
Hierarchical Planning for Complex Tasks with
Knowledge Graph-RAG and Symbolic Verification

Flavio Petruzzellis 1 Cristina Cornelio 2 Pietro Liò 3

Abstract

Large Language Models (LLMs) have shown
promise as robotic planners but often struggle
with long-horizon and complex tasks, especially
in specialized environments requiring external
knowledge. While hierarchical planning and
Retrieval-Augmented Generation (RAG) address
some of these challenges, they remain insufficient
on their own and a deeper integration is required
for achieving more reliable systems. To this end,
we propose a neuro-symbolic approach that en-
hances LLMs-based planners with Knowledge
Graph-based RAG for hierarchical plan genera-
tion. This method decomposes complex tasks
into manageable subtasks, further expanded into
executable atomic action sequences. To ensure
formal correctness and proper decomposition, we
integrate a Symbolic Validator, which also func-
tions as a failure detector by aligning expected
and observed world states. Our evaluation against
baseline methods demonstrates the consistent sig-
nificant advantages of integrating hierarchical
planning, symbolic verification, and RAG across
tasks of varying complexity and different LLMs.
Additionally, our experimental setup and novel
metrics not only validate our approach for com-
plex planning but also serve as a tool for assess-
ing LLMs’ reasoning and compositional capa-
bilities. Code available at https://github.
com/corneliocristina/HVR .

1. Introduction
Humans naturally tackle complex tasks, such as boiling
water, by first conceptualizing high-level steps (e.g., filling

1Department of Mathematics, University of Padova, Padova,
Italy 2Samsung AI, Cambridge, UK 3Computer Science Depart-
ment, University of Cambridge, Cambridge, UK. Correspondence
to: Cristina Cornelio <c.cornelio@samsung.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

a pot with water) and then breaking these down into a series
of individual actions (e.g., picking up the pot, carrying it
to the sink, and turning on the faucet). This hierarchical
process allows humans not only to plan the sequence of
actions but also to ensure the plan is feasible before starting.
Additionally, during execution, humans constantly monitor
the task, identifying and addressing any issues that may arise
(e.g., realizing the pot is dirty or the faucet isn’t working).
For agents to replicate this capability, they need to manage
actions at varying levels of abstraction, know how to interact
with objects in their environment, and detect and respond
to planning or execution issues. These characteristics are
particularly crucial for complex or long-horizon tasks.

LLMs as planners. Recently, Large Language Models
(LLMs) have emerged as promising tools for planning tasks
in agentic systems (Huang et al., 2022). Their ability to pro-
cess natural language (NL) and generate structured outputs
makes them appealing for robotic task planning. Despite
this potential, they continue to struggle with long-horizon
tasks due to a lack of hierarchical reasoning and insuffi-
cient knowledge of the specific properties of objects and
environments. These limitations have driven the develop-
ment of hierarchical planning, which decomposes complex
tasks into multiple abstraction levels (Höller et al., 2020).
While this approach improves long-horizon robotic plan-
ning, it still faces challenges in robustness and adaptability
in complex environments. To address knowledge limitations,
Retrieval-Augmented Generation (RAG) methods have been
introduced, enabling systems to retrieve task-relevant infor-
mation from external sources (Lewis et al., 2020). Such
approaches are particularly crucial in specialized settings,
like healthcare (e.g., surgical robots), automated transporta-
tion (e.g., spacecraft, autonomous vehicles), and domestic
assistance (e.g., kitchen robots), where general common-
sense knowledge falls short. However, while RAG improves
access to relevant information, LLM-generated plans still
lack the precision and reliability required for real-world
robotics (Xie, 2020). LLMs generate plausible action se-
quences relying on statistical correlations rather than logical
inference, leading to inconsistencies and errors. To mitigate
these issues, symbolic verification is essential for ensuring
correctness before execution, reducing the risk of failures.
Some methods attempt to translate NL instructions into for-

1

https://github.com/corneliocristina/HVR
https://github.com/corneliocristina/HVR


Hierarchical Planning with Knowledge Graph-RAG and Symbolic Verification

mal languages (Liu et al., 2023a) or integrate verifiers into
planning pipelines (Xie, 2020), but they still face challenges
in ensuring scalability and adapting to the complexities of
real-world environments. Thus, while LLMs offer promis-
ing capabilities for planning, their deep and effective inte-
gration with hierarchical reasoning, retrieval, and symbolic
verification remains an open challenge.

In this work, we introduce HVR, a method that enhances
LLM planning capabilities through a novel neuro-symbolic
integration of Hierarchical planning, symbolic Verification
and reasoning, and RAG methods over symbolic Knowledge
Graphs. By decomposing complex tasks into manageable
sub-tasks, our approach simplifies the planning process,
while retrieving external information about the environment
improves accuracy and reduces hallucinations. A Symbolic
Validator further enhances reliability by simulating the plan
in an “ideal world”, enabling the identification and correc-
tion of potential issues before execution. Additionally, it
acts as a failure detector, monitoring discrepancies between
the ideal and real-world states during execution, allowing
the system to adapt and correct itself in real time (Cornelio
& Diab, 2024; Liu et al., 2023b).

Bridging Model-Based & Policy-Based Approaches. Tra-
ditionally, autonomous robotics has relied on two main
approaches (Chatzilygeroudis et al., 2019): model-based
systems, enabling an agent to simulate future states and
rewards using an internal model of the environment; and
policy-based systems, focusing on learning optimal action
strategy based on the current state and the goal of the task.
We propose a hybrid method where an ontology is used both
to model the environment and to refine an LLM-generated
policy along with a Symbolic Validator, enhancing its adapt-
ability and robustness, particularly in situations with limited
data and out-of-distribution cases. An additional advantage
of our method is the ability to create a reusable macro-action
library, allowing agents to share and reuse plans, reducing
the need to regenerate plans. These macro actions can be
shared, further organized, and refined by clustering similar
actions from different robots, extracting high-level common-
alities across varied hardware and capabilities.

Major contributions and results summary. The major
contribution of this work is HVR, a novel neuro-symbolic
system that integrates high-level reasoning with hierarchi-
cal planning, efficient information retrieval with RAG over
a symbolic knowledge graph, and formal verification to
enhance planning accuracy and formal correctness. Addi-
tionally, we introduce a diverse set of metrics and tasks
designed for robotic simulators. These not only evaluate the
effectiveness of planning systems like HVR, but also pro-
vide a comprehensive framework for assessing the reasoning
and compositional capabilities of LLMs. Importantly, we
selected freely available LLMs to ensure reproducibility.

While newer, paid models may offer improved general per-
formance, they would also benefit from our method, partic-
ularly in complex tasks that require specialized knowledge.

Our results demonstrate that HVR significantly outperforms
all baselines across both small and large LLMs, as well as
tasks spanning different levels of complexity, from moderate
to high. For smaller LLMs, RAG plays a crucial role in
compensating for their limited reasoning capabilities, while
for larger LLMs, hierarchical planning emerges as the most
impactful feature. The combination of these two approaches,
coupled with symbolic verification, achieves the best overall
performance. Our analysis reveals that LLM-based planners
still tend to generate unnecessarily long plans with extra
steps, indicating areas for further improvement. Moreover,
while performing very well on tasks with specific goal states,
they struggle with more generic or open-ended objectives.

State of the Art. Recent research has explored the use of
pre-trained LLMs for planning tasks in interactive environ-
ments, leveraging their embedded knowledge to generate
plans (Huang et al., 2022; Wu et al., 2023; Ahn et al., 2022;
Yao et al., 2020), but these methods often face hallucina-
tion and lack robust reasoning (Golovneva et al., 2022; Ahn
et al., 2022). Hierarchical planning has been studied in com-
bination with LLMs, such as HiP for symbolic planning
combined with visual grounding (Ajay et al., 2024), and
MLDT for multi-level decomposition (Wu et al., 2024).
RAG systems (Lewis et al., 2020), which retrieve task-
specific knowledge from sources like text (Guu et al., 2020),
knowledge graphs (Edge et al., 2024), or the web (Kim
et al., 2024), have also proven effective, especially for long-
horizon tasks (Lu et al., 2023). Recent works employ exter-
nal verifiers to refine LLM planning, as seen in the LLM-
Modulo framework (Kambhampati et al.), where tools like
CLAIRIFY (Skreta et al., 2023) ensure syntactic correct-
ness, and symbolic verifiers improve LLM performance by
validating plans (Valmeekam et al., 2023). Our work takes
inspiration from these methods, integrating symbolic verifi-
cation and hierarchical planning within an RAG-enhanced
LLM-based planner to address complex, long-horizon tasks.
However, most tasks addressed by current state-of-the-art
models are very simple, such as rearranging blocks or re-
trieving objects in an environment, and do not reach the
complexity of even the simpler tasks in our evaluation pool.
See Appendix A for a detailed discussion of state-of-the-art
approaches and their differences from our work.

2. The HVR Method
The problem we address is generating a plan to make a robot
execute a task in an environment E , based on a description
of the task in natural language (NL) and an ontology O
describing E . Figure 1 provides an overview of our method,
while Figure 2 illustrates the agent’s execution and feedback.

2



Hierarchical Planning with Knowledge Graph-RAG and Symbolic Verification

Figure 1. Overview of HRV: (1) Given a natural language task description, a pre-trained frozen LLM to generate a macro-plan (policy φ),
which is expanded into an AA-block (policy π). Retrieval-augmented generation (RAG) method retrieves relevant context from the agent
knowledge graph (initialized with the environment ontology) to support plan generation, while a Plan Validator detects and triggers the
correction of potential errors. (2) Once the plan is finalized, the agent executes the atomic actions (AA) from each AA-block within the
environment (see Figure 2), while recording the execution details in the knowledge graph. (3) After each action, a Symbolic Validator
verifies the alignment between the “ideal plan” and the actual environment state, potentially detecting failures. The system then reports
the performance of the LLM-based planner using a set of novel metrics.

2.1. Ontology & Dynamic Knowledge Graph

We adopted the approach in Cornelio & Diab, 2024, which
utilizes symbolic knowledge to support planning. This
knowledge is provided as an ontology O describing a
kitchen environment, robot actions, and human preferences.
The ontology includes a taxonomy of abstract object classes
(uppercase, e.g., Apple) and defines relationships between
them (e.g., Apple is a subclass of Sliceable). During task ex-
ecution, the ontology is combined with real-time instances
(lowercase, e.g., apple-1), representing concrete objects,
agents or events. Together, the ontology O and these in-
stances forms a Knowledge Graph G, containing a set of
relationships represented by either unary (indicating the
class of an entity) or binary (relations between entities)
predicates. The Knowledge Graph G is initialized as a copy
of the ontology O. As the robot executes actions, it records
each new event instance in G along with the multi-modal
action outcome. Visual data is converted into triples repre-
senting the scene-graph captured by the robot camera while
auditory information is labeled and stored into triples.

2.2. Knowledge Graph RAG (R)

Retrieval-Augmented Generation (RAG) (Lewis et al., 2020;
Edge et al., 2024) is a well-established technique used in
tasks like question answering, planning, or image genera-
tion, especially when the task requires additional informa-
tion from external sources (e.g., text or knowledge graphs)
to enhance generation. In our work, we specifically focus on
Graph RAG methods, utilizing Knowledge Graphs (KGs)

for retrieval, which are particularly suited for efficient query-
ing and reasoning over symbolic data. A general KG-based
RAG process starts with a query formulated based on the
task requirements. This query is then used to search within
the KG, retrieving nodes (entities) and edges (relationships)
relevant to the task. The result is a subgraph composed
of these nodes and edges, which serves as the context for
the LLM, that can be either directly included in the LLM
prompt or mapped to an embedding space that the model can
understand. In our approach, we use an LLM as a planner,
utilizing a KG-based RAG to enhance plan generation by
exploiting both the retrieved and the LLM implicit knowl-
edge. Specifically, we extract a subgraph G′ (of the full KG
G), containing instances of the objects required for the plan,
along with their corresponding types, properties, and state.

2.3. Hierarchical Plan generation (H)

The input to our planning problem consists of a NL text
t including (1) the task definition, and (2) a subgraph G′

extracted from the knowledge graph G, containing relevant
information for achieving the goal. The task definition can
be provided in either a constructive form, which outlines
instructions on how to solve the task (e.g., “boil water in
a pot and place it on a countertop”), or in a goal-oriented
form, describing the desired end state (e.g., “I want a pot
with boiling water on a countertop”). The final output of
the system is a sequence of atomic actions (AAs), which can
be directly executed by the robot (e.g., put-on(pan, stove)).
We refer to the complete set of all possible atomic actions
the robot can execute within the environment as the action

3



Hierarchical Planning with Knowledge Graph-RAG and Symbolic Verification

Figure 2. An agent executes an Expanded plan in a kitchen envi-
ronment following its sequence of atomic actions aaj . For each
action, the robot interACTs with the environment and OBSERVEs
the resulting state. Visual observations are captured as a scene
graph, representing object relative positions and states, while audi-
tory feedback is processed through classification. This multi-modal
outcome corresponds to the Agent’s action outcome in Fig. 1.

Figure 3. The task “Serve wine” is divided into multiple macro
actions MAs (ma1, . . . ,mam) such as “Pick up the bottle of wine”
and “Pour wine into the cup”. Each macro action is decomposed
into a AA-block with atomic actions AAs (aai

1, . . . , aa
i
ki
) such

as navigate to obj, pick up, and pour. The final expanded plan
(E-plan) is the concatenation of all the AAs from each AA-block.

set A, and this set is assumed to be finite.

Since for complex tasks the sequence of atomic actions
(AAs) can become quite lengthy, we decompose the task
into a series of subtasks called macro actions (MAs)
(ma1, . . . ,mam). Each macro action mai is a high-level,
concise NL description of the subtask goal and can be
further expanded into a sequence of AAs (aai1, . . . , aa

i
ki
).

We refer to each ordered sequence of ki AAs expanding a
macro action mai, as an AA-block. These AA-blocks are
then concatenated to form the final expanded plan (E-plan)
⟨aa1, . . . , aan⟩, where n =

∑m
i=1 ki. See Figure 3 for an

example. It is important to notice that RAG is employed
at each step both for generating MAs and AA-blocks, as
requirements for different MAs might vary and the KG is
dynamic: object states change over time, and new objects
can be created/destroyed (e.g., through actions like slicing).

The generation of a Macro Plan (M-plan) is performed
using a task-conditioned policy φ, which is a function map-
ping a NL text t to a sequence of macro actions (MAs):

φ : t 7→ PM , where PM = ⟨ma1, · · · ,mam⟩. In our ap-
proach, φ corresponds to the combination of a pre-trained
frozen LLM and an action parser: φ(t) = parse(LLM(t)).
The LLM associates the input text t with a transformed text
t′ through the mapping LLM : t 7→ t′. Subsequently, the
action parser parse(·) processes the generated text t′ and
extracts each line as an action string. The generation of
an AA-block is achieved using a task-conditioned policy
π, which is a function that maps a macro action mai to
a sequence P of atomic actions: π : mai 7→ P , where
P = ⟨aai1, aai2, . . . , aaiki

⟩ with aaij ∈ A, and ki the length
of the AA-block. Similar to the macro plan generation, π
also employs a pre-trained frozen LLM combined with an
action parser. However, it introduces an additional com-
ponent, an action mapper µ: π(t) = µ(parse(LLM(t)))
which associates the transformed input text t′ with a se-
quence of AAs, mapping it as µ : t′ 7→ P . The action
mapper identifies the corresponding action in the action set
A that is closest in the embedding space to each action string
(see Section 3). The policy π can also be used to generate
the full E-plan directly from the task description, bypassing
the generation of MAs.

2.4. Plan Verification and Correction (V)

We represent both AAs and MAs using a syntax based on
the Planning Domain Definition Language (PDDL) (McDer-
mott et al., 1998), a formal language widely employed in
automated planning systems that provides a standardized
framework for defining objects, actions, and their associated
preconditions and effects. In PDDL, a task is defined in
two main parts: (1) the domain, which describes the atomic
actions (e.g., pick up, toggle on) along with their respective
pre and postconditions; and (2) the problem, which outlines
the initial state of the environment and the target goal. In our
approach, the atomic actions in the domain correspond to A,
and consists of agent-specific actions with explicitly defined
pre- and postconditions, as the agent’s available capabilities
are known and finite. On the other hand, MAs can cover
an unlimited range of combinations of actions in A. Thus,
it is impractical for domain experts to manually specify all
the possible preconditions and effects that would determine
the feasibility of each MA. To address this, we leverage the
LLM to dynamically generate these conditions.

Heuristic-based Plan Verification and Correction. For
each given macro plan, expanded plan, or AA-block, we
initially employ a deterministic heuristic to adjust actions,
such as inserting any missing navigation steps. This process
leverages information defined in the PDDL. For instance, if
the original sequence of actions is (pick-up, tomato-1), (put-
on, tomato-1, countertop-1), the heuristic would correct it to
(navigate-to-obj, tomato-1), (pick-up, tomato-1), (navigate-
to-obj, countertop-1), (put-on, tomato-1, countertop-1) to
ensure the plan includes all necessary navigation steps.

4



Hierarchical Planning with Knowledge Graph-RAG and Symbolic Verification

Symbolic Plan Verification. For a given macro plan, ex-
panded plan, or AA-block, we utilize a Symbolic Validator
to assess its feasibility. The validator indicates whether the
plan is valid or, if not, identifies the step where the error
occurred specifying which particular condition was violated.
VAL (Howey et al., 2004) is an example of a widely used
verification tool for PDDL plans.

LLM-based Plan Correction. Our system employs back-
prompting with LLMs to correct plans using feedback from
the Symbolic Validator, addressing two types of errors: (1)
When an error is identified in a macro plan, the LLM adjusts
the pre and postconditions by adding, removing, or modify-
ing them based on the feedback; (2) If the error is found in an
expanded plan or AA-block, the LLM corrects the sequence
of AAs by modifying, adding, or removing actions. For
macro plan corrections (1), the LLM receives as input the
task description, the plan generated by the policy φ based on
that description, the original list of pre- and post-conditions
for each MA, and details on the violated condition. Addi-
tionally, the LLM is provided with a list of relevant objects
retrieved with RAG with their properties (e.g., pickupable,
cookable), states (e.g., closed, open, picked up), and triples
about object locations (e.g., (object1,inside,object2)), but no
in-context examples of correction are supplied. The LLM
then generates an updated list of pre- and post-conditions
for each MA. For AA-block corrections (2), the LLM uses
the error information from the Symbolic Validator, along
with the MA description and the sequence of atomic ac-
tions executed up to that point. The model also receives one
in-context example of correction and produces an updated
version of the AA-block.

Aligning observations and expected world state. At run-
time, we employ the same PDDL description to verify if
the expected environment state aligns with the actual state.
This is done by aligning symbolic information from the
scene graph (encoding the visual data captured by the agent)
with the expected state generated by executing the PDDL
in a planner. The Symbolic Validator thus acts as a failure
detector: if a discrepancy is found between the “ideal world”
triples and those in the scene graph, the action’s expected
pre- or post-conditions were not met in the environment,
suggesting incorrect execution. Upon identifying a failure,
established correction techniques (Cornelio & Diab, 2024;
Liu et al., 2023b) can be applied.

2.5. Macro Action Library and Knowledge Transfer

A key advantage of our method is the ability to build a
reusable library of macro actions that can be accessed by the
same agent for future tasks or shared across multiple agents.
This eliminates the need to regenerate plans from scratch,
facilitating knowledge transfer and enabling agents to bene-
fit from a collective “culture” of successful actions and their

Table 1. Tasks implemented in the experiments.
ID Name steps objects

m
od

er
at

e
co

m
pl

ex
ity

T1 Serve wine 8 2
T2 Make coffee 9 2
T3 Fry egg in a pan 13 2
T4 Toast bread 15 3
T5 Warm water (in microwave) 16 3

T5bis Warm water (generic) 16 3
T6 Cook potato slice (in microwave) 20 3

hi
gh

co
m

pl
ex

ity

T7 Salad 26 4
T8 Vegan sandwich 30 5
T9 Cook egg and potato slice 32 7

T10 Complex salad 33 7
T11 Tomato-egg on toast 38 10
T12 Complex plate 41 10

corresponding atomic steps. During task execution, both
AAs and MAs are recorded in the agent’s Knowledge Graph
G. Once the task is successfully completed, the macro ac-
tions are then transferred from G to the ontology O. These
actions are then organized by clustering similar macro ac-
tions, even if they have been executed by different robots
with varying hardware (e.g., single- or dual-arm robots) or
capabilities (e.g., a robot that can pick up objects versus one
that can only push objects). The clusters are refined using
established techniques such as summarization or abstrac-
tion to identify high-level commonalities. This process is
depicted in Figure 1 with dotted lines.

3. Experiments Setup
3.1. AI2Thor simulator and OnthoThor Ontology.

AI2Thor is a 3D simulator that provides a realistic virtual
environment where agents can navigate and interact with
objects in a home setting. Following previous studies (e.g.,
Cornelio & Diab, 2024; Liu et al., 2023b), we focused on
the kitchen domain. We used AI2Thor as state transition
function T (s, aa) = s′, which maps an environment state
s to the next state s′ through the application of an atomic
action aa. Formally, AI2Thor acts as T : S×A → S where
S denotes the state space of the environment E .

We employed OntoThor (Cornelio & Diab, 2024), which
describes the AI2Thor kitchen environment, as our ontology.
This ontology includes not only classes representing agents,
physical objects, and their properties but also the framework
to handle events, actions, and to capture audio-visual inputs
from the robot sensors in the form of triples.

3.2. Tasks

We chose to conduct our experiments on the tasks defined
in (Cornelio & Diab, 2024) for their complexity, as most
tasks tackled by state-of-the-art models are simple, such as
rearranging blocks or retrieving objects, and do not match

5



Hierarchical Planning with Knowledge Graph-RAG and Symbolic Verification

the complexity required for our study. In addition, we in-
troduced two new complex tasks, T11 and T121, and we
duplicated T5 as T5bis: in T5, the robot must warm wa-
ter specifically using the microwave, whereas in T5bis, the
robot can warm the water using any available method, such
as on a stove, in a kettle, or in the microwave. Table 1 pro-
vides an overview of these tasks, organized by the number
of steps in the ground truth plan. The tasks are divided
into two categories: moderate complexity tasks with up
to 20 steps, and high complexity tasks with more than 20
steps and involving more than three objects. The ground
truth plans are minimal, containing only the essential steps
required for completion without unnecessary actions.

3.3. Implementation details.

Knowledge Graph RAG. To provide the LLM-planner
with relevant, up-to-date information about the envi-
ronment’s state, we use a Knowledge Graph Retrieval-
Augmented Generation (KG-RAG) approach. The same
frozen LLM identifies a subset of relevant objects from
those currently available in the kitchen, as stored in the KG.
Using a zero-shot prompt, we provide the LLM with a natu-
ral language task description and a complete list of objects
(a feasible step due to the manageable size of OntoThor).
The LLM selects a subset of objects it deems necessary
for the task, which are then mapped to their corresponding
instances in the KG using cosine similarity over their em-
beddings. We then symbolically query the KG to retrieve
relevant information about the selected objects, including
their current state (e.g., open, closed, cooked), inherent
properties (receptacle, cookable, pickable) and technical
capabilities (e.g., appliances being toggleable).

LLM acting as a planner. To generate macro actions, we
employ a two-shot prompt template that incorporates the
goal-oriented task description and the list of relevant objects
with their properties, retrieved by the KG-RAG approach.
A frozen LLM is fed with this prompt and outputs an or-
dered list of macro actions in natural language. To generate
AA-blocks for a given macro action (described in natural
language), the LLM is first asked to generate a verbal de-
scription of the steps needed to complete the task, followed
by a sequence of atomic actions for the robot to execute.
The prompt briefly outlines key environment informations,
such as the robot’s capabilities in the AI2Thor simulator,
its single-arm limitation, and how to interact with kitchen
appliances, including one example for each. Additionally,
the LLM is provided with the history of executed atomic
actions, grouped by macro action if hierarchical planning is
enabled. To ensure consistent results, we employ in-context
learning, providing two examples of plans for simple macro

1Tasks were renumbered from (Cornelio & Diab, 2024); see
Appendix B.4 for details on the mapping.

actions. Both the prompt template for generating macro
actions and the one for generating AA-blocks include an
updated list of objects in the environment along with their
properties. When KG-RAG is enabled, this list is limited to
only task-relevant objects.

In our experiments we implemented the LLM-based planner
using both Phi-3-mini-4k-instruct (Abdin et al.,
2024), a small-scale open-source LLM specialized on
reasoning tasks, and gemini-1.5-flash (Anil et al.,
2023), a larger closed-source model with stronger reasoning
capabilities, also admitting a bigger context. We selected
freely available LLMs to ensure reproducibility.

Action parser and action mapper. We use an action parser
to extract both macro and atomic actions from the LLM
output by first splitting lines and removing line numbers, if
present. For macro actions, which consist of a predicate and
one or two object arguments (e.g., toggle-on(microwave) or
put-on(pan, stove), as described in Section 2.3), the parser
extracts and separates these elements. Each component is
then mapped to a set of predicates and available objects
taking the closest one via cosine similarity. However, this
initial step does not guarantee the action’s feasibility. To
ensure the action is valid, we symbolically generate all
possible predicate-object pairs/triples in the set of valid
actions A and match them with the extracted pairs/triples
based on semantic similarity of their sentence embeddings.

Symbolic Validator. To define the pre- and post-conditions
in our system we use conjunctive (and) as well as disjunc-
tive (or) and conditional (when) PDDL statements. We
implemented an ad-hoc validator in python that is based on
PDDL adapted to the specific AI2Thor environment. As
mentioned in Section 2.4, we manually defined the pre- and
post-conditions of the atomic actions, as they are tied to the
AI2Thor simulator. To generate pre- and post-conditions for
the macro actions we employ a one-shot prompt template
in which the LLM is given the following elements: a short
description of what formal pre- and post-conditions are, and
what kind of predicates can be used to express them (e.g.,
predicates describing objects state, properties or physical
locations, etc.); the goal-oriented task description; the plan
of macro actions generated to accomplish the task; and a list
of relevant objects (selected via KG-RAG, if enabled).

4. Experiments
The main results can be summarized as follows: (1) HVR
significantly outperforms all baselines across both small
and large LLMs and tasks of moderate-to-high complex-
ity. (2) RAG is crucial for smaller LLMs, while hierarchical
planning is more impactful for larger LLMs, as a longer con-
text makes retrieval less useful. (3) Formally correct plans
strongly correlate with correctly generated plans, indicat-

6



Hierarchical Planning with Knowledge Graph-RAG and Symbolic Verification

Table 2. Summary of results using Phi3 and Gemini across the metrics Plan Correctness (PC), Length Discrepancy (LD), Expanded Plan
Verification (EPV), Macro Plan Verification (MPV), and Atomic Action Block Verification (AABV), averaged over all 12 tasks. PC is
also averaged separately for moderate and high-complexity tasks. MPV and AABV are reported after correction (with pre-correction
values in parentheses). Green indicates metrics for plan generation and execution, purple and gray (for negative values) represent plan
minimality metrics, and blue indicates metrics for symbolic verification and plan correction. All results are reported as percentages.

Plan Correctness Length Discrepancy Verification

all moderate high min max avg. abs. avg. EPV MPV AABV

Ph
i3

HVR (our) 59.66 51.59 67.73 39.39 562.50 203.39 203.39 47.39 (47.03) 74.20 (27.41) 37.14
HV 18.91 16.34 21.48 34.15 626.09 202.01 202.01 39.69 (63.51) 87.86 (6.90) 25.24
HR 55.50 51.48 59.52 46.34 223.53 123.72 123.72 20.08 - (17.91) -
VR 20.04 31.08 9.01 -24.39 262.50 41.59 58.75 28.57 - -
R 17.92 28.18 7.67 -48.48 387.50 41.11 62.31 11.58 - -
LLM 11.89 18.92 4.85 -30.43 116.67 22.61 36.68 21.11 - -

G
em

in
i

HVR (our) 94.19 100.00 88.39 33.33 337.50 109.13 109.13 88.11 (100.00) 100.00 (16.33) 79.83
HV 85.27 93.06 77.48 21.74 158.82 67.25 67.25 100.00 (92.11) 100.00 (42.11) 100.00
HR 49.01 68.43 29.60 -50.00 75.00 32.31 41.40 25.82 - (29.91) -
VR 28.50 40.10 16.89 -17.39 126.67 20.02 27.33 32.14 - -
R 23.87 37.56 10.18 -27.78 37.50 -4.43 23.20 15.36 - -
LLM 17.91 31.68 4.15 -41.18 37.50 -3.49 19.54 16.37 - -

ing the effectiveness of symbolic verification in improving
plan quality. (4) LLM-based planners produce unneces-
sarily long plans, even with RAG, hierarchical planning,
and verification; corrections improve accuracy at the cost
of introducing additional steps. (5) Simulator execution
of correct plans does not always reach the end goal, with
an average success rate of 95%, highlighting limitations in
current state-of-the-art simulators. (6) LLM-based planners
excel in tasks with well-defined goal states but struggle with
open-ended objectives and increased task complexity.

4.1. Metrics and Baselines

We proposed six new metrics to evaluate the system’s per-
formance and the effectiveness of the integrated LLM.

Plan generation and execution. To assess the quality of
both plan generation and its execution, we introduced two
key metrics: (1) Plan Correctness (PC) identifies the fur-
thest point in the expanded plan that aligns successfully with
the ground truth (GT) plan. It is calculated as the ratio of
correctly planned steps up to the first incorrect step, divided
by the total number of steps in the GT-plan. (2) Execution
Success (ES) measures how far a correctly generated plan
can be executed in the environment without a failure occur-
ring. It is defined as the ratio of steps executed correctly,
up to the first failure, to the total number of steps in the
GT-plan. This highlights the limitations of the simulator, as
it sometimes fails to execute even entirely accurate plans.

Plan Minimality. To assess the length of the generated plan
in comparison to the minimal ground truth plan we defined
(3) Length Discrepancy (LD) metric which measures the
discrepancy in the number of steps between the GT-plan
and the generated plan. Results are reported as the average
of absolute differences, signed differences, and the range of

discrepancies (minimum and maximum values). Negative
values indicate that the generated plan is shorter than the
GT-plan, while positive values indicate it is longer.

Symbolic Verification and Plan Correction. To assess
the formal correctness and feasibility of the generated plans
and measure the impact of symbolic corrections in improv-
ing the accuracy, we defined the following three metrics:
(4) Expanded Plan Verification (EPV) indicates the extent
to which the expanded plan (full sequence of atomic ac-
tions) has been successfully verified. It is calculated as
the ratio of verified steps to the total number of steps in
the generated plan. EPV is computed after all corrections
have been applied. (5) Macro Plan Verification (MPV) mea-
sures the extent to which the macro plan has been verified.
It is calculated as the ratio of verified macro plan steps
to the total number of macro steps. MPV is computed in
two stages: before and after any symbolic macro plan cor-
rections. (6) Atomic Action Block Verification (AABV)
evaluates the extent to which the macro plan has been ver-
ified at the level of atomic action blocks. It is determined
by dividing the number of verified atomic action blocks by
the total number of macro actions. AABV is computed both
before and after corrections to the expanded plan.

Baselines. We evaluated our system against five baselines:
(1) HV: Utilizes hierarchical planning with symbolic veri-
fication but without RAG (the complete KG is provided as
context)2. (2) HR: Implements hierarchical planning and
RAG but omits symbolic verification. (3) VR: Incorporates
both symbolic verification and RAG, but without hierarchi-
cal planning. (4) R: Uses only RAG, without verification or
hierarchical planning. (5) LLM: The LLM serves purely as
a planner, with the entire KG provided as context2 .

2Only feasible in small environments with limited objects.

7



Hierarchical Planning with Knowledge Graph-RAG and Symbolic Verification

4.2. Results

We calculated the results for all metrics across all 12 tasks
for all the LLMs under consideration (see Section 3.3). A
summary of the results for Phi3 and Gemini is presented in
Table 2. The complete results are provided in Appendix D
and C, omitted here due to space constraints.

Plan generation and execution. The results for plan cor-
rectness in Table 2 (details in Appendix Tables 12 and 6)
demonstrate that HVR significantly outperforms the other
methods. For larger LLMs, HV performs better than HR,
highlighting the importance of symbolic verification for
more capable models. In this case, RAG appears to provide
minimal benefit, likely because the larger context length
of these models is sufficient to include all the necessary
information. However, this may change in scenarios with
larger environments containing many actions and objects,
where context limitations could make RAG more valuable.
Conversely, for smaller LLMs, HR outperforms HV, indi-
cating that the RAG component is essential in this case.
The combination of hierarchical decomposition, RAG, and
symbolic verification, consistently outperforms all other
configurations, showing that these three components com-
plement each other effectively. Furthermore, the difference
in performance gains suggest that larger LLMs are better
equipped to leverage the advantages of hierarchical decom-
position, symbolic verification, and RAG. However, smaller
LLMs, when paired with HVR, still achieve reasonable per-
formance. Another key observation is the difference in Plan
Correctness between tasks of moderate and high complex-
ity. Using Phi-3, the performance gap between these two
categories is relatively small (32.93% vs 27.74% averaged
on all the systems), whereas for Gemini, the gap is much
larger (61.80% vs 38.22% averaged on all the systems) sug-
gesting that larger LLMs are very efficient on easier tasks
and struggle only on long-horizon complex tasks.

For the tasks that were planned correctly, we evaluated the
execution success ES metric and found that, on average, the
simulator was able to execute approximately 95% (details
in Appendix Tables 13 and 7) of the planned actions. This
highlights certain limitations of current simulators, such as
AI2Thor, which lack the robustness needed to reliably han-
dle complex or long-horizon tasks. Notably, this percentage
is slightly lower for tasks with high complexity compared
to those with moderate complexity. A likely contributing
factor to these failures is the noise in the plans generated by
LLM-based planners, specifically the presence of superflu-
ous actions, which strain the simulator and increase error
rates. These execution failures underscore the critical need
for robust failure detection and correction methods. Our
approach, which also serves as an effective failure detector
(similar to other methods like (Cornelio & Diab, 2024)), of-
fers a mechanism to identify and address such errors. These

methods are not only crucial for overcoming the inherent
limitations of simulators but are also indispensable for man-
aging execution errors in real-world robotics applications.

Plan Minimality: We analyzed the results for the plan
minimality metric (see Table 2, with details in Appendix
Tables 14 and 8) and observed that smaller LLMs tend to
generate significantly longer plans, with HVR producing
plans that are 200% longer than the minimal ground truth
plan. Larger LLMs, on the other hand, generate more effi-
cient plans, with HVR resulting in only a 100% increase in
length over the minimal plan. While the use of more power-
ful LLMs improves plan efficiency, our analysis shows that
LLM-based planners, on average, still produce plans with
redundant steps (see Appendix B.1 for examples). Inter-
estingly, HVR increases plan length compared to the other
methods, but also improves accuracy. This suggests that the
corrections introduced during planning may come with the
cost of adding unnecessary steps. Furthermore, in methods
that do not employ hierarchical decomposition, we observed
negative plan length values, indicating that the generated
plans are shorter than the minimal ground truth plan. This
issue is absent in methods that use hierarchical decomposi-
tion, which suggests that hierarchical decomposition helps
avoiding oversimplification or omission of essential steps.

Symbolic Verification and Plan Correction. The results
for the EPV metric (see Table 2, with details in Appendix
Tables 15 and 9) demonstrate that incorporating the verifier
improves both the performance and quality of the generated
plans. When analyzing EPV alongside plan correctness,
a strong correlation emerges, indicating that a more for-
mally correct plan is also closer to the ground truth plan.
Also examining the results with MPV and AABV metrics
(see Table 2, with details in Appendix Tables 16 and 10 for
MPV and Appendix Tables 17 and 11 for AABV), it is evi-
dent that plan correction leads to significant improvements,
highlighting its effectiveness. The improvement in MPV is
most pronounced with Phi-3, as Gemini already produces
macro plans that are largely formally correct, reflecting its
ability to accurately generate pre- and post-conditions. In
contrast, Phi-3 struggles more with this aspect. For atomic
actions blocks, achieving formal correctness is generally
more challenging. However, the results show that the cor-
rection substantially enhances plan quality for both LLM
models and across different methods (HV and HVR).

Additional results. Further results, including the perfor-
mance comparison between T5 and T5bis, are provided
in Appendix B.5, showing that LLM-based planners ex-
cel in tasks with well-defined goal states but struggle with
open-ended objectives. Additional details, including the
comparison with state-of-the-art systems, efficiency consid-
erations, a discussion on HVR limitations and the full set of
experimental results can be found in the Appendix.

8



Hierarchical Planning with Knowledge Graph-RAG and Symbolic Verification

Impact Statement
This paper aims to advance Machine Learning and Robotics
by improving planning in complex, dynamic environments.
Our HVR method integrates LLMs with hierarchical plan-
ning, symbolic verification, and RAG to enable robots to
handle long-horizon tasks by dynamically adapting plans
based on real-time conditions. Such approaches are partic-
ularly crucial in specialized domains like healthcare (e.g.,
surgical robots), automated navigation and transportation
(e.g., spacecraft or autonomous vehicles), and domestic as-
sistance (e.g., kitchen robots), where general commonsense
knowledge is insufficient.

By combining LLM flexibility with symbolic verification,
HVR improves planning accuracy, reduces errors, and cre-
ates reusable macro-action libraries that allows knowledge
transfer across agents. This enhances scalability, collabora-
tion, and reliability in autonomous systems, enabling them
to perform tasks with minimal human intervention by recog-
nizing and correcting failures to ensure a safer environment
for humans.

HVR is designed to tackle complex scenarios highly rel-
evant to real-world applications. Our experiments, using
freely available LLMs to ensure reproducibility, show that
even newer, proprietary models could benefit from our ap-
proach, particularly for tasks requiring specialized knowl-
edge. These work hold significant societal potential for
safety-critical industries, where trust, explainability, and ac-
countability—supported by our symbolic verification—are
essential.

References
Abdin, M. I., Jacobs, S. A., Awan, A. A., Aneja, J., Awadal-

lah, A., Awadalla, H., Bach, N., Bahree, A., Bakhtiari, A.,
Behl, H. S., Benhaim, A., Bilenko, M., Bjorck, J., Bubeck,
S., Cai, M., Mendes, C. C. T., Chen, W., Chaudhary, V.,
Chopra, P., Giorno, A. D., de Rosa, G., Dixon, M., El-
dan, R., Iter, D., Garg, A., Goswami, A., Gunasekar, S.,
Haider, E., Hao, J., Hewett, R. J., Huynh, J., Javaheripi,
M., Jin, X., Kauffmann, P., Karampatziakis, N., Kim, D.,
Khademi, M., Kurilenko, L., Lee, J. R., Lee, Y. T., Li,
Y., Liang, C., Liu, W., Lin, E., Lin, Z., Madan, P., Mitra,
A., Modi, H., Nguyen, A., Norick, B., Patra, B., Perez-
Becker, D., Portet, T., Pryzant, R., Qin, H., Radmilac, M.,
Rosset, C., Roy, S., Ruwase, O., Saarikivi, O., Saied, A.,
Salim, A., Santacroce, M., Shah, S., Shang, N., Sharma,
H., Song, X., Tanaka, M., Wang, X., Ward, R., Wang,
G., Witte, P., Wyatt, M., Xu, C., Xu, J., Yadav, S., Yang,
F., Yang, Z., Yu, D., Zhang, C., Zhang, C., Zhang, J.,
Zhang, L. L., Zhang, Y., Zhang, Y., Zhang, Y., and Zhou,
X. Phi-3 technical report: A highly capable language
model locally on your phone. CoRR, abs/2404.14219,

2024. doi: 10.48550/ARXIV.2404.14219. URL https:
//doi.org/10.48550/arXiv.2404.14219.

Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O.,
David, B., Finn, C., Fu, C., Gopalakrishnan, K., Hausman,
K., et al. Do as i can, not as i say: Grounding language
in robotic affordances. arXiv preprint arXiv:2204.01691,
2022.

Ajay, A., Han, S., Du, Y., Li, S., Gupta, A., Jaakkola,
T., Tenenbaum, J., Kaelbling, L., Srivastava, A., and
Agrawal, P. Compositional foundation models for hi-
erarchical planning. Advances in Neural Information
Processing Systems, 36, 2024.

Anil, R., Borgeaud, S., Wu, Y., Alayrac, J., Yu, J., Sori-
cut, R., Schalkwyk, J., Dai, A. M., Hauth, A., Millican,
K., Silver, D., Petrov, S., Johnson, M., Antonoglou, I.,
Schrittwieser, J., Glaese, A., Chen, J., Pitler, E., Lilli-
crap, T. P., Lazaridou, A., Firat, O., Molloy, J., Isard, M.,
Barham, P. R., Hennigan, T., Lee, B., Viola, F., Reynolds,
M., Xu, Y., Doherty, R., Collins, E., Meyer, C., Ruther-
ford, E., Moreira, E., Ayoub, K., Goel, M., Tucker, G.,
Piqueras, E., Krikun, M., Barr, I., Savinov, N., Danihelka,
I., Roelofs, B., White, A., Andreassen, A., von Glehn,
T., Yagati, L., Kazemi, M., Gonzalez, L., Khalman, M.,
Sygnowski, J., and et al. Gemini: A family of highly
capable multimodal models. CoRR, abs/2312.11805,
2023. doi: 10.48550/ARXIV.2312.11805. URL https:
//doi.org/10.48550/arXiv.2312.11805.

Carta, T., Romac, C., Wolf, T., Lamprier, S., Sigaud, O.,
and Oudeyer, P.-Y. Grounding large language models in
interactive environments with online reinforcement learn-
ing. In International Conference on Machine Learning,
pp. 3676–3713. PMLR, 2023.

Chatzilygeroudis, K., Vassiliades, V., Stulp, F., Calinon, S.,
and Mouret, J.-B. A survey on policy search algorithms
for learning robot controllers in a handful of trials. IEEE
Transactions on Robotics, 36(2):328–347, 2019.

Cornelio, C. and Diab, M. Recover: A neuro-symbolic
framework for failure detection and recovery. In IROS
2024: IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2024.

Das, D. and Chernova, S. Semantic-based explainable ai:
Leveraging semantic scene graphs and pairwise ranking
to explain robot failures. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp.
3034–3041. IEEE, 2021.

Edge, D., Trinh, H., Cheng, N., Bradley, J., Chao, A., Mody,
A., Truitt, S., and Larson, J. From local to global: A graph
rag approach to query-focused summarization. arXiv
preprint arXiv:2404.16130, 2024.

9

https://doi.org/10.48550/arXiv.2404.14219
https://doi.org/10.48550/arXiv.2404.14219
https://doi.org/10.48550/arXiv.2312.11805
https://doi.org/10.48550/arXiv.2312.11805


Hierarchical Planning with Knowledge Graph-RAG and Symbolic Verification

Golovneva, O., Chen, M. P., Poff, S., Corredor, M.,
Zettlemoyer, L., Fazel-Zarandi, M., and Celikyilmaz, A.
Roscoe: A suite of metrics for scoring step-by-step rea-
soning. In The Eleventh International Conference on
Learning Representations, 2022.

Goyal, A., Friesen, A., Banino, A., Weber, T., Ke, N. R.,
Badia, A. P., Guez, A., Mirza, M., Humphreys, P. C.,
Konyushova, K., et al. Retrieval-augmented reinforce-
ment learning. In International Conference on Machine
Learning, pp. 7740–7765. PMLR, 2022.

Guan, L., Valmeekam, K., Sreedharan, S., and Kambham-
pati, S. Leveraging pre-trained large language models to
construct and utilize world models for model-based task
planning. Advances in Neural Information Processing
Systems, 36:79081–79094, 2023.

Guu, K., Lee, K., Tung, Z., Pasupat, P., and Chang, M.
Retrieval augmented language model pre-training. In
International conference on machine learning, pp. 3929–
3938. PMLR, 2020.

Höller, D., Behnke, G., Bercher, P., Biundo, S., Fiorino, H.,
Pellier, D., and Alford, R. Hddl: An extension to pddl
for expressing hierarchical planning problems. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 9883–9891, 2020.

Howey, R., Long, D., and Fox, M. Val: Automatic plan
validation, continuous effects and mixed initiative plan-
ning using pddl. In 16th IEEE International Conference
on Tools with Artificial Intelligence, pp. 294–301. IEEE,
2004.

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I. Lan-
guage models as zero-shot planners: Extracting ac-
tionable knowledge for embodied agents. In Interna-
tional Conference on Machine Learning, pp. 9118–9147.
PMLR, 2022.

Hughes, N., Chang, Y., and Carlone, L. Hydra: A real-time
spatial perception system for 3D scene graph construction
and optimization. 2022.

Jain, A., Jermaine, C., and Unhelkar, V. Rag-modulo: Solv-
ing sequential tasks using experience, critics, and lan-
guage models. arXiv preprint arXiv:2409.12294, 2024.

Jin, Y., Li, D., Yong, A., Shi, J., Hao, P., Sun, F., Zhang,
J., and Fang, B. Robotgpt: Robot manipulation learning
from chatgpt. IEEE Robotics and Automation Letters,
2024.

Kagaya, T., Yuan, T. J., Lou, Y., Karlekar, J., Pranata, S., Ki-
nose, A., Oguri, K., Wick, F., and You, Y. Rap: Retrieval-
augmented planning with contextual memory for mul-
timodal llm agents. arXiv preprint arXiv:2402.03610,
2024.

Kambhampati, S., Valmeekam, K., Guan, L., Verma, M.,
Stechly, K., Bhambri, S., Saldyt, L. P., and Murthy, A. B.
Position: Llms can’t plan, but can help planning in llm-
modulo frameworks. In Forty-first International Confer-
ence on Machine Learning.

Kannan, S. S., Venkatesh, V. L., and Min, B.-C. Smart-
llm: Smart multi-agent robot task planning using large
language models. In IROS 2024: IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2024.

Kim, M., Bursztyn, V., Koh, E., Guo, S., and Hwang, S.-
w. Rada: Retrieval-augmented web agent planning with
llms. In Findings of the Association for Computational
Linguistics ACL 2024, pp. 13511–13525, 2024.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel,
T., et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in Neural Information Pro-
cessing Systems, 33:9459–9474, 2020.

Li, S., Puig, X., Paxton, C., Du, Y., Wang, C., Fan, L.,
Chen, T., Huang, D.-A., Akyürek, E., Anandkumar, A.,
et al. Pre-trained language models for interactive decision-
making. Advances in Neural Information Processing
Systems, 35:31199–31212, 2022.

Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter, B.,
Florence, P., and Zeng, A. Code as policies: Language
model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation
(ICRA), pp. 9493–9500. IEEE, 2023.

Lin, B. Y., Huang, C., Liu, Q., Gu, W., Sommerer, S., and
Ren, X. On grounded planning for embodied tasks with
language models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37, pp. 13192–13200,
2023a.

Lin, K., Agia, C., Migimatsu, T., Pavone, M., and Bohg,
J. Text2motion: From natural language instructions to
feasible plans. Autonomous Robots, 47(8):1345–1365,
2023b.

Liu, B., Jiang, Y., Zhang, X., Liu, Q., Zhang, S., Biswas,
J., and Stone, P. Llm+ p: Empowering large language
models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023a.

Liu, Z., Bahety, A., and Song, S. REFLECT: Summarizing
robot experiences for failure explanation and correction.
In 7th Annual Conference on Robot Learning, 2023b.

Lu, Y., Feng, W., Zhu, W., Xu, W., Wang, X. E., Eckstein,
M., and Wang, W. Y. Neuro-symbolic procedural plan-
ning with commonsense prompting. In The Eleventh
International Conference on Learning Representations,

10



Hierarchical Planning with Knowledge Graph-RAG and Symbolic Verification

2023. URL https://openreview.net/forum?
id=iOc57X9KM54.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram,
A., Veloso, M., Weld, D., and Wilkins, D. Pddl—the
planning domain definition language. In Technical Report
DCS TR-1165, Yale Center for Computational Vision and
Control, 1998.

Pallagani, V., Muppasani, B., Murugesan, K., Rossi, F.,
Horesh, L., Srivastava, B., Fabiano, F., and Loreggia, A.
Plansformer: Generating symbolic plans using transform-
ers. arXiv preprint arXiv:2212.08681, 2022.

Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., and Wu, X.
Unifying large language models and knowledge graphs:
A roadmap. IEEE Transactions on Knowledge & Data
Engineering, (01):1–20, 2024.

Rajvanshi, A., Sikka, K., Lin, X., Lee, B., Chiu, H.-P., and
Velasquez, A. Saynav: Grounding large language models
for dynamic planning to navigation in new environments.
In Proceedings of the International Conference on Auto-
mated Planning and Scheduling, volume 34, pp. 464–474,
2024.

Raman, S. S., Cohen, V., Rosen, E., Idrees, I., Paulius, D.,
and Tellex, S. Planning with large language models via
corrective re-prompting. In NeurIPS 2022 Foundation
Models for Decision Making Workshop, 2022.

Rana, K., Haviland, J., Garg, S., Abou-Chakra, J., Reid,
I. D., and Suenderhauf, N. Sayplan: Grounding large
language models using 3d scene graphs for scalable task
planning. CoRR, 2023.

Ren, A. Z., Dixit, A., Bodrova, A., Singh, S., Tu, S., Brown,
N., Xu, P., Takayama, L., Xia, F., Varley, J., et al. Robots
that ask for help: Uncertainty alignment for large lan-
guage model planners. In 7th Annual Conference on
Robot Learning, 2023.

Romera-Paredes, B., Barekatain, M., Novikov, A., Balog,
M., Kumar, M. P., Dupont, E., Ruiz, F. J., Ellenberg, J. S.,
Wang, P., Fawzi, O., et al. Mathematical discoveries from
program search with large language models. Nature, 625
(7995):468–475, 2024.

Schick, T., Dwivedi-Yu, J., Dessi, R., Raileanu, R., Lomeli,
M., Hambro, E., Zettlemoyer, L., Cancedda, N., and
Scialom, T. Toolformer: Language models can teach
themselves to use tools. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

Silver, T., Hariprasad, V., Shuttleworth, R. S., Kumar, N.,
Lozano-Pérez, T., and Kaelbling, L. P. Pddl planning
with pretrained large language models. In NeurIPS 2022
foundation models for decision making workshop, 2022.

Singh, I., Blukis, V., Mousavian, A., Goyal, A., Xu, D.,
Tremblay, J., Fox, D., Thomason, J., and Garg, A. Prog-
prompt: Generating situated robot task plans using large
language models. In 2023 IEEE International Conference
on Robotics and Automation (ICRA), pp. 11523–11530.
IEEE, 2023.

Skreta, M., Yoshikawa, N., Arellano-Rubach, S., Ji, Z.,
Kristensen, L. B., Darvish, K., Aspuru-Guzik, A., Shkurti,
F., and Garg, A. Errors are useful prompts: Instruction
guided task programming with verifier-assisted iterative
prompting. arXiv preprint arXiv:2303.14100, 2023.

Song, C. H., Wu, J., Washington, C., Sadler, B. M., Chao,
W.-L., and Su, Y. Llm-planner: Few-shot grounded plan-
ning for embodied agents with large language models. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 2998–3009, 2023.

Trinh, T. H., Wu, Y., Le, Q. V., He, H., and Luong, T. Solv-
ing olympiad geometry without human demonstrations.
Nature, 625(7995):476–482, 2024.

Valmeekam, K., Marquez, M., Sreedharan, S., and Kamb-
hampati, S. On the planning abilities of large language
models-a critical investigation. Advances in Neural Infor-
mation Processing Systems, 36:75993–76005, 2023.

Vemprala, S., Bonatti, R., Bucker, A., and Kapoor, A. Chat-
gpt for robotics: Design principles and model abilities.
arXiv preprint arXiv:2306.17582, 2023.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi,
E. H., Le, Q., and Zhou, D. Chain of thought prompt-
ing elicits reasoning in large language models. CoRR,
abs/2201.11903, 2022.

Wu, J., Antonova, R., Kan, A., Lepert, M., Zeng, A., Song,
S., Bohg, J., Rusinkiewicz, S., and Funkhouser, T. Tidy-
bot: Personalized robot assistance with large language
models. Autonomous Robots, 2023.

Wu, Y., Zhang, J., Hu, N., Tang, L., Qi, G., Shao, J., Ren, J.,
and Song, W. Mldt: Multi-level decomposition for com-
plex long-horizon robotic task planning with open-source
large language model. arXiv preprint arXiv:2403.18760,
2024.

Xie, Y. Translating natural language to planning goals with
large-language models. The International Journal of
Robotics Research, 2019:1, 2020.

Xu, W., Wang, M., Zhou, W., and Li, H. P-rag: Progressive
retrieval augmented generation for planning on embodied
everyday task. arXiv preprint arXiv:2409.11279, 2024.

Yao, S., Rao, R., Hausknecht, M., and Narasimhan, K. Keep
calm and explore: Language models for action generation

11

https://openreview.net/forum?id=iOc57X9KM54
https://openreview.net/forum?id=iOc57X9KM54


Hierarchical Planning with Knowledge Graph-RAG and Symbolic Verification

in text-based games. In Empirical Methods in Natural
Language Processing (EMNLP), 2020.

Zhou, L., Schellaert, W., Martı́nez-Plumed, F., Moros-Daval,
Y., Ferri, C., and Hernández-Orallo, J. Larger and more
instructable language models become less reliable. Na-
ture, pp. 1–8, 2024a.

Zhou, Z., Song, J., Yao, K., Shu, Z., and Ma, L. Isr-llm: Iter-
ative self-refined large language model for long-horizon
sequential task planning. In 2024 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 2081–
2088. IEEE, 2024b.

Zhu, Y., Ou, Z., Mou, X., and Tang, J. Retrieval-augmented
embodied agents. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
17985–17995, 2024a.

Zhu, Y., Qiao, S., Ou, Y., Deng, S., Zhang, N., Lyu, S.,
Shen, Y., Liang, L., Gu, J., and Chen, H. Knowagent:
Knowledge-augmented planning for llm-based agents.
arXiv preprint arXiv:2403.03101, 2024b.

12



Hierarchical Planning with Knowledge Graph-RAG and Symbolic Verification

A. Extended State of the Art Review
LLM as planners Recent studies have explored the use of pre-trained Large Language Models (LLMs) for planning and
executing actions in interactive environments by leveraging the prior knowledge embedded in LLMs for plan generation (Wu
et al., 2023; Wei et al., 2022; Ahn et al., 2022; Yao et al., 2020; Huang et al., 2022; Schick et al., 2023). Typically, this process
involves translating multi-modal observations into natural language, using the LLM to generate domain-specific actions or
plans, and subsequently employing an agent to execute them. However, these methods are prone to hallucination (Golovneva
et al., 2022; Pan et al., 2024) and often lack the ability for deep understanding and reasoning (Ahn et al., 2022). The rapid
advancements and growing adoption of LLMs in recent years have facilitated their extensive application across diverse
AI research domains, including robotics (Ren et al., 2023; Das & Chernova, 2021; Jin et al., 2024; Vemprala et al., 2023).
LLMs can be directly employed for generating plans (Lin et al., 2023a; Xie, 2020; Huang et al., 2022; Carta et al., 2023;
Song et al., 2023; Lin et al., 2023b). In addition to using off-the-shelf pre-trained LLMs, several studies have explored
fine-tuning LLMs specifically for planning tasks (Valmeekam et al., 2023; Li et al., 2022; Pallagani et al., 2022) However,
these studies indicate that LLMs are more effective at goal translation than at actual planning, as they often lack robust
reasoning capabilities and are highly sensitive to prompt variations. Thus, LLMs have been utilized for translating natural
language (NL) goals into symbolic languages. For instance, they have been employed to convert NL task descriptions into
PDDL (Planning Domain Definition Language) representations (Guan et al., 2023; Liu et al., 2023a) allowing the problem
to be solved by a standard PDDL solver. Similarly, other studies (Liang et al., 2023; Singh et al., 2023) have translated NL
instructions into Python-style code, making it easier to generate executable plans for robotic tasks. Finally, (Silver et al.,
2022) studied how well pretrained large language models, with few-shot prompting, perform in the role of solvers for PDDL
planning problems.

Hirearchical planning Hierarchical planning has recently garnered significant interest from the research community,
as evidenced by the following studies: (Höller et al., 2020) introduce HDDL, an extension of PDDL (Planning Domain
Definition Language) that serves as a standardized input language, enabling support for hierarchical planning tasks across
various systems. HDDL aims to facilitate the comparison and integration of different hierarchical planning systems by
providing a common feature set. (Ajay et al., 2024) introduce a model that integrates expert foundation models trained
on language, vision, and action data to address long-horizon tasks. HiP employs an LLM for symbolic planning, a video
diffusion model for visual grounding, and an inverse dynamics model to translate image trajectories into actionable steps,
emphasizing iterative refinement across task planning, visual planning, and action planning levels. Unlike our symbolic
approach, the hierarchy in HiP operates at the robot movement level rather than at the level of macro actions. (Wu et al.,
2024) present MLDT, a method that tackles long-horizon task planning challenges by decomposing tasks into three levels:
goal-level, task-level, and action-level. The approach uses three distinct prompting templates to generate plans at each level,
with each stage conditioned on the output of the preceding layer. Finally, other works (Hughes et al., 2022; Rana et al.,
2023) leverage the hierarchical structures of the environment by utilizing 3D scene graphs for more effective task planning
in robotic systems.

RAG systems for Robotics. Retrieval-Augmented Generation (RAG) (Lewis et al., 2020) systems enhance language
model predictions by retrieving task-specific relevant knowledge from external sources such as text (Guu et al., 2020),
knowledge graphs (Edge et al., 2024), or web (Kim et al., 2024). RAG has become increasingly important for generative
models, especially given recent findings that indicate LLMs are becoming less reliable (Zhou et al., 2024a). (Goyal et al.,
2022) explore retrieval in the context of deep reinforcement learning (RL) agents, though it does not employ LLMs,
which limits its applicability and efficiency. Other studies emphasize the retrieval of past experiences to support planning
processes. For instance, (Xu et al., 2024) focus on retrieving plans related to similar tasks, demonstrating the value of
retrieval in supporting planning processes. Similarly, (Jain et al., 2024) enhances LLMs as policies by retrieving relevant
past interactions from a continuously expanding database, which stores both previous interactions and feedback from critics;
(Zhu et al., 2024a) utilize a policy retriever to extract robotic policies from a large-scale policy memory; and (Kagaya et al.,
2024) employ retrieval of past experiences from a memory structure to inform agent planning. Examples of Graph-RAG
methods for planning include the work of (Rana et al., 2023) which performs a semantic search for task-relevant subgraphs
from a condensed representation of a full scene graph representing the environment, optimizing the planning process; and
the work of (Zhu et al., 2024b) which introduces KNOWAGENT, an method that enhances LLM planning capabilities by
incorporating explicit knowledge retrieved from an action knowledge base and applying a knowledgeable self-learning
strategy to guide action paths during planning. Finally, the most relevant work to ours is the work of (Lu et al., 2023) which
utilizes a KG-RAG method for retrieving relevant nodes from a knowledge graph (KG) while mapping the actions to only

13



Hierarchical Planning with Knowledge Graph-RAG and Symbolic Verification

feasible ones. However, their approach lacks a comprehensive verification of the entire plan and is likely to encounter the
same challenges as LLMs when handling complex, long-horizon tasks.

Symbolic verification and LLMs The position paper by (Kambhampati et al.) argues that LLMs are not suitable as
standalone planners or plan verifiers, and instead proposes a framework that combines LLMs with external verifiers, named
LLM-Modulo Framework, with a particular focus on PDDL planning tasks. Several implementations of this concept exist.
For instance, FunSearch (Romera-Paredes et al., 2024) and Alpha-Geometry (Trinh et al., 2024) employs a alternate between
a fine-tuned LLM that generates potential solutions and an a symbolic evaluator that evaluate them. In reinforcement
learning scenarios with simulators, the simulator itself serves as plan evaluator and critique mechanism within the LLM-
Modulo framework. For instance, in the works of (Rajvanshi et al., 2024) and (Ahn et al., 2022) the simulator help to
explicitly filter the action choices suggested by the LLM. Another relevant work is CLAIRIFY (Skreta et al., 2023), which
combines iterative prompting with program verification to ensure that the generated programs are syntactically correct
and incorporate environmental constraints. However, CLAIRIFY’s verifier only checks the syntax of instructions and the
existence of hardware and reagents used (thereby avoiding hallucinations), without validating the overall correctness of the
plan. Similarly, another work (Raman et al., 2022) identifies and corrects errors in LLM-generated plans through iterative
re-prompting using the error information. However, this approach is limited to handling preconditions, and it assumes that
error information is provided (e.g., generated by a simulator) rather than detected independently. Most relevant for our
approach is the work by (Valmeekam et al., 2023), which demonstrates that LLM performance improves significantly when
backprompting with the VAL-verifier (Howey et al., 2004). This highlights the effectiveness of integrating verification tools
in conjunction with LLM-based planning.

B. Additional details
B.1. Examples of alternative plans vs the ground truth plans

As discussed in the paper, generated plans often tend to be longer and include unnecessary steps, which can affect execution
success even when the plan is correct leading to the desired goal. This is partly due to LLM-based planners generating
redundant actions during task decomposition and error correction. For example, in task T3, where the goal is “I want a fried
egg in a plate on the countertop”, the plan generated by HVR includes several superfluous steps that do not contribute to
achieving the objective efficiently.

1 ALTERNATIVE PLAN (32 steps) GROUD THRUTH PLAN (16 steps)
2 (navigate_to_obj, Egg-1) (navigate_to_obj, Egg-1)
3 (pick_up, Egg-1) (pick_up, Egg-1)
4 (navigate_to_obj, Egg-1) (crack_obj, Egg-1)
5 (crack_obj, Egg-1) (navigate_to_obj, Pan-1)
6 (navigate_to_obj, Pan-1) (put_in, EggCracked, Pan-1)
7 (navigate_to_obj, CounterTop-1) (pick_up, Pan-1)
8 (put_on, EggCracked-1, CounterTop-1) (navigate_to_obj, StoveBurner-1)
9 (navigate_to_obj, Pan-1) (put_on, Pan-1, StoveBurner-1)

10 (pick_up, Pan-1) (toggle_on, StoveBurner-1)
11 (navigate_to_obj, StoveBurner-1) (toggle_off, StoveBurner-1)
12 (put_on, Pan-1, StoveBurner-1) (pick_up, EggCracked-1)
13 (navigate_to_obj, StoveBurner-1) (navigate_to_obj, Plate-1)
14 (toggle_on, StoveBurner-1) (put_on, EggCracked-1, Plate-1)
15 (navigate_to_obj, EggCracked-1) (pick_up, Plate-1)
16 (pick_up, EggCracked-1) (navigate_to_obj, CounterTop-1)
17 (navigate_to_obj, Pan-1) (put_on, Plate-1, CounterTop-1)
18 (put_in, EggCracked-1, Pan-1)
19 (navigate_to_obj, StoveBurner-1)
20 (toggle_off, StoveBurner-1)
21 (navigate_to_obj, Plate-1)
22 (pick_up, Plate-1)
23 (navigate_to_obj, EggCracked-1)
24 (navigate_to_obj, CounterTop-1)
25 (put_on, Plate-1, CounterTop-1)
26 (navigate_to_obj, EggCracked-1)
27 (pick_up, EggCracked-1)
28 (navigate_to_obj, Plate-1)

14



Hierarchical Planning with Knowledge Graph-RAG and Symbolic Verification

29 (put_on, EggCracked-1, Plate-1)
30 (navigate_to_obj, Plate-1)
31 (pick_up, Plate-1)
32 (navigate_to_obj, CounterTop-1)
33 (put_on, Plate-1, CounterTop-1)

B.2. Generic tasks

Tasks T12 and T5bis are open-ended, causing their ground truth plans to vary across runs based on the LLM’s intentions.
The goal for T12 is “Set the table and serve a vegan meal”, while for T5bis, it is “I want warm water in a cup.” In contrast,
all other tasks have a single manually created ground truth plan, as their goals can be achieved in a unique way with a
minimal number of actions. Since T12 and T5bis allow multiple ways to accomplish their goals, we generated a ground
truth plan for each run, aligning it with the LLM’s specific intentions.

Two examples of two ground truth plans (aligned with their corresponding generative ones) for T5bis are:

1 PLAN 1 (18 steps) PLAN-2 (17 steps)
2 navigate_to_obj(Pot-1) navigate_to_obj(Cup-1)
3 pick_up(Pot-1) pick_up(Cup-1)
4 navigate_to_obj(SinkBasin-1) navigate_to_obj(SinkBasin-1)
5 put_in(Pot-1,SinkBasin-1) put_in(Cup-1,SinkBasin-1)
6 toggle_on(Faucet-1) toggle_on(Faucet-1)
7 toggle_off(Faucet-1) toggle_off(Faucet-1)
8 pick_up(Pot-1) navigate_to_obj(Microwave-1)
9 navigate_to_obj(StoveBurner-1) open_obj(Microwave-1)

10 put_on(Pot-1,StoveBurner-1) navigate_to_obj(SinkBasin-1)
11 toggle_on(StoveKnob-1) pick_up(Cup-1)
12 toggle_off(StoveKnob-1) navigate_to_obj(Microwave-1)
13 pick_up(Pot-1) put_in(Cup-1,Microwave-1)
14 navigate_to_obj(Cup-1) close_obj(Microwave-1)
15 pour(Pot-1,Cup-1) toggle_on(Microwave-1)
16 navigate_to_obj(CounterTop-1) toggle_off(Microwave-1)
17 put_on(Pot-1,CounterTop-1) open_obj(Microwave-1)
18 navigate_to_obj(Cup-1) pick_up(Cup-1)
19 pick_up(Cup-1)

Defining the ground truth plans is essential for computing the metrics.

B.3. Additional Implementation Details

The code will be made available upon publication.

Here are some additional details about the implementation for reproducibility:

• The plan correctness (PC) metric is adjusted for plans that follow a partial order, where actions can be executed in
parallel or in different sequences. For example, when preparing a salad with lettuce and tomato, the tomato can be
cut and added first, or the lettuce can be prepared first—both sequences achieve the same goal and are valid plan
linearizations. To account for this, the metric is adapted to take the maximum score across all possible linearizations.

• In the prompt for macro action generation, we provide the classes of the available object (e.g., Apple) to inform the
LLM of what is present in the environment. In contrast, the prompt for AA-blocks expansion we list specific object
instances (e.g., apple-1).

• When correcting an AA-block, for each step, the system attempts correction up to 2 ∗ x times, where x, the lenght of
the action block dynamically updated based on the current number of steps. For example, starting with 5 steps (x = 5),
if a correction added a missing step, x increases to 6. Similarly, x adjusts whenever steps are removed. To prevent an
infinite loop of corrections, each block has a static upper limit of 50 steps.

• For macro actions, an initial attempt is made to correct pre- and post-conditions, based on the symbolic validator
feedback, followed by further corrections after each AA-block execution. At the end of an AA-block execution, if

15



Hierarchical Planning with Knowledge Graph-RAG and Symbolic Verification

no failures occur, the system reviews and refines the pre- and post-conditions of the macro action that generated it,
incorporating feedback from the environment. This refinement allows for updating and saving a better quality of macro
action in the macro-action “culture” library.

B.4. Task renumbering

In Table 3 we report the task renumbering we used in comparison with RECOVER (Cornelio & Diab, 2024). Task “Boil
water in a pot” from (Cornelio & Diab, 2024) was used as a one-shot example in our LLM-based planner. Additionally, we
introduced two new complex tasks, T11 and T12. Task T5 was duplicated as T5bis, with the difference that in T5, the robot
must warm water specifically using the microwave, whereas in T5bis, the robot can warm the water using any available
method, such as on a stove, in a kettle, or in the microwave.

Table 3. Task numbering: our work vs RECOVER (Cornelio & Diab, 2024) (∗used as 1-shot example)

HVR ID RECOVER ID Name

M
od

er
at

e
co

m
pl

ex
ity

T1 T1 Serve wine
T2 T2 Make coffee
–∗ T3 Boil water in a pot

T3 T4 Fry egg in a pan
T4 T5 Toast bread
T5 T6 Warm water (in microwave)

T5bis - Warm water (generic)
T6 T7 Cook potato slice (in microwave)

H
ig

h
co

m
pl

ex
ity

T7 T8 Simple salad
T8 T10 Vegan sandwich
T9 T11 Cook egg and potato slice
T10 T12 Complex salad
T11 – Tomato-egg toast
T12 – Complex plate

B.5. Additional results: T5 vs T5bis

Table 4 presents the results comparing T5 “Warm water in a cup using the microwave” (specific goal) and T5bis “Warm
water in a cup” (general goal) across various metrics. The results show that tasks with more general objectives lead to worse
performance due to increased ambiguity in goal interpretation due to fact that there are multiple ways to accomplish it. This
highlights the challenge LLM-based planners face in handling open-ended tasks.

Table 4. Results comparing T5 and T5bis over the different metrics Plan Correctness (PC), Length Discrepancy (LD), Expanded Plan
Verification (EPV), Macro Plan Verification (MPV) after correction, and Atomic Action Block Verification (AABV) after correction.

Gemini Phi3

PC LD EPV PC LD EPV

T5bis T5 T5bis T5 T5bis T5 T5bis T5 T5bis T5 T5bis T5

HVR (our) 88.89 100.00 100.00 223.53 96.88 34.55 23.53 29.41 368.75 335.29 22.67 6.76
HV 52.94 88.24 175.00 158.82 100.00 100.00 0.00 11.76 868.75 305.88 5.16 11.59
HR 29.41 29.41 37.50 5.88 12.20 13.16 27.78 17.65 268.75 223.53 2.56 6.67
VR 17.65 52.94 37.50 23.53 7.32 51.22 11.76 17.65 125.00 11.76 5.45 46.15
R 17.65 52.94 25.00 -17.65 7.69 20.59 11.76 11.76 0.00 -5.88 8.57 8.33
LLM 17.65 17.65 0.00 -41.18 8.57 10.00 0.00 11.76 162.50 5.88 32.79 23.68

Avg. 0.32 0.49 62.50 58.82 38.78 38.25 0.11 0.14 298.96 146.08 12.87 17.20

B.6. Library of Macro Actions

ONTOTHOR (Cornelio & Diab, 2024) contains the class Action to represent the agent’s interactions with the environment,
such as object manipulations and environmental observation. We further refined this structure by introducing two subclasses:

16



Hierarchical Planning with Knowledge Graph-RAG and Symbolic Verification

Atomic Action, which aligns with the original Action class in ONTOTHOR, and a newly defined Macro Action class, used
to represent higher-level operations like boil-water.

During task execution, instances of both Atomic Actions (AAs) and Macro Actions (MAs) are stored in the agent’s
Knowledge Graph G. Each Macro Action instance is connected to its natural language description—generated by the LLM
and including pre- and post-conditions—via the hasDescription predicate. These pre- and post-conditions could also be
modeled as triples, extending the scene-graph representation introduced by Cornelio & Diab (2024). Additionally, each
Macro Action instance is linked to its corresponding sequence of Atomic Actions using the hasAtomicAction predicate.

Thus, after task execution, the Knowledge Graph G contains a set of macro actions along with their associated pre- and
post-conditions. If a macro action is successfully verified by the environment state, it is then transferred to the ontology O.
For details on how this alignment between observations and the expected world state is verified after each macro action,
refer to Section 2.4.

B.7. Efficiency Considerations

Figure 4 shows the average computational time for the different models across the 13 tasks using Gemini-1.5-flash as
LLM. As expected, approaches involving hierarchical decomposition require (approximately three times) more time than
those without. However, as LLMs become faster, the overhead introduced by the HVR framework becomes increasingly
negligible, while substantially improving plan correctness. For example, running the same tasks with Gemini-2.0-flash
reduced the average execution time for HVR from 3285.32 seconds to 681.51 seconds—a 5x improvement.

HVR HV HR VR R LLM
0

1

2

3

4

3.49
3.3

3.78

1.29
1.1 1.07

0.68 0.68
0.51 0.57

0.39
0.53A

vg
E

xe
cu

tio
n

Ti
m

e
(1

k
se

co
nd

s)

Gemini 1.5 flash
Gemini 2.0 flash

Figure 4. Average execution times (in seconds) per model using Gemini 1.5 and 2.0 flash

In contrast to this improvement, relying solely on an LLM as a planner demands a substantially larger context window,
which quickly becomes impractical as task or environment complexity increases. HVR addresses this limitation through
retrieval-augmented generation (RAG), enabling it to dynamically access only the relevant information from the knowledge
graph. This design ensures stable processing times and scalability, even as the environment grows, whereas LLM-only
approaches face escalating computational demands and eventual context window exhaustion.

Figure 5 shows the trade-off between plan correctness and execution time across the different methods. While HVR takes
longer to compute plans, it consistently achieves the highest correctness. In contrast, simpler methods like LLM or R achieve
faster execution but produce significantly less reliable plans, demonstrating the benefit of HVR’s more structured approach.

B.8. Comparison with the State-of-the-Art

We do not provide a direct experimental comparison with existing state-of-the-art methods, as we were unable to find prior
work that targets complex, long-horizon tasks in a kitchen environment compatible with our setup.

17



Hierarchical Planning with Knowledge Graph-RAG and Symbolic Verification

1,000 1,500 2,000 2,500 3,000 3,500
0

20

40

60

80

100
HVR

HV

HR

VR
R

LLM

Execution Time (seconds)

Pl
an

C
or

re
ct

ne
ss

(%
)

Figure 5. Efficiency of Methods: Plan Correctness vs. Execution Time in seconds with Gemini 1.5 flash

However, we conducted comparison experiments3 with two relevant approaches: Smart-LLM and ProgPrompt (see details
below). While we also considered several other methods, we were unable to include them in our evaluation due to
compatibility issues (see below for more detailed information).

Smart-LLM (Kannan et al., 2024) uses large language models for planning in robotic systems, with a focus on multi-agent
coordination. It handles task decomposition, coalition formation, and task allocation among heterogeneous robot teams
based on their capabilities. The approach focuses on generating executable Python code tailored to the robot skills and
environment, with an emphasis on parallel and distributed execution across agents.

This work is closely related to ours, as it uses the same simulator (AI2Thor) for the experiments and addresses complex
tasks (even if in a multi-agent setting).

In the data/final_test folder in their GIT repository there are 7 rooms of which only 3 are kitchen: FloorPlan6,
FloorPlan15, FloorPlan21. The others are bedrooms and living rooms which are outside the scope of our ontology.
There are a total of 15 tasks in these 3 rooms of which only 12 were feasible in our setup: 3 tasks out of 3 for FloorPlan6;
5 tasks out of 6 for FloorPlan15; and 4 tasks out of 6 for FloorPlan21. This is due to a key implementation choice: in
Smart-LLM, the robot has full knowledge of all object locations, including hidden ones (e.g., inside a fridge or cupboard),
whereas in our system, consistently with prior work like RECOVER (Cornelio & Diab, 2024), we assume only visible
objects can be used — interacting with hidden objects is thus treated as failure.

We evaluated HVR on these 12 tasks, and it successfully planned and executed all of them.

ProgPrompt (Singh et al., 2023) uses large language models for robotic task planning, with a focus on generating structured,
Python-like programs that include pre/post condition in the form of assertions and recovery steps. This helps ensure the
plans are grounded and executable. The method relies on careful prompt engineering, incorporating imports, object lists,
and example functions to guide the model’s output.

In the progprompt-vh/data/test_unseen/ folder of their GIT repository, there are 10 available tasks (see Table 2in
Singh et al. (2023)), 7 of which are kitchen related. We excluded the following tasks as they are either human-specific or fall
outside the scope of our ontology: brush teeth; watch tv; and eat chips on the sofa. Although these tasks were originally
designed for the VirtualHome simulator, we reimplemented them in the AI2Thor simulator. Table 5 provides details of this
reimplementation.

3For these additional experiments we used Gemini 2.0 flash, since these experiemnts were done in a subsequent moment.

18



Hierarchical Planning with Knowledge Graph-RAG and Symbolic Verification

Table 5. ProgPrompt tasks translated from VirtualHome simulator to AI2Thor simulator.

VirtualHome Description AI2Thor description AI2Thor room

put salmon in the fridge put egg in the fridge FloorPlan2
wash the plate wash the plate FloorPlan16
bring coffeepot and cupcake to the coffee table bring kettle and apple to the table FloorPlan18
microwave salmon microwave potato FloorPlan2
turn off light turn off light FloorPlan1
throw away apple throw away apple FloorPlan1
make toast make toast FloorPlan1

HVR was able to plan and execute correctly all of the tasks. However, it’s worth noting that all of these tasks are relatively
simple and fall well below the complexity of those in our benchmark. Additionally, ProgPrompt was evaluated using GPT-3,
and their performance would likely improve with a more capable LLM.

Other works we considered. We also considered other LLM-based systems such as Liu et al. (2023a) and Guan et al.
(2023). However, these methods are built on different simulators and/or involve tasks that are not compatible with our
setup (e.g., organizing blocks on a table). As a result, a direct comparison would require a substantial and non-trivial
reimplementation, which falls outside the scope of this work.

Similarly, we could not compare with PDDL-based planning systems on our tasks as we found no existing works using
planners expressive enough to support our tasks. As described in Section 3.3 (‘Symbolic Validator’), our system uses
conjunctive (and), disjunctive (or), and conditional (when) PDDL statements. We therefore implemented a custom validator
in Python, adapted specifically to the AI2Thor kitchen environment.

We have considered the implementation of Zhou et al. (2024b), which involves solving simple abstract tasks in a simulated
kitchen environment (e.g., organizing generic ’ingredient’ objects in ’pot’ objects by following a ’recipe’). In this work, the
authors generate both a PDDL domain and a goal state starting from a task specification. While this can work for a simple
environment with few available actions, we argue it is generally not possible to generate PDDL domain specifications from
high-level natural language task specifications such as the ones we use in our work. Thus, we did not run experimental
comparisons with this method.

Finally, we reviewed the implementation of Xie (2020) which uses the ALFRED simulator, a close relative of AI2Thor.
However, the implementation is too limited for our use case and does not support key functionalities like creating object slices
after slicing an object, handling liquids, or modeling interactions such as opening/closing appliances, which are necessary to
create plans for the vast majority of our tasks. The actions modeled in the implementation are more coarse-grained than the
ones we used in our work: for example, instead of modeling the act of opening a microwave, the system simply assumes that
an object becomes hot when the robot is near the appliance, without simulating the intermediate steps. For these reasons, the
system is not suitable for a meaningful comparison.

B.9. Limitations and Future Work

The HVR framework integrates hierarchical planning, knowledge graph retrieval, and symbolic validation to enhance
LLM-based task planning, but it also presents several limitations that point to promising directions for future work. One
key limitation is its reliance on a fixed ontology and action space, which constrains generalization to new environments or
tasks. While updating to the ontology currently requires expert domain knowledge, the predefined action space could be
extended to include novel actions automatically using LLM-based techniques—similar to how HVR currently generates
macro actions along with their corresponding pre- and post-conditions. Prompt sensitivity is another concern common to
LLM-based systems, although recent models show improved robustness to variations in prompt phrasing. Additionally,
HVR’s current use of natural language to mediate interactions between the LLM and the knowledge graph may not be the
most efficient; leveraging sub-symbolic or embedded representations could improve this integration. Another limitation is
the current restriction to a linear structure for the generated plans. Supporting partial-order plans would not only allow for
more flexible planning but also make it possible to execute different branches in parallel, which is especially valuable in
multi-agent settings. Finally, in our method, error correction is done independently for each part of the plan and does not
address interdependencies between errors at different planning levels. A more connected correction strategy that reasons

19



Hierarchical Planning with Knowledge Graph-RAG and Symbolic Verification

across macro and atomic actions could help improve overall correctness.

C. Full Results using Phi3
In Table 6 we report the results for the metric Plan Correctness (PC) for HVR and all the baselines approaches using Phi3 as
LLM-based planner. The results for each method are presented per task, along with the averages across all 12 tasks, as well
as separately for tasks of moderate and high complexity.

Table 6. Results for the Plan Correctness (PC) metric using Phi3 across all 12 tasks are presented as percentages. The results are provided
as overall averages and also separately averaged for moderate and high-complexity tasks.

Moderate complexity tasks High complexity tasks

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 avg. avg. moderate avg. high

HVR (our) 37.50 100.00 31.25 72.22 29.41 39.13 100.00 100.00 25.71 69.44 51.22 60.00 59.66 51.59 67.73
HV 37.50 0.00 0.00 44.44 11.76 4.35 20.69 18.18 8.57 16.67 53.66 11.11 18.91 16.34 21.48
HR 37.50 100.00 31.25 83.33 17.65 39.13 82.76 84.85 17.14 69.44 48.78 54.17 55.50 51.48 59.52
VR 25.00 33.33 31.25 44.44 17.65 34.78 10.34 24.24 5.71 5.56 4.88 3.33 20.04 31.08 9.01
R 25.00 100.00 12.50 11.11 11.76 8.70 13.79 6.06 5.71 5.56 4.88 10.00 17.92 28.18 7.67
LLM 25.00 44.44 12.50 11.11 11.76 8.70 6.90 6.06 5.71 5.56 4.88 0.00 11.89 18.92 4.85

30.65 32.93 28.38

In Table 7 we report the results for the metric Execution Success (ES) for HVR and all the baselines using Phi3 as LLM-based
planner. The results for each method are presented per task that was planned correctly (100% Plan Correctness).

Table 7. Results for the Execution Success (ES) metric using Phi3 across all 12 tasks are presented as percentages.
Moderate complexity tasks High complexity tasks

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

HVR (our) - 100.00 - - - - 86.20 100.00 - - - -
HV - - - - - - - - - - - -
HR - 100.00 - - - - - - - - - -
VR - - - - - - - - - - - -
R - 100.00 - - - - - - - - - -
LLM - - - - - - - - - - - -

In Table 8 we report the results for the metric Length Discrepancy (LD) for HVR and all the baselines using Phi3 as
LLM-based planner. The results for each method are presented per task, along with the average across all 12 tasks, the
absolute average, the min and max values.

Table 8. Results for the Length Discrepancy (LD) metric using Phi3 across all 12 tasks are presented as percentages. The results include
averages, absolute averages, and the minimum and maximum values across tasks.

Moderate complexity tasks High complexity tasks

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 min max avg abs. avg.

HVR (our) 100.00 222.22 562.50 266.67 335.29 256.52 58.62 39.39 240.00 100.00 56.10 39.39 562.50 203.39 203.39
HV 587.50 166.67 106.25 50.00 305.88 626.09 41.38 121.21 85.71 97.22 34.15 34.15 626.09 202.01 202.01
HR 100.00 144.44 200.00 155.56 223.53 134.78 79.31 69.70 160.00 47.22 46.34 46.34 223.53 123.72 123.72
VR 262.50 166.67 25.00 55.56 11.76 30.43 -24.14 -12.12 -14.29 -19.44 -24.39 -24.39 262.50 41.59 58.75
R 387.50 144.44 12.50 -11.11 -5.88 4.35 -37.93 -48.48 20.00 -8.33 -4.88 -48.48 387.50 41.11 62.31
LLM 50.00 -22.22 62.50 116.67 5.88 -30.43 34.48 39.39 17.14 -2.78 -21.95 -30.43 116.67 22.61 36.68

20



Hierarchical Planning with Knowledge Graph-RAG and Symbolic Verification

In Table 9 we report the results for the metric Expanded Plan Verification (EPV) for HVR and all the baselines using Phi3 as
LLM-based planner. The results for each method are presented per task, along with the average across all 12 tasks.

Table 9. Results for the Expanded Plan Verification (EPV) metric using Phi3 across all 12 tasks are presented as percentages, with task
averages also provided.

Moderate complexity tasks High complexity tasks

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 avg.

HVR (our) 93.75 6.76 21.95 9.43 56.06 100.00 15.22 100.00 11.76 53.13 44.44 56.16 47.39
HV 61.82 11.59 5.99 100.00 100.00 45.83 26.83 32.88 12.31 49.09 25.35 4.55 39.69
HR 55.56 6.67 16.25 8.96 20.90 2.94 8.33 45.65 8.53 27.88 6.52 32.80 20.08
VR 35.00 46.15 53.57 12.82 57.14 25.00 14.81 20.00 11.76 4.00 36.76 25.81 28.57
R 28.00 8.33 6.00 29.73 8.11 26.47 10.00 5.66 3.75 3.61 4.17 5.08 11.58
LLM 13.04 23.68 7.14 6.67 28.33 42.11 18.31 3.66 3.80 5.26 4.05 97.22 21.11

In Table 10 we report the results for the metric Macro Plan Verification (MPV) for all the methods that use symbolic
validation (i.e., HVR and HV) using Phi3 as LLM-based planner. The results for each method are presented per task, along
with the average across all 12 tasks. They are shown both before correction (first part of the table) and after correction
(second part of the table).

Table 10. Results for the Macro Plan Verification (MPV) metric using Phi3 across all 12 tasks are presented as percentages. The results
are shown both before and after correction, with task averages also provided.

Moderate complexity tasks High complexity tasks

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 avg.

Before correction

HVR (our) 100.00 60.00 0.00 66.67 33.33 100.00 14.29 100.00 14.29 25.00 28.57 22.22 47.03
HV 100.00 100.00 66.67 100.00 100.00 33.33 40.00 40.00 25.00 28.57 28.57 100.00 63.51

After correction

HVR (our) 100.00 60.00 50.00 66.67 44.44 100.00 85.71 100.00 71.43 37.50 85.71 88.89 74.20
HV 100.00 100.00 100.00 100.00 100.00 100.00 80.00 60.00 100.00 85.71 28.57 100.00 87.86

In Table 11 we report the results for the metric Atomic Action Block Verification (AABV) for all the methods that use
symbolic validation (i.e., HVR and HV) using Phi3 as LLM-based planner. The results for each method are presented per
task, along with the average across all 12 tasks. They are shown both before correction (first part of the table) and after
correction (second part of the table). For comparison purposes, we also included results for HR in the first part of the table.

Table 11. Results for the Atomic Action Block Verification (AABV) metric using Phi3 across all 12 tasks are presented as percentages.
The results are shown both before and after correction, with task averages also provided.

Moderate complexity tasks High complexity tasks

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 avg.

Before correction

HVR (our) 50.00 0.00 0.00 66.67 0.00 14.29 0.00 100.00 0.00 25.00 28.57 44.44 27.41
HV 40.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.29 28.57 0.00 6.90
HR 50.00 0.00 0.00 14.29 0.00 14.29 0.00 71.43 0.00 0.00 28.57 36.36 17.91

After correction

HVR (our) 50.00 100.00 16.67 66.67 0.00 14.29 0.00 100.00 0.00 25.00 28.57 44.44 37.14
HV 40.00 0.00 100.00 100.00 0.00 0.00 0.00 20.00 0.00 14.29 28.57 0.00 25.24

21



Hierarchical Planning with Knowledge Graph-RAG and Symbolic Verification

D. Full Results using Gemini
In Table 12 we report the results for the metric Plan Correctness (PC) for HVR and all the baselines approaches using
Gemini as LLM-based planner. The results for each method are presented per task, along with the averages across all 12
tasks, as well as separately for tasks of moderate and high complexity.

Table 12. Results for the Plan Correctness (PC) metric using Gemini across all 12 tasks are presented as percentages. The results are
provided as overall averages and also separately averaged for moderate and high-complexity tasks.

Moderate complexity tasks High complex tasks

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 avg. avg. moderate avg. high

HVR (our) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 57.14 100.00 73.17 100.00 94.19 100.00 88.39
HV 87.50 100.00 100.00 100.00 88.24 82.61 100.00 100.00 57.14 69.44 68.29 70.00 85.27 93.06 77.48
HR 50.00 100.00 100.00 83.33 29.41 47.83 100.00 0.00 5.71 69.44 2.44 0.00 49.01 68.43 29.60
VR 37.50 100.00 12.50 33.33 52.94 4.35 13.79 9.09 8.57 38.89 2.44 28.57 28.50 40.10 16.89
R 50.00 100.00 12.50 5.56 52.94 4.35 13.79 3.03 25.71 2.78 2.44 13.33 23.87 37.56 10.18
LLM 50.00 100.00 12.50 5.56 17.65 4.35 13.79 3.03 2.86 2.78 2.44 0.00 17.91 31.68 4.15

49.79 61.80 37.78

In Table 13 we report the results for the metric Execution Success (ES) for HVR and all the baselines using Gemini as
LLM-based planner. The results for each method are presented per task that was planned correctly (100% Plan Correctness).

Table 13. Results for the Execution Success (ES) metric using Gemini across all 12 tasks are presented as percentages.
Moderate complexity tasks High complex tasks

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

HVR (our) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 - 88.89 - 100.00
HV - 100.00 100.00 100.00 - - 86.20 100.00 - - - -
HR - 100.00 100.00 - - - 86.20 - - - - -
VR - 100.00 - - - - - - - - - -
R - 100.00 - - - - - - - - - -
LLM - 100.00 - - - - - - - - - -

In Table 14 we report the results for the metric Length Discrepancy (LD) for HVR and all the baselines using Gemini as
LLM-based planner. The results for each method are presented per task, along with the average across all 12 tasks, the
absolute average, the min and max values.

Table 14. Results for the Length Discrepancy (LD) metric using Gemini across all 12 tasks are presented as percentages. The results
include averages, absolute averages, and the minimum and maximum values across tasks.

Moderate complexity tasks High complexity tasks

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 min max avg abs. avg.

HVR (our) 337.50 33.33 100.00 55.56 223.53 82.61 62.07 87.88 88.57 80.56 48.78 33.33 337.50 109.13 109.13
HV 75.00 33.33 100.00 83.33 158.82 21.74 58.62 39.39 57.14 41.67 70.73 21.74 158.82 67.25 67.25
HR -50.00 33.33 75.00 60.00 5.88 4.35 58.62 51.52 34.29 55.56 26.83 -50.00 75.00 32.31 41.40
VR 0.00 33.33 25.00 126.67 23.53 -17.39 24.14 0.00 -5.71 27.78 -17.07 -17.39 126.67 20.02 27.33
R -25.00 33.33 37.50 26.67 -17.65 -13.04 -24.14 -27.27 5.71 -27.78 -17.07 -27.78 37.50 -4.43 23.20
LLM -25.00 33.33 37.50 6.67 -41.18 -21.74 -24.14 -6.06 -8.57 8.33 2.44 -41.18 37.50 -3.49 19.54

22



Hierarchical Planning with Knowledge Graph-RAG and Symbolic Verification

In Table 15 we report the results for the metric Expanded Plan Verification (EPV) for HVR and all the baselines using
Gemini as LLM-based planner. The results for each method are presented per task, along with the average across all 12
tasks.

Table 15. Results for the Expanded Plan Verification (EPV) metric using Gemini across all 12 tasks are presented as percentages, with
task averages also provided.

Moderate complexity tasks High complexity tasks

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 avg.

HVR (our) 48.57 34.55 100.00 100.00 100.00 100.00 100.00 100.00 74.24 100.00 100.00 100.00 88.11
HV 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
HR 33.33 13.16 34.00 10.64 54.76 54.17 60.26 3.49 3.53 3.13 34.74 4.62 25.82
VR 42.11 51.22 48.89 12.82 53.85 50.00 13.24 13.04 14.08 35.90 10.59 40.00 32.14
R 29.41 20.59 6.52 12.20 8.11 54.17 12.96 5.00 12.00 3.85 4.62 14.89 15.36
LLM 29.41 10.00 6.82 12.20 8.82 54.17 12.96 4.48 4.29 8.14 5.13 40.00 16.37

In Table 16 we report the results for the metric Macro Plan Verification (MPV) for all the methods that use symbolic
validation (i.e., HVR and HV) using Gemini as LLM-based planner. The results for each method are presented per task,
along with the average across all 12 tasks. They are shown both before correction (first part of the table) and after correction
(second part of the table).

Table 16. Results for the Macro Plan Verification (MPV) metric using Gemini across all 12 tasks are presented as percentages. The results
are shown both before and after correction, with task averages also provided.

Moderate complexity tasks High complexity tasks

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 avg.

Before correction

HVR (our) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
HV 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 5.26 92.11

After correction

HVR (our) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
HV 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

In Table 17 we report the results for the metric Atomic Action Block Verification (AABV) for all the methods that use
symbolic validation (i.e., HVR and HV) using Gemini as LLM-based planner. The results for each method are presented per
task, along with the average across all 12 tasks. They are shown both before correction (first part of the table) and after
correction (second part of the table). For comparison purposes, we also included results for HR in the first part of the table.

Table 17. Results for the Atomic Action Block Verification (AABV) metric using Gemini across all 12 tasks are presented as percentages.
The results are shown both before and after correction, with task averages also provided.

Moderate complexity tasks High complexity tasks

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 avg.

Before correction

HVR (our) 0.00 100.00 11.11 0.00 12.50 25.00 0.00 11.11 9.09 7.14 0.00 20.00 16.33
HV 50.00 100.00 12.50 28.57 0.00 33.33 100.00 100.00 9.09 30.00 31.25 10.53 42.11
HR 0.00 75.00 12.50 85.71 16.67 33.33 85.71 0.00 0.00 50.00 0.00 0.00 29.91

After correction

HVR (our) 0.00 100.00 100.00 100.00 12.50 100.00 100.00 100.00 45.45 100.00 100.00 100.00 79.83
HV 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

23


