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Abstract

Class-incremental learning, a sub-field of continual learning, suffers from catastrophic forgetting, a
phenomenon where models tend to forget previous tasks while learning new ones. Existing solutions
to this problem can be categorized into expansion-based, memory-based, and regularization-based
approaches. Most recent advances have focused on the first two categories. On the other hand,
limited research has been undertaken for regularization-based methods that offer deployability with
computational and memory efficiency. In this paper, we present Self-Supervised Curriculum-based
Class Incremental Learning (S2C2IL), a novel regularization-based algorithm that significantly im-
proves class-incremental learning performance without relying on external memory or network ex-
pansion. The key to S2C2IL is the use of self-supervised learning to extract rich feature repre-
sentations from the data available for each task. We introduce a new pretext task that employs
stochastic label augmentation instead of traditional image augmentation. To preclude the pretext
task-specific knowledge from being transferred to downstream tasks, we leave out the final section
of the pre-trained network in feature transfer. In the downstream task, we use a curriculum strategy
to periodically vary the standard deviation of the filter fused with the network. We evaluate the pro-
posed S2C2IL using an orthogonal weight modification backbone on four benchmark datasets, split-
CIFAR10, split-CIFAR100, split-SVHN, and split-TinyImageNet and two high-resolution datasets,
split-STL10, and ImageNet100. The results show that S2C2IL archives state-of-the-art results com-
pared to existing regularization-based and memory-based methods in class-incremental learning al-
gorithms.

1 Introduction

The concept of incremental learning has been an active area of research in the deep learning community (Mai et al.,
2022; Delange et al., 2021). Humans have an unparalleled capability to incrementally capture information of new
tasks, domains, or classes without forgetting the knowledge gained from past episodes. As shown in Figure 1, deep
learning approaches, especially CNNs, show excessive plasticity in learning new tasks though they lack the inherent
tendency of incremental/continual learning. The problem of incremental learning is introducing new knowledge to an
existing model calibrated with old knowledge. During the introduction of new knowledge, one of the biggest chal-
lenges is to retain the information from old knowledge as CNNs tend to lose previously acquired information leading
to a phenomenon termed as Catastrophic Forgetting (McCloskey & Cohen, 1989; Ratcliff, 1990; McClelland et al.,
1995; French, 1999). To mitigate catastrophic forgetting, researchers have proposed different approaches to overcome
catastrophic forgetting in deep learning models. These approaches include expansion-based models, in which new
parameters are added to the network with the addition of each task which capacitates the model to aggregate the infor-
mation of new classes subsequently. Other approaches include using memory-based methods, where a model is trained
to continually relearn old information to retain memory stability with external memory banks, and regularization-based
techniques to prevent the model from overwriting previously learned knowledge. Additionally, some researchers have
proposed using a combination of these methods, as well as other techniques, in order to more effectively address the
problem of catastrophic forgetting and enable deep learning models to continue to learn and adapt over time. Overall,
developing effective approaches to overcoming catastrophic forgetting is crucial for advancing deep learning and the
continued development of more intelligent and adaptive models.
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Figure 1: Humans can easily generalize over a newer set of classes/tasks, whereas neural networks suffer from the
problem of catastrophic forgetting when trained for different tasks over time.

This work presents a novel regularization-based continual learning algorithm focusing on class-incremental learning
(CIL). In general, the performance of these approaches is inferior to memory-based. However, they are more efficient
computationally, maintaining learning plasticity without needing additional memory to maintain stability. They are
also easy to deploy as opposed to expansion-based and memory-based approaches where voluminous memory setup
is a requisite. Without such memory reserves, regularization-based approaches depend mostly on utilizing the data
available for the current incremental task. Continual learning models can only extract features necessary from limited
data for their current task, causing a loss of prior information and inability to perform joint classification with previ-
ously learned tasks. This phenomenon is termed as Allocentric Ignorance. One of the ways to alleviate this issue is
through unsupervised learning. Unsupervised pre-training aids the model in learning distinct features from limited or
unlabelled data, which assists the model in better generalization to newer incremental tasks. To this end, we propose
a novel Self-Supervised Learning (SSL) task termed as Stochastic Label Augmentation (SLA), which optimizes the
model to extract a diverse set of features from the limited data for the current task. The task synthesizes information
from different parts of an image using stochastically generated labels in a multitask fashion, thereby providing rich
and diverse feature representations to the model. Conventionally, the data is augmented in self-supervised learning to
generate proxy labels that protract the training and are computationally inefficient. By fitting the pretext dataset on
stochastically generated labels, we improve the computational efficiency of the model. We employ a novel task-wise
weight-regularizer in the pretext task that prevents information loss from the previous to the next incremental task and
keeps the model bound to the previously acquired knowledge. Further, we mitigate the transfer of pretext task-specific
knowledge to the downstream task through Penultimate Weight Sharing (PWS) between networks.

After pre-training the network for the classification task in the CIL setting, we employ a curriculum-based learning
technique during the downstream training. Curriculum Learning-based algorithms facilitate faster convergence and
enhanced generalizability by ordered training (Bengio et al., 2009). A Gaussian kernel is used to smooth the extracted
features, with the smoothing effect increasing periodically. With the reduction in information through smoothing, we
regulate a curriculum for the model to generalize better over incremental tasks. This curriculum is built over Orthogo-
nal Weights Modification (OWM) (Zeng et al., 2019) as the backbone in the downstream training. Orthogonal Weights
Modification alleviates catastrophic forgetting by initiating weight updates along the orthogonal direction. Further, we
employ a novel task-wise weight-regularizer that prevents information loss from the previous to the next incremen-
tal task. Penultimate Weight Sharing (PWS) prevents the transfer of pretext-specific knowledge to the downstream
task. Through successive cycles of pre-training with SLA and downstream classification for each incremental task,
we achieve state-of-the-art performance on the split-CIFAR10, split-CIFAR100, split-SVHN, and split-TinyImageNet
databases.

The key highlights of the paper are summarized below:
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• A novel self-supervised pretext task termed as Stochastic Label Augmentation (SLA) for learning rich and
diverse feature representations.

• A curriculum-based learning technique for class-incremental learning through feature level smoothing.

• A novel regularization loss to constrain weight modification and prevent forgetting and Penultimate Weight
Sharing (PWS) to prevent the transfer of pretext task-specific knowledge to the downstream task.

• We validate the significance of the curriculum algorithm by analyzing the shift-invariance progress and grad-
cam visualizations.

• Evaluation of the proposed algorithm on four benchmark datasets: split-CIFAR10, split-CIFAR 100, split-
SVHN, and split-TinyImageNet dataset and two high-resolution datasets: split-STL10 and ImageNet-100.

2 Related Work

The concept of incremental learning (also known as lifelong learning or continual learning) has been an active area of
research in the deep learning community (Mai et al., 2022; Delange et al., 2021). Within the literature, three types of
incremental learning scenarios have been explored i.e. domain-incremental learning, task-incremental learning, and
class-incremental learning. The addition of new classes in an existing model (considered as an incremental task for the
model) is referred to as class incremental learning (CIL). In this paper, we predominantly focus on the problem of CIL.
With the addition of new classes, it is imperative that previously learned classes are not forgotten. This ties Incremental
learning closely to the problem of catastrophic forgetting. To mitigate catastrophic forgetting, three popular classes of
techniques exist, namely: (a) expansion based, (b) memory based, and (c) regularization based.

Expansion based algorithms add new neurons (or parameters) that evolve with every task to allow the network to
accumulate information of new classes sequentially. Rusu et al. (2016) introduced progressive neural networks in
which modules with lateral connections are added with each task while preserving the base network. Dynamically
Expandable Network Yoon et al. (2017) was proposed to competently calibrate the dynamic capacity of the network
for sequential tasks. Li et al. (2019) isolated the neural architecture search framework and parameter tuning technique
to identify the optimal structure for incremental tasks actively. Inspired by transfer learning, Sarwar et al. (2019)
presented a clone and branch technique for efficient and dynamical adaptation in the incremental learning network.
To alleviate model complexity, Yoon et al. (2019) introduced additive parameter decomposition, separating and tuning
the network parameters as task-specific or task-shared.

Memory-based models are either based on leveraging the subsets of the data from previous tasks (exemplars) or
iteratively synthesizing the data based on the first task. Rebuffi et al. (2017) proposed iCaRL, which utilizes the
exemplars from memory for rehearsal in continual learning. Deep generative replay framework (Shin et al., 2017)
was introduced to sample data from the previous task and fuse it with data for the current task. Lopez-Paz & Ranzato
(2017) implemented a Gradient Episodic Memory (GEM) model and applied loss gradients on current tasks to preserve
information from previous tasks and prevent interference with memory. Average GEM (A-GEM) (Chaudhry et al.,
2018) with altered loss function was presented as a more memory-efficient and better-performing variant of GEM.
Riemer et al. (2018) addressed the trade-off between information transfer and interference by introducing a meta-
experience replay algorithm to manage the transfer and interference based on future gradients. Distillation-based
techniques which preserve knowledge from old classes through storing exemplars have also been proposed recently
(Hou et al., 2019; Wu et al., 2019). In the recent research from Cha et al. (2021) and Ji et al. (2022), the authors
proposed rehearsal-based techniques that preserve learned representations through a self-supervised distillation step.

In regularization-based techniques, catastrophic forgetting is tackled by strategic regularization to support controlled
weight updates based on previously learned parameters and the significance of past tasks. Elastic Weight Modifica-
tion (Kirkpatrick et al., 2017) computes the importance of previous task weights and distribution of data based on the
diagonal elements of the Fischer information matrix. Some work (Zenke et al., 2017; Aljundi et al., 2018) use appro-
priate synapses to efficiently accumulate and utilize relevant information from previous tasks to prevent catastrophic
forgetting while learning new tasks. Ritter et al. (2018) apply Gaussian Laplace approximation of Hessian to estimate
the task-based posterior. Farajtabar et al. (2020) update the new task weights orthogonally to the gradient direction
of previous tasks. Subsequently, distillation methods (Hinton et al., 2015; Li & Hoiem, 2017; Hu et al., 2018) have
also helped extract relevant information from previous tasks and impose regularization. The stability and plasticity
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Figure 2: Block diagram of the proposed pretext and the downstream task for a particular incremental task t.

dilemma was addressed by framing two types of residual blocks in Adaptive Aggregation Networks (Liu et al., 2021).
Combining knowledge distillation and replay, Boschini et al. (2022) introduced eXtended-DER (X-DER), where the
model can revise the replay memory. Buzzega et al. (2020) took this idea a step further and combined knowledge dis-
tillation and replay with a regularization-based technique. CO-transport for class Incremental Learning (COIL) adapts
to new tasks by learning the class-wise semantic relationship across incremental tasks (Zhou et al., 2021). In the
study from Liu et al. (2020b), the authors proposed an ensemble of small classifiers coupled with regularization-based
methods and achieved promising results. In a few recent research (Zhu et al., 2021a; Petit et al., 2023), the author
proposed a memory-free generative approach where samples from previous tasks are generated and appended with the
data available for the current incremental task.

3 Methodology

Let D = {Dt}Tt=1 be the dataset organized for continual learning. Here Dt consists of a set of N t images for the
incremental task t ∈ [1, T ]. Each incremental task t corresponds to the addition of a new set of classes. The dataset
D constitutes (xti, yti)t where xti ∈ Xt represents the set of images per task and yti ∈ Y t as the corresponding ground
truth-label for task t. During each incremental task, we define a model f with parameters θt and ϕt where θ denotes
the parameters in the convolution layers and ϕ denotes the parameters in the fully-connected (FC) layers. The model
is trained incrementally per task t on Dt thus culminating the final model as f(θT , ϕT ). Figure 2 illustrates the
block diagram describing the framework for the pretext and downstream training for a single incremental task t. The
proposed algorithm consists of:
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1. Unsupervised Pre-Training by Stochastic Label Augmentation: In this step, we propose a novel pretext task
for feature extraction. The pretext task augments labels instead of images for learning feature-rich represen-
tations.

2. Downstream Training in Class-Incremental Setting: For the downstream task, we employ a curriculum-based
smoothing mechanism in combination with Orthogonal Weight Modification (OWM).

3. Self-Supervised CIL with Task Regularization: The model is trained iteratively for the pretext and downstream
tasks with the proposed task regularization term to prevent catastrophic forgetting.

4. Penultimate Weight Sharing: The weights obtained after training the pretext model is transferred to the down-
stream model with the exception of weights from the last layer.

3.1 Unsupervised Pre-Training by Stochastic Label Augmentation

Continual learning models face the challenge of being unable to extract multiple significant features from images,
unlike humans. Their performance is optimized based on the classification objective function, extracting only the
features necessary for the current task. This can cause a loss of prior information, as the model is unaware of the
features required for joint classification with previously learned tasks. For instance, if a model learns to classify dogs
and birds by counting their legs, it may lack sufficient information to classify a cat in a subsequent task. Without
replaying previous inputs, the model cannot extract additional information about previous classes as they are no longer
available. We term this phenomenon as Allocentric Ignorance. As more tasks are added in a continual setting, the
model becomes egocentric with current data at hand and selects only the features necessary for current and subsequent
incremental tasks, potentially leading to missing parts that affect joint classification accuracy. To address the problem
of allocentric ignorance, we employ self-supervised pre-training where model f is first trained for a novel pretext task
termed as Stochastic Label Augmentation (SLA). In Self-Supervised Learning (SSL), we generally augment the input
images during pretext tasks, which is computationally inefficient. Consequently, we propose SLA, which is based on
augmenting the makeshift labels instead of images. These labels are sampled from a uniform distribution for M tasks,
each with C classes. The training is performed in a multitask fashion with different fully-connected layers for each of
the M tasks (Figure 2). The major advantage of the proposed pretext task over the existing approaches (for instance,
rotation pretext) is that the training time and resource usage do not increase significantly due to an increase in data
(4× in the case of rotation pretext (Komodakis & Gidaris, 2018)).

We integrate self-supervised pre-training in CIL setting by training the network for a pretext task p at each incremental
task t. f(θtp, υtp, ψtp) represents the network for the pretext task p where θtp denotes the convolution parameters except
the last block, υtp denotes the last convolution block, and ψtp denotes the weights of the fully-connected layers for
pretext task p which gives the softmax of logits as output. The convolution weights θtp (excluding υtp) are transferred
to the downstream task d for incremental task t. The model f(θtp, υtp, ψtp) utilizes only the images Xt ∈ Dt for pre-
training. Subsequently, M branches of fully-connected layers (ψp) are added to the CNN corresponding to each of the
M tasks. This model is trained in through multitask learning where the features are extracted from the convolutional
layers and then, for each of the M tasks (not to be confused with the incremental task t), and fully-connected layers
are trained with the cumulative loss incurred from all the tasks. The loss function used for training the network in
pretext task is:

min
θt

p,υ
t
p,ψ

t
p

E(xt,yt)∼DtL(f(θtp, υtp, ψtp;xt), yt) = min
θt

p,υ
t
p,ψ

t
p

E(xt,yt)∼Dt

1
N t

Nt∑
i=1

M∑
j=1

C∑
k=1

−yti,j,klogf(θtp, υtp, ψtp;xti,j) (1)

where each yi,j,k is the stochastic label assigned to data point xi,j . The model takes each image as input and predicts
vectorized probabilities corresponding to each task. L(.) is the cross-entropy loss minimized between the target vector
of stochastically generated labels and the predicted vector. The pretext training is described in Algorithm 1.

In a regularization-based class-incremental setting, the model only learns discriminative features from images that are
required for a single-incremental task. These features are not discriminative enough as more tasks are introduced to
the model. Pre-training the model with unlabeled data drives the model to extract more and more information from
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Algorithm 1: Pretext training using SLA for task t

Input: Images Xt, Downstream model conv-layer parameters θt−1
d from previous task t− 1

Initialize: θ0
d is zero-initialized.

Parameters: Number of epochs E, Number of stochastic tasks M , Number of classes per stochastic task N ,
Pretext model conv-layer parameters θtp, Pretext model FC parameters ψtp, hyperparameters a and b

Function train_pretext_model(Xt, θt−1
d )

Initialize model f(θtp, υtp, ψtp)
Rt = generate_stochastic_labels(Xt,m, n)
for e=1 to E do

R̂t = f(Xt; θtp, υtp, ψtp)
Calculate loss terms:
L1 =

∑M
i=1(

∑N
j=1 −Rtlog(R̂t))

L2 = (a/2)
∥∥θtp − θt−1

d

∥∥2
2 + (b/2)

∥∥θtp∥∥2
2

L = L1 + L2
Backpropagate loss L and update θtp and ψtp

end
return θtp

end

each input image as the model will be forced to minimize the loss for each of the tasks. After pre-training the model
f(θtp, υtp, ψtp) for the incremental task t through the pretext task, Penultimate layer Weight Sharing (PWS) is adopted to
transfer the convolution weights θtp to the downstream model f(θtd, ϕtd). The proposed pretext task learns generalized,
unnoticed, and discreet features from the limited data and thus, save training time and computation resources.

3.2 Downstream Training in Class-Incremental Setting

The downstream task for classification in a class-incremental setting involves learning of the downstream model
f(θtd, ϕtd) for each incremental task t. For this learning, we propose a curriculum-based learning approach with an
OWM backbone (Zeng et al., 2019). The downstream training of the model using these components is described in
Algorithm 2.

3.2.1 Orthogonal Weight Modification (OWM)

The OWM technique has been shown to address the problem of catastrophic forgetting commonly observed in contin-
ual learning problems (Zeng et al., 2019). In the OWM technique, an orthogonal projection matrix Pl is considered on
the input space of layer l. This projector is defined as

Pl = I −Al(ATl Al + αI)−1ATl (2)

where α is a constant to calculate the inverse of the matrix and I is a unit matrix. Matrix Al consists of all trained
input vectors spanning the input space where the previous task has already been learned as its columns, e.g., Al =
[a1, . . . , al−1]. For each incremental task t, the weights ϕtl and projector Pl are updated for each layer l in the network,
such that the information learned in the previous tasks is retained. The weights ϕtl are updated as:

∆ϕtl = λP t−1
l ∆ϕt (BP )

l (3)

where λ is the learning rate, ∆ϕ(BP ) is the standard weight update using the backpropagation algorithm. The projector
P may be updated using an iterative or a recursive method to obtain a correlation-inverse matrix (Shah et al., 1992;
Haykin, 2008). We use OWM as the backbone technique to address the problem of catastrophic forgetting in the
proposed algorithm.
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Algorithm 2: Downstream learning algorithm for task t
Input: Images Xt, Labels Y t, Pretext model conv-layer parameters θtp for current task t
Initialize: θtd is initialized with θtp.
Parameters: Number of epochs E, Downstream model FC parameters ϕtd, Gaussian filter G with standard
deviation σ, constant c

Function train_downstream_model(Xt, Y t, θtd)
Initialize model f(θtd, ϕtd)
Set σe = 1
for e=1 to E do

ân = f(Xt; θtd, ϕtd)
σe = σe.c
zn+1 = pool(G(σe) ∗ ân)
Ŷ t = argmax(zn+1)
Calculate loss terms:
L =

∑M
i=1(

∑N
j=1 −Y tlog(Ŷ t))

Backpropagate loss L and update θtd and ϕtd using OWM algorithm.
end
return θtd, ϕtd

end

3.2.2 Smoothing-based Curriculum Learning

We design a curriculum-based learning technique for training the downstream model. Recent work has shown the
effectiveness of Gaussian smoothing in the context of curriculum learning (Chen et al., 2019; Sinha et al., 2020).
Convolution of a conventional smoothing kernel with an input signal results in a blurring effect. This means that some
information in the input is lost. In other words, the smoothing kernel regulates the information that is propagated after
each convolution operation.

A Gaussian filter G, parameterized with σe is applied to the extracted feature maps from the last convolution layers of
the model. While training over e epochs, we increase the strength of the smoothing filterG simply by increasing σe. In
a standard CNN model with weights, θl the following operations are performed at layer l. The activations at each layer
is obtained as âl = ReLU(θl ∗ zl) followed by pooling, described as zl+1 = pool(âl). Here âl denotes the activated
output using the rectified linear unit ReLU , input zl denotes the input at layer l, ∗ is the convolution operation and
pool is the max-pooling layer. For an n-layer CNN with weights θl at each layer l, we integrate a smoothing filter after
the nth convolution layer of the CNN. This can be expressed as follows:

zn+1 = pool(G(σe) ∗ ân) (4)

where zn+1 becomes the input to the first fully-connected layer.

The curriculum defined above is built over the observation that for each incremental task t, the feature maps obtained
at the last convolutional layer have an abundance of information from which a model can learn. Plenty of information
in the maps allows the model to focus on the features that are easy to extract and lead to the best optimization of
the objective. This makes it an easy sample in the curriculum. Over the epochs, the difficulty of the curriculum is
increased by repressing the high-frequency information from the feature maps. This is achieved by increasing the
standard deviation of the smoothing kernel. The model is then forced to extract discriminative, inconspicuous, or ob-
scured features from the smoothened feature map. This provides a curriculum-based training where the model learns
to classify with a lesser and lesser amount of information. Furthermore, Gaussian smoothing filters have tradition-
ally been used for anti-aliasing in image processing (Gonzalez, 2009). Anti-aliasing, when integrated correctly, has
been shown to enhance the shift-invariance tendency of CNNs (Zhang, 2019). The fusion of smoothing (blur) filters
with pooling/strided convolution softens the feature maps and alleviates the variance introduced by operations that
predominantly ignore the Nyquist sampling theorem. Recently, the fusion of these filters has shown a boost in the
performance and generalization capacity of the CNN models Zhang (2019); Zou et al. (2020). By incorporating a
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Figure 3: Block diagram to demonstrate the complete training procedure of the proposed algorithm for M incremental
tasks.

Gaussian smoothing-based curriculum for training, we expect improved robustness of the model towards a shift in
input.

3.3 S2C2IL: Self-Supervised Curriculum-based Incremental Learning

Since the model is being trained in a class-incremental fashion, we only have limited data corresponding to the classes
that are introduced. To make maximum use of the limited amount of data, we begin with the pretext task of self-
supervision using the data at hand. This ensures that the model is able to learn good feature representations from the
provided data. In the next step, the model learns to perform classification between the given set of classes using OWM
combined with curriculum learning.

The cycle of pre-training and downstream classification is repeated every time a new set of classes arrive (Figure 3).
In practical instances, it is highly likely that the dataset associated with the new incremental task may belong to an
entirely different distribution. Training the existing model on this new, out-of-distribution dataset may lead to excessive
modification of convolution weights, and the final model may fail to generalize on the old incremental tasks. To prevent
forgetting for convolutional layers at each incremental step, we incorporate a regularization term in the calculated loss
Xuhong et al. (2018). The regularization term ensures that the weights are not drastically modified after each pre-
training and classification cycle. The complete S2C2IL algorithm is presented in Algorithm 3. Mathematically put,
while training the model for the pretext task of incremental task t − 1 on dataset Dt−1, we transfer the convolution
weights θt−1

p from pretext model f(θt−1
p , ψt−1

p ) to downstream model f(θt−1
d , ϕt−1

d ). After this, on the introduction
of the next incremental task t, the model is first trained for the pretext task. For this, the weights from the previous
downstream task θt−1

d are transferred. We add a weight regularization term between the convolution weights between
θt−1
d of the previous task and θtp of the current task to mitigate forgetting at this step. In other words, we incur a

regularization loss term R between the model trained on the downstream task of incremental task t− 1 and the pretext
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Algorithm 3: S2C2IL algorithm
Input: Total tasks T , Images X , Labels Y
Parameters: Pretext model conv-layer parameters θp, Pretext model FC parameters ψp, Downstream model
conv-layer parameters θd, Downstream model FC parameters ϕd

for t = 1 to T do
θtp = train_pretext_model(Xt, θ

t−1
d ) //Algorithm 1

θtd, ϕtd = train_downstream_model(Xt, Yt, θ
t
p) //Algorithm 2

end
Evaluate model f(θTd , ϕTd ) trained for T tasks.

task for the model being trained on the next incremental task i.e. incremental task t. The proposed regularization loss
incurred on two consecutive incremental tasks is:

R(θtp, θt−1
d ) = a

2
∥∥θtp − θt−1

d

∥∥2
2 + b

2
∥∥θtp∥∥2

2 (5)

where a and b are hyperparameters, and R(.) is the regularization loss optimized with the standard multitask cross-
entropy loss. The hyperparameter a is a constant that aggravates the loss, forcing the model not to deviate much from
the model trained on the previous task. The hyperparameter b handles the induced sparsity on the model being trained
on the current incremental task t.

4 Experimental Setup

The proposed algorithm is evaluated on four benchmark datasets: split-CIFAR10, split-CIFAR100, split-SVHN, and
split-TinyImageNet and two high-resolution datasets: split-STL10 and ImageNet-100. We report the average test
accuracy, which is defined as the average of test accuracies achieved across all tasks. All experiments are performed
using five fixed random seeds. The proposed algorithm is evaluated under two settings- (i) OWM + CL, and (ii)
S2C2IL. In the first setting, only the curriculum-based downstream model is trained without any self-supervision.
In the S2C2IL setting, we follow the methodology as explained in Section 3.3, and perform pre-training using the
proposed SLA technique.

Datasets and Protocol: Since the focus of this work is class-incremental setting, we train and test the proposed
algorithm according to the protocols defined in the works of Zeng et al. (2019) and Hu et al. (2018). For experiments,
we have used six datasets:

(i) Split-CIFAR10 (Krizhevsky, 2009) contains 60,000 32 × 32 color images of 10 different classes with 50,000
images in the training set and 10,000 images in the testing set. The training and evaluation is performed for 2 classes
per task.

(ii) Split-CIFAR100 (Krizhevsky, 2009) contains 60,000 32 × 32 color images of 10 different classes with 50,000
images in the training set and 10,000 images in the testing set. The training and evaluation are done for 10, 20, and 50
classes per task.

(iii) Split-SVHN (Netzer et al., 2011) contains 60,000 32×32 color images of 10 different classes with 50,000 images
in the training set and 10,000 images in the testing set. The training and evaluation are performed for 2 classes per
task.

(iv) Split-TinyImageNet (Le & Yang, 2015) contains 120,000 color images of size 64×64 from 200 different classes
with 100,000 images in the training set, 10,000 in the validation set and 10,000 images in the testing set. The training
and evaluation of the model are done for 5, 10, and 20 classes per task.

(v) Split-STL10 (Coates et al., 2011) contains 13,000 color images of size 96 × 96 from 10 classes with 5000 images
in the training set, 8000 in the testing set. The training and testing of the model are done for 2 classes per task.

9
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Methods Split-CIFAR10 Split-CIFAR100 Split-SVHN
5 tasks 2 tasks 5 tasks 10 tasks 5 tasks

EWC∗ (Kirkpatrick et al., 2017) 31.40 ± 2.21 27.58 ± 1.64 18.42 ± 1.53 13.28 ± 0.91 34.22 ± 3.83
iCaRL∗ (Rebuffi et al., 2017) 50.02 ± 2.04 24.20 ± 1.60 22.16 ± 0.86 19.00 ± 0.36 71.25 ± 0.67
PGMA (Hu et al., 2018) 40.47 - - - -
DGM∗ (Ostapenko et al., 2019) 50.53 ± 0.46 28.23 ± 0.75 25.43 ± 0.14 24.09 ± 0.19 73.01 ± 0.77
OWM (Zeng et al., 2019) 55.71 ± 0.49 40.30 ± 0.65 33.17 ± 0.79 29.86 ± 0.33 73.50 ± 0.81
MUC∗ (Liu et al., 2020b) - 33.86 ± 0.72 28.05 ± 1.22 22.07 ± 0.9 -
IL2A∗ (Zhu et al., 2021a) - 43.29 ± 0.43 32.63 ± 0.86 21.45 ± 0.67 -
PASS∗ (Zhu et al., 2021b) - 43.15 ± 0.31 34.89 ± 0.75 24.03 ± 0.74 -
SSRE∗ (Zhu et al., 2022) - 41.06 ± 0.87 36.82 ± 0.7 31.35 ± 1.0 -
FeTrIL∗ (Petit et al., 2023) - 40.88 ± 1.18 35.47 ± 1.15 32.50 ± 1.03 -
OWM + CL (Ours) 58.68 ± 0.37 43.10 ± 0.66 35.40 ± 0.36 31.37 ± 0.61 75.34 ± 0.64
S2C2IL (Ours) 61.64 ± 0.57 43.98 ± 0.65 35.59 ± 0.49 31.93 ± 0.54 77.53 ± 0.53

Table 1: Average test accuracy for proposed method on Split-CIFAR10, Split-CIFAR100, and Split-SVHN dataset.
The best performance is depicted by bold and the second best by underline. All results are cited from Kirkpatrick
et al. (2017); Rebuffi et al. (2017); Ostapenko et al. (2019); Hu et al. (2018); Zeng et al. (2019); Liu et al. (2020b);
Zhu et al. (2021a;b; 2022); Petit et al. (2023) or are reproduced from their official repository for a fair comparison (∗

means re-run with protocols described in this paper)

Methods 5 tasks 10 tasks 20 tasks
OWM (Zeng et al., 2019) 19.00 ± 0.28 16.05 ± 0.27 14.30 ± 0.32
SLA + OWM 20.59 ± 0.32 17.05 ± 0.58 15.08 ± 0.65
OWM + CL 21.12 ± 0.42 17.56 ± 0.33 15.54 ± 0.12
S2C2IL 21.39 ± 0.15 19.00 ± 0.35 19.52 ± 1.56

Table 2: Average accuracy (%) reported for the ablation experiments performed on the split-TinyImageNet dataset for
5, 10, and 20 tasks.

(iv) ImageNet-100 (Russakovsky et al., 2015) is a subset of ImageNet ILSVRC 2012 (Russakovsky et al., 2015)
dataset with 100 classes. In this, the training set consists of 1300 images per class and the validation set consists of 50
images per class. Images are set to a size of 224 × 224. The training and evaluation of the model are done only for 10
classes per task.

Comparitive Algorithms: The results of the proposed framework are compared with various benchmark algorithms
in the domain of regularization-based CIL with the exception of iCaRL. The following algorithms are used for
comparison: (1) EWC (Kirkpatrick et al., 2017), (2) iCaRL (Rebuffi et al., 2017) with 2000 exemplars; (3) PGMA
(Hu et al., 2018); (4) DGM (Ostapenko et al., 2019), (5) OWM (Zeng et al., 2019), (6) MUC (Liu et al., 2020b), (7)
IL2A (Zhu et al., 2021a), (8) PASS (Zhu et al., 2021b), (9) SSRE (Zhu et al., 2022), and FeTrIL (Petit et al., 2023).
The EWC1, iCaRL1, DGM2, OWM3, MUC4, IL2A5, PASS6, SSRE7, and FeTrIL8 baselines are run using open-source
codes with the same network architecture as the one used in S2C2IL. The details of this network are described in
Section 4. Further, S2C2IL is compared with various memory-based approaches on the Split-TinyImageNet dataset. It
should be noted that the proposed S2C2IL algorithm uses no exemplars from classes of previous tasks.

1https://github.com/mmasana/FACIL
2https://github.com/SAP-archive/machine-learning-dgm
3https://github.com/beijixiong3510/OWM
4https://github.com/liuyudut/MUC
5https://github.com/Impression2805/IL2A
6https://github.com/Impression2805/CVPR21P ASS
7https://github.com/zhukaii/SSRE/tree/5475c9803b0143cab849b62edb7d5db76433c388
8https://github.com/G-U-N/PyCIL
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(b)(a)

Figure 4: (a) Comparison of the proposed S2C2IL algorithm with memory-based continual learning algorithms
(Riemer et al., 2018; Chaudhry et al., 2019; Rebuffi et al., 2017; Benjamin et al., 2018; Buzzega et al., 2020; Pham
et al., 2021; Cha et al., 2021; Ji et al., 2022). The accuracy achieved by each algorithm on the split-TinyImageNet
dataset (for 10 incremental tasks) is plotted against the number of convolution parameters (in log scale). The size of
each bubble corresponds to the network size used by the algorithm. The results obtained are summarized in Table 4.
(b) Bar plot demonstrating the incremental accuracies for OWM and Gaussian-based OWM model when trained on
split-CIFAR10 dataset for 5 tasks. The line graph summarizes the subsequent drop in the accuracy caused by pixel
translations. Gaussian network displays far less performance drop for translated dataset than base OWM model.

Implementation Details: For all the experiments, we use a 3-layer CNN network with three fully-connected layers.
The same network architecture is used by Zeng et al. (2019). For each incremental task, we start the model training on
the pretext task. Here, we use the 3-layer CNN architecture for feature extraction and utilize these features in multitask
fashion. For our experiments, we train the model for three tasks with two classes each, i.e., the extracted features are
utilized by three separate heads of fully-connected layers with two layers each. For the downstream task, the same
weights from the pretext task are transferred. However, here the features are utilized by a single fully-connected
layer to learn the current incremental task. The mentioned architectures used in the pretext and downstream can be
better visualized in Figure 2. We train all the models with stochastic gradient descent (SGD). For the pretext task,
the multitask network is trained on stochastically generated labels for three tasks with two classes each. We set the
learning rate to 0.001 to train it for 50 epochs. The hyperparameters a and b are fixed to 10 and 18 for split-CIFAR10
and split-CIFAR100 datasets and 5 and 12 for split-SVHN datasets, respectively. As described in section 3, the model
is trained for a curriculum where the training starts with σ set to 0.9 with a decay rate of 0.95 for every 10 epochs
for split-CIFAR100 and split-SVHN datasets. For the split-CIFAR10 dataset, σ is set to 1 with a decay rate of 0.9
for every ten epochs. All experiments are performed for five random seeds and the performance is reported as the
mean and standard deviation over all the seeds. The algorithm is implemented in Pytorch, and all the experiments are
performed on a DGX station with 256 GB RAM and four 32 GB Nvidia V100 GPUs. For reproducibility, the source
code will be released in the camera-ready version.

Pretext Task Average Accuracy (%)
split-CIFAR-10 split-SVHN

Without Pre-training 55.71 ± 0.49 73.50 ± 0.81
Rotation (Komodakis & Gidaris, 2018) 57.59 ± 0.43 76.22 ± 0.23
Colorization (Larsson et al., 2017) 56.66 ± 0.92 76.10 ± 0.69
SLA (proposed) 61.64 ± 0.57 77.53 ± 0.53

Table 3: Performance of the proposed algorithm by replacing the proposed Stochastic Label Augmentation (SLA)
with Rotation and Image Colorization pretext tasks on the split-CIFAR10 and split-SVHN datasets for 5 tasks.
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5 Results and Analysis

The performance of the proposed S2C2IL algorithm on the split-CIFAR10, split-CIFAR100, and split-SVHN datasets
are reported in Table 1. From Table 1, it is observed that the proposed algorithm achieves state-of-the-art performance
on the split-CIFAR10 dataset and split-SVHN dataset when compared to the existing algorithms. When compared to
the backbone algorithm (Zeng et al., 2019), S2C2IL improves the average accuracy with up to 4% and 6% performance
gain for the split-SVHN and split-CIFAR10 datasets, respectively. Further, we observe that training without self-
supervision in S2C2IL (OWM + CL) also outperforms existing algorithms on both datasets. For the split-CIFAT100
dataset, our proposed algorithm achieves state-of-the-art performance closely followed by IL2A (Zhu et al., 2021a)
by a difference of 0.69% for 2 incremental tasks. S2C2IL closely follows SSRE (Zhu et al., 2022) by 1.13% for 5
incremental tasks, and FeTrIL (Petit et al., 2023) by 0.57% for 10 incremental tasks.

In Table 2, we perform the ablation experiments and report the performance on the split-TinyImageNet dataset. The
evaluation is performed for 5, 10, and 20 tasks. From Table 2, it can be observed how each component contributes
towards mitigating catastrophic forgetting. We experimentally compare the proposed regularization-based S2C2IL
algorithm with a recent and state-of-the-art memory-based algorithm. In Figure 4 (a) the accuracy achieved by each
algorithm is plotted against the number of parameters in convolution layers (in log scale of thousands). It can be clearly
visualized that the proposed S2C2IL algorithm outperforms existing memory-based algorithms by a large margin on
the split-TinyImageNet dataset for ten tasks. Further, the S2C2IL framework exceeds the performance of memory-
based algorithms even with a smaller backbone and without using any memory. The results obtained are summarized
in Table 4. The results from Table 1 and Table 2 show the generalizability of the proposed S2C2IL on various datasets
showcasing the efficacy of the proposed algorithm.

To qualitatively evaluate the performance of the proposed algorithm, we employ GradCAMs. In Figure 5, the
GradCAM visualization obtained after each incremental task using OWM algorithm and the proposed S2C2IL
algorithm is presented. We use the images from the first incremental task of the split-SVHN dataset. From the
generated maps, it is observed that after each incremental task/step, the focus of the model diverges in the case of
the OWM algorithm. However, the maps generated through S2C2IL are better at retaining focus even after multiple
incremental training steps. This highlights the stability of the proposed S2C2IL algorithm and its effectiveness at
delaying forgetting in the network.

Efficacy of Stochastic Label Augmentation (SLA): The proposed SLA task uses stochastically sampled labels,
which are not semantically interpretable for humans per se. The pioneering work of Zhang et al. (2017) established
that the models could capture meaningful information out of random labels even when there is no correlation between
images and labels. Further research (Misra & Maaten, 2020) has shown that, for a given pretext task, the initial layers
of a model learn generalized semantic features, while the final layers learn task-specific features. Recent studies on

Algorithm Accuracy (%) Network Used Parameters
(in million)

iCaRL (Rebuffi et al., 2017) 7.53 ± 0.79 ResNet32 60
ER (Riemer et al., 2018) 8.49 ± 0.16 Four-layerd CNN 0.08

A-GEM (Chaudhry et al., 2018) 8.07 ± 0.08 ResNet18 8.98
DER (Buzzega et al., 2020) 11.87 ± 0.78 ResNet18 8.98

DER++ (Buzzega et al., 2020) 10.96 ± 1.17 ResNet18 8.98
DualNet (Pham et al., 2021) 9.53 ± 0.53 ResNet18 8.98

Co2L (Cha et al., 2021) 13.88 ± 0.42 ResNet18 8.98
CoCa (Ji et al., 2022) 12.78 ± 0.0 ResNet18 8.98
S2C2IL (Proposed) 19.00 ± 0.35 Four-layerd CNN 0.37

Table 4: The accuracy achieved by different memory-based algorithms with backbone architecture used by each
algorithm on the split-TinyImageNet dataset for 10 tasks. The best performance is depicted by bold and the second
best by underline. The proposed S2C2IL achieves the highest performance with no memory and with significantly
smaller backbone architectures.
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Number of Tasks (M) Performance (in %)
1 59.93 ± 0.42
2 60.82 ± 0.72
3 61.64 ± 0.57

Table 5: The demonstration of the effect of increasing the number of tasks (varying values of M) in pretraining step of
SLA on the performance of the proposed when trained on split-CIFAR10 for 5 incremental tasks.

training models with randomly labeled data have (Maennel et al., 2020) revealed that the generalized information
learned leads to a positive transfer of features. At the same time, specialization in later layers results in a negative
transfer from pretext to downstream tasks.

Inspired by the existing literature, we have proposed an SLA-based pretext task in which the initial layers of the model
extract generalized information and the final layer learns specialized information. To facilitate the positive transfer
of knowledge from pretext to downstream tasks while preventing negative transfer, we employ Penultimate Weight
Sharing (PWS), which skips the transfer of weights from the final section of the model. Overall, our approach aims
to extract as much information as possible from each image (Zhang et al., 2017) and transfer only the generalized
information to downstream tasks, excluding any task-specific information that may have been learned in the process.

To understand the effectiveness of the proposed pretext task, we perform additional experiments on the split-CIFAR10
and split-SVHN datasets for five incremental tasks each. The proposed framework is tested after replacing the SLA
pretext task with two existing pretext tasks, namely Rotation (Komodakis & Gidaris, 2018) and Image Colorization
(Larsson et al., 2017). From Table 3, we observe that in comparison to Image Colorization and Rotation, SLA leads to
a higher performance gain. We conduct t-tests to verify that the improvement on the split-CIFAR10 and split-SVHN
datasets is statistically significant. The results show that a p-value of 0.0006 and 0.0013 is achieved when SLA is com-
pared to Rotation and Colorization, respectively, on the split-CIFAR10 dataset. Similarly, on the split-SVHN dataset,
a p-value of 0.0171 and 0.0465 is achieved when SLA is compared with Rotation and Colorization, respectively. The
statistical test shows that the difference in the performance of different pretext tasks at a confidence score of 0.05 is
statistically significant. In addition to performance gain through SLA, it should be noted that augmenting the labels
instead of data leads to faster pre-training, lesser computational cycles, and low memory usage. The reason behind
successful learning through augmented labels instead of data is due to the fact that a multitask network learns from
the synergy of multiple tasks that it has to learn. Since the network is bound to minimize the loss, it will excerpt
all the discriminating features to minimize it. Moreover, since the deep learning models are highly non-linear, they
can reasonably achieve near-perfect accuracy on the training dataset (Zhang et al., 2017). The combination of these
prospects leads to performance gain, which makes learning without the availability of true annotated labels possible.

Effect of Multitask Learning in SLA pretext: The study from the authors of Zhang et al. (2017) demonstrates
that models can extract meaningful information from images, even when presented with random labels. Building on
this finding, we extended the SLA to a multitask regime by augmenting each image with additional labels, thereby
encouraging the model to extract even more information. As discussed in the literature (Malhotra et al., 2022), a
multitask learning setting can be more effective than a single-task setting, as it provides more supervision for each
image and allows the model to learn from different tasks in synergy. The empirical results in Table 5 support the
existing literature, showcasing an improvement in performance when scaling the model from single tasks to multiple
tasks in SLA-based pretraining.

Technique Time Taken (in seconds)
Rotation Pretext 9 s
Colorization 8 s
SLA 2 s

Table 6: Time taken (in seconds) for an epoch by different pretext tasks on split-CIFAR100 dataset for 5 incremental
tasks.

13



Under review as submission to TMLR

Dataset Tasks S2C2IL (w/o PWS) S2C2IL
split-SVHN 5 75.88 ± 0.45 77.53 ± 0.53
split-CIFAR10 5 60.75 ± 0.53 61.64 ± 0.57

2 43.38 ± 0.20 43.98 ± 0.65
split-CIFAR100 5 35.52 ± 0.48 35.59 ± 0.49

10 31.85 ± 0.45 31.93 ± 0.54

Table 7: Performance comparison of the proposed algorithm without and with Penultimate Weight Sharing (PWS).
The proposed Stochastic Label Augmentation (SLA) task is used for unsupervised pre-training.

Computational Time Requirements of the SLA and S2C2IL: We compute the time taken by the proposed SLA
algorithm and compare it with existing SSL techniques. Table 6 showcase that the proposed SLA algorithm takes
significantly less time when compared with existing pretraining algorithms on split-CIFAR100 dataset for 5 incre-
mental tasks. We also compute the training time of the existing algorithms (available in Table 1 for an epoch on
split-CIFAR100 dataset for 5 incremental tasks. We observe that the existing algorithms, such as MUC (Liu et al.,
2020a) and SSRE (Zhu et al., 2022) require about 8 seconds, and IL2A (Zhu et al., 2021a) and FeTrIL (Petit et al.,
2023) require over 200 seconds to train for a single epoch. The proposed S2C2IL algorithm takes 6 seconds for each
epoch, making it computationally efficient when compared to most of the existing baseline algorithms.

Impact of Penultimate Weight Sharing (PWS): Conventionally, the optimized weights of the pretext task are utilized
for training the model on the downstream task. The quality of the pre-trained features consistently improves with the
position and depth of layers. Further, the task accuracy is influenced by pre-training a network only up to k-layers
(Misra & Maaten, 2020). We hypothesize that the deeper layers of the pretext task are calibrated toward the pretext
task. To alleviate the bias towards the pretext task, we transfer weights from all layers except those of the last layer
for fine-tuning on the downstream task. This weight transfer algorithm is termed Penultimate Weight Sharing (PWS).
PWS incorporates layers weight (θtp) sharing for downstream fine-tuning (dropping out υtp) and empowers the network
to learn generalized feature representations for task t. The benefit of sharing weights only up till the penultimate layer
prevents sharing of pretext-specific weights to the downstream model.

To evaluate the model’s performance in the absence of PWS, we remove the υtp convolution block from the
pretext model, rendering it equivalent to the downstream model’s architecture. After pre-training the model and
transferring the weights to the downstream model, the performance is evaluated on different datasets. The results pre-
sented in Table 7 highlight the performance improvements obtained by transferring weights up to the penultimate layer.

Anti-aliasing Filters and Shift-Invariance: In this work, we employ a Gaussian filter for smoothing the feature maps
during the downstream classification task. Since the fusion of these filters has shown improved generalization capabil-
ities in CNNs (Zhang, 2019; Zou et al., 2020), we study the impact of the filtering integrated with a downstream model
by evaluating the performance of S2C2IL using these filters. We highlight the relevance of primitive integration of
the filter by stacking it after a convolution block and studying shift-invariance properties through related performance
metrics. Figure 4 (b) depicts the comparison of the incremental accuracy when a shifted/translated image is given
as input to the OWM and Gaussian-based OWM network. We modify the split-CIFAR10 dataset by incorporating
the random affine translation of 1% to ensure horizontal, vertical, and diagonal pixel shifts. The accuracies obtained

Average Incremental Accuracy
OWM δowm Gauss δGauss

Original 56.2 0 59.23 0
Horizontal Shift 47.67 8.53 51.92 7.31−1.22

Vertical Shift 44.29 11.91 50.11 9.12−2.79
2D Shift 37.64 18.56 44.12 15.11−3.45

Table 8: Average accuracy (in %) response of the network to the original and shifted datasets. δowm and δGauss
represent the accuracy drop in the OWM and Gaussian-based OWM models. A higher value of δ implies a more
adverse effect of shift on the model performance.
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Figure 5: Task-wise GradCAM visualization (step in the figure stands for an incremental task) for the split-SVHN
dataset using the OWM (row 1 and row 3) and proposed S2C2IL algorithm (row 2 and row 4).

corresponding to the shift in datasets are reported in Table 8. Attributed to the non-robustness of CNNs to shift, there
is a decrease in the overall accuracy for class-incremental tasks. However, we observe the decrease in incremental
accuracy to be less for Gaussian-based OWM than OWM, with an average decrease of about 2% less. This illustrates a
steady response to translation in the dataset and highlights the shift-invariant tendency of the Gaussian-based network.

Statistical Significance of the Improvements Achieved by S2C2IL: We have conducted t-tests to evaluate the sta-
tistical significance of the performance improvement achieved by the proposed S2C2IL algorithm. Figure 6 (a) reports
the p-values obtained when tested for the performance difference between OWM+CL and S2C2IL on split-CIFAR10
and split-SVHN datasets, as reported in Table 1. Figure 6 (b) reports the p-values obtained when tested for the per-
formance difference of the proposed algorithm with and without PWS on the same datasets, as reported in Table 7.
For a confidence level of 0.05, we have observed that all the p-values obtained for both experiments are statistically
significant. The performance gain between OWM+CL and S2C2IL when trained on split-CIFAR100 dataset for 2 and
5 incremental tasks is also significant (p-values of 0.0058 and 0.0056, respectively). However, the performance gain of
the proposed algorithm when trained on split-CIFAR100 dataset with and without PWS is not statistically significant.

(a) (b)

Figure 6: The p-values for t-test performed to test the statistical significance of the improvement in the performance of
(a) OWM+CL and S2C2IL for the split-SVHN and split-CIFAR10 dataset; (b) the proposed S2C2IL algorithm when
trained with and without PWS for the split-SVHN and split-CIFAR10 dataset. All are reported at confidence score of
0.05.
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Performance of S2C2IL on High-Resolution Datasets: We test the proposed algorithm on high-resolution datasets,
namely STL-10 (Coates et al., 2011) and ImageNet-100 (Russakovsky et al., 2015). STL-10 contains images of size
96×96 from 10 classes. We divide it into 5 incremental tasks, each with 2 classes. We call this split-STL10 dataset. On
this dataset, our algorithm achieves an average accuracy of 49.26% ± 0.38%. ImageNet-100 is a subset of ImageNet
with 100 classes with an image size of 224 × 224. We split it into 10 incremental tasks, each with 10 classes. On this
dataset, our algorithm attains an average accuracy of 23.87% ± 0.31%. These results demonstrate the effectiveness of
our algorithm on challenging high-resolution datasets as well.

6 Conclusion

In this research, we focus on the problem of regularization-based class-incremental learning. We address it through
unsupervised pre-training and propose a novel pretext task that augments labels instead of the data. During down-
stream training, we transfer the convolution weights till the penultimate layers from the pre-training and design a
smoothing-based curriculum. We find that through the incorporation of self-supervised learning and curriculum learn-
ing, we are able to improve the generalizability of the model in the continual learning paradigm. The augmentation
of labels instead of data in the pretext task further improves the learning for the current task and decreases the re-
source requirements for training the model. The utilization of the smoothing-based curriculum further enhances the
model’s performance. The proposed S2C2IL algorithm with the Orthogonal Weight Modification (OWM) backbone
achieves state-of-the-art results on four benchmark datasets: split-CIFAR-10, split-CIFAR-100, split-SVHN and split-
TinyImageNet. The performance is also evaluated on two challenging high-resolution datasets: split-STL10 and
ImageNet-100. The proposed algorithm can be appended with a memory component for future performance gains.
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