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ABSTRACT

A central challenge in multi-agent reinforcement learning is zero-shot coordina-
tion (ZSC): the ability of agents to collaborate with previously unseen partners.
Existing approaches, such as population-based training or convention-avoidance
methods, improve ZSC but typically rely on extensive online interaction, lead-
ing to high sample complexity. A natural alternative is to leverage preexisting
interaction datasets through offline learning. However, offline training alone is
insufficient for effective ZSC, as agents tend to overfit to the conventions present
in the dataset and struggle to adapt to novel partners. To address this limitation,
we propose an offline-to-online ZSC framework that combines offline dataset di-
versity with efficient online adaptation. In the offline stage, trajectories are em-
bedded and clustered into behavioral modes to train specialized agents and their
belief models, from which a best-response agent is learned. In the online stage,
this agent is refined through belief-guided counterfactual rollouts, where belief
models simulate alternative successor states under different teammate behaviors,
thereby expanding the training distribution beyond the dataset. Experiments on
the ZSC benchmark Hanabi in 2-player settings, as well as in human-Al coordi-
nation, demonstrate that our approach achieves state-of-the-art performance with
unseen partners while significantly reducing the amount of online interaction.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) is a principled approach for studying how multiple
agents can learn to coordinate in complex environments. The presence of multiple agents makes
effective coordination a central challenge. In particular, agents must often cooperate with previ-
ously unseen partners—commonly referred to as zero-shot coordination (ZSC) (Hu et al.| 2020a).
Effective ZSC is essential in many real-world applications: autonomous vehicles must dynamically
coordinate with unknown traffic participants; multirobot systems need to collaborate across het-
erogeneity to accomplish collective tasks; and human-Al teams must seamlessly align with novel
users. More broadly, ZSC reflects the realities of open-agent ecosystems, where agents frequently
encounter unfamiliar teammates. The challenge is amplified in human-Al coordination, as humans
exhibit heterogeneous, context-dependent strategies and dynamically adapt to Al actions (Sycara
et al. 2020; [Li et al) [2020; 2021). Achieving effective ZSC therefore requires agents to gener-
alize beyond narrow training conventions and reason about the latent strategy spaces of potential
collaborators rather than relying solely on past interactions.

Recent work in ZSC has explored policy diversity (Liu et al., 2022)) and convention-avoidance ap-
proaches (Hu et al.,[2021;2019;|2020a)). These approaches typically rely on extensive online interac-
tion or large-scale simulation, which can be costly or impractical in real-world domains. Moreover,
many domains already have large offline interaction datasets and could serve as a foundation for ro-
bust coordination. While offline RL in multi-agent settings has been studied (Yang et al., 2021; [Pan
et al., [2022; [Wang et al., 2023; [Meng et al.| 2023} Barde et al.| 2024), offline ZSC remains largely
unexplored. However, offline training alone has inherent limitations for ZSC: because it depends on
the diversity and conventions present in the dataset, it can struggle to generalize to unseen partners
and thus limits its effectiveness, as we will discuss in Sec. 4.4

This limitation motivates us to investigate an offline-to-online ZSC (off-to-on ZSC) paradigm that
leverages offline datasets to improve samplie efficiency while incorporating online fine-tuning to
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achieve robust generalization to unseen partners. Our framework thus follows a two-phase structure:
(1) offline training to exploit the diversity present in datasets, and (ii) online fine-tuning to adapt be-
yond the dataset and handle previously unseen partners. Specifically, in the offfine phase, we embed
trajectories into a latent space using a variational autoencoder and cluster them into distinct behav-
ioral modes. Specialized agents are trained on each cluster with diversity-promoting objectives, and
a best-response agent is then trained against this diverse pool to avoid overfitting to particular con-
ventions. In the online phase, we fine-tune the best-response agent with belief-guided counterfactual
rollouts, where pretrained belief models sample counterfactual successor trajectories under differ-
ent teammate assumptions, thereby broadening the training distribution beyond the offline dataset.
This combination of structured offline policy diversity and belief-driven online adaptation enables
efficient and robust coordination with novel partners.

We validate our approach on the ZSC benchmark Hanabi in the 2-player setting and in human-AI
coordination. In the offline-only regime, we show that agents overfit to dataset-specific conventions
and fail to generalize, underscoring the need for online adaptation. Our offline-to-online pipeline
achieves substantially higher cross-play performance and faster adaptation to unseen partners com-
pared to both offline and online baselines, while also enabling more effective collaboration with
human partners. Our main contributions are as follows:

o To the best of our knowledge, this is the first work to explicitly leverage offline datasets for zero-
shot coordination.

e We propose an offline-to-online framework that combines population-based policy diversity in of-
fline training with belief-guided adaptation in online fine-tuning, reducing reliance on training-time
conventions and improving generalization to unseen partners.

e We conduct extensive evaluations on the ZSC benchmark Hanabi, as well as human-Al collabora-
tion experiments, demonstrating that our approach achieves strong generalization to unseen partners
with significantly improved sample efficiency.

2 BACKGROUND AND RELATED WORK

2.1 MULTI-AGENT REINFORCEMENT LEARNING

In this paper, we consider fully cooperative multi-agent reinforcement learning in partially observ-
able environments, which is commonly modeled as Decentralized Partially Observable Markov
Decision Processes (Dec-POMDPs) (Nair et al.| |2003). Each agent 7 selects actions according to its
policy 7 (a! | 7}), conditioned on its action-observation history 77 = (0%, a},. .., 0!). After execut-
ing actions, agents receive a shared reward r; and their next observations, and this process repeats
over time. The goal here is to learn a joint policy 7 = (7!,...,7™) that maximizes the expected
cumulative reward. In multi-agent RL, several challenges naturally arise from the presence of mul-
tiple agents, such as non-stationarity (Papoudakis et al., 2019) and credit assignment under shared
rewards (Foerster et al.l [2018)). Among these, an especially important problem is generalization to
previously unseen partners, referred to as zero-shot coordination, where agents must successfully
coordinate without prior joint training. Motivated by this, we focus on zero-shot coordination as a
key challenge in cooperative multi-agent RL.

2.2  ZERO-SHOT COORDINATION

In cooperative MARL, as discussed above, the objective is to train a joint policy that maximizes
the cumulative shared reward, which typically involves training and evaluating agents together as a
team, i.e., self-play (SP). While SP can yield optimal joint performance during training, the learned
policies often rely on arbitrary conventions that are not shared by independently trained partners.
To address this, Zero-Shot Coordination (ZSC) (Hu et al.l [2020a)) has been studied, aiming to train
agents that can coordinate effectively with novel partners without prior joint training. A common
way to evaluate ZSC is through cross-play (XP), which formally measures the performance of in-
dependently trained policies when paired together at test time. Concretely, if 7; and 7o denote two
joint policies trained independently, their XP performance is defined as

Jxe(m1,m2) = 3 (J (71, 73) + J(m3,77)) (1)
where 7} and 77 denote the respective policies of agents 1 and 2. This formulation captures the
requirement that policies trained independently must be compatible with one another, rather than
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relying on arbitrary conventions established in self-play. Addressing this challenge has led to two
main lines of research: population-based training, where agents are trained with a diverse set of
partners for generalizable coordination, and convention-avoidance methods, which explicitly reduce
agents’ dependence on training-time conventions so that their learned policies generalize reliably to
unseen partners.

Population-based training constructs a diverse population of partner policies and trains an agent as
a common best response (BR) to this population. By explicitly promoting diversity among partners,
PBT mitigates overfitting to specific conventions and improves coordination with unseen teammates.
A representative example is the Trajectory Diversity method (Liu et al.l[2022), which regularizes a
population of policies to maximize the Jensen—Shannon divergence (JSD) between their trajectory
distributions, thereby encouraging diverse behaviors. This diversity objective, combined with the
training of a BR against the entire population, yields policies that achieve improved cross-play per-
formance in ZSC settings.

Convention-avoidance approaches aim to mitigate the convention dependence of learning by
grounding policies in explicit models of partner behavior. Instead of relying on arbitrary conven-
tions formed during self-play, agents interpret observed actions under the assumption that they were
generated by a simple baseline policy (often referred to as a level-0 policy). This grounding prevents
convergence to incompatible strategies and enables consistent coordination with unseen partners. A
representative method in this line of work is Off-Belief Learning (OBL) (Hu et al.| 2021). OBL
formalizes coordination as an inference problem: given an agent’s action-observation history, the
observed actions are assumed to have been produced by a baseline policy 7y, while the agent’s own
future behavior follows its learned policy 7. The corresponding counterfactual value function is
defined as

VT () = Br g, () [V, )

where B, (7%) denotes the belief distribution over world states consistent with agent i’s history
under 7. By alternating between belief inference and policy optimization, OBL produces grounded
and unique solutions that avoid reliance on arbitrary conventions and have demonstrated competitive
ZSC performance in cooperative benchmarks such as Hanabi.

2.3  OFFLINE REINFORCEMENT LEARNING AND ONLINE FINE TUNING

Offline RL trains a policy to maximize expected returns from a fixed dataset without further environ-
ment interactions . A key challenge is extrapolation error, where limited coverage leads to inaccurate
value estimates and degraded performance. To address this, single-agent offline RL often employs
behavior-constrained objectives that regularize the policy toward the behavior policy, typically via
an auxiliary behavior-cloning (BC) loss . In multi-agent settings, the difficulty is amplified: multiple
agents expand the joint action space and induce non-stationarity, so fixed datasets rarely cover the
full range of partner behaviors. Similar ideas have been applied in offline MARL, alleviating some
of these issues but still falling short of robust generalization.

Particularly, this limitation becomes more severe in the context of ZSC. Even if offline MARL can
mitigate extrapolation error during training, unseen partners at test time may exhibit behaviors absent
from the dataset, leading to what can be viewed as a form of extrapolation error at execution. This
makes it difficult to achieve reliable ZSC through offline learning alone. As we will demonstrate in
Sec. 4] agents trained solely on fixed datasets tend to overfit to the conventions of their training
partners. Thus, a central question is how to leverage offline data in a way that supports generalization
to novel partners and this leads us to consider offline-to-online paradigm.

Off-to-Online Learning The offline-to-online paradigm combines the sample efficiency of of-
fline pretraining with the adaptability of online fine-tuning. Prior work has shown its effectiveness
in general multi-agent settings: for example, Multi-Agent Decision Transformers (MADT) (Meng
et al.| 2021)) leverage offline datasets for subsequent online adaptation, while model-based methods
such as MOTO (Rafailov et al.,|2023)) integrate predictive modeling with online rollouts to ensure a
smooth transition. However, prior work has not studied off-to-online learning in the context of ZSC.
This paper addresses this problem and demonstrates how combining offline pretraining with online
adaptation can enable both efficiency and generalization in cooperative MARL.
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Figure 1: Overview of our offline-to-online framework for ZSC. Offline phase (left): trajectories
from the dataset D are clustered into behavioral modes, from which specialized agents {7 }3_, and
their belief models { By, }3_; are trained. A best-response agent 7 7" is then bootstrapped agamst
this diverse agent pool. Online phase (right): the BR agent is further adapted using belief-guided
counterfactual rollouts, where belief models generate counterfactual successor states to construct
enriched TD targets. This hybrid approach combines the efficiency of offline pretraining with the
adaptability of online fine-tuning, enabling robust coordination with unseen partners.

3 METHODOLOGY

Zero-shot coordination has been actively studied, yet most existing approaches rely on extensive on-
line interactions. This is because RL itself requires substantial environment experience, and in ZSC
the need to train best-response agents against diverse partners further amplifies this demand. Lever-
aging pre-collected offline datasets therefore offers a promising way to improve sample efficiency,
but how to effectively utilize such data for ZSC remains largely unexplored.

Our approach addresses this gap by combining two key principles of ZSC—population diversity
to expose agents to a wide range of partner behaviors, and belief grounding to prevent reliance on
arbitrary conventions—within an offfine-to-online learning framework. Concretely, (i) in the offline
phase, we extract diverse partner strategies from the dataset and train a best-response (BR) agent
against them, and (ii) in the online phase, we fine-tune this BR agent using belief models that in-
fer hidden teammate states and generate counterfactual trajectories. This framework combines the
efficiency of offline pretraining with the adaptability of online fine-tuning, enabling robust general-
ization to unseen partners. An overview is illustrated in Fig.

3.1 OFFLINE LEARNING: DIVERSE AGENT POOL AND BEST-RESPONSE AGENT

In the offline phase, the goal is to leverage the dataset to construct a pool of diverse coordination
strategies and to train a best-response (BR) agent against them. We first learn trajectory representa-
tions and cluster them into distinct behavioral modes, from which specialized agents are trained to
form a Diverse Agent Pool {r!, 7%, ..., 7 }. The BR agent is then trained against this fixed pool,

encouraging robustness to a wide range of partner behaviors (Osborne & Rubinstein), |1994).

3.1.1 TRAINING A DIVERSE AGENT POOL

To construct a diverse set of coordination strategies from the offline dataset, we follow a three-step
procedure: trajectory representation learning, behavioral clustering, and specialized agent training.

Trajectory Representation and Clustering. To identify diverse coordination strategies from the
offline dataset, we first train a trajectory VAE (Lu et al.,2019;|Gao et al.|[2022;|Yao et al., 2020)) that
encodes full trajectories 7 = {(o¢, at,r¢)}1_, into compact latent embeddings = € R?. The VAE
is trained with a standard objective that balances trajectory reconstruction and KL regularization
(details in Appendix|A.2). We then cluster the learned embeddings {z; }é\le using adaptive k-means
with silhouette analysis, yielding distinct behavioral modes that serve as the basis for training spe-
cialized agents.

Specialized Policy and Belief Training. Let D; C D denote the subset of trajectories assigned to
cluster ¢ after clustering. Each specialized agent 7} parameterized by 0}, is trained using data from
D;. In order to train the specialized agent in a stable and diverse manner, inspired by behavior-
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constrained approaches in offline RL and population-based training, we incorporate a BC loss to
constrain policies toward the data distribution and a Jensen—Shannon divergence (JSD) regularizer
to enforce diversity across agents, in addition to an RL term given by the n-step TD loss. The
corresponding objective can be written as

L£(0%) :ETNDL.[(R? +A" max@i(7t+n, a) — Q' (4, at))2 + Ao CE(T (-7, az)
a N ——  —

BC loss

TD loss
B

— Arspe D IKL(r () |m (1) |- ©

=1

JSD regularizer

Here, R} = S e ek is the n-step return, Q' and QZ denote the current and target critics of
agent i, a; is the dataset action, Apc, Ajsp are weighting coefficients, and k£* is the number of
clusters. This procedure yields a Diverse Agent Pool {r}, - 7%} that captures complementary
strategies while avoiding collapse into narrow conventions.

We additionally train a belief model By, for each specialized agent 7, which will later be used
in online fine-tuning. Following Hu et al.| (2020b; [2021)), each belief model is trained in a super-
vised manner to infer latent teammate states (e.g., hidden hands in Hanabi) from action—observation
histories. We implement B, as an encoder—decoder network and optimize it by minimizing the
negative log-likelihood of the ground-truth hidden state. This yields belief models that can generate
counterfactual states, enabling counterfactual rollouts during online adaptation. Full architectural
details and the loss function are provided in Appendix

3.1.2 TRAINING THE OFFLINE BEST RESPONSE AGENT

After constructing the diverse agent pool, we train a best-response agent that approximates responses
to all pool members. In the offline setting this is challenging, since evaluating best responses typi-
cally requires direct interaction with the pool. To address this, we bootstrap from the value functions
of specialized agents: the BR agent computes TD targets using their critics, while its own policy is
regularized with behavior cloning for stability. The objective of the BR agent, parameterized by 6y,.,
is given by

k*
§ ETNDi
i=1

Here, Q" and 7" denote the critic and policy of the BR agent, respectively, and Q" is the critic of
specialized agent ¢. This allows the BR agent to approximate best responses without direct interac-
tion, leveraging the specialized agents’ value functions as surrogates for diverse partner strategies.

2
<Rf’ +A" max Q' (Tyan,a) — QbT(Tt, at)> + ABc CE(?Tbr(-th), ag)|. (4

3.2 ONLINE FINE-TUNING VIA BELIEF-BASED COUNTERFACTUAL ROLLOUTS

In the offline phase, we constructed a diverse pool of specialized agents and their corresponding
belief models, together with a BR agent trained against this pool. While this procedure improves
over training a single agent directly on the dataset, the BR agent remains tied to the conventions
present in the dataset and thus struggles to generalize to unseen partners. In particular, offline BR
training alone cannot escape overfitting to training-time conventions, motivating the need for an
online adaptation mechanism.

To this end, we introduce an online fine-tuning stage that leverages the belief models trained in the
offline stage to fine-tune the BR agent. These models generate counterfactual successor trajectories.

That is, we generate M counterfactual successor trajectories {7/, ,, }_; ~ Bf/f) (Tet1 | Tt(z))
by sampling from the belief model of specialized agents. Intuitively, these counterfactual succes-
sor trajectories correspond to hypothetical continuations obtained by assuming that, instead of the
actual partner, one of the specialized agents from the offline pool had acted as the teammate at this
step. This allows the BR agent to update its value estimates under a broader distribution of plau-
sible partner behaviors, thereby mitigating overfitting to training-time conventions and equipping
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the agent with broader experience that facilitates more effective adaptation to unseen teammates.
These counterfactual samples are then used to compute the belief-guided target value for n-step TD
learning:

M
1 ~
C
it =R Zl max Q" (7 m Go-+n) ©)
i

QAtn

where Qbr denotes the target critic of the BR agent. The BR agent is then updated by minimizing
the counterfactual TD loss:

L) = E[ (s = Q" (ris01))” . ©

This training procedure allows the BR agent to update its value estimates using belief-guided suc-
cessor trajectories rather than relying solely on on-policy samples. In practice, this methodology
enables adaptation to new teammates by (i) exposing the agent to a broader distribution of plausible
transitions, (ii) reducing dependence on the support of the offline dataset, and (iii) incorporating
latent information inferred by belief models into the critic’s updates.

4 EXPERIMENTS

4.1 HANABI GAME

We use the cooperative card game Hanabi as our primary benchmark. Hanabi is a fully cooperative,
partially observable card game widely used for ZSC research (Bard et al., [2020) and is considered
one of the most challenging environments for cooperative multi-agent learning, combining strict
partial observability, limited communication, and the need for long-term coordination. The game
uses a 50-card deck across five colors and ranks 1-5; the team’s score equals the number of cor-
rectly played cards (maximum 25). Each player sees only their partner’s hand, not their own, and
communication is bottlenecked by a shared pool of eight hint tokens and three life tokens. On each
turn, a player may play, discard, or spend a hint token to indicate all cards of a chosen color or
rank in their partner’s hand; incorrect plays lose a life, and discards or completing a stack with a 5
restore a hint token. The game ends when all life tokens are lost, the deck is exhausted, or all stacks
are completed. Beyond these mechanics, Hanabi is particularly challenging because players must
decide not only which hints to provide, but also interpret the intentions behind received hints and
remember them across turns. Effective coordination thus hinges on modeling partners and estab-
lishing implicit conventions, closely reflecting the desiderata of ZSC, where agents must generalize
and collaborate effectively with previously unseen teammates. In our experiments, we evaluate the
two-player variant of Hanabi in both simulation and human experiments.

4.2 TRAINING DETAILS

We train agents offline using a 3-step TD loss combined with a behavior cloning loss, with weight
Apc = 0.4. Both medium- and expert-replay datasets are used for training. Following Hu et al.
(2021)), we adopt a recurrent Q-learning backbone based on R2D2 with an LSTM hidden size of
512. Detailed hyperparameters are provided in Appendix [A.4]

4.3  OFFLINE DATASET

To evaluate our approach under controlled conditions, we construct synthetic offline datasets using
the open-sourced OBL Hu et al.|(2021) implementation. We generate two types of datasets that differ
in quality: Medium-Replay and Expert-Replay. Each dataset is obtained by saving the replay buffer
of policies trained under medium- or expert-level settings, respectively. For both settings, we collect
data from 12 independent training seeds, resulting in approximately 200k gameplay episodes per
dataset. The Medium-Replay dataset achieves an average score of 17.05£3.24, reflecting substantial
variability and the presence of suboptimal coordination behaviors. In contrast, the Expert-Replay
dataset achieves a higher average score of 23.41 + 3.31, with trajectories that exhibit more refined
strategies and stronger coordination. These two datasets thus provide complementary conditions:
the Medium-Replay dataset highlights challenges in learning from noisy, imperfect conventions,
while the Expert-Replay dataset represents higher-quality but narrower coordination strategies.
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4.4 OFFLINE ZSC: CHALLENGES AND LIMITATIONS

ZSC aims to enable agents to work effec-

tively with previously unseen partners, but this Offline Training Induces Cross-Play Generalization Gap
is challenging since in practice each agent is Seed 1 Seed 2
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We illustrate this limitation empirically by
evaluating agents trained on different offline
datasets. Fig. 2] compares the self-play and
cross-play performance of agents trained on
pairs of Medium-Replay datasets (first row) and Expert-Replay datasets (second row). In each case,
the two datasets exhibit different return distributions, and agents trained on one dataset achieve
strong SP performance when paired with replicas of themselves. However, when paired with agents
trained on the other dataset, XP performance drops sharply. This shows that agents internalize
dataset-specific conventions during offline training: they coordinate well with partners exposed to
the same dataset but fail to align with partners trained on different datasets. Consequently, even
reasonably diverse datasets are insufficient for robust zero-shot coordination, underscoring the need
for online adaptation to bridge these convention gaps.

4.5 NUMERICAL RESULTS

To evaluate the efficacy of our proposed pipeline, we compare it against state-of-the-art baselines
and perform ablation studies to isolate the contribution of each component.

Baselines: We compare our proposed pipeline against several baseline methods and ablation vari-
ants. The baseline methods include (a) SAD (Hu & Foerster, 2019), a strong offline multi-agent
learning approach designed for both self-play and cross-play; (b) OBL (Foerster et al., [2019), a
leading zero-shot coordination method that employs online adaptation via belief modeling.

Evaluation Metrics: We evaluate all methods in terms of their self-play and cross-play performance
measured at different training epochs. Self-play performance is quantified as the average score
achieved by an agent when paired with itself, reflecting the efficiency and convergence of training.
Cross-play performance is evaluated under seed variation, where we measure the average score
across agents trained with different random seeds, following standard evaluation protocols for zero-
shot coordination [Hu et al.| (2020a; [2021)).

Fig. [3] presents results on the 2-player Hanabi benchmark, where the offline stage is trained with
only 200k episodes—equivalent to a single epoch of online experience. This highlights the sample
efficiency of our offline-to-online pipeline.

In terms of cross-play, the key metric for ZSC, our approach achieves strong initialization from of-
fline learning, starting at substantially higher scores than baselines, especially when trained on the
expert-replay dataset. During online adaptation, our method converges faster and more stably than
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Figure 3: Results on the 2-player Hanabi benchmark: (a) Cross-play performance and (b) self-play
performance over training epochs. The dashed vertical line at epoch 0 separates the offline learning

stage from the online adaptation stage. Our method is shown with Expert-Replay data (blue) and
Medium-Replay data (orange), compared against OBL (green) and SAD (red).

Table 1: Comparison of different strategies on self-play and cross-play performance for 2 player.

Strategy Self-Play Score T Cross-Play Score 1  # Train Samples |
Offline  Online

MARL-BC 17.92 £0.25 9.58 +1.47 200k -

OBR-C 17.08 4+ 0.42 9.92+1.15 200k -

OBR-Ours 17.49 +0.36 10.56 + 0.84 200k -

SAD 24.19 £+ 0.02 2.21 £0.22 - 96.064M
OBL (level-1) 20.92 + 0.07 20.85 +0.03 - 142.35M
OBL (level-2) 23.41+£0.03 23.24 +0.03 - 230.86M
OBL (level-3) 23.93 +0.01 23.68 £0.05 - 356.76M
OBL (level-4) 24.10 £ 0.01 23.76 + 0.06 - 425.33M
Ours-wC 23.01 £0.0 23.61 + 0.05 200k 256.02M
Ours 22.84 +0.12 23.65 +0.13 200k 229.38M

both OBL and SAD, demonstrating its advantage in generalization to unseen partners. On self-play,
we observe a temporary performance drop when online learning begins. This effect is expected,
as belief-guided counterfactual rollouts encourage the agent to deviate from dataset-specific con-
ventions in order to generalize. Notably, while SAD attains the highest self-play scores overall, its
cross-play performance remains very poor, underscoring its reliance on narrow conventions rather
than robust zero-shot coordination.

4.6 EMPIRICAL ANALYSIS

Offline Phase Analysis. We first analyze the effectiveness of the offline learning stage before on-
line fine-tuning by comparing three variants: (a) a naive baseline using offline MARL with behavior
cloning (MARL-BC), trained on the entire dataset, which represents a standard approach without
explicit treatment of conventions; (b) an offline best-response agent trained directly on the entire
dataset without trajectory clustering or diversity regularization (denoted as OBR-C); and (c) our
method prior to online adaptation, where the best-response agent is trained with a Diverse Agent
Pool constructed from clustered trajectories (denoted as OBR-Ours). This comparison isolates the
role of structured offline diversity: if effective, the Diverse Agent Pool should yield stronger cross-
play performance than both the naive offline baseline and the BR variant without diversity, highlight-
ing the importance of explicitly addressing conventions even in the offline phase. Table. [I] shows
that OBR-Ours achieves a higher cross-play score (10.56) than both MARL-BC (9.58) and OBR-C
(9.92), while maintaining similar self-play performance. This indicates that incorporating structured
diversity in the offline phase provides a measurable benefit, though overall cross-play performance
remains limited without online adaptation.
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Online Phase Analysis. We next analyze the role of belief-guided counterfactual rollouts during
online adaptation. To this end, we compare two variants: (a) Ours w/o Counterfactual (Ours-wC),
which uses offline BR training followed by standard online fine-tuning without counterfactual roll-
outs; and (b) Ours, the complete pipeline that incorporates both offline BR training and belief-guided
counterfactual rollouts. This comparison isolates the effect of counterfactual reasoning in online
learning. If effective, the belief-guided variant should achieve higher cross-play performance with
unseen partners, as it enables the agent to adapt beyond the conventions present in the offline dataset
and generalize more efficiently to novel teammates. Table. [I|shows that both variants achieve strong
cross-play performance, but the belief-guided version (Ours) attains slightly better generalization
while also requiring fewer online samples. This indicates that counterfactual rollouts provide a
consistent benefit in sample efficiency and adaptation to unseen partners.

4.7 HUMAN-AI COORDINATION

20 Ours > OBL ®
OBL > Ours

Beyond coordination with Al agents, sao> o JRIENNS .
we also evaluate whether our ap- | I
proach extends to collaboration with o . - .
human partners. We recruited 10 o 1
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none of whom were familiar with s 219
Hanabi. Each participant played one 50 w0
game with two Al partners, presented 2
in random order: our agent, the state- S ———— R VR S

of-the-art agent OBL, and SAD. To e o

control for variance due to deck or- (a) Ours vs SAD (b) Ours vs OBL

der, which can strongly affect Hanabi

outcomes, we reused the same seeds Figure 4: Comparison of human collaboration scores with
across all conditions. BR agent against SAD and OBL.

Ours

Humans paired with our agent

achieved an average score of 16.20, compared to 14.70 with OBL and 6.60 with SAD. These
results show a clear trend: participants consistently achieved higher scores when paired with our
agent than with either OBL or SAD. While the study is limited in scale, this trend suggests that
our approach enables Al to align more effectively with human strategies in cooperative zero-shot
settings, highlighting its potential for human-AlI collaboration.

5 CONCLUSION

We present a novel offline-to-online multi-agent learning pipeline for zero-shot coordination that
combines offline training with online fine-tuning. During offline training, we construct a Diverse
Agent Pool through trajectory clustering and train a best-response agent against this pool to pro-
mote diversity and robustness from pre-collected data. During online fine-tuning, we introduce
belief-guided counterfactual rollouts that leverage pretrained belief models to generate counterfac-
tual transitions, enabling efficient adaptation to unseen partners. Experiments in Hanabi show that
this pipeline achieves state-of-the-art performance in both seed and dataset variation settings, with
notable improvements in sample efficiency. Furthermore, our method achieves strong human-Al
collaboration performance, demonstrating robust generalization to human partners. These results
highlight the promise of our approach as a foundation for practical, adaptive multi-agent systems
that leverage preexisting datasets.

Limitaion Our approach fundamentally depends on the quality and coverage of the offline dataset,
which may limit the diversity and generalization of the learned agents. Moreover, specialized agent
training and counterfactual belief—based best response learning introduce additional hyperparame-
ters that require tuning, and the assumption of accurately learnable belief models may break down
in domains with highly complex hidden states.

Future work Future work includes mitigating the reliance on offline datasets, for example through
data augmentation or hybrid collection strategies, and extending the pipeline to larger-scale multi-
agent systems such as real-time strategy games or robotics, where scalability and coordination be-
come more challenging.
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includes detailed proofs of key theoretical claims and assumptions. We provide access to an anony-
mous downloadable source code repository as supplementary material to facilitate replication of
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A APPENDIX

A.1 CODE

For reproducibility, we provide our code at https://anonymous.4open.science/r/
offline-zsc-br-1174.

A.2 CLUSTERING: TRAJECTORY REPRESENTATION LEARNING

Given the offline dataset D, we learn compact representations using a Trajectory VAE. This approach
addresses the fundamental challenge of modeling multi-modal trajectory distributions arising from
different strategic behaviors in cooperative settings (Zhao et al.| [2024a}; [Zhu et al.l [2024). For ex-
ample, in Hanabi, some agents exhibit an immediate play strategy, playing cards immediately after
receiving positive hints, while others follow a conservative confirmation strategy, waiting for addi-
tional information before acting. These behavioral differences create distinct trajectory patterns in
state-action-reward sequences that Trajectory VAE can capture and separate.

T
EVAE - ETND Z Erecon(atv 7ﬂt|dt7 72t) + B : KL(Q¢(Z|T)||N(O, I)) (7)

t=1

Trajectory VAE learns to encode full trajectory sequences 7 = {(oy, az, 7¢) }Z_; into low-dimensional
latent representations z € R? that capture the underlying behavioral patterns. The encoder network
q4(z|T) processes temporal sequences of observations, actions, and rewards through recurrent layers
to produce distributional parameters {44 (7), o (7)} of a multivariate Gaussian posterior, while the
decoder network pg(a¢, 71|z, 0<+) takes both the latent representation z and previous observations
0« as input to reconstruct actions d and rewards ; using the reparameterization trick z = 4 (7)+
o4(1) © € where € ~ N(0,T) (Kingma & Welling, [2014). The training objective in [7| combines
reconstruction accuracy with KL regularization, where L,....,, measures the fidelity between ground
truth trajectory elements {as, 7} and their reconstructed counterparts {ay, 7} using cross-entropy
loss for discrete actions and mean squared error for rewards in continuous space, while the KL term
enforces that the learned posterior remains close to a standard Gaussian prior, promoting regularity
in the latent space and enabling meaningful interpolation between behavioral modes (Higgins et al.,
2017; |Venkatraman, [2023)).

The learned trajectory embeddings {z; }é\le are clustered to identify distinct behavioral modes
within the dataset. We employ k-means clustering with adaptive cluster selection based on the
silhouette score (Rousseeuwl [1987)), which measures the quality of clustering by evaluating both
intra-cluster cohesion and inter-cluster separation.

The optimal number of clusters k* is determined by maximizing the average silhouette score:

N
1
k* = argmax — E Si k (8)
k€[27Kmam]N i=1 "

where S; (k) represents the silhouette score for the trajectory ¢ in the clusters & (Zhao et al.,2024b).
This adaptive approach ensures that the clusters discovered correspond to meaningful behavioral
differences rather than arbitrarily partitioning the data set (Wang et al.,2025). Each resulting cluster
C}, represents a collection of trajectories exhibiting similar strategic behaviors, enabling specialized
policy training on homogeneous behavioral subsets.

A.3 BELIEF MODEL LEARNING

Following Hu et al.[ (2020b), we train each belief model Bg) to predict the hidden hand of agent

¢ in Hanabi. Similar to |Hu et al.[(2021)), given agent ¢’s action-observation history Tt(i), the model

outputs an auto-regressive distribution over the n cards in the agent’s hand:

n

P 1 77) =TT B (07 177, wiih ). ©
k=1

13


https://anonymous.4open.science/r/offline-zsc-br-1174
https://anonymous.4open.science/r/offline-zsc-br-1174

Under review as a conference paper at ICLR 2026

We implement Bf; ) with an RNN encoder that processes Tt(i) into a hidden state that summarizes

the history, followed by an RNN decoder initialized from this state that emits a card distribution per

step k, conditioning on previous predictions hﬁ_l. The belief network is trained via supervised

learning by minimizing the negative log-likelihood of the true hand:

E‘E)ie)lief(w) == Zlog Bz(pi) (hl(ci) | Tt(i)» hgl;ac—l) (10)
k=1

This loss encourages accurate auto-regressive hand reconstruction and enables sampling of plausible
hidden hands for counterfactual return estimation during online adaptation.

14
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A.4 HYPERPAREMETER

Table 2: Hyper-parameters for the offline training

Hyper-parameters Value

# dataset
dataset_size 200,000 trajectories
max_trajectory_length 80

# optimization
optimizer
Ir
eps
grad_clip
batchsize (coop agent)
batchsize (best response agent)

# Q learning
n_step
discount_factor
target_network_sync_interval

# architecture
rnn_hid_dim
num_Istm_layer

# losses
BC_loss_coeff (Aye)
JSD_loss_coeff (Ajsa)
CQL_loss

Adam (Kingma & Ba, 2015)
S5e-4

1.5e-5

5

128

256

0.999
1000

512

0.4
0.1
Not used
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Table 3: Hyper-parameters for the online adaptation paradigm

Hyper-parameters Value

# replay buffer related
burn_in_frames 10,000
replay_buffer_size 262,144
max_trajectory_length 80

# optimization
optimizer
Ir
eps
grad_clip
batchsize

# Q learning
n_step
discount_factor
target_network_sync_interval
exploration €
num_agents

# cooperative agent updates
update_coop_agents
update_coop_agents_freq
update_coop-agents_belief
update_coop_agents_belief_freq
coop-agent_belief_sync_freq

# architecture
rnn_hid_dim
num_Istm_layer
fc_only

Adam (Kingma & Ba, 2015)
6.25e-05

1.5e-05

10

128

1 (belief-based), 3 (non-belief based)

0.999

2500

€0 - .. €n, Where ¢; = 0.11 74/ (n=1) ' — 80
3

True
50
True
50
5000

512
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