REVIVING ERROR CORRECTION IN MODERN DEEP
TIME-SERIES FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern deep-learning models have achieved remarkable success in time-series
forecasting. Yet, their performance degrades in long-term prediction due to error
accumulation in autoregressive inference, where predictions are recursively used
as inputs. While classical error correction mechanisms (ECMs) have long been
used in statistical methods, their applicability to deep learning models remains
limited or ineffective. In this work, we revisit the error accumulation problem
in deep time-series forecasting and investigate the role and necessity of ECMs
in this new context. We propose a simple, architecture-agnostic error correction
model that can be integrated with any existing forecaster without requiring retrain-
ing. By explicitly decomposing predictions into trend and seasonal components
and training the corrector to adjust each separately, we introduce the Universal
Error Corrector with Seasonal-Trend Decomposition (UEC-STD), which signifi-
cantly improves correction accuracy and robustness across diverse backbones and
datasets. Our findings provide a practical tool for enhancing forecasts while offer-
ing new insights into mitigating autoregressive errors in deep time-series models.

1 INTRODUCTION

Time-series forecasting is essential across numerous industries, including finance, healthcare, en-
ergy management, and supply chain optimization. In recent years, deep learning models have sig-
nificantly improved the accuracy of time-series forecasting (Wu et al.l[2023;|Zeng et al.,| 2023} Wang
et al., 2024aib). They outperform traditional methods on real-world benchmarks by leveraging ad-
vanced feature extraction and data-driven representations (Siami-Namini & Namin, [2018}|Q1u et al.}
2024). Despite these advances, long-term forecasting remains a persistent challenge. One approach
is to directly train the model to predict a fixed, large number of future steps in a single forward
pass. However, this requires significantly larger models, often exhibits degraded accuracy, and is
not scalable to arbitrary prediction lengths. A more flexible alternative is autoregressive inference,
which generates future steps sequentially by conditioning on previously predicted values. Yet, this
paradigm suffers from compounding errors, as inaccuracies introduced at earlier steps propagate and
amplify over time (Moreno-Pino et al.,[2023).

Error modeling has been studied in traditional time-series forecasting, with classical Error Correc-
tion Models (ECMs) addressing long-term relationships by using cointegration and making adjust-
ments for deviations from equilibrium, defined as a stable long-run relationship that the system
gradually returns to after short-term fluctuations (Hansen, 2003} [Barigozzi et al., 2024). Similarly,
classic methods like ARIMA, based on autoregressive processes, make forecasts by considering past
observations, predictions, and errors (Makridakis & Hibon, [1997). However, classical ECMs differ
fundamentally from the error correction needed in deep learning models. They adjust for deviations
from equilibrium across multiple time series, making them difficult to apply directly to modern deep
learning models, which require the correction of errors arising from internal processing and autore-
gressive prediction. While error correction has been explored for specific deep learning models in
recent research, solutions often involve predefined error functions to refine predictions (Zhang et al.|
2021) or the integration of error correction layers within forecasting pipelines (Liu et al.| |2020; [Li
et al., |2024)), necessitating costly joint training of both the correction module and the forecasting
model. To our knowledge, there exists no error correction model (ECM) that reliably improves a
wide range of modern forecasters while treating the underlying forecasting backbone as a black-box.
The absence of such an ECM is potentially due to the already high performance of current forecast-

/\/\«A/ AWAVAV e~~~ 30 28.8%
p - : \ 2
L7]
1
\/\/\z/\,.
ad ’\/\‘L/\/\"/\/\/—W\’\/\J\ 056 192 336 720
(a) ar () Prediction Length

Figure 1: (a) Chunk-based autoregressive (AR) forecasting in time series. Given a forecaster F'
with a fixed prediction window length L, which equals the input window size, the model’s output
must be recursively fed as input to predict a future horizon of length 4L (here, using M = 4 AR
steps). (b) The relative increase in test prediction error when using model-predicted inputs instead
of ground-truth, across 4 standard forecasting lengths: 96, 192, 336, and 720. Results are based on
TimeMixer with L = W = 96 on the ETTh1 dataset.

ing methods, which makes ECMs redundant. Alternatively, it may stem from the risk of overfitting
ECMs to specific model or dataset characteristics, thereby hindering their ability to perform well on
test data (Nandutu et al., 2022). These considerations give rise to two key research questions under
the autoregressive inference setting: (1) Are ECMs necessary for deep learning-based forecasting
models? (2) How can ECMs be systematically integrated to generalize and improve the performance
of state-of-the-art forecasting architectures?

In this paper, we study the feasibility of integrating ECM into deep forecasters. We propose the Uni-
versal Error Corrector (UEC), a simple framework that learns correction vectors from the inputs and
outputs of pre-trained models. Once trained, UEC adjusts forecasts at inference to mitigate error ac-
cumulation over long horizons. While the UEC can be implemented as any machine learning model,
we propose a specialized variant for time-series data, the UEC with Seasonal-Trend Decomposition
(UEC-STD). Time-series forecasts often exhibit distinct long-term trends and short-term seasonal
patterns, and the backbone forecaster may struggle differently with each. UEC-STD explicitly sep-
arates these components and learns targeted corrections for both, optimizing a weighted loss that
balances trend and seasonal errors. The experimental results demonstrate that the UEC-STD consis-
tently reduces error accumulation and significantly improves the accuracy of 3 deep forecasters with
minimal additional computational cost. In summary, our contributions are: (i) We pioneer a uni-
versal error correction mechanism for modern forecasters without retraining the backbone; (ii) We
design UEC-STD, a lightweight plug-in module that explicitly corrects trend and seasonal errors in
time-series data; (iii) We validate UEC-STD across diverse datasets and models, showing consistent
error reduction, efficiency, and insightful model analyses.

2 METHOD

To begin, we briefly introduce time-series forecasting. Here, the objective is to predict future values
of a sequence based on historical observations. Let Dyyqin = {Xt}tT;’“fi" represent the observed
multivariate time-series data, where X; € RP is the time-series values at time ¢, and D is the num-
ber of variates. The forecasting task involves predicting future values over a horizon L based on
historical time-series observations. Specifically, let the past window of observations be represented
as: Xe—wi1t = {Xe—w1, Xt—w+2, . - -, Xt where W is the look-back window length. Given
this window, we aim to predict the future values of the time-series X; 1, X¢4o,..., Xt using a
model F'(-): Xt+1:t+ L = F(X:_w1.+). The objective is to minimize the forecast error, often de-
fined as the discrepancy between the predicted values X t+1:¢+r and the true future values Xy 1.441,
by minimizing the forecasting loss functions such as MSE or Huber losses (Jadon et al.| [2024).

2.1 CHUNK-BASED AUTOREGRESSIVE PREDICTION

Now, we formalize the autoregressive forecasting setup considered in this work. In this approach,
during inference, when ground-truth data are unavailable for long-term forecasting, the model feeds

its previous predictions back as inputs (Shi et al.l 2025)). This can cause error propagation, as small
prediction errors accumulate and amplify over time, leading to significant deviations.

Formerly, let X, be the predicted value at time ¢, and X the true value. In traditional autoregressive
models, assuming we do not have the true data X3, the process is: X;11 = F(X¢—w.i—1 & X3)

where X;_yy.;—1 is the history of observations up to time ¢ — 1, Xt is the prediction for step ¢,
and @ is the concatenation of 2 time-series. In practice, we can apply a chunk-based autoregression
that forecasts a window of L time steps at a time (see Fig. [l| (a)). At the autoregression step

k=0,1,..., M, the predicted chunk Xt+kL+1:t+(k+1)L is fed back as input for the next prediction:

X L . _ {F<Xt—W+1:t) lfk = 0
L41: L = 5 .

bkl (k) F(Xiyko—wainqrr) ifk>1

Here, M is the number of autoregressive steps needed to reach the desired horizon length M x L.

From now on, to simplify the notation, we set 7 = ¢ + kL as the chunk boundary at AR step k
starting from timestep ¢. Here, for any positive index j,if 7 — W + 1+ j < t:

(D

Xrwiit; = Xr—wii4s- 2

By optionally using an overlapping window for the final step, chunk-based autoregression allows any
model with a fixed prediction horizon L to produce forecasts of arbitrary length 7. For example,
the last autoregressive step reads: Xy 17— 1047 = F(Xiar—1—wt:41—1) where M = [L]is
the number of chunks and 7" is the desired forecast length. For convenience, we denote the whole
prediction using AR as:

Xirrr = Far(Xp—wee—1|T) (3)
Despite its flexibility, this recursive formulation remains susceptible to error accumulation across

chunks. As seen in Fig. |1|(b), the forecasting error grows with the number of autoregressive steps,
compared to using ground-truth inputs at each step.

2.2 UNIVERSAL ERROR CORRECTION FRAMEWORK

Autoregressive Correction Mechanism Let Xt+1:t+ 1 represent the forecasted values, and let
AXH—I:H— 1. be the error correction vector. We propose to compute AXt+1:t+ 1, using a neural net-
work, namely Universal Error Corrector (UEC), which is trained to minimize the error between the
corrected values and the ground-truth values. Concretely, the UEC takes the past time-series win-
dow and the forecaster’s predictions as input and computes the error correction vector. First, using
the AR process in Eq. |3] we derive the whole predictions X t+1:4+7- Next, we iteratively generate
the corrections. Formerly, at k£ = 0:

A)zvt+1:t+L = UEC(Xt7W+1:t7 Xt+1:t+L) (4)
For subsequent AR steps (k > 1), we compute the correction vectors as:
AXT+1:T+L - UEC(XT7W+1:T) XTJrl:TJrL) (5)

Finally, the whole correction vector AX}H;HT = {AX}H, AXt+2, cee AXHT} € RT*D g
applied to the forecasted values as follows:

Xf?rr; = X+ BAX,y;, foreach jel[l1,T] (6)

where 5 € [0,1] is a scalar hyperparameter that controls the strength of the correction. Setting
8 = 0 disables the correction entirely, while 3 = 1 applies full correction.

Training Data Preparation To train the UEC, we construct supervised training examples where
each sample consists of the input € R(W+L)*D (o the UEC and its corresponding ground-truth
output € REXP | To better reflect realistic deployment scenarios where the forecaster F is likely to
produce imperfect predictions, we avoid using the time series used to train F', which may lead to
overfitted predictions and artificially small errors. Instead, we sample from a held-out validation set,
which more accurately represents the model’s generalization behavior.

Specifically, we construct training examples for UEC by sampling time series from the validation
dataset Dyq; = {X: }Tj' “t‘;;t:f”“’. First, we sample a historical window X;_y 41.¢ of length W,
along with a corresponding future window Xy 1,417 = {X¢y1, Xeto, ..., Xea7 }, where T/ > L
is a predefined prediction horizon used for training, which can be different than the horizon 7" during

inference. Then, the forecaster F' is used to generate the predictions using AR:

Xy = FAr(Xi—w 14| T) (7
Next, we sample the ground-truth values X .14 x41)r € Xiy1:4477, and compute the ground-
truth correction vector as the error between the predicted and the ground-truth time series:

AAXV7'Jr1:7'JrL = XT+1:T+L - XTJrlZTJrL (3

A training instance for UEC is then a tuple: (XT_W+1:T, XT+1:T+L), AX 141

input output

Standard Training Procedure We split the D,, data into a training set Uprqin,
where the UEC is trained by minimizing a correction loss using the Adam opti-
mizer, and a validation set Uf,, used for early stopping evaluation. At each itera-
tion, we sample tuples ((XT,WH;T, Xri1iraL), AX;y1:041), predict corrections AX =

UEC(XT,WH;T7 XTH:TJFL), apply them as:

i = Xrjrirpr + AX, ©)

and compute the correction loss:
Lugc = Z lee (X9, Xriy), (10)

where [.. can be any regression loss function, such as MSE or Huber loss. Gradients are backprop-
agated only through the UEC, keeping the forecaster fixed.

On Choosing the Correction Strength To select the correction strength 8 automatically, we pro-
pose a balanced validation strategy. We use the validation set I4,,; that is unseen by both the fore-
caster F' and the UEC, and randomly sample data from the training set Dy,4;y, denoted Dy, which
the forecaster has seen, such that the combined size satisfies |Uyai| + |Ds| = |Dyail, where | - |
denotes the number of samples in a dataset. This approach prevents bias in either direction: if 3 is
tuned only on unseen data, the UEC becomes overly pessimistic about the performance of the fore-
caster F' and selects a high correction strength, which can apply excessive adjustments; if tuned only
on seen data, the UEC is too optimistic and selects a low strength. Combining both better reflects
realistic deployment conditions, where the forecaster encounters both familiar and unfamiliar data.
Additionally, we select separate 3 values depending on the optimization objective: one for MSE and
one for MAE, depending on which metric we aim to optimize for in the backbone forecaster F'.

2.3 SEASONAL-TREND UEC ARCHITECTURE

While the UEC can be instantiated with any prediction model, we design an architecture specialized
for time-series data by explicitly modeling seasonal and trend components.

Seasonal-Trend Decomposition. Given the UEC input (XT,W+1;T,)A(TH:TJF 1), we decompose
the backbone prediction part X .-4 into trend and seasonal components:

Xt = MA(XT+1:T+L)7 XS = X‘r—‘rl:‘r—&-L - Xt (11)

where MA(+) denotes a moving-average filter. We decompose the backbone prediction into seasonal
and trend components because time-series data usually exhibit both long-term trends and short-term
seasonality. Since the backbone forecaster F' may struggle more with one component than the other;
explicitly modeling this structure allows UEC to apply targeted corrections.

(a) Overall (b) UEC-STD PR) Forecast]

; S.Forecast /
Final Forecast ’;" Forecast J g i / B

/ J o
Do o] Ny
________________ / 3 y w/ —{Concat > I LIS
D —' PR SN B e B
s o "’T or . . ,/ Trend Error
; Input F + Trend Forecast / g ;
/Tnput” S Trend Forecast N et

Ground-truth P, 1

c J
F o /8. Error GT Re 1
L > 3| Regression | o
/W :‘é VNSNS Loss [€7
___________________ a
7" Forecast = B G L
/ Q > // T. Error J Regression
Forecaster F l W 3 Y o Loss [€
orecaster LT p
________________ --» Backpropagation
(c)Training —» Forward pass

Figure 2: UEC-STD: (a) Overall UEC framework: the corrector takes the input and the forecasted
time series from a pre-trained forecaster F', and outputs a corrected forecast. (b) UEC-STD ar-
chitecture: the backbone forecast is decomposed into trend and seasonal components, which are
concatenated with historical inputs and fed into an MLP to produce separate correction vectors for
trend and seasonality. They are summed with the original forecast to make the final forecast. (c)
Training phase: the ground-truth error is computed as the difference between the forecast and the
true values, then decomposed into trend and seasonal error ground-truth components (T. Error GT
and S. Error GT) to supervise the corresponding correction outputs.

Next, we fit Xt and X together with the input XT_W+1:T into a multi-layer perceptron (MLP) to
produce seasonal and trend correction vectors:

AXY, AXS = FF9<XT,W+1:T, X, X) (12)
where FFy denotes a feed-forward neural network parameterized by 6, and both outputs € RZ*P.

Seasonal-Trend Correction. The corrected forecast is reconstructed by adjusting each compo-
nent and summing:

A At A S
:(-f{:-r-s-L = Xrt1r4L + AX +AX (13)

Seasonal-Trend Training. The corresponding ground truth correction vector AX 1., is de-
composed into:

AXt = MA(AX7-+1:T+L), AXb = AX7-+1:7-+L - AXt (14)

The UEC parameters 6 are learned by minimizing:
Lilpe = Mlee (AR, AXY) + AL (AX7, AXY), (15)

where \; and)\ control the trade-off between trend and seasonal losses. We refer to this variant as
UEC with Seasonal-Trend Decomposition (UEC-STD) to distinguish it from the general UEC.

3 EXPERIMENTAL SETUP

Implementation We conducted experiments using a standard time-series benchmark and code-
baseﬂ Initially, we trained the backbone forecaster using the normal codebase training, with the
MSE as the loss function /¢.. The specific hyperparameters used for training are consistent with
established best practices in the field. For example, we fix the batch size to 128, the learning rate
to 0.01, and use the Adam optimizer with default parameters (3; = 0.9, 32 = 0.999,¢ = 107%),
and train for 10 epochs with early stopping patience of 10. For further details on the exact param-
eter settings, we refer the reader to the official codebase. This trained backbone was then used to

'"https://github.com/thuml/Time-Series-Library

https://github.com/thuml/Time-Series-Library

generate data for the training of the UEC. For UEC, we found that using l.. as the Huber loss led
to more stable training for the UEC (see Sec. [4.3), and we therefore adopted it for all subsequent
experiments. More details on UEC hyperparameters can be found in Appendix [A]

Computing Requirement All experiments are conducted on a single NVIDIA V100 GPU. The
training cost of the proposed UEC modules is negligible compared to that of the backbone models.
For example, training the TimeMixer backbone on ETThl with L € [96,192, 336, 720] requires
approximately 10 minutes of GPU time, whereas training UEC-STD on that setting takes only about
1 minute, i.e., roughly one-tenth of the backbone training time. This demonstrates that our approach
introduces minimal computational overhead while maintaining efficiency.

Evaluation Protocol For each dataset and prediction length L, we (i) train the backbone forecaster
on the standard training split (70%) and use the validation split to get the best checkpoint, (ii) train
the UEC on the validation split (10%) to correct the backbone, and (iii) report results on the held-out
test split (20%). We report average Mean Squared Error (MSE) and Mean Absolute Error (MAE):

N L D N L D

_ (%) (1) _
MSE = NLD ZZZ Xt—Hd Xt+J d) MAE = NLD
i=1 j=1d=1 i=1 j=1d=1

t+] d— t+j7d|

Here N is the number of test segments, L the forecast horizon, and D the dimensionality. We
compute metrics per prediction length and then take the mean across lengths.

4 EXPERIMENTAL RESULTS

This section aims to demonstrate the effectiveness of our proposed approach for enhancing autore-
gressive inference in long-term forecasting. We begin by establishing that autoregressive inference
is a strong baseline, warranting further investigation for targeted improvements. We then demon-
strate that the limitation of AR can be addressed by integrating UEC into the inference pipeline,
resulting in significant performance gains across various backbone forecasters. More specifically,
we evaluate multiple design choices for UEC and demonstrate that our proposed UEC-STD archi-
tecture consistently achieves the best results across all benchmarks. Finally, we conduct ablation
studies and model analyses to assess the contribution of each component in our approach.

4.1 RESULTS ON TIME-SERIES BENCHMARK
AUTOREGRESSION IS A STRONG BASELINE, BUT CORRECTING ITS ERRORS IS NECESSARY

We compare two paradigms for long-term forecasting: (i) Direct Forecasting (DF), which predicts
the entire horizon in one pass, and (ii) Autoregressive (AR), which generates predictions itera-
tively. DF requires horizon-specific models and a higher cost, while AR reuses the same module
across steps, making it more efficient and flexible. Experiments on ETTh1, Weather, and Electric-
ity with two backbones (TimeMixer (Wang et al.l [2024a) and TimesNet (Wu et al., 2023)) show
that AR matches or outperforms DF in 7 of 12 cases (Appendix Table [9), particularly excelling on
ETThl. However, AR suffers from error accumulation, where small early mistakes amplify into
high MSE/MAE (0.4-0.7) over long horizons (Fig.|l|(b)). This underscores the need for error cor-
rection to mitigate accumulation. Hence, we focus on AR as the main target for correction and omit
the DF baseline to save computation.

UEC-STD DELIVERS SUBSTANTIAL AND CONSISTENT IMPROVEMENTS TO AR

The purpose of this experiment section is to evaluate the effectiveness of our proposed UEC in mit-
igating the errors and improving the overall performance of modern deep forecasting models under
autoregressive inference. As such, we examine different UEC architectures on 3 forecasting back-
bones (TimeMixer (Wang et al.l 2024a)), TimesNet (Wu et all [2023), and TimeXer (Wang et al.,
2024b)). They are chosen as efficient and recent strong baselines in time-series long-term fore-
casting. We select 7 datasets (ETTh1, ETTh2, ETTm1, ETTm2, Electricity, Weather, and Traffic),
which support a long-term prediction horizon up to 720 steps. Moreover, we evaluate 9 different
UEC architectures, ranging from classic machine learning models such as logistic regression and

Table 1: Average Error Reduction in MSE compared to backbone for different UEC methods (the
lower the better, negative means improvement). N/A indicates that the method failed to converge or
crashed during training. Bold and underline denote best and second-best results, respectively.

Method ETThl ETTh2 ETTml ETTm2 Traffic Weather Electricity
AR (No Correction) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
UEC-MLP 0.71 0.05 -0.93 -1.20 -0.67 -1.34 0.17
UEC-Logistic 11.7 5.84 -3.49 0.25 N/A -3.61 N/A
UEC-Random Forest ~ 1.10 -1.39 -0.92 -1.43 N/A 0.76 N/A
UEC-XGBoost 0.40 -0.46 -11.88 -0.51 N/A -2.48 N/A
UEC-LSTM 2.48 -0.08 -0.29 24.63 0.36 6.35 -0.52
UEC-GRU 3.49 -0.51 -0.29 4.32 -1.12 4.13 -0.26
UEC-CNN 0.94 -0.77 -0.76 1.96 0.06 4.99 0.04
UEC-Transformer 0.91 -1.22 -0.63 0.47 -0.18 -1.66 -1.19
UEC-STD -2.39 -1.49 -4.78 -1.78 -1.18 -2.10 -0.91

random forests, to simple neural networks like MLPs and LSTMs, and more sophisticated models
such as Transformers. These architectures follow the standard UEC framework (Sec. [2.2). We
denote these methods as UEC-X, where X refers to the underlying correcting architecture (see Ap-
pendix B). We also include the proposed UEC-STD variant (Sec. to validate our special design
for time-series data. All UEC methods apply auto selection of 3 (Sec. [2.2)). To see how UEC helps
the forecasters, we report the error reduction rate (%, Appendix Eq. [I8) in MSE and MAE for vari-
ous UEC architectures compared to no correction (5 = 0). The error reduction is then averaged over
3 backbones. Negative values indicate an improvement over the backbone model with no correction,
while positive values denote performance degradation.

Table[T|and Appendix Table 3] summarize the results for improvements in MSE and MAE, respec-
tively. Regarding MSE, overall, most architectures, particularly XGBoost and UEC-STD, achieve
consistent error reductions across multiple datasets. However, some classical machine learning mod-
els, such as XGBoost, Random Forest, and Logistic Regression, fail to scale effectively on large,
high-dimensional datasets like Traffic and Electricity, resulting in training convergence issues de-
spite extensive hyperparameter tuning. Therefore, UEC-STD achieves the best overall performance,
delivering both the greatest average error reduction and the highest consistency across datasets. In
terms of MAE, UEC-STD is the only method that can reliably correct the forecaster’s errors. On
average, across backbones and datasets, UEC-STD achieves MSE and MAE improvements of
2.1% and 0.8%, respectively, which is comparable to SOTA improvements in the field (Wang
et al.| [2024b)). Notably, for datasets like ETTm1, UEC-STD attains major error reductions of 4.78%
in MSE and 1.81% in MAE. We provide the details of these experimental results in Appendix [C]

4.2 ABLATION STUDY ON UEC-STD

Seasonal-Trend Decomposition Components Here, we compare different design choices for sea-
sonal-trend decomposition (STD) by varying the choice of STD components in UEC input and out-
put (Table2). We observe that adding trend or seasonal components to inputs only (No STD Output)
yields little improvement compared to not using STD at all (No STD), with gains of 1.1% MSE on
ETTh1 and 0.4% MSE on Weather, while Traffic shows no change. Modeling STD in UEC output
further improves the performance. In particular, when predicting only seasonal (No Trend Output)
or only trend (No Seasonal Output), we find that seasonal correction contributes more to ETThl
(seasonal-only improves MSE by 5.3% vs trend-only 2.7%), whereas both Traffic and Weather ex-
hibit little to no improvement when relying on only one component. Our full setup (Full), which uses
both decomposed inputs and predicts separate errors for trend and seasonal components, achieves
the best overall performance, improving MSE/MAE by 5.99%/2.48% on ETTh1, 0.37%/0.30% on
Traffic, and 0.83%/1.45% on Weather compared to the No STD. These demonstrate the complemen-
tary benefits of jointly correcting trend and seasonality, leading to consistent gains across datasets.

Seasonal-Trend Coefficients We study different seasonal-trend (ST) coefficient settings A\s—\¢
across datasets (ETTh1, Weather, Traffic) and backbones (TimeMixer, TimesNet, TimeXer). In
Fig[3h, we fix § = 0.1 and vary coefficients from 0.2-0.8 to 0.8-0.2. Results show that higher

Table 2: Comparison of different design variants for seasonal-trend decomposition (STD). Each
setting differs in the choice of inputs (raw series X, seasonal X *, trend X*) and outputs (predicted
errors AX, AX?®, AX"). Bold denotes the best results.

Setting Input(s) Output(s) ETThl Traffic Weather
MSE MAE MSE MAE MSE MAE
No STD X, WL AX 0.451 0.444 0.545 0.336 0.241 0.276

No STD Output XT W1 T,X X AX 0.446 0.452 0.546 0.336 0.240 0.272
No Season Output XT W1 T,X X AX' 0464 0.447 0.544 0.336 0.245 0.283
No Trend Output XT Wlirs Xt X5 AX®S 0.427 0.437 0.547 0.338 0.244 0.276

Full (Our) XT W1 T,X Xs AXt AX® 0.424 0.433 0.543 0.335 0.239 0.272
(a) (b)
1.0 ——— 25
% 0.8 Wether E’-\: 2.0
s —— Traffic é
T 0.6 1.5
g t P
g 0.4 gl.o
o 202 % 0.5
L/
0.01 | | | | ‘ ‘ ‘ = 0.0 | | |
Ti Mi Ti Net TimeX
q/g{b %Q’.\ b‘g@ (00‘«) bQ‘b‘ /\Q")) QJQ’J/ Imeiixer ImesiNe Imexer
Q- Q- Q* Q- Qo Q- o ZzJ 0.5-0.5 E= 0.6-0.4 ©=m 0.7-0.3 ©EE 0.8-0.2

Figure 3: Seasonal-Trend (ST) Coefficient A;—\; analysis. (a) Normalized MSE (0-1) for 3 datasets,
ETTh1, Weather, and Traffic, using TimeMixer across different coefficients; lower values indicate
better performance. (b) Percentage MSE improvement on Weather for three backbones (TimeMixer,
TimesNet, TimeXer) with varying ST coefficients; higher values indicate greater improvement. The
plots show how emphasizing the correction of seasonal and trend affects forecasting performance.

seasonal weighting improves accuracy: ETTh1 and Traffic perform best with 0.8-0.2 (1.4%, 0.96%
improvements), while Weather prefers 0.6-0.4 (1.07%). Overweighting seasonality, however, can
hurt datasets dominated by long-term trends. In Fig. [3b, we repeat this analysis for Weather across
backbones. The trend holds broadly: emphasizing seasonality improves accuracy, though the opti-
mal balance depends on datasets and backbones. Overall, we recommend starting with 0.5-0.5 and
adjusting toward seasonality (e.g., 0.6-0.4 or 0.8-0.2) based on dataset characteristics.

4.3 MODEL ANALYSIS

In this section, we analyze the general behavior of the UEC framework. For simplicity and to reduce
the confounding effects of Seasonal-Trend components, we use UEC-MLP as the representative
architecture, while we expect UEC-STD to exhibit better behaviors.

Long-term Correction Behaviors We present four qualitative cases in Appendix Fig. 4 compar-
ing predictions with and without UEC on the Traffic dataset (prediction length = 720). Across all
cases, the UEC-enhanced forecasts closely follow the ground truth in level, trend, and oscillation,
whereas the no-UEC baseline exhibits collapse, which shows nearly flat, low-variance trajecto-
ries that remain anchored to early forecast values. In general, UEC helps long-horizon rollouts by
adding learned, context-aware residuals to the backbone forecast at each autoregressive step. These
corrections restore amplitude and phase, counter drift, and smooth chunk boundaries, so predictions
maintain appropriate variability and stay aligned with the target signal.

UEC Training Loss To examine the impact of training loss on UEC performance, we report re-
sults using different I (Huber, L1, and MSE) in Appendix Table [I0] Experiments use ETTh1

dataset with 2 backbones: TimeMixer and TimesNet. Overall, Huber loss achieves the lowest aver-
age MSE and MAE in four cases, the best among the three losses. While different losses may yield
gains in other cases, we adopt Huber loss as the default for training UEC to avoid costly tuning.

Improvement Gain with Extended Training. One question is whether UEC’s gains arise from
holding out validation data for training the corrector. To test this, we retrain backbones on both train-
ing and validation sets (so UEC has no data advantage) and then train UEC on the same validation
portion to correct the new backbones. Results on Traffic (Appendix Fig. [5) show UEC still improves
performance, confirming the benefits come from learning correction patterns rather than data with-
holding. Improvements vary by backbone: weaker models like TimesNet gain more, while stronger
ones like TimeMixer benefit less and may even overfit when retrained with extra data. Hence, we
recommend training backbones on the original data and reserving validation solely for UEC.

5 RELATED WORKS

Classical Error Correction Models Traditional Error Correction Models (ECMs) are widely used
in econometrics (Hansen, 2003} |[Barigozzi et al., [2024). These models explicitly capture deviations
from equilibrium and apply corrective terms to guide predictions back toward the expected state.
However, ECMs are designed for linear, low-dimensional systems and rely on statistical assumptions
that are difficult to transfer to the complex dynamics of modern deep-learning models. Their reliance
on multivariate co-integration prevents their applicability to high-dimensional forecasting scenarios.

Autoregressive Deep Learning and Error Accumulation Deep learning models have recently
achieved state-of-the-art performance in time-series forecasting (Liu et al.| [2023; Zeng et al.| [2023;
Wang et al.| [2024aib). These models often train with fixed input-output lengths, and to predict
longer horizons, they must rely on autoregressive decoding: using the prediction as the input for
the next forecasting step. Unfortunately, this recursive strategy leads to unavoidable compounding
errors over longer horizons (Moreno-Pino et al.,2023)). A temporary workaround is to train separate
models for different prediction lengths. While this can help manage error accumulation, it incurs ad-
ditional training time, storage, and complexity costs. Thus, it is not suited for ultra-long or unknown
inference lengths, limiting its scalability and practical applicability.

Error Correction in Deep Learning for Time-Series Forecasting . Recent studies have explored
incorporating error correction mechanisms using deep learning to improve time-series forecasting
accuracy. |Liu et al|(2020) propose modules that explicitly learn residual errors during training,
while |[Zhang et al.| (2021) refine predictions using predefined loss-based error functions. Others
attempt to learn the error correction function, such as using LSTMs to model the residuals of clas-
sical ARIMA forecasts (Nandutu et al., 2022) or (Li et al., [2024)), jointly training the forecasting
model with a diffusion process to refine its predictions. While promising, these methods are often
tied to specific architectures or training pipelines, limiting their generality. To date, no architecture-
agnostic error correction approach consistently improves modern forecasters. This work is the first
to address this gap by proposing a general and modular solution.

6 CONCLUSION

In this paper, we revisited the problem of error accumulation in deep autoregressive time-series
forecasting and proposed a simple, architecture-agnostic error correction mechanism that can be
integrated with any existing deep learning forecaster without retraining. Our proposed approach,
named Universal Error Correcter with Seasonal-Trend Decomposition (UEC-STD), consistently im-
proves long-term prediction accuracy across multiple benchmarks and backbone models, providing
both practical utility and novel insights into autoregressive error mitigation. While effective, our
method introduces a modest computational overhead due to the additional error correction predic-
tion. Future work will focus on designing more efficient UEC variants that minimize computational
overhead without compromising performance. Moreover, investigating adaptive correction mech-
anisms and extending our evaluation to diverse real-world scenarios, such as multi-modality and
irregularly sampled time series, offers promising avenues to improve the robustness and scalability
of deep time-series forecasting.

REPRODUCIBILITY STATEMENT

Details of implementations and experiments can be found in the Appendix. Upon publication,
we will release the implementation as open-source with the necessary instructions to ensure re-
producibility.

LLM USAGE

Large Language Models (LLMs) were not involved in the design, implementation, or analysis of
our method. They were only used to refine the presentation of the paper by correcting grammar and
improving writing clarity.

REFERENCES

Matteo Barigozzi, Giuseppe Cavaliere, and Lorenzo Trapani and. Inference in heavy-tailed nonsta-
tionary multivariate time series. Journal of the American Statistical Association, 119(545):565—
581, 2024. doi: 10.1080/01621459.2022.2128807. URL https://doi.org/10.1080/
01621459.2022.2128807.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the

22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794,
2016.

Peter Reinhard Hansen. Structural changes in the cointegrated vector autoregressive model.
Journal of Econometrics, 114(2):261-295, 2003. ISSN 0304-4076. doi: https://doi.org/10.
1016/S0304-4076(03)00085-X. URL https://www.sciencedirect.com/science/
article/pii/S030440760300085X.

Aryan Jadon, Avinash Patil, and Shruti Jadon. A comprehensive survey of regression-based loss
functions for time series forecasting. In International Conference on Data Management, Analytics
& Innovation, pp. 117-147. Springer, 2024.

Yuxin Li, Wenchao Chen, Xinyue Hu, Bo Chen, baolin sun, and Mingyuan Zhou. Transformer-
modulated diffusion models for probabilistic multivariate time series forecasting. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=gae04YACHSs!.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In The Twelfth Inter-
national Conference on Learning Representations, 2023.

Yuxuan Liu, Jiangyong Duan, and Juan Meng. Difference attention based error correction lstm
model for time series prediction. In Journal of Physics: Conference Series, volume 1550, pp.
032121. IOP Publishing, 2020.

Spyros Makridakis and Michele Hibon. Arma models and the box—jenkins methodology. Journal
of forecasting, 16(3):147-163, 1997.

Fernando Moreno-Pino, Pablo M. Olmos, and Antonio Artés-Rodriguez. Deep autoregressive
models with spectral attention. Pattern Recognition, 133:109014, 2023. ISSN 0031-3203.
doi: https://doi.org/10.1016/j.patcog.2022.109014. URL https://www.sciencedirect.
com/science/article/pi11/S0031320322004940.

Irene Nandutu, Marcellin Atemkeng, Nokubonga Mgqatsa, Sakayo Toadoum Sari, Patrice Okouma,
Rockefeller Rockefeller, Theophilus Ansah-Narh, Jean Louis Ebongue Kedieng Fendji, and
Franklin Tchakounte. Error correction based deep neural networks for modeling and predicting
south african wildlife—vehicle collision data. Mathematics, 10(21), 2022. ISSN 2227-7390. doi:
10.3390/math10213988. URL https://www.mdpi.com/2227-7390/10/21/3988.

10

https://doi.org/10.1080/01621459.2022.2128807
https://doi.org/10.1080/01621459.2022.2128807
https://www.sciencedirect.com/science/article/pii/S030440760300085X
https://www.sciencedirect.com/science/article/pii/S030440760300085X
https://openreview.net/forum?id=qae04YACHs
https://openreview.net/forum?id=qae04YACHs
https://www.sciencedirect.com/science/article/pii/S0031320322004940
https://www.sciencedirect.com/science/article/pii/S0031320322004940
https://www.mdpi.com/2227-7390/10/21/3988

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo,
Aoying Zhou, Christian S Jensen, Zhenli Sheng, et al. Tfb: Towards comprehensive and fair
benchmarking of time series forecasting methods. Proceedings of the VLDB Endowment, 17(9):
2363-2377, 2024.

Xiaoming Shi, Shiyu Wang, Yuqi Nie, Dianqi Li, Zhou Ye, Qingsong Wen, and Ming Jin. Time-
moe: Billion-scale time series foundation models with mixture of experts. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=elwDDFmlVu.

Sima Siami-Namini and Akbar Siami Namin. Forecasting economics and financial time series:
Arima vs. Istm. arXiv preprint arXiv:1803.06386, 2018.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,
and Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. arXiv
preprint arXiv:2405.14616, 2024a.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jian-
min Wang, and Mingsheng Long. Timexer: Empowering transformers for time series forecasting
with exogenous variables. In The Thirty-eighth Annual Conference on Neural Information Pro-
cessing Systems, 2024b.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In The Eleventh International
Conference on Learning Representations, 2023.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121-11128, 2023.

Shuai Zhang, Yong Chen, Wenyu Zhang, and Ruijun Feng. A novel ensemble deep learning model
with dynamic error correction and multi-objective ensemble pruning for time series forecasting.
Information Sciences, 544:427-445, 2021. ISSN 0020-0255. doi: https://doi.org/10.1016/j.ins.
2020.08.053. URL https://www.sciencedirect.com/science/article/pii/
S0020025520308197.

11

https://openreview.net/forum?id=e1wDDFmlVu
https://openreview.net/forum?id=e1wDDFmlVu
https://www.sciencedirect.com/science/article/pii/S0020025520308197
https://www.sciencedirect.com/science/article/pii/S0020025520308197

APPENDIX

A DETAILS ON UEC-STD IMPLEMENTATIONS

A.1 TRAINING AND EVALUATION SUMMARY

For each dataset and prediction length L, the training and evaluation process consists of four stages:

1. Backbone training. The forecaster F' is trained on the training split Dy;q;, (70%), and the
best checkpoint is selected based on performance on the validation split D,,4; (10%).

2. UEC-STD training. Supervised seasonal and trend correction data (Utrain and {{val) is
derived from the validation split D,,;, where 70% is used for training and 30% is reserved
for early stopping and tuning the correction strength 8. The UEC-STD is then trained
following the procedure described in Sect. [2.2]and Sect. [2.3] using 100 training steps with
a batch size of 64.

3. Correction strength selection. The correction weight 5 € [0, 1] is tuned automatically
using the validation strategy described in Sect.

4. Evaluation. The trained UEC-STD is applied autoregressively to backbone forecasts, and
corrected predictions are generated according to Eq.[6] Final performance is reported on
the held-out test split (20%).

A.2 SEASONAL-TREND MOVING AVERAGE DECOMPOSITION.

We decompose the backbone forecast X 11.-47 into trend and seasonal components using moving
average decomposition:

Xt = MA(XT+1:T+L), XS = XT+1ZT+L - Xta (16)

where MA(-) is a 1D convolution-based centred moving average (default kernel size ks = 25),
computed as in Algorithm T}

Algorithm 1 1D Moving-Average Trend Computation

: Input: XT+1:T+ L, kernel size ks (odd, default 25)

: Output: Trend component of)A(TH;TJF L, same shape

: pad « (ks —1)/2

filt + 1D averaging filter of length ks with values 1/ks
Xt convld(XT+1:T+L, filt, padding = pad)

. Return X*

Next, we fit Xt and X together with the input XT_W+1:T into a multi-layer perceptron (MLP) to
produce seasonal and trend correction vectors:

AXY, AXS = FFQ(XT,WH,, X, X) (17)

A.3 MODEL ARCHITECTURE

FFy is a lightweight two-stage MLP designed to refine base predictions by modeling seasonal and
trend errors. Assuming an input tensor z € RP*T*D it will be processed as follows.

Before entering Subnetwork 1, the input is reshaped to (B x D, T') so that each feature dimension
can be processed independently along the temporal axis. Subnetwork 1 applies a two-layer MLP
with ReLU activation and dropout to capture temporal dependencies in a parameter-efficient manner:

Subnetwork 1:
h = Dropout (W, o(W;z)),

12

where W, € RT*H 17, € REXT 5 denotes the ReLU activation, and H is the hidden size (default
H = 32). This design allows the model to capture temporal dependencies in a parameter-efficient
manner while using dropout value of 0.5 for regularization.

The output of Subnetwork 1 is then permuted back to (B, T, D) before entering Subnetwork 2. This
second subnetwork is a two-layer MLP, which is responsible for aggregating feature information
and projecting into the output space:

Subnetwork 2:
y = Dropout (W, o(W3h)),

where W5 € RP*H and W, € REXD_ We then split ¢ into ysyena = AX* and yseasonat = AX®
where both ¥t end, Yseasonal € RBXLXD = These components are subsequently used in Eq. E to
compute the final correction value.

B DETAILS ON BASELINE IMPLEMENTATIONS

We implement a diverse set of baseline error correctors spanning traditional machine learning ap-
proaches and modern neural architectures. Throughout, each of these UEC models takes the input
sequence x = (XT_W+1:T, XT+1:T+L) where x € REXTXD and outputs y = AXT+1:T+L where
y € RBXEXD These baseline correctors were also trained on the correction data constructed from
the validation split D,,q;, similar to our proposed UEC-STD.

B.1 TRADITIONAL MODELS

UEC-Logistic. We implement a logistic regression model using scikit—learn’s pipeline (Pe-
dregosa et al., [2011)), which combines feature scaling, PCA, and a ridge regression head. Specif-
ically, x is flattened into (B, T x D), normalized via StandardScaler, reduced using PCA to
retain 95% of variance, and finally fitted with a ridge regressor using the SAG solver to predict
flattened targets (B, L x D). The predicted output is then reshaped back to (B, L, D) to match the
original temporal and feature dimensions.

UEC-Random Forest. A random forest regressor using scikit—learn (Pedregosaetal.,[2011)
is trained on flattened features (B, T x D) to predict flattened targets (B, L x D). We use 20 trees
with a maximum depth of 6. The predicted outputs are reshaped back to (B, L, D) to recover the
original temporal structure.

UEC-XGBoost. We implement an XGBoost regressor with GPU acceleration
(tree.method=gpu_hist, device=cuda) using dmlc xgboost.XGB (Chen & Guestrin,
2016). Similar to Random Forest, « is flattened into (B, T x D). The default configuration uses 20
boosting rounds, maximum depth 6, learning rate 0.3, and subsample ratio 1.0. After prediction,
outputs are reshaped from (B, L x D) back to (B, L, D) to maintain consistency with the input
dimensions.

B.2 NEURAL MODELS

UEC-MLP. As a simple neural baseline, we uses the same architecture as described in Sect.
but directly takes the original forecast X, 1.,4 as input without decomposing it into trend and
seasonal components.

UEC-LSTM & UEC-GRU. We implement both GRU- and LSTM-based recurrent correctors.
Given € RBXTXD | the sequence is passed through an RNN encoder (hidden dimension 32,
configurable layers, dropout 0.5). The hidden outputs (B, T, H) are projected through a two-layer
MLP with ReLU activations and dropout to produce (B, L, D).

UEC-CNN. We apply 1D temporal convolutions to capture local dependencies in the sequence.
The input x is permuted to (B, D,T) and processed by two convolutional layers (kernel size 3,
hidden dimension 32), followed by dropout. The output is projected with a two-layer MLP into
(B,L, D).

13

UEC-Transformer. We use a transformer encoder with learnable positional embeddings. The
input z is first projected into a hidden space (64 dimensions), added with positional encodings, and
passed through a stack of 2 encoder layers with 4 attention heads and feedforward dimension 128.
The outputs are mapped via a two-layer MLP with ReLU and dropout to (B, L, D).

B.3 TRAINING SETUP

Each baseline is evaluated under the same autoregressive correction setting as our proposed model
for fair comparison.

C DETAILS ON EXPERIMENTAL RESULTS

C.1 EVALUATION METRIC

The reduction is calculated as:

MSE/MAEUEC — MSE/MAEBaCkbone

Error Reduction =
rror Reduction MSE/MAE,_

x 100% (18)

C.2 AVERAGE MAE REDUCTION ACROSS MODELS

Table [3| reports the average error reduction in MAE compared to the backbone for different UEC
methods. Negative values indicate improvements, while positive values denote error increases. N/A
indicates that the method failed to converge or crashed during training. Bold and underline denote
best and second-best results, respectively.

Table 3: Average Error Reduction in MAE compared to backbone for different UEC methods (the
lower the better, negative means improvement). N/A indicates that the method failed to converge or
crashed during training. Bold and underline denote best and second-best results, respectively.

Method ETThl ETTh2 ETTml ETTm2 Traffic Weather Electricity
AR (No Correction) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
UEC-MLP 0.01 0.21 -0.48 -0.31 -1.09 2.20 -0.08
UEC-Logistic 0.91 9.06 -0.97 1.02 N/A 2.54 N/A
UEC-Random Forest -0.74 -0.48 -1.27 -1.05 N/A 3.51 N/A
UEC-XGBoost -0.47 0.85 -5.72 0.42 N/A 4.01 N/A
UEC-LSTM 2.25 0.13 -0.20 14.5 -1.70 3.72 -0.48
UEC-GRU 3.53 0.30 -0.26 3.05 -1.53 3.04 -0.32
UEC-CNN 1.99 -0.33 0.17 1.19 -0.43 1.24 -0.13
UEC-Transformer 0.90 -0.24 -0.39 7.45 -0.82 1.39 -1.09
UEC-STD -0.44 -0.50 -1.81 -0.50 -0.89 -0.83 -0.85

14

C.3 RAwW MSE AND MAE RESULTS

Table [d Table[3]and Table [6]report the raw MSE and MAE results for all compared methods under
the TimeMixer, TimesNet and TimeXer backbones, respectively. For each dataset and prediction
horizon, the best and second-best values are highlighted in red and blue. The bottom rows further
summarize the number of times each method achieved the best or second-best performance across
all settings. These results form the basis for the error-reduction analyses in the main text and clearly
demonstrate that our proposed UEC-STD consistently delivers the best overall performance.

Table 4: Raw MSE and MAE results using TimeMixer as the backbone forecaster across multiple
datasets and horizons. Lower values are better. Red denotes the best value and blue is the second

best.

Dataset | STD (Ours) | MLP | Logistic | RF | XGB | LSTM | GRU | CNN | TF. | TimeMixer
| MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
96 0.370 0.399]0.393 0.407 | 0.381 0.402|0.392 0.3400|0.388 0.397 | 0.378 0.404 | 0.383 0.426|0.376 0.408 | 0.387 0.408 | 0.377 0.397
= 192 0.414 0.425|0.440 0.436|0.427 0.430|0.437 0.428 | 0.433 0.426|0.428 0.432|0.433 0.454|0.424 0.436|0.437 0.437|0.427 0.427
£ 336 0.449 0.444|0.475 0.456 | 0.464 0.451|0.470 0.448 | 0.469 0.447 | 0.470 0.455|0.473 0.475|0.462 0.458 | 0.479 0.459 | 0.465 0.449
= 720 0.463 0.463|0.496 0.480 | 0.480 0.470 | 0.476 0.464 | 0.484 0.464 | 0.482 0.475|0.491 0.499|0.475 0.481|0.500 0.480 | 0.474 0.466
Avg 0424 0433]0451 0.445]0438 0.438]0.444 0420 | 0444 0.434|0440 0442|0445 0.464|0.434 0446|0451 0459|0435 0.434
96 0.292 0.343]0.293 0.344 [0.326 0.399 |0.290 0.343 | 0.294 0.350 | 0.296 0.346 | 0.293 0.347|0.294 0.344 |0.291 0.344 |0.293 0.343
Q 192 0.374 0.395|0.377 0.396 | 0.410 0.447 | 0.371 0.394 | 0.375 0.400 | 0.377 0.396 | 0.373 0.397 | 0.377 0.395|0.371 0.394 | 0.376 0.395
E 336 0.427 0.437|0.431 0.440 | 0.463 0.487 | 0.422 0.435 | 0.428 0.443 | 0.428 0.439 |0.424 0.439|0.430 0.438 |0.422 0.436 | 0.428 0.438
= 720 0.510 0.492|0.513 0.496 | 0.556 0.540 | 0.497 0.485 | 0.508 0.495|0.512 0.496 | 0.507 0.494|0.504 0.490 | 0.499 0.488 | 0.510 0.493
Avg 0401 0416]0.404 0.419]0.439 0.468]0.395 0414 |0.401 0422|0403 0419|0399 0.419]0.401 0.417]0.396 0.416|0.402 0417
96 0318 0.362]0.325 0.360 | 0.322 0.360 | 0.326 0.361 | 0.321 0.361 | 0.327 0.362|0.328 0.362]0.326 0.367 | 0.291 0.344 |0.293 0.343
E 192 0.374 0.396|0.385 0.397 | 0.379 0.396 | 0.385 0.399 |0.378 0.397 | 0.387 0.399 | 0.388 0.400|0.386 0.403 | 0.388 0.400 | 0.388 0.400
£ 336 0.425 0.428|0.440 0.432]0.433 0431|0440 0.434 [0431 0.431[0.442 0.434|0.443 0.435|0.440 0.437 | 0.443 0.435|0.443 0.436
m 720 0.546 0.484|0.568 0.492 |0.558 0.591 |0.569 0.495 | 0.554 0.490 | 0.573 0.495|0.575 0.495|0.570 0.496 |0.573 0.496 | 0.575 0.498
Avg 0416 0.418]0.430 0.420]0.423 0.445]0.430 0422 |0421 0420|0432 0423|0434 0423|0431 0426|0424 0419|0423 0419
96 0.174 0.259]0.174 0.2580.173 0.267 |0.171 0.259 | 0.173 0.266 | 0.185 0.276 | 0.185 0.276]0.202 0.289 | 0.175 0.258 | 0.176 0.258
E 192 0.242 0.303|0.243 0.303 | 0.238 0.308 | 0.235 0.302 | 0.237 0.308 | 0.253 0.321 |0.253 0.321|0.267 0.330 | 0.242 0.303 | 0.245 0.304
£ 336 0310 0.345|0.312 0.347 |0.303 0.350 | 0.299 0.344 {0.300 0.349 [0.321 0.364|0.321 0.364|0.331 0.370 |0.310 0.347 | 0.316 0.349
m 720 0.419 0.408|0.422 0.411|0.407 0.410|0.405 0.406 | 0.405 0.410|0.427 0.424|0.427 0.424|0.431 0427 |0.418 0.410|0.427 0413
Avg 0288 0.328]0.288 0.329]0.280 0.334]0.278 0.327 |0.279 0.334|0.322 0.346|0.322 0.346|0.308 0.342]0.286 0.329 |0.290 0.329
96 0477 0.310]0.478 0310 NJ/A N/A | NA N/A | NJA N/A | 0476 0.308|0.477 0.309]0.480 0.311]0.481 0.3110.481 0.312
2 192 0.514 0323|0515 0322 NJ/A N/A | NA N/A | NJA N/A [0.513 03200513 0.321]0.518 0.324|0.519 0.324 | 0.518 0.325
E 336 0.554 0.337]0.556 0.337 | NJ/A N/A | NA N/A | NJA N/A [0.552 0.335|0.553 0.336|0.560 0.340 | 0.560 0.340 | 0.560 0.340
= 720 0.627 0.372]0.631 0.374| N/A N/A | NA N/A | NJA N/A [0.626 0.371|0.627 0.372|0.635 0.376|0.635 0.376 | 0.635 0.377
Avg 0544 0336]0545 0336| N/A N/A | NJA N/A | NJA N/A 0567 0.334]0.542 0.334|0.548 0.338]0.549 0.338]0.549 0.339
- 96 0.158 0.209]0.162 0.217[0.159 0.218 |0.159 0.210 | 0.158 0.216|0.160 0.209 | 0.160 0.209 | 0.160 0.209 | 0.160 0.209 | 0.161 0.207
e 192 0.203 0.251]0.208 0.257 |0.203 0.257 | 0.206 0.252 | 0.203 0.256 | 0.207 0.251 | 0.206 0.251|0.207 0.252|0.206 0.252|0.209 0.250
g 336 0.256 0.290 | 0.262 0.296 | 0.256 0.294 | 0.261 0.292 | 0.257 0.296|0.262 0.291|0.262 0.291 | 0.263 0.292 [0.261 0.292 | 0.265 0.292
= 720 0.338 0.343|0.341 0.346|0.333 0.344 |0.340 0.343 | 0.334 0.346|0.340 0.342|0.342 0.343|0.344 0.344 | 0.340 0.344 | 0.348 0.345
Avg 0239 0273]0243 0279]0.238 0.278|0.242 0.274 [0.238 0.278]0.242 0.273|0.242 0.273|0.244 0274|0242 0.274]0.246 0.274
o 96 0.156 0.248]0.157 0.247 | N/A N/A | NA N/A | NJA N/A |0.156 0.247|0.156 0.247]0.156 0.247 | 0.156 0.248 | 0.156 0.247
3 192 0.177 0.268|0.178 0.267 | NJ/A N/A | NA N/A | NJA N/A [0.177 0.267|0.177 0.267|0.177 0.267 | 0.177 0.268 | 0.177 0.268
£ 336 0.205 0.293]0.206 0.293| N/A N/A | NJA N/A | NJA N/A [0203 0.292]0.204 0.293|0.205 0.294 [0.205 0.292 | 0.205 0.294
2 720 0270 0346|0271 0.346| N/A N/A | NA N/A | NJA N/A |0.267 0.343|0.269 0.344|0.271 0.346|0.270 0.345|0.271 0.346
Avg 0202 0.289]0203 0.288| N/A N/A | N/A N/A | NJA N/A [0201 0.288]0.202 0.288]0.202 0.288]0.202 0.288 | 0.202 0.289

Best 2 2 0 1 1 0 2 3 1 0 1 3 1 2 0 1 0 1 0 0
Second Best | 3 4 0 1 0 0 0 0 2 0 0 0 1 0 2 0 2 2 1 1
Total | 5 7] 0 2 |1 0| 2 313 o] 1 3] 2 2]2 1] 2 30011

15

Table 5: Raw MSE and MAE results using TimesNet as the backbone forecaster across multiple
datasets and horizons. Lower values are better. Red denotes the best value and blue is the second
best.

‘ STD (Ours) ‘ MLP ‘ Logistic ‘ RF ‘ XGB ‘ LSTM ‘ GRU ‘ CNN ‘ TF. ‘ TimesNet
‘ MSE MAE‘ MSE MAE‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE

Dataset

96 0423 0.429]0.437 0.442]0.504 0.436|0.446 0.430|0426 0.430]0.452 0.453]0.436 0.436|0.437 0447|0428 0.432]0.428 0433
= 192 |0.451 0.448|0.470 0459 |0.533 0.458|0.477 0.452|0.458 0452|0490 0474 |0.461 0.455(0.473 0470 |0.464 0454 |0.467 0.458
E 0336|0469 0462|0490 0471|0557 0477|0499 0.468 |0.480 0470 [0.520 0.493 |0.481 0.472{0.500 0.490 | 0.491 0.473|0.494 0.478
720 | 0481 0.478]0.491 0486|0576 0.496|0.500 0.480|0.487 0.488|0.531 0.509 |0.493 0.493 |0.516 0.516]0.501 0.493|0.501 0.497
Avg 0456 0.454]0.472 0.465]0.543 0.466 0480 0.458]0.463 0.455]0.498 0.482|0.468 0.464 |0.482 0.476]0.471 0463|0472 0.465
96 0327 0.366]0.335 0367]0.346 0.391]0.332 0.366|0.332 0.371]0.333 0.366]0.338 0.372|0334 0.369 |0.336 0.370]0.338 0.369
Q192 0401 0.410(0.408 0411[0.415 0429|0404 0.409|0.403 0412|0406 0410|0410 0.414 0405 0.410|0.407 0412|0412 0.413
E 0336|0433 0440|0443 0441|0443 0453|0439 0.439|0.437 0441|0443 0442|0442 0.443(0.438 0439 |0.441 0442 |0.447 0.443
720 0420 04440429 0.445]0.442 0462|0428 0444|0431 0448|0434 0.448 0430 0.445 |0.425 0.443|0.431 0.446 | 0.433 0.447
Avg |0395 0.415]0404 0.416]0.411 0433]0.401 0415|0401 0.423]0.404 0.416]0.405 0419|0401 0.415|0.408 0.418]0.408 0.418
96 0403 0417|0417 0.417[0.417 0.414]0.420 0416|0415 0417|0411 0.416]0.415 0418|0412 0414|0412 0.414]0.421 0419
T 192 |0443 0436|0460 0440|0460 0448|0460 0457|0460 0457|0447 0440|0460 0.440|0459 0442 (0457 0438|0464 0.441
£ 0336|0494 0462|0515 04690488 0466 |0.505 0461|0485 0450|0515 0.471|0516 0.470 0515 0472|0515 0469 |0.521 0472
D 720 |0.592 0508|0617 0517|0557 0.508|0.632 0.464|0.534 0474|0625 0.5200.620 0.518]0.621 0.522]0.623 0.519 |0.625 0.520
Avg |0483 0.456]0.502 0.461]0.481 0.459|0.503 0.450 |0.474 0.456]0.502 0.462]0.502 0.461 |0.503 0.463 |0.502 0.460]0.508 0.463
96 0.192 0.270]0.191 0.270[0.194 0.283[0.188 0.270 |0.191 0.278]0.192 0.274]0.198 0.283 [0.192 0.271 [0.190 0.271]0.193 0.269
@ 192 |0258 0309|0255 0310|0255 0318|0248 0.308|0.253 0316|0255 0.313/0.261 0.319]0.256 0310|0254 0311 |0.259 0.310
£33 0321 0350|0317 03510315 0356(0.307 0346|0313 0355|0317 0353|0323 0.358 |0318 0.350 |0316 0.352|0323 0.351
@720 0427 0412]0.420 0412]0415 0414|0408 0406|0414 0414|0420 0412[0422 0415|0418 0409|0421 0413|0428 0.412
Avg [0300 0335]0.296 0.335]0325 0342[0313 03330318 0.341]0322 03390326 0.344|0.321 0.335]0.320 0337|0301 0.336
96 0.646 0.358]0.643 0.357| N/A N/A | NJA N/A | NJA N/A |0.642 0356]0.642 0357 |0.647 0.361]0.646 0.360 | 0.647 0.361
2 192 [0.650 0366|0654 0366| NA N/A | NJA NA | NJA N/A 0652 0.365|0.652 0.366|0.659 0371 [0.654 0.367 0.659 0.371
E 336 |0670 0388]0.681 0388 N/A N/A | NJA NA | NJA N/A [0.679 0.386 [0.679 0.388 |0.689 0.395|0.684 0.388 |0.689 0.395
E 720 0782 0.462]0.801 0462 N/A N/A | NJA NA | NA N/A [0.792 0457|0792 0.462 |0.813 0.470 |0.801 0.460 | 0.812 0.470
Avg |0.687 0394]0.720 0418 N/A N/A | NJA N/A | NJA N/A [0.691 0391[0.691 0.393]0.702 0.414]0.733 0.417]0.702 0.399
~ 96 0.187 0.234]0.187 0.237[0.184 0.240[0.196 0.245|0.203 0.240|0.214 0.254]0.199 0.246 | 0.188 0.237 |0.202 0.247|0.188 0.236
B 192 {0232 0271]0232 0273|0227 0.274|0.239 0.280|0.240 0276 [0.252 0.286 |0.239 0.279(0.233 0274|0240 0.276 |0.235 0.275
S 336 0284 0308]0.283 0310]0.275 0307|0289 0.315]0.281 0310]0.205 0.318[0.286 0.314 |0.285 0310|0.282 0.310|0.289 0.312
2 720 0367 0362]0.367 0363|0353 0.358|0362 0.367]0.349 0361|0368 0.368 0361 0.363 |0.369 0.364]0.349 0.361 | 0375 0.367
Avg |0268 0.294]0.267 0308]0.260 0.310]0.287 0.327]0.268 0322]0.332 0.331]0311 0.325|0.319 0.309]0.268 0.308|0.270 0.296
> 96 0.167 0271]0.168 0272| NAA N/A | N/A N/A | NJA N/A |0.168 0.272]0.166 0.270 [0.167 0.272]0.168 0.272]0.168 0.271
g 192 [0.183 0.284|0.184 0285| NJA N/A | NA N/A | NJA N/A |0.184 0.285]0.182 0.284[0.183 0.285|0.184 0.285|0.184 0.285
E 336 0202 0303[0204 0304 N/A N/A | NJA NA | NA N/A |0204 0304|0201 0.303(0.203 0304|0204 0.304 |0.203 0.304
2720|0254 0344]0257 0347| NA NA | NA NA [NJA N/A [0.257 0.347]0.252 0343|0256 0346|0257 0347|0256 0347

Avg 0202 0.301[0.203 0302| NNA N/A | NJA NA | N/A N/A [0.203 0302]0.201 0.300]0202 0.301[0.203 0302]0.203 0.302

Best 3 3 1 0 1 0 0 3 1 0 0 1 1 1 0 1 0 0 0 0
Second Best | 2 3 1 2 1 0 1 0 2 2 1 1 1 1 1 1 0 0 0 01
Total | 5 6| 2 2]2 o0 |1 3|3 2|1 22 2|1 210 0710 1

16

Table 6: Raw MSE and MAE results using TimeXer as the backbone forecaster across multiple
datasets and horizons. Lower values are better.

| STD (Ours) | MLP | Logistc | RF | XGB | LSTM | GRU | CNN | TE | TimeXer

| MSE MAE | MSE MAE | MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE

Dataset

96 0394 0.418[0397 0407|0492 0417|0401 0.409[0.408 0.410[0.405 0419|0431 0421]0.400 0.415[0399 0.417[0.395 0407
= 192 | 0441 0.449 (0447 0438 |0.534 0449|0449 0442|0456 0.443 [0.452 0.450 |0.487 0455|0447 0.447 |0.445 0.446 |0.447 0.441
E 336 | 0489 0481|0494 0469 |0.583 0483|0497 0474|0504 0.475|0.502 0.482|0.543 0.488|0.501 0.482|0.493 0.476 |0.500 0.474
@ 720 |0556 0.533]0543 0519|0.662 0535|0548 0.520 0561 0.523]0.560 0.531|0.628 0.546|0.573 0.538 0554 0.524|0.557 0.524

Avg 0470 0.470]0470 0.458 0.568 0.471|0.474 0461|0482 0.463|0480 0.470|0.522 0.478]0.480 0.468[0470 0.466|0.475 0.462

96 0290 0.343[0.294 0346 |0.324 0397|0291 0.346]0.293 0.350 0.293 0345 |0.292 0.345]0.292 0.343[0.292 0.344[0.293 0344
o192 0374 0.394[0381 0399|0405 0443|0375 0.397|0378 0.402|0.380 0399 |0.377 0397|0378 0.396 | 0375 0.395[0.379 0397
E 0336|0421 0.433[0430 0439|0447 0475|0423 0435|0428 0.441|0430 0.437|0.426 0436|0426 0435|0421 0.434|0.428 0436
D720 0439 0.453]0449 0459|0482 0499|0441 0455|0451 0.464|0446 0457 |0.445 0457|0442 0454|0438 0.454|0.445 0456

Avg 0381 0406|0388 0411|0414 0.4540.383 0408|0387 0.414]0387 0409 |0.385 0409|0384 0.407|0381 0.407 [0.386 0.408

96 0313 0.357[0319 0360|0.314 0357|0318 0.359[0316 0.361[0.321 0360 |0.321 0360|0320 0.361 [0.320 0360 |0.322 0.361
T 192 0367 0.391[0.382 0399|0375 0.395/0380 0397|0378 0399|0385 0399 |0.384 0.399 0.383 0.400 |0.383 0399 0385 0.400
£ 0336|0421 0425|0445 0437|0436 0.433 (0442 0435|0445 0438|0443 0437|0446 0437|0446 0438|0445 04360449 0438
D 720 | 0524 0481|0558 0.496|0.547 0491]0.554 0.493|0559 0.494|0.562 0.496 | 0.560 0.495|0.560 0.497 0559 0.494 |0.563 0.497

Avg |0406 0.414]0.426 0.423]0.418 0419|0424 04210424 0.423[0.429 0.423[0428 0423 |0.427 0.424]0.427 0.422]0411 0.424

96 [0.169 0.267[0.172 0259 |0.171 0.266]0.170 0.2580.172 0.265 [0.385 0.407 |0.173 0.261]0.181 0.271[0.191 0.262[0.174 0.259
@ 192 |0232 0.308[0237 0303|0.233 0306]0.232 0.301|0.235 0.307 0434 0.438|0.239 0304|0247 0.315|0.251 0.305|0.241 0304
£ 336 0299 0349|0304 0347|0299 03470298 0343|0300 0348|0487 0469|0307 0.347|0314 0357|0308 0347 0311 0348
D 720 |0408 0.410[0410 0410|0401 0407|0403 0.405|0.404 0.409 |0.585 0519 |0.414 0409|0414 0.415]0406 0.408 |0.421 0411

Avg 0277 0.334]0.281 03300276 0332]0276 0.327]0.278 0.332]0.473 0.4580.283 0.330]0.280 0.339|0.287 0.331|0.287 0.331

96 0468 0.301[0469 0300 NA N/A | NJA N/A [N/A N/A [0.467 0298 |0.468 0.298]0.471 0.299 0471 0300|0471 0303
2192|0471 0.302[0471 0300 N/A N/A | NJA N/A | N/A N/A [0469 0298 |0.470 0.299|0.473 0.299 |0.473 0.300 [0.473 0303
5336|0470 0.300(0470 0298 | NJ/A N/A | NJA N/A | N/A N/A [0.468 0.296|0.469 0.297|0.473 0.298 |0.473 0.298 |0.473 0301
E 720 |0476 0.302]0477 0300 NNA N/A | NJA N/A | NJA N/A [0475 0298|0475 0299|0479 0.300 0479 0301 [0.479 0303

Avg 0471 0301]0472 0300 NA N/A | NA N/A | NJA N/A [0470 0298|0471 0.298]0.474 0.299 0474 0300 |0.474 0303
B 96 [0.159 0.207[0.162 0217 |0.159 0218]0.159 0.210(0.158 0.216|0.160 0.209 |0.160 0.209]0.160 0.209 [0.160 0.209 [0.161 0.207
5192|0205 0.248[0.208 0.257|0.203 0257|0.206 0.252|0.203 0.256|0.207 0251 |0.206 0.251|0.207 0.252|0.206 0.252|0.209 0.250
S 33 |0260 0289|0262 0.296|0.256 0.294|0.261 0.292(0.257 0.296|0.262 0.291|0.262 0.291|0.263 0.202{0.261 0.292|0.265 0.292
£ 720 |0338 0340|0341 0346|0333 0.344|0.340 0343|0334 0346|0340 0.342|0.342 0.343 (0344 0344|0340 0.344 |0.348 0.345

Avg 0241 0271[0.243 02790.238 0.278]0242 0.274]0.238 0279 |0.242 0273]0.242 0.273[0243 0.274[0.242 0274 |0.246 0.274
o 96 |0.139 0240[0.140 0241 NA N/A | NA NA | NA NA [0.139 0240|0.140 0241]0.140 0.241[0.139 0.239 [0.140 0242
5192|0165 0266|0167 0271| NA N/A | NJA NA | N/A N/A |0.166 0269 0.167 0.270|0.167 0.270 | 0.164 0.266 |0.167 0.271
£ 33 |0200 0.303[0.205 0310 NNA N/A | NJA N/A | N/A N/A [0.202 0307 |0.204 0309|0205 0.309 |0.199 0303 |0.204 0311
S 720 0294 0385]0304 0394| NJA N/A | VA N/A | NA /A |0.298 0390]0.303 0394|0304 0.394 0294 0.385|0.304 0395

Avg ‘0.2()() 0.298 ‘ 0.204 ().3()4‘ N/A N/A ‘ N/A N/A ‘ N/A N/A ‘().201 ().3()2‘().204 0.3()4‘().2()4 ().3()4‘().199 0.298 ‘().2()3 0.302

Best 304 |1 12 0|1 1 10| 1 1o 1[0 o2 1[0 0
SecondBest| 4 0 | 0 1 | 0o 1|1 1]0 0|0 2|1 2|0 2|1 1|1 1
Total | 7 4 | 1 2|2 1|2 2|1 o1 3] 1 3]0 2]3 2].1 1

17

C.4 HYPERPARAMETERS

C.4.1 HYPERPARAMETERS OF BACKBONES

The hyperparameters for the backbone models (TimeMixer, TimesNet and TimeXer) are adopted di-
rectly from the official Time-Series-Library repository by THUML] in line with their experimental
settings. These settings (such as look-back length, model depth, hidden sizes, and other architecture-
specific parameters) are consistent with those used in the TSLib implementation. At the same time,
some hyperparameters are dataset-dependent, meaning that choices like sequence length, batch size,
or certain regularization parameters vary depending on the particular dataset in use.

C.4.2 HYPERPARAMETERS OF UEC

All UEC models in our experiments were trained using the same set of hyperparameters summarized
in Table |7} The same set of correction were constructed from the validation split D,,;, with a 70/30
split for training and early stopping / 3 tuning, were used for all UEC model. The correction strength
[was selected separately for MSE and MAE using a balanced validation strategy and it is reported
in Table[8] Based on the results in Table [I0} we chose the Huber loss to train all UEC models, as it
consistently led to the best performance across both MSE and MAE metrics.

Table 7: Default Training Parameters of UEC

Parameter Value / Description

Correction data Uirain 1 Uy (70%130%) from D,y
Training procedure Follows Sect. and Sect.
Number of training steps 100

Batch size 64

Loss Huber (HL) Loss

Correction strength 3 Selected separately for MSE and MAE refer to Table

https://github.com/thuml/Time-Series-Library

18

https://github.com/thuml/Time-Series-Library

Table 8: Found Correction Strength 8 for UEC Models Across Datasets and Backbones

) - " - - - - - - - - - - - - s - - - - - o
M (=] (=] (=] (=] (=} (=] (=] (=] (=] (=] (=] (=] (=] (=] — (=] (=] (=] (=] (=] —
[
&=
ﬂ 38} el o — — 5] — — e} — — - o — - o e} — — - —
M (=1 =1 (=1 =} =] f=} =1 =1 =1 (=} f=} (=1 (=} f=} (=1 (=} =} (=1 (=1 i=} (=}
) " - - - - - . - - . - - . - - - - - - - °
Z M (=} (=} (=} (=} (=] i=} (=3 (=} (=} (=} i=} (=} (=} i=1 — (=} i=1 (=} (=} i=} —
Z
Clg . - . - - - - — - — - — — - — — - — — - —
M (=] (=] (=] (=] (=} (=] (=] (=] (=] (=] (=] (=] (=] (=] (=] (=] (=] (=] (=] f=] (=]
P o - n - - - “ - - - - - - - - - - - - - -
=5 M (=} =1 (=} =} =] =} (=} (=} =1 (=} =} (=} (=} =} =} (=} =} =1 (=} =} (=1
4
]
M (=} (=1 (=1 =1 (=] (=] =3 (=} (=1 (=1 =] (=} (=1 i=1 (=1 (=} =1 (=1 (=} =1 (=}
2 " o« - - - " - - - - - - - - - o« = - - -
M M (=] (=] (=] f=] (=} f=] (=] (=] (=] (=] f=] (=] (=] o (=] (=] f=] (=] (=] o (=]
=
w
= . « . - - - - - - - - - - - - . 0 - - - -
M (=] (=] (=] (=] (=} f=] (=] (=] (=] (=] f=] (=] (=] (=] (=] (=] f=] (=] (=] (=] (=]
E: = = 3 3 = 3 3 3 3 3 = 3 < S 3 = 3 < S
o= S S S S =} =} =] =1 =] S =} S Z Z Z S S S Z Z Z
o
ol @ o o = = = = = = = = = < 2 < = o = < 2 <
s =3 S =3 S =} S =] =] =] S S S zZ Z zZ S S S zZ Z zZ
2 @ « - - - - - - - - - - < < < - - - < < <
s S S S =) S S =} S =} S = S zZ z zZ S S S Z z zZ
a9
o~
8 5 SR = = = = = = = = = < S = w5 < S
s S S S S S S S S S S = S Z Z Z S = S Z Z Z
E: = o9 = -z 3 3 3 3 T 3 < S 3 3 < S
2 s = S S S =} S =] = =] S S S zZ Z zZ S S S zZ Z zZ
2
‘80
S|e — - o - - - - - - - - - < < < - - - < < <
= S S S S S S =} S =} S S S z 4 zZ S S S z 4 z
) - « - - - - - - - - - - - - - - - - - - .
a M (=1 =} (=} =} (=] =} =} (=1 =1 (=1 =} (=} (=1 =} (=} (=} =} (=1 (=} =} (=}
=
M Wuu =] - - - - - - - - « bt - - - = - -] - -
M (=1 (=1 (=1 i=1 =] =] =1 (=1 =1 (=} =] (=1 (=} =1 (=1 (=1 =1 (=1 (=1 i=1 (=1
~| /1
2| <]]] = - = v v v] =] = = v = = = = = =
_m M (=] (=] (=] f=] (=] f=] (=} (=] (=} (=] f=] (=] (=] =] (=] (=] =] (=] (=] f=] (=]
=)
m rnm bt} bt} bt} - - - bt} «@) - - bt} -] - - - - vt] -
wv M (=] (=] (=] (=] (=} f=] (=] (=] (=] (=] f=] (=] (=] (=] (=] (=] f=] (=] (=] (=] (=]
Juoqydeg JOXTAJOWIL, JONSAWI], J9XAWI], | IOXTAOWIL], JONSIWIL], JOXAWI], |JIOXTJAQWIL], JONSIWIL], JOXSWIL], | JOXIAQWIL], JONSOWIL], JOXAWIL], HOXIAQWIL], JONSOWIL], JOXWIL], [IOXIAOWIL], IONSIWI], JOXAWIL], HOXIASWIL], JONSIWI], J9XWI],
Jasere(q TYLLA [ARRIC] WL [AuNRIC] dyjel] oyieom Anonoarg

19

C.5 DETAILS ON MODEL ANALYSIS

Table |§| compares the averaged MSE and MAE of direct forecasting (DF) and autoregressive (AR)
methods across models, showing that AR consistently outperform DF.

Figure [provides qualitative examples on the TRAFFIC dataset, illustrating how UEC mitigates
collapse by restoring variance and correcting drift.

Table[T0|presents the impact of different training losses on UEC performance for ETTh1, indicating
Huber loss often yields the best results.

Figure[5]demonstrates performance improvements of UEC-enhanced backbones across multiple pre-
diction lengths, highlighting consistent gains over standard backbone predictions.

Table 9: Performance comparison (averaged MSE and MAE across prediction lengths 96, 192, 336,
and 720) for AR and DF methods on different datasets and models.

Dataset Model DF MSE/MAE) AR (MSE/MAE)
ETThl1 TimeMixer 0.4490/0.4399 0.4357 / 0.4348
ETThl1 TimesNet 0.4879/0.4722 0.4715 / 0.4655
Weather TimeMixer 0.2445/0.2748 0.2446/ 0.2739
Weather TimesNet 0.2634 / 0.2910 0.2699 / 0.2964
Traffic TimeMixer 0.5041 / 0.3241 0.5485/0.3385
Traffic TimesNet 0.7606 / 0.4419 0.7014 / 0.3991
—_— True —— Pred (with UEC) —— Pred (no UEC)

Sample 435 | Feature 790 Sample 2691 | Feature 4

Value
o o
o w
—
——
.
Value
N S

300 400
Time step

Sample 2692 | Feature 24

300 400 600 700 0 100 200

Time step

Sample 471 | Feature 790

0 100 200

2.0

159

1.01

0.51

Value
Value

0.0

—0.5-

~1.01

—1.54

300 400
Time step

300 400
Time step

Figure 4: Qualitative examples on TRAFFIC using TimesNet as backbone model (prediction length
= 720). Each panel shows the ground truth, prediction with UEC, and prediction without UEC.
UEC mitigates collapse by restoring variance and correcting drift.

20

Table 10: Results on ETTh1 dataset with different training losses of UEC across backbones. Bold
denotes the best results.

Backbone

Huber L1 MSE
MSE MAE MSE MAE MSE MAE

TimeMixer 0.434 0.435 0.434 0.438 0.434 0.438
TimesNet 0.534 0.488 0.536 0.491 0.535 0.490

B TimeMixer = TimesNet ; ° B TimeMixer Bz TimesNet

BN TimeMixer + UEC B8 TimesNet + UEC BN TimeMixer + UEC ~ ESA TimesNet + UEC
9.96%
10.54%

Avg ’ Avg

Figure 5: Performance of extended training across different prediction lengths: 96, 192, 336 and
720. Backbone models (TimeMixer and TimesNet) are compared with their corresponding UEC-
enhanced versions. % improvement is annotated on top of each bar pair.

21

	Introduction
	Method
	Chunk-based Autoregressive Prediction
	Universal Error Correction Framework
	Seasonal–Trend UEC Architecture

	Experimental Setup
	Experimental Results
	Results on Time-series Benchmark
	Ablation Study on UEC-STD
	Model Analysis

	Related Works
	Conclusion
	Details on UEC-STD Implementations
	Training and Evaluation Summary
	Seasonal–Trend Moving Average Decomposition.
	Model Architecture

	Details on Baseline Implementations
	Traditional Models
	Neural Models
	Training Setup

	Details on Experimental Results
	Evaluation Metric
	Average MAE Reduction Across Models
	Raw MSE and MAE Results
	Hyperparameters
	Hyperparameters of Backbones
	Hyperparameters of UEC

	Details on Model Analysis

