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Abstract

We present a distillation based approach to ver-
ify the robustness of any Neural Network (NN).
Conventional formal verification methods can-
not tractably assess the global robustness of real-
world NNs. To address this, we take advantage of
a gradient-aligned distillation framework to trans-
fer the robustness properties from a larger teacher
network to a smaller student network. Given that
the student NN can be formally verified for global
robustness, we theoretically investigate how this
guarantee can be transferred to the teacher NN.
We draw from ideas in learning theory to derive a
sample complexity for the distillation procedure
that enables PAC-guarantees on the global robust-
ness of the teacher network.

1. Introduction
We use knowledge distillation to provide robustness guaran-
tees for a larger teacher Neural Network (NN) by formally
verifying the robustness of a smaller student distilled from
it. NN verification is an important task, especially when
NNs are used in safety-critical applications like autonomous
driving or medical diagnosis. However, small perturbations
to the input may lead NNs to significantly change their pre-
diction and thus to misclassify (Goodfellow et al., 2015;
Kurakin et al., 2018). A potential solution to these chal-
lenges is to use robust NNs, that is, NNs that do not change
their prediction under small perturbations to the input. Vari-
ous approaches to assess the robustness of NNs have been
proposed in the literature (Wu et al., 2020; Webb et al.,
2019). However, methods that provide formal robustness
guarantees are limited to small scale NNs with few param-
eters (Seshia et al., 2018; Katz et al., 2017; Huang et al.,
2017; Gopinath et al., 2018).
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In this paper, we investigate robustness certification of large-
scale NNs using existing formal verification tools. To this
end, we investigate a gradient-aligned knowledge distilla-
tion procedure to distill a larger teacher NN into a smaller
NN that can be tractably verified. Knowledge distillation
with gradient alignment (Chan et al., 2020; Shao et al.,
2021; Lee et al., 2023) promotes a transfer of local robust-
ness properties from the teacher to the student NN. Shao
et al. (2021) show that if teacher and student agree on the
predictions and the gradients on the data points used for dis-
tillation, then they have similar local robustness properties at
these points. Gradient-aligned distillation by itself does not,
however, necessarily preserve global robustness. We nev-
ertheless formally demonstrate that if the distillation took
place on a large enough sample and the student is verified to
be globally robust, then the teacher is globally robust with a
high probability. We also investigate situations where the
distillation procedure is not perfect. To give robustness guar-
antees in such scenarios, we derive new conditions based on
the empirically observed discrepancy of the gradients. We
provide initial empirical evidence for our distillation based
robustness verification procedure. Our results show that
distillation, if performed successfully, effectively preserves
robustness properties between teacher and the student NNs.
Furthermore, when the distillation procedure is not success-
ful, we show that clear empirical markers can identify this.
Hence, the robustness of the student NN can be used as a
conservative guarantee for the robustness of the teacher NN.

Problem statement Let fT (x) be a classifier for which
we want to provide global robustness guarantees. We con-
sider a setting where fT (x) is too large to be verified using
formal methods. We distill fT (x) into a smaller classi-
fier fS(x) while preserving robustness properties. fS(x) is
small enough to be formally verified and we want to use
the information obtained from the verification of fS(x) to
provide robustness guarantees on the larger fT (x).

2. Related work
The use of NN models in safety-critical applications such as
in medical diagnosis (Amato et al., 2013) or in self-driving
cars (Rao & Frtunikj, 2018) raises concerns about their
safety. Research efforts have thus been made towards the
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automated verification of NNs, that is, towards providing
formal guarantees of their behavior (Chen et al., 2021) using
formal verification techniques (Katz et al., 2019). Verify-
ing the robustness of a NN can guarantee that a network
provides reliable prediction even when data is perturbed
(Casadio et al., 2022; Meng et al., 2022). Conventional for-
mal verification methods require significant computational
resources. Hence, recent approaches have proposed tech-
niques to give approximate (Wu et al., 2020) or statistical
(Webb et al., 2019) robustness guarantees.

The machine learning community has made significant ef-
forts to devise techniques to train NNs which are certifiably
robust (Li et al., 2023). Specifically, knowledge distillation
has been proposed as a technique to transfer robustness be-
tween models (Chan et al., 2020; Shao et al., 2021; Lee
et al., 2023), to boost robustness (Vaishnavi et al., 2022;
Huang et al., 2023), as well as to provide effective defenses
against adversarial attacks (Papernot et al., 2016).

3. Preliminaries
Given a vector x ∈ Rm, we use ∥x∥ to denote its L2 norm.
Let Br(x) := {x′ | ∥x′ − x∥ ≤ r} denote the closed L2-
ball centered at x with radius r > 0. Given a function f , we
use ∇xf to denote its gradient with respect to x. We use
σ(x) to denote the sigmoid function 1

1+ex .

In a classification task, we consider a (training) dataset
D consisting of point-label pairs (x, y). For a task with
n ∈ N classes, each point x ∈ Rm is associated with a
label y ∈ [1, n] With a slight abuse of notation, we write
x ∈ Dx or (x, y) ∈ D to refer respectively to the points or
the point-label pairs of D.

Robustness A classifier f is robust if its prediction f(x)
does not change under small perturbations around x. Ro-
bustness thus preserves the performance of a classifier in
the event of small input perturbations. A local notion of
robustness can be defined as follows.

Definition 3.1 (Local δ-robustness, Leino et al. (2021);
Athavale et al. (2024)). A classifier f(x) : Rm → Rn

is locally δ-robust in x if

∀ x′ ∈ Bδ(x) argmax f(x′) = argmax f(x), (1)

where, in a classification setting, the argmax returns the
index corresponding to the predicted class.

A natural definition of global δ-robustness would require
local δ-robustness for all possible inputs. However, requir-
ing robustness on all possible inputs, in spaces like Rm,
would only permit classifiers with constant prediction to
be globally robust. Hence, a more useful notion of global
robustness is to require a classifier to be robust on all points
in certain regions of interest. For instance, for all inputs

x ∈ Dx, we will want the classifier to be robust only for
the regions of high confidence (Leino et al., 2021; Athavale
et al., 2024). Similarly to Athavale et al. (2024) we as-
sume that the predictions of our classifier (usually a NN)
are the result of a softmax function. We use this to define
confidence as follows:

Definition 3.2 (Confidence). A classifier f(x) : Rm → Rn

is κ-confident for some x ∈ Rm if

max(softmax(f(x)) ≥ κ, (2)

where the max is computed with respect to the n classes.

Definition 3.3 (Global δ-robustness). A classifier f(x) is
globally δ-robust in a set Dx with respect to a confidence
threshold κ if it is locally δ-robust for all x ∈ Dx for which
it is κ-confident.

Distillation First proposed by Buciluǎ et al. (2006),
knowledge distillation (Wang & Yoon, 2022; Hinton et al.,
2015) entails the training of a student network under the
supervision of a teacher network. The student is trained
by minimizing the difference in the logits produced by the
teacher and the student model. Let fT (x) : Rm → Rn

be the teacher model and fS(x) : Rm → Rn be the stu-
dent model. A typical knowledge distillation setting may
consider a distillation loss LKD proportional to sum of (i)
the cross-entropy loss of the student LCE and (ii) the KL-
divergence loss between the student and the teacher models
LKL. Hence, we have that

LKD(x, y) ∝ LCE(fS(x), y) + LKL(fS(x), fT (x)). (3)

We refer the reader to, e.g., Wang & Yoon (2022) for a
survey on knowledge distillation.

NN Verification Automated verification techniques can
be used to provide formal guarantees about the robustness of
a NN. We assume that we can use a formal verification tool,
such as the one in Athavale et al. (2024), to check the global
robustness of a small NN. Our goal is to investigate how
robustness guarantees from such a tool on a small student
network can be used to infer robustness guarantees on the
larger teacher NN.

ϵ-nets Given a probability distribution, an ϵ-net is a repre-
sentative set of points such that all high probability density
regions of the distribution are intersected by the set (Haus-
sler & Welzl, 1986; Mustafa & Varadarajan, 2017).

Definition 3.4 (Range space). Let X be a (possibly infinite)
set of points andR a family of subsets of X called ranges.
A range space is defined as the pair (X ,R).
Definition 3.5 (Shattering). We say a subset S ⊆ X is
shattered by R if for any S′ ⊆ S there exists an R ∈ R
such that S′ = R ∩ S.
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Definition 3.6 (Vapnik–Chervonenkis (VC) dimension).
The VC dimension of a range space (X ,R) is the maxi-
mum cardinality of a set S ⊆ R that is shattered byR.

Definition 3.7 (ϵ-net, Haussler & Welzl (1986)). Let (X ,R)
be a range space and DX be a probability distribution on X .
A set N ⊆ X is an ϵ-net for X with respect to DX if for
every set R ∈ R such that PrDX (R) ≥ ϵ, the set R contains
at least one point from N , i.e.,

∀R ∈ R, P rDX (R) ≥ ϵ =⇒ R ∩N ̸= ∅. (4)

A set of points S ∈ X is thus an ϵ-net for a space X if it
intersects any range R ∈ R of sufficient probability.

Obtaining an ϵ-net of optimal size is intractable in general.
However, the following theorem shows that a sufficiently
large number of i.i.d. samples form an ϵ-net with high
probability.

Theorem 3.8 (ϵ-nets from i.i.d. samples, Mitzenmacher
& Upfal (2017)). Let (X ,R) be a range space with VC
dimension d and let D be a probability distribution on X .
For any 0 < η, ϵ ≤ 1

2 , an i.i.d. sample from D of size s is
an ϵ-net for X with probability at least 1− η if

s ≥ 8d

ϵ
ln

16d

ϵ
+

4

ϵ
ln

2

η
. (5)

4. Robustness guarantees
In this section, we describe our approach to provide global
robustness guarantees for a large NN model which cannot
be tractably verified using formal verification tools. We first
revisit the local robustness preserving distillation approach
as presented by Shao et al. (2021). As the distillation pro-
cedure may not work perfectly in real-world applications,
we derive relaxed local robustness guarantees that can be
obtained from an imperfect distillation procedure. We then
provide a statistical argument to provide PAC-guarantees
on global robustness of the teacher model depending on the
sample size we use for distillation.

4.1. Transferring robustness properties via distillation

Chan et al. (2020) and Shao et al. (2021) showed that if two
models have the same predictions and gradients on a set of
data points, then they share similar local robustness proper-
ties around these points. From a given teacher model, we
obtain a student model with similar local behavior through
knowledge distillation and then infer the local robustness
properties of the teacher model from those of its student.

Definition 4.1 (Gradient-aligned distillation, adapted from
Shao et al. (2021)). Gradient-aligned distillation is a train-
ing procedure that takes a fixed teacher model fT and trains
a student model fS to minimize the distillation loss LG.

Let LCE and LKL denote the cross-entropy loss and the KL-
divergence loss respectively. Let λCE, λKL, λG, and τ be
some hyperparameters. The gradient-aligned distillation
loss LG is then defined as:

LG(x, y) =λCELCE(fS(x), y) +

λKLτ
2LKL

(
fS(x)

τ
,
fT (x)

τ

)
+

λG∥∇xLCE(fS(x), y)−∇xLCE(fT (x), y)∥.
(6)

Similarly to Shao et al. (2021), we assume that we can
obtain a perfect student for which

∀x ∈ Dx, LG(x, argmax(fT (x))) = 0. (7)

Where Dx denotes the unlabeled dataset used for distilla-
tion and the labels are produced by teacher. Additionally,
we assume that: (i) both fT and fS are locally linear (Lee
et al., 2019; Sattelberg et al., 2023), and (ii) the areas of
certified robustness (alternatively, that the output of any
training input) falls into one of these locally linear areas.
The local linearity assumption (i) is justified for networks
with piece-wise linear or, in general, piece-wise affine acti-
vation functions (Croce et al., 2019). As any such network
represents a piece-wise linear/affine function and vice versa
(Arora et al., 2018, Theorem 2.1). Even though for a typical
network the linear regions may be small, assumption (ii)
is justified if proper regularization is used, as empirically
shown by Croce et al. (2019) who obtain large linear regions
for ReLU networks. The main focus of this work is to verify
the robustness of a NN rather than to train a robust one.
Hence, we assume that proper precautions have been met
during the training of the teacher to satisfy (ii).

Proposition 4.2 (Robustness of the teacher model). Con-
sider a teacher model fT and a perfect student model fS
obtained through the distillation process described in Defi-
nition 4.1. ∀x ∈ Dx, if fS(x) is locally δ-robust in x, then
fT (x) is locally δ-robust in x.

Perfect gradient alignment is necessary to transfer robust-
ness properties from the student to the teacher. However,
we prove a weaker guarantee for imperfect alignments.

Proposition 4.3 (Imperfect gradient alignment). Consider
a teacher model fT (x) and a student model fS(x) such that
∀ (x, y) ∈ D fS(x) = fT (x) = y. If fS(x) is locally
δ-robust in x, then fT (x) is locally δT -robust in x, where

δT = ∥∇xfS(x)∥∥∇xfT (x)∥−1δ. (8)

4.2. PAC global robustness

We provide a Probably Approximately Correct (PAC) guar-
antee (Valiant, 1984; Haussler & Warmuth, 2018) on the
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global robustness of a classifier. We use the notion of ϵ-net
described in Section 3 to obtain global robustness guarantees
with high probability from local robustness.

Consider the Euclidean space X = Rm and a set of ranges
containing all metric balls of some fixed radius δ: R =
{Bδ(x) | x ∈ Rm}. The VC-dimension of this range space
corresponds to the VC-dimension of the set of all closed
balls of arbitrary radius in Rm and is equal to m+1 (Dudley,
1979). Let DX be a continuous distribution over X and let
ϵ ∈ [0, 1], δ ∈ R>0. Let Bδ,ϵ denote the set of closed balls
of radius δ with a probability mass of at least ϵ, i.e.,

Bδ,ϵ = {Bδ(x) ∈ R | Pr
DX

(Bδ(x)) ≥ ϵ}. (9)

Theorem 4.4. Let ϵ, η ∈ [0, 1], δ ∈ R>0. If a classifier
f(x) : Rm → Rn is locally 3δ-robust in

s ≥ 8(m+ 1)

ϵ
ln

16(m+ 1)

ϵ
+

4

ϵ
ln

2

η
(10)

points sampled from DX , then it is globally δ-robust in any
point covered by a ball in Bδ,ϵ with probability at least 1−η.

Refer to Appendix A for the proof. Theorem 4.4 thus sug-
gests that, given enough samples on which a classifier f is
locally robust, we can guarantee with high probability that
the classifier is globally robust in any point covered by a
ball in Bδ,ϵ.

Note that we make no assumption on the distribution DX .
In fact, the guarantee obtained in Theorem 4.4 can be
adapted to any distribution which is close to DX . Con-
sider the total variation distance between two probabilities
as TV(DX ,D′

X ) = supR⊆X |PrDX (R)− PrD′
X
(R)|, then

the following holds.

Observation 4.5. Given two distributionsDX andD′
X such

that TV(DX ,D′
X ) ≤ Λ, if a set of s points is an ϵ-net for

DX , then it is a (ϵ+ Λ)-net for D′
X .

As a consequence of Observation 4.5 (proof in Appendix A)
a classifier which is globally robust according to Theo-
rem 4.4 for points sampled according to DX is also robust
in Bδ,2ϵ for points sampled according to any D′

X , where
TV(DX ,D′

X ) ≤ ϵ.

4.3. Global robustness guarantees through distillation

We can combine the arguments of the previous sections to
devise a technique to infer the robustness of the teacher
model with high probability. In our setting, we assume we
can verify the global robustness of a student model fS(x)
and are interested in inferring whether a teacher model
fT (x) is globally robust or not. Given a (trained) teacher
model, we obtain a student model through the gradient-
aligned knowledge distillation discussed in Section 4.1. In

particular, distillation is performed on a number of points
s equivalent to the sample complexity provided by Theo-
rem 4.4. If the student is verified to be globally 3δ-robust,
then it is trivially 3δ-locally robust on the s points. Accord-
ing to Proposition 4.2 the teacher is then 3δ-locally robust
on the s points. Using Theorem 4.4, we have that, with high
probability, the teacher is also δ-globally robust in all the
regions with high probability density.

Algorithm 1 summarizes the technique.

Algorithm 1 Check teacher robustness
1: Input: teacher model fT : Rm → Rn, robustness

radius δ, parameters ϵ, η, κ
2: s← sample size given ϵ and η (Theorem 4.4)
3: S ← sample s points from DX
4: fS ← distill fT with a dataset of point-label pairs

(x, fT (x)) ∀x ∈ S (Definition 4.1)
5: if fS is 3δ-globally robust on S then
6: {fT is 3δ-locally robust on S (Proposition 4.2)}
7: return fT is δ-globally robust with high probability

(Theorem 4.4)
8: else
9: return fT not robust

10: end if

In line 3 in Algorithm 1 we assume we can (cheaply) sample
unlabeled data from the data distribution DX , which we
can then label using fT . In line 5 in Algorithm 1, global
robustness (Definition 3.3) is defined with respect to the
confidence threshold κ (Definition 3.2).

5. Experiments
We present preliminary empirical investigations on synthetic
data. We consider a simple teacher model with tunable ro-
bustness properties constructed from a parameterized sig-
moid function. We assess the quality of the distillation
procedure under different conditions. We empirically show
that robustness properties transfer from the teacher to the
student after successful distillation. We compare the em-
pirically assessed robustness of the student to the known
robustness of the teacher. We vary the confidence threshold
κ for robustness certification as well as the teachers gradi-
ents. This impacts both the teacher’s robustness and the
difficulty of distillation.

We use a simple binary decision problem using two trun-
cated Gaussian distributions in R2, separated by a hyper-
plane. The teacher-model is constructed to perfectly classify
this data using a parameterized sigmoid function with pa-
rameter a ∈ (0,∞),

fT (x, a) =

(
σ(ax · 1)

1− σ(ax · 1)

)
. (11)
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Figure 1. Robustness of student and teacher models on synthetic data experiment. Gradient of the teacher along the decision boundary
was varied to control robustness properties. Coloring indicates whether the distillation was performed successfully.

The parameter a can be used to control the teacher’s gradient

∇xfT (x, a) =

(
σ(ax · 1)(1− σ(ax · 1))
−σ(ax · 1)(1− σ(ax · 1))

)
, (12)

where x · 1 denotes the sum over the elements of x. The
parameter a allows us to control the teacher’s gradients
and robustness. To empirically assess the quality of the
distillation we say that the distillation is successful if

∀x ∈ Dx max(softmax(fS(x)) ≥ max(softmax(fT (x)),
(13)

that is, when the student is at least as confident for all pre-
dictions as the teacher. This prevents vacuous guarantees
that do not hold for the teacher, where the student is defined
to be robust only because it is non-confident.

The results of the experiments are presented in Figure 1. The
shape of the data points conveys whether teacher and student
agree on assessed robustness. The color indicates whether
the distillation was successful as per the requirements in
equation Equation (13), that is, whether the student is more
confident than the teacher. We empirically observe that
in all the cases where student and teacher do not agree on
robustness, the student is less robust than the teacher. Hence,
our procedure is tailored towards providing conservative
robustness guarantees and a teacher is not reported to be
robust when it is not. All the cases where we find the student
to be robust whereas the teacher is not (denoted in Figure 1
with the symbol ×) are easily identified by our distillation
quality measure Equation (13).

Our experiments empirically support our results and indicate
that we can often transfer robustness properties from teacher

to student model in real world settings, even if perfect dis-
tillation is not obtainable. In all cases where the robustness
properties were not preserved after successful distillation,
the student showed to be less robust, which indicates that
conservative guarantees can still be given.

6. Conclusions
We have provided initial theoretical results for the use of
gradient-aligned distillation to obtain a small student NN
whose robustness can be easily certified using conventional
formal verification methods. We derived a sample complex-
ity bound for the distillation procedure that allows to certify
that a teacher NN is globally robust with high probability
if a student NN distilled from it is globally robust. Initial
empirical results showed that gradient-aligned distillation
indeed preserves robustness in practice and is useful to ob-
tain conservative formal guarantees on the robustness of the
teacher NN. In future work, we aim to integrate a formal ver-
ification tool like the one proposed by Athavale et al. (2024)
to get robustness guarantees on real-world NNs. Further-
more, in cases where the student NN is not robust, we aim to
investigate counter-examples that show precisely what leads
to non-robustness. Finally, we will consider other learning
theoretic techniques that may provide stronger robustness
guarantees with a smaller sample complexity.

5



Distillation based Robustness Verification with PAC Guarantees

Acknowledgments and Impact Statement
This work was funded in part by the TU Wien DK SecInt; by
the Vienna Science and Technology Fund (WWTF), project
StruDL (ICT22-059); by the Austrian Science Fund (FWF),
project NanOX-ML (6728); and by the by the European
Unions Horizon Europe Doctoral Network programme un-
der the Marie-Skłodowska-Curie grant, project Training Al-
liance for Computational systems chemistry (101072930).

This paper presents work whose goal is to advance the field
of machine learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
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A. Proofs
A.1. Proof of Proposition 4.2

Proposition 4.2 (Robustness of the teacher model). Consider a teacher model fT and a perfect student model fS obtained
through the distillation process described in Definition 4.1. ∀x ∈ Dx, if fS(x) is locally δ-robust in x, then fT (x) is locally
δ-robust in x.

Proof. Shao et al. (2021) proved the other direction of the implication in the proposition, with an analogous set of
assumptions. Following a similar approach, the perfect student assumption for gradient-aligned distillation correspond to
the conditions: {

fS(x) = fT (x) ∀ x ∈ Dx, (14a)
∇xLCE(fS(x), y) = ∇xLCE(fT (x), y) ∀ (x, y) ∈ D. (14b)

Following Shao et al. (2021), Equation (14a) implies that∇xfS(x) = ∇xfT (x).

As any x′ ∈ Bδ(x) can be written as x′ = x+ δ′ for ∥δ′∥ ≤ δ, ∀ x ∈ Dx and ∀ x′ ∈ Bδ(x) it holds that:

fT (x
′) = fT (x+ δ′)

= fT (x) + δ′∇xfT (x) (local linearity)
= fS(x) + δ′∇xfS(x) (Equations 14a, 14b)
= fS(x+ δ′) = fS(x

′)

Hence we have that:

fT (x
′) = fS(x

′). (15)

Now, note that:

argmax fT (x) = argmax fS(x) (perfect student)
= argmax fS(x

′) (student δ-robustness)
= argmax fT (x

′). (using Equation (15))

That is, fT is locally δ-robust in the sense of Definition 3.1.

A.2. Proof of Proposition 4.3

Proposition 4.3 (Imperfect gradient alignment). Consider a teacher model fT (x) and a student model fS(x) such that
∀ (x, y) ∈ D fS(x) = fT (x) = y. If fS(x) is locally δ-robust in x, then fT (x) is locally δT -robust in x, where

δT = ∥∇xfS(x)∥∥∇xfT (x)∥−1δ. (8)

Proof. Consider a distillation process performed, e.g., using a loss function analogous to that in Equation (3), where the
student model provides the same predictions as the teacher, but where student and teacher models are not gradient-aligned.
That is, assume fS(x) = fT (x) = y ∀ (x, y) ∈ D but ∃(x, y) ∈ D | ∇xfS(x) ̸= ∇xfT (x). Let ρ be the ratio of the
student and teacher gradient norms, i.e., ρ = ∥∇xfS(x)∥∥∇xfT (x)∥−1 at x. Let fS be δ-locally robust and let δT = ρδ.
We focus here on the case ρ < 1 which addresses the case of a teacher which is less robust than the student. Since any
x′ ∈ BδT (x), x

′ can be written as x′ = x+ δ′, for δ′ ≤ δT ≤ δ, ∀ x ∈ Dx and ∀ x′ ∈ BδT (x), it holds that:

argmax fS(x
′) = argmax fS(x). (local δ-robustness) (16)
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Now let δ′′ = ρδ′ and x′′ = x+ δ′′. Hence we have that:

fT (x
′′) = fT (x) + δ′′∇xfT (x) (local linearity) (17)

= fS(x) + δ′′∇xfT (x) (perfect student) (18)
= fS(x) + ρδ′∇xfT (x) (19)

= fS(x) +
∥∇xfS(x)∥
∥∇xfT (x)∥

∥∇xfT (x)∥ ∥δ′∥ cos θ (dot product) (20)

= fS(x) + ∥∇xfS(x)∥ ∥δ′∥ cos θ (21)
= fS(x) + δ′∇xfS(x) (dot product) (22)
= fS(x

′). (local linearity) (23)

Finally,

argmax fT (x) = argmax fS(x) (perfect student)
= argmax fS(x

′) (student δ-robustness)
= argmax fT (x

′′). (using equation (23))

which allows us to conclude that fT is δT -locally robust in x.

A.3. Proof of Theorem 4.4

Theorem 4.4. Let ϵ, η ∈ [0, 1], δ ∈ R>0. If a classifier f(x) : Rm → Rn is locally 3δ-robust in

s ≥ 8(m+ 1)

ϵ
ln

16(m+ 1)

ϵ
+

4

ϵ
ln

2

η
(10)

points sampled from DX , then it is globally δ-robust in any point covered by a ball in Bδ,ϵ with probability at least 1− η.

Proof. Let N be a set of points with cardinality s, randomly sampled i.i.d.
from DX . Let us have a range space (X ,Bδ), where X = Rm and Bδ
represents the set of δ-balls in X . As per Theorem 3.8, N is an ϵ-net
with high probability. Assuming N is an ϵ-net, it intersects each ball in
Bδ,ϵ. Now assume that f is 3δ-locally robust around each point in N . Let
Bδ(xb) ∈ Bδ,ϵ be the ball around some point xb and let xi ∈ N ∩Bδ(xb).
Let B3δ(xi) represent the locally 3δ-robust ball around xi. Note that
any ball Bδ(xb) ∈ Bδ,ϵ is completely inside B3δ(xi). Hence, if B3δ(xi)
is a robust ball, then so is Bδ(xb). Furthermore, since Bδ(xb) is also
intersected by xi, the farthest point from xi in Bδ(xb), say x′

b, is at most
2δ away. Hence, a δ-ball around x′

b ∈ Bδ(xb) is also completely contained
in B3δ(xi) and hence is robust. Consequently, any point in Bδ,ϵ is δ-robust.

δ
δ

xi xb

x′
b

3δ

2δ

Figure 2. Visualization of the 3δ argu-
ment.

A.4. Proof of Observation 4.5

Observation 4.5. Given two distributions DX and D′
X such that TV(DX ,D′

X ) ≤ Λ, if a set of s points is an ϵ-net for DX ,
then it is a (ϵ+ Λ)-net for D′

X .

Proof. By the bound on TV(DX ,D′
X ) we know ∀R ∈ X : |PrDX (R)− PrDX (R)| ≤ Λ , especially PrD′

X
(R) ≥ ϵ+ Λ

implies PrD′
X
(R) ≥ ϵ.

As the set of points intersects all R ∈ X s.t. PrDX (R) ≥ ϵ, we can conclude that it will also intersect all ranges R ∈ X s.t.
PrD′

X
(R) ≥ ϵ+ Λ
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