-GRU. We implement both GRU- and LSTM-based recurrent correctors.
Given x ∈ RB×T×D, the sequence is passed through an RNN encoder (hidden dimension 32,
configurable layers, dropout 0.5). The hidden outputs (B, T,H) are projected through a two-layer
MLP with ReLU activations and dropout to produce (B,L,D).

UEC-CNN. We apply 1D temporal convolutions to capture local dependencies in the sequence.
The input x is permuted to (B,D, T) and processed by two convolutional layers (kernel size 3,
hidden dimension 32), followed by dropout. The output is projected with a two-layer MLP into
(B,L,D).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

UEC-Transformer. We use a transformer encoder with learnable positional embeddings. The
input x is first projected into a hidden space (64 dimensions), added with positional encodings, and
passed through a stack of 2 encoder layers with 4 attention heads and feedforward dimension 128.
The outputs are mapped via a two-layer MLP with ReLU and dropout to (B,L,D).

B.3 TRAINING SETUP

Each baseline is evaluated under the same autoregressive correction setting as our proposed model
for fair comparison.

C DETAILS ON EXPERIMENTAL RESULTS

C.1 EVALUATION METRIC

The reduction is calculated as:

Error Reduction =
MSE/MAEUEC −MSE/MAEBackbone

MSE/MAEBackbone

× 100% (18)

C.2 AVERAGE MAE REDUCTION ACROSS MODELS

Table 3 reports the average error reduction in MAE compared to the backbone for different UEC
methods. Negative values indicate improvements, while positive values denote error increases. N/A
indicates that the method failed to converge or crashed during training. Bold and underline denote
best and second-best results, respectively.

Table 3: Average Error Reduction in MAE compared to backbone for different UEC methods (the
lower the better, negative means improvement). N/A indicates that the method failed to converge or
crashed during training. Bold and underline denote best and second-best results, respectively.

Method ETTh1 ETTh2 ETTm1 ETTm2 Traffic Weather Electricity
AR (No Correction) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
UEC-MLP 0.01 0.21 -0.48 -0.31 -1.09 2.20 -0.08
UEC-Logistic 0.91 9.06 -0.97 1.02 N/A 2.54 N/A
UEC-Random Forest -0.74 -0.48 -1.27 -1.05 N/A 3.51 N/A
UEC-XGBoost -0.47 0.85 -5.72 0.42 N/A 4.01 N/A
UEC-LSTM 2.25 0.13 -0.20 14.5 -1.70 3.72 -0.48
UEC-GRU 3.53 0.30 -0.26 3.05 -1.53 3.04 -0.32
UEC-CNN 1.99 -0.33 0.17 1.19 -0.43 1.24 -0.13
UEC-Transformer 0.90 -0.24 -0.39 7.45 -0.82 1.39 -1.09
UEC-STD -0.44 -0.50 -1.81 -0.50 -0.89 -0.83 -0.85

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

C.3 RAW MSE AND MAE RESULTS

Table 4, Table 5 and Table 6 report the raw MSE and MAE results for all compared methods under
the TimeMixer, TimesNet and TimeXer backbones, respectively. For each dataset and prediction
horizon, the best and second-best values are highlighted in red and blue. The bottom rows further
summarize the number of times each method achieved the best or second-best performance across
all settings. These results form the basis for the error-reduction analyses in the main text and clearly
demonstrate that our proposed UEC-STD consistently delivers the best overall performance.

Table 4: Raw MSE and MAE results using TimeMixer as the backbone forecaster across multiple
datasets and horizons. Lower values are better. Red denotes the best value and blue is the second
best.

Dataset STD (Ours) MLP Logistic RF XGB LSTM GRU CNN TF. TimeMixer

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.370 0.399 0.393 0.407 0.381 0.402 0.392 0.3400 0.388 0.397 0.378 0.404 0.383 0.426 0.376 0.408 0.387 0.408 0.377 0.397
192 0.414 0.425 0.440 0.436 0.427 0.430 0.437 0.428 0.433 0.426 0.428 0.432 0.433 0.454 0.424 0.436 0.437 0.437 0.427 0.427
336 0.449 0.444 0.475 0.456 0.464 0.451 0.470 0.448 0.469 0.447 0.470 0.455 0.473 0.475 0.462 0.458 0.479 0.459 0.465 0.449
720 0.463 0.463 0.496 0.480 0.480 0.470 0.476 0.464 0.484 0.464 0.482 0.475 0.491 0.499 0.475 0.481 0.500 0.480 0.474 0.466

Avg 0.424 0.433 0.451 0.445 0.438 0.438 0.444 0.420 0.444 0.434 0.440 0.442 0.445 0.464 0.434 0.446 0.451 0.459 0.435 0.434

E
T

T
h2

96 0.292 0.343 0.293 0.344 0.326 0.399 0.290 0.343 0.294 0.350 0.296 0.346 0.293 0.347 0.294 0.344 0.291 0.344 0.293 0.343
192 0.374 0.395 0.377 0.396 0.410 0.447 0.371 0.394 0.375 0.400 0.377 0.396 0.373 0.397 0.377 0.395 0.371 0.394 0.376 0.395
336 0.427 0.437 0.431 0.440 0.463 0.487 0.422 0.435 0.428 0.443 0.428 0.439 0.424 0.439 0.430 0.438 0.422 0.436 0.428 0.438
720 0.510 0.492 0.513 0.496 0.556 0.540 0.497 0.485 0.508 0.495 0.512 0.496 0.507 0.494 0.504 0.490 0.499 0.488 0.510 0.493

Avg 0.401 0.416 0.404 0.419 0.439 0.468 0.395 0.414 0.401 0.422 0.403 0.419 0.399 0.419 0.401 0.417 0.396 0.416 0.402 0.417

E
T

T
m

1

96 0.318 0.362 0.325 0.360 0.322 0.360 0.326 0.361 0.321 0.361 0.327 0.362 0.328 0.362 0.326 0.367 0.291 0.344 0.293 0.343
192 0.374 0.396 0.385 0.397 0.379 0.396 0.385 0.399 0.378 0.397 0.387 0.399 0.388 0.400 0.386 0.403 0.388 0.400 0.388 0.400
336 0.425 0.428 0.440 0.432 0.433 0.431 0.440 0.434 0.431 0.431 0.442 0.434 0.443 0.435 0.440 0.437 0.443 0.435 0.443 0.436
720 0.546 0.484 0.568 0.492 0.558 0.591 0.569 0.495 0.554 0.490 0.573 0.495 0.575 0.495 0.570 0.496 0.573 0.496 0.575 0.498

Avg 0.416 0.418 0.430 0.420 0.423 0.445 0.430 0.422 0.421 0.420 0.432 0.423 0.434 0.423 0.431 0.426 0.424 0.419 0.423 0.419

E
T

T
m

2

96 0.174 0.259 0.174 0.258 0.173 0.267 0.171 0.259 0.173 0.266 0.185 0.276 0.185 0.276 0.202 0.289 0.175 0.258 0.176 0.258
192 0.242 0.303 0.243 0.303 0.238 0.308 0.235 0.302 0.237 0.308 0.253 0.321 0.253 0.321 0.267 0.330 0.242 0.303 0.245 0.304
336 0.310 0.345 0.312 0.347 0.303 0.350 0.299 0.344 0.300 0.349 0.321 0.364 0.321 0.364 0.331 0.370 0.310 0.347 0.316 0.349
720 0.419 0.408 0.422 0.411 0.407 0.410 0.405 0.406 0.405 0.410 0.427 0.424 0.427 0.424 0.431 0.427 0.418 0.410 0.427 0.413

Avg 0.288 0.328 0.288 0.329 0.280 0.334 0.278 0.327 0.279 0.334 0.322 0.346 0.322 0.346 0.308 0.342 0.286 0.329 0.290 0.329

Tr
af

fic

96 0.477 0.310 0.478 0.310 N/A N/A N/A N/A N/A N/A 0.476 0.308 0.477 0.309 0.480 0.311 0.481 0.311 0.481 0.312
192 0.514 0.323 0.515 0.322 N/A N/A N/A N/A N/A N/A 0.513 0.320 0.513 0.321 0.518 0.324 0.519 0.324 0.518 0.325
336 0.554 0.337 0.556 0.337 N/A N/A N/A N/A N/A N/A 0.552 0.335 0.553 0.336 0.560 0.340 0.560 0.340 0.560 0.340
720 0.627 0.372 0.631 0.374 N/A N/A N/A N/A N/A N/A 0.626 0.371 0.627 0.372 0.635 0.376 0.635 0.376 0.635 0.377

Avg 0.544 0.336 0.545 0.336 N/A N/A N/A N/A N/A N/A 0.567 0.334 0.542 0.334 0.548 0.338 0.549 0.338 0.549 0.339

W
ea

th
er

96 0.158 0.209 0.162 0.217 0.159 0.218 0.159 0.210 0.158 0.216 0.160 0.209 0.160 0.209 0.160 0.209 0.160 0.209 0.161 0.207
192 0.203 0.251 0.208 0.257 0.203 0.257 0.206 0.252 0.203 0.256 0.207 0.251 0.206 0.251 0.207 0.252 0.206 0.252 0.209 0.250
336 0.256 0.290 0.262 0.296 0.256 0.294 0.261 0.292 0.257 0.296 0.262 0.291 0.262 0.291 0.263 0.292 0.261 0.292 0.265 0.292
720 0.338 0.343 0.341 0.346 0.333 0.344 0.340 0.343 0.334 0.346 0.340 0.342 0.342 0.343 0.344 0.344 0.340 0.344 0.348 0.345

Avg 0.239 0.273 0.243 0.279 0.238 0.278 0.242 0.274 0.238 0.278 0.242 0.273 0.242 0.273 0.244 0.274 0.242 0.274 0.246 0.274

E
le

ct
ri

ci
ty 96 0.156 0.248 0.157 0.247 N/A N/A N/A N/A N/A N/A 0.156 0.247 0.156 0.247 0.156 0.247 0.156 0.248 0.156 0.247

192 0.177 0.268 0.178 0.267 N/A N/A N/A N/A N/A N/A 0.177 0.267 0.177 0.267 0.177 0.267 0.177 0.268 0.177 0.268
336 0.205 0.293 0.206 0.293 N/A N/A N/A N/A N/A N/A 0.203 0.292 0.204 0.293 0.205 0.294 0.205 0.292 0.205 0.294
720 0.270 0.346 0.271 0.346 N/A N/A N/A N/A N/A N/A 0.267 0.343 0.269 0.344 0.271 0.346 0.270 0.345 0.271 0.346

Avg 0.202 0.289 0.203 0.288 N/A N/A N/A N/A N/A N/A 0.201 0.288 0.202 0.288 0.202 0.288 0.202 0.288 0.202 0.289

Best 2 2 0 1 1 0 2 3 1 0 1 3 1 2 0 1 0 1 0 0
Second Best 3 4 0 1 0 0 0 0 2 0 0 0 1 0 2 0 2 2 1 1

Total 5 7 0 2 1 0 2 3 3 0 1 3 2 2 2 1 2 3 1 1

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Table 5: Raw MSE and MAE results using TimesNet as the backbone forecaster across multiple
datasets and horizons. Lower values are better. Red denotes the best value and blue is the second
best.

Dataset STD (Ours) MLP Logistic RF XGB LSTM GRU CNN TF. TimesNet

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.423 0.429 0.437 0.442 0.504 0.436 0.446 0.430 0.426 0.430 0.452 0.453 0.436 0.436 0.437 0.447 0.428 0.432 0.428 0.433
192 0.451 0.448 0.470 0.459 0.533 0.458 0.477 0.452 0.458 0.452 0.490 0.474 0.461 0.455 0.473 0.470 0.464 0.454 0.467 0.458
336 0.469 0.462 0.490 0.471 0.557 0.477 0.499 0.468 0.480 0.470 0.520 0.493 0.481 0.472 0.500 0.490 0.491 0.473 0.494 0.478
720 0.481 0.478 0.491 0.486 0.576 0.496 0.500 0.480 0.487 0.488 0.531 0.509 0.493 0.493 0.516 0.516 0.501 0.493 0.501 0.497

Avg 0.456 0.454 0.472 0.465 0.543 0.466 0.480 0.458 0.463 0.455 0.498 0.482 0.468 0.464 0.482 0.476 0.471 0.463 0.472 0.465

E
T

T
h2

96 0.327 0.366 0.335 0.367 0.346 0.391 0.332 0.366 0.332 0.371 0.333 0.366 0.338 0.372 0.334 0.369 0.336 0.370 0.338 0.369
192 0.401 0.410 0.408 0.411 0.415 0.429 0.404 0.409 0.403 0.412 0.406 0.410 0.410 0.414 0.405 0.410 0.407 0.412 0.412 0.413
336 0.433 0.440 0.443 0.441 0.443 0.453 0.439 0.439 0.437 0.441 0.443 0.442 0.442 0.443 0.438 0.439 0.441 0.442 0.447 0.443
720 0.420 0.444 0.429 0.445 0.442 0.462 0.428 0.444 0.431 0.448 0.434 0.448 0.430 0.445 0.425 0.443 0.431 0.446 0.433 0.447

Avg 0.395 0.415 0.404 0.416 0.411 0.433 0.401 0.415 0.401 0.423 0.404 0.416 0.405 0.419 0.401 0.415 0.408 0.418 0.408 0.418

E
T

T
m

1

96 0.403 0.417 0.417 0.417 0.417 0.414 0.420 0.416 0.415 0.417 0.411 0.416 0.415 0.418 0.412 0.414 0.412 0.414 0.421 0.419
192 0.443 0.436 0.460 0.440 0.460 0.448 0.460 0.457 0.460 0.457 0.447 0.440 0.460 0.440 0.459 0.442 0.457 0.438 0.464 0.441
336 0.494 0.462 0.515 0.469 0.488 0.466 0.505 0.461 0.485 0.450 0.515 0.471 0.516 0.470 0.515 0.472 0.515 0.469 0.521 0.472
720 0.592 0.508 0.617 0.517 0.557 0.508 0.632 0.464 0.534 0.474 0.625 0.520 0.620 0.518 0.621 0.522 0.623 0.519 0.625 0.520

Avg 0.483 0.456 0.502 0.461 0.481 0.459 0.503 0.450 0.474 0.456 0.502 0.462 0.502 0.461 0.503 0.463 0.502 0.460 0.508 0.463

E
T

T
m

2

96 0.192 0.270 0.191 0.270 0.194 0.283 0.188 0.270 0.191 0.278 0.192 0.274 0.198 0.283 0.192 0.271 0.190 0.271 0.193 0.269
192 0.258 0.309 0.255 0.310 0.255 0.318 0.248 0.308 0.253 0.316 0.255 0.313 0.261 0.319 0.256 0.310 0.254 0.311 0.259 0.310
336 0.321 0.350 0.317 0.351 0.315 0.356 0.307 0.346 0.313 0.355 0.317 0.353 0.323 0.358 0.318 0.350 0.316 0.352 0.323 0.351
720 0.427 0.412 0.420 0.412 0.415 0.414 0.408 0.406 0.414 0.414 0.420 0.412 0.422 0.415 0.418 0.409 0.421 0.413 0.428 0.412

Avg 0.300 0.335 0.296 0.335 0.325 0.342 0.313 0.333 0.318 0.341 0.322 0.339 0.326 0.344 0.321 0.335 0.320 0.337 0.301 0.336

Tr
af

fic

96 0.646 0.358 0.643 0.357 N/A N/A N/A N/A N/A N/A 0.642 0.356 0.642 0.357 0.647 0.361 0.646 0.360 0.647 0.361
192 0.650 0.366 0.654 0.366 N/A N/A N/A N/A N/A N/A 0.652 0.365 0.652 0.366 0.659 0.371 0.654 0.367 0.659 0.371
336 0.670 0.388 0.681 0.388 N/A N/A N/A N/A N/A N/A 0.679 0.386 0.679 0.388 0.689 0.395 0.684 0.388 0.689 0.395
720 0.782 0.462 0.801 0.462 N/A N/A N/A N/A N/A N/A 0.792 0.457 0.792 0.462 0.813 0.470 0.801 0.460 0.812 0.470

Avg 0.687 0.394 0.720 0.418 N/A N/A N/A N/A N/A N/A 0.691 0.391 0.691 0.393 0.702 0.414 0.733 0.417 0.702 0.399

W
ea

th
er

96 0.187 0.234 0.187 0.237 0.184 0.240 0.196 0.245 0.203 0.240 0.214 0.254 0.199 0.246 0.188 0.237 0.202 0.247 0.188 0.236
192 0.232 0.271 0.232 0.273 0.227 0.274 0.239 0.280 0.240 0.276 0.252 0.286 0.239 0.279 0.233 0.274 0.240 0.276 0.235 0.275
336 0.284 0.308 0.283 0.310 0.275 0.307 0.289 0.315 0.281 0.310 0.295 0.318 0.286 0.314 0.285 0.310 0.282 0.310 0.289 0.312
720 0.367 0.362 0.367 0.363 0.353 0.358 0.362 0.367 0.349 0.361 0.368 0.368 0.361 0.363 0.369 0.364 0.349 0.361 0.375 0.367

Avg 0.268 0.294 0.267 0.308 0.260 0.310 0.287 0.327 0.268 0.322 0.332 0.331 0.311 0.325 0.319 0.309 0.268 0.308 0.270 0.296

E
le

ct
ri

ci
ty 96 0.167 0.271 0.168 0.272 N/A N/A N/A N/A N/A N/A 0.168 0.272 0.166 0.270 0.167 0.272 0.168 0.272 0.168 0.271

192 0.183 0.284 0.184 0.285 N/A N/A N/A N/A N/A N/A 0.184 0.285 0.182 0.284 0.183 0.285 0.184 0.285 0.184 0.285
336 0.202 0.303 0.204 0.304 N/A N/A N/A N/A N/A N/A 0.204 0.304 0.201 0.303 0.203 0.304 0.204 0.304 0.203 0.304
720 0.254 0.344 0.257 0.347 N/A N/A N/A N/A N/A N/A 0.257 0.347 0.252 0.343 0.256 0.346 0.257 0.347 0.256 0.347

Avg 0.202 0.301 0.203 0.302 N/A N/A N/A N/A N/A N/A 0.203 0.302 0.201 0.300 0.202 0.301 0.203 0.302 0.203 0.302

Best 3 3 1 0 1 0 0 3 1 0 0 1 1 1 0 1 0 0 0 0
Second Best 2 3 1 2 1 0 1 0 2 2 1 1 1 1 1 1 0 0 0 01

Total 5 6 2 2 2 0 1 3 3 2 1 2 2 2 1 2 0 0 0 1

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Table 6: Raw MSE and MAE results using TimeXer as the backbone forecaster across multiple
datasets and horizons. Lower values are better.

Dataset STD (Ours) MLP Logistic RF XGB LSTM GRU CNN TF. TimeXer

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.394 0.418 0.397 0.407 0.492 0.417 0.401 0.409 0.408 0.410 0.405 0.419 0.431 0.421 0.400 0.415 0.399 0.417 0.395 0.407
192 0.441 0.449 0.447 0.438 0.534 0.449 0.449 0.442 0.456 0.443 0.452 0.450 0.487 0.455 0.447 0.447 0.445 0.446 0.447 0.441
336 0.489 0.481 0.494 0.469 0.583 0.483 0.497 0.474 0.504 0.475 0.502 0.482 0.543 0.488 0.501 0.482 0.493 0.476 0.500 0.474
720 0.556 0.533 0.543 0.519 0.662 0.535 0.548 0.520 0.561 0.523 0.560 0.531 0.628 0.546 0.573 0.538 0.554 0.524 0.557 0.524

Avg 0.470 0.470 0.470 0.458 0.568 0.471 0.474 0.461 0.482 0.463 0.480 0.470 0.522 0.478 0.480 0.468 0.470 0.466 0.475 0.462

E
T

T
h2

96 0.290 0.343 0.294 0.346 0.324 0.397 0.291 0.346 0.293 0.350 0.293 0.345 0.292 0.345 0.292 0.343 0.292 0.344 0.293 0.344
192 0.374 0.394 0.381 0.399 0.405 0.443 0.375 0.397 0.378 0.402 0.380 0.399 0.377 0.397 0.378 0.396 0.375 0.395 0.379 0.397
336 0.421 0.433 0.430 0.439 0.447 0.475 0.423 0.435 0.428 0.441 0.430 0.437 0.426 0.436 0.426 0.435 0.421 0.434 0.428 0.436
720 0.439 0.453 0.449 0.459 0.482 0.499 0.441 0.455 0.451 0.464 0.446 0.457 0.445 0.457 0.442 0.454 0.438 0.454 0.445 0.456

Avg 0.381 0.406 0.388 0.411 0.414 0.454 0.383 0.408 0.387 0.414 0.387 0.409 0.385 0.409 0.384 0.407 0.381 0.407 0.386 0.408

E
T

T
m

1

96 0.313 0.357 0.319 0.360 0.314 0.357 0.318 0.359 0.316 0.361 0.321 0.360 0.321 0.360 0.320 0.361 0.320 0.360 0.322 0.361
192 0.367 0.391 0.382 0.399 0.375 0.395 0.380 0.397 0.378 0.399 0.385 0.399 0.384 0.399 0.383 0.400 0.383 0.399 0.385 0.400
336 0.421 0.425 0.445 0.437 0.436 0.433 0.442 0.435 0.445 0.438 0.448 0.437 0.446 0.437 0.446 0.438 0.445 0.436 0.449 0.438
720 0.524 0.481 0.558 0.496 0.547 0.491 0.554 0.493 0.559 0.494 0.562 0.496 0.560 0.495 0.560 0.497 0.559 0.494 0.563 0.497

Avg 0.406 0.414 0.426 0.423 0.418 0.419 0.424 0.421 0.424 0.423 0.429 0.423 0.428 0.423 0.427 0.424 0.427 0.422 0.411 0.424

E
T

T
m

2

96 0.169 0.267 0.172 0.259 0.171 0.266 0.170 0.258 0.172 0.265 0.385 0.407 0.173 0.261 0.181 0.271 0.191 0.262 0.174 0.259
192 0.232 0.308 0.237 0.303 0.233 0.306 0.232 0.301 0.235 0.307 0.434 0.438 0.239 0.304 0.247 0.315 0.251 0.305 0.241 0.304
336 0.299 0.349 0.304 0.347 0.299 0.347 0.298 0.343 0.300 0.348 0.487 0.469 0.307 0.347 0.314 0.357 0.308 0.347 0.311 0.348
720 0.408 0.410 0.410 0.410 0.401 0.407 0.403 0.405 0.404 0.409 0.585 0.519 0.414 0.409 0.414 0.415 0.406 0.408 0.421 0.411

Avg 0.277 0.334 0.281 0.330 0.276 0.332 0.276 0.327 0.278 0.332 0.473 0.458 0.283 0.330 0.289 0.339 0.287 0.331 0.287 0.331

Tr
af

fic

96 0.468 0.301 0.469 0.300 N/A N/A N/A N/A N/A N/A 0.467 0.298 0.468 0.298 0.471 0.299 0.471 0.300 0.471 0.303
192 0.471 0.302 0.471 0.300 N/A N/A N/A N/A N/A N/A 0.469 0.298 0.470 0.299 0.473 0.299 0.473 0.300 0.473 0.303
336 0.470 0.300 0.470 0.298 N/A N/A N/A N/A N/A N/A 0.468 0.296 0.469 0.297 0.473 0.298 0.473 0.298 0.473 0.301
720 0.476 0.302 0.477 0.300 N/A N/A N/A N/A N/A N/A 0.475 0.298 0.475 0.299 0.479 0.300 0.479 0.301 0.479 0.303

Avg 0.471 0.301 0.472 0.300 N/A N/A N/A N/A N/A N/A 0.470 0.298 0.471 0.298 0.474 0.299 0.474 0.300 0.474 0.303

W
ea

th
er

96 0.159 0.207 0.162 0.217 0.159 0.218 0.159 0.210 0.158 0.216 0.160 0.209 0.160 0.209 0.160 0.209 0.160 0.209 0.161 0.207
192 0.205 0.248 0.208 0.257 0.203 0.257 0.206 0.252 0.203 0.256 0.207 0.251 0.206 0.251 0.207 0.252 0.206 0.252 0.209 0.250
336 0.260 0.289 0.262 0.296 0.256 0.294 0.261 0.292 0.257 0.296 0.262 0.291 0.262 0.291 0.263 0.292 0.261 0.292 0.265 0.292
720 0.338 0.340 0.341 0.346 0.333 0.344 0.340 0.343 0.334 0.346 0.340 0.342 0.342 0.343 0.344 0.344 0.340 0.344 0.348 0.345

Avg 0.241 0.271 0.243 0.279 0.238 0.278 0.242 0.274 0.238 0.279 0.242 0.273 0.242 0.273 0.243 0.274 0.242 0.274 0.246 0.274

E
le

ct
ri

ci
ty 96 0.139 0.240 0.140 0.241 N/A N/A N/A N/A N/A N/A 0.139 0.240 0.140 0.241 0.140 0.241 0.139 0.239 0.140 0.242

192 0.165 0.266 0.167 0.271 N/A N/A N/A N/A N/A N/A 0.166 0.269 0.167 0.270 0.167 0.270 0.164 0.266 0.167 0.271
336 0.200 0.303 0.205 0.310 N/A N/A N/A N/A N/A N/A 0.202 0.307 0.204 0.309 0.205 0.309 0.199 0.303 0.204 0.311
720 0.294 0.385 0.304 0.394 N/A N/A N/A N/A N/A N/A 0.298 0.390 0.303 0.394 0.304 0.394 0.294 0.385 0.304 0.395

Avg 0.200 0.298 0.204 0.304 N/A N/A N/A N/A N/A N/A 0.201 0.302 0.204 0.304 0.204 0.304 0.199 0.298 0.203 0.302

Best 3 4 1 1 2 0 1 1 1 0 1 1 0 1 0 0 2 1 0 0
Second Best 4 0 0 1 0 1 1 1 0 0 0 2 1 2 0 2 1 1 1 1

Total 7 4 1 2 2 1 2 2 1 0 1 3 1 3 0 2 3 2 1 1

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

C.4 HYPERPARAMETERS

C.4.1 HYPERPARAMETERS OF BACKBONES

The hyperparameters for the backbone models (TimeMixer, TimesNet and TimeXer) are adopted di-
rectly from the official Time-Series-Library repository by THUML 2, in line with their experimental
settings. These settings (such as look-back length, model depth, hidden sizes, and other architecture-
specific parameters) are consistent with those used in the TSLib implementation. At the same time,
some hyperparameters are dataset-dependent, meaning that choices like sequence length, batch size,
or certain regularization parameters vary depending on the particular dataset in use.

C.4.2 HYPERPARAMETERS OF UEC

All UEC models in our experiments were trained using the same set of hyperparameters summarized
in Table 7. The same set of correction were constructed from the validation split Dval, with a 70/30
split for training and early stopping / β tuning, were used for all UEC model. The correction strength
β was selected separately for MSE and MAE using a balanced validation strategy and it is reported
in Table 8. Based on the results in Table 10, we chose the Huber loss to train all UEC models, as it
consistently led to the best performance across both MSE and MAE metrics.

Table 7: Default Training Parameters of UEC
Parameter Value / Description
Correction data Utrain / Uval (70%/30%) from Dval
Training procedure Follows Sect. 2.2 and Sect. 2.3
Number of training steps 100
Batch size 64
Loss Huber (HL) Loss
Correction strength β Selected separately for MSE and MAE refer to Table 8

2https://github.com/thuml/Time-Series-Library

18

https://github.com/thuml/Time-Series-Library

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Table 8: Found Correction Strength β for UEC Models Across Datasets and Backbones

D
at

as
et

B
ac

kb
on

e
STD (Ours) MLP Logistic RF XGB LSTM GRU CNN TF.

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1 Ti

m
eM

ix
er

0.3 0.3 0.7 0.5 0.1 0.1 0.7 0.3 0.3 0.1 0.3 0.3 0.3 0.5 0.3 0.5 0.3 0.3

Ti
m

es
N

et

0.5 0.3 0.5 0.3 0.3 0.3 0.7 0.3 0.3 0.1 0.3 0.3 0.3 0.5 0.3 0.1 0.3 0.5

Ti
m

eX
er

0.3 0.3 0.1 0.3 0.3 0.3 0.5 0.1 0.3 0.1 0.3 0.3 0.3 0.5 0.3 0.1 0.3 0.3

E
T

T
h2 Ti

m
eM

ix
er

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Ti
m

es
N

et

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Ti
m

eX
er

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1

E
T

T
m

1 Ti
m

eM
ix

er

0.3 0.5 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.1

Ti
m

es
N

et

0.3 0.5 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1

Ti
m

eX
er

0.5 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1

E
T

T
m

2 Ti
m

eM
ix

er

0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.3 0.1 0.1

Ti
m

es
N

et

0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Ti
m

eX
er

0.3 0.3 0.5 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3

Tr
af

fic Ti
m

eM
ix

er

0.1 0.1 0.1 0.1 N/A N/A N/A N/A N/A N/A 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.1

Ti
m

es
N

et

0.3 0.1 0.1 0.1 N/A N/A N/A N/A N/A N/A 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Ti
m

eX
er

0.1 0.5 0.1 0.1 N/A N/A N/A N/A N/A N/A 0.1 0.1 0.1 0.1 0.1 1.0 0.1 1.0

W
ea

th
er Ti

m
eM

ix
er

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.3 0.3 0.1 0.1 0.3 0.1

Ti
m

es
N

et

0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.1 0.3 0.1 0.5 0.3 0.5 0.3 0.1 0.1 0.3 0.3

Ti
m

eX
er

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

E
le

ct
ri

ci
ty Ti

m
eM

ix
er

0.1 0.1 0.3 0.1 N/A N/A N/A N/A N/A N/A 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Ti
m

es
N

et

0.3 0.1 0.1 0.1 N/A N/A N/A N/A N/A N/A 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Ti
m

eX
er

0.1 0.1 0.1 0.3 N/A N/A N/A N/A N/A N/A 0.1 0.1 0.1 0.1 0.1 1.0 0.1 1.0

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

C.5 DETAILS ON MODEL ANALYSIS

Table 9 compares the averaged MSE and MAE of direct forecasting (DF) and autoregressive (AR)
methods across models, showing that AR consistently outperform DF.

Figure 4 provides qualitative examples on the TRAFFIC dataset, illustrating how UEC mitigates
collapse by restoring variance and correcting drift.

Table 10 presents the impact of different training losses on UEC performance for ETTh1, indicating
Huber loss often yields the best results.

Figure 5 demonstrates performance improvements of UEC-enhanced backbones across multiple pre-
diction lengths, highlighting consistent gains over standard backbone predictions.

Table 9: Performance comparison (averaged MSE and MAE across prediction lengths 96, 192, 336,
and 720) for AR and DF methods on different datasets and models.

Dataset Model DF (MSE / MAE) AR (MSE / MAE)
ETTh1 TimeMixer 0.4490 / 0.4399 0.4357 / 0.4348
ETTh1 TimesNet 0.4879 / 0.4722 0.4715 / 0.4655
Weather TimeMixer 0.2445 / 0.2748 0.2446 / 0.2739
Weather TimesNet 0.2634 / 0.2910 0.2699 / 0.2964
Traffic TimeMixer 0.5041 / 0.3241 0.5485 / 0.3385
Traffic TimesNet 0.7606 / 0.4419 0.7014 / 0.3991

0 100 200 300 400 500 600 700
Time step

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Va
lu

e

Sample 435 | Feature 790

0 100 200 300 400 500 600 700
Time step

0

2

4

6

8

Va
lu

e

Sample 2691 | Feature 4

0 100 200 300 400 500 600 700
Time step

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Va
lu

e

Sample 471 | Feature 790

0 100 200 300 400 500 600 700
Time step

1

0

1

2

Va
lu

e

Sample 2692 | Feature 24

True Pred (with UEC) Pred (no UEC)

Figure 4: Qualitative examples on TRAFFIC using TimesNet as backbone model (prediction length
= 720). Each panel shows the ground truth, prediction with UEC, and prediction without UEC.
UEC mitigates collapse by restoring variance and correcting drift.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Table 10: Results on ETTh1 dataset with different training losses of UEC across backbones. Bold
denotes the best results.

Backbone Huber L1 MSE

MSE MAE MSE MAE MSE MAE

TimeMixer 0.434 0.435 0.434 0.438 0.434 0.438
TimesNet 0.534 0.488 0.536 0.491 0.535 0.490

96 192 336 720 Avg
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
SE

0.23%

6.48%

0.29%

9.73%

0.38%

10.54%

0.40%

6.18%

0.33%

8.13%

TimeMixer
TimeMixer + UEC

TimesNet
TimesNet + UEC

96 192 336 720 Avg
0.0

0.1

0.2

0.3

0.4

0.5

M
AE 0.28%

4.80%

0.38%

8.44%

0.48%

9.96%

0.50%

7.17%

0.42%

7.64%

TimeMixer
TimeMixer + UEC

TimesNet
TimesNet + UEC

Figure 5: Performance of extended training across different prediction lengths: 96, 192, 336 and
720. Backbone models (TimeMixer and TimesNet) are compared with their corresponding UEC-
enhanced versions. % improvement is annotated on top of each bar pair.

21

	Introduction
	Method
	Chunk-based Autoregressive Prediction
	Universal Error Correction Framework
	Seasonal–Trend UEC Architecture

	Experimental Setup
	Experimental Results
	Results on Time-series Benchmark
	Ablation Study on UEC-STD
	Model Analysis

	Related Works
	Conclusion
	Details on UEC-STD Implementations
	Training and Evaluation Summary
	Seasonal–Trend Moving Average Decomposition.
	Model Architecture

	Details on Baseline Implementations
	Traditional Models
	Neural Models
	Training Setup

	Details on Experimental Results
	Evaluation Metric
	Average MAE Reduction Across Models
	Raw MSE and MAE Results
	Hyperparameters
	Hyperparameters of Backbones
	Hyperparameters of UEC

	Details on Model Analysis

