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ABSTRACT

Discrete diffusion models are a class of generative models that produce samples
from an approximated data distribution within a discrete state space. Often, there is
a need to target specific regions of the data distribution. Current guidance methods
aim to sample from a distribution with mass proportional to p0(x0)p(ζ|x0)

α but fail
to achieve this in practice. We introduce a Sequential Monte Carlo algorithm that
generates unbiasedly from this target distribution, utilising the learnt unconditional
and guided process. We validate our approach on low-dimensional distributions,
controlled images and text generations. Our method provides strong control for
text generation while maintaining low perplexity compared to guidance-based
approaches.

1 INTRODUCTION

Discrete Diffusion models generate approximate samples from a data distribution p0(x0) by gradually
evolving samples from a simple base distribution p1(x1) through a Continuous-Time Markov Chain
(CTMC) (Shi et al., 2024; Campbell et al., 2022; Lou et al., 2024). While these models learn
unconditional distributions, practical applications such as graph generation (Vignac et al., 2023),
protein co-design (Campbell et al., 2024) or text generation (Lou et al., 2024) require controlled
generation. For a conditioning variable ζ and temperature parameter α, we aim to sample from
a tempered conditional distribution proportional to p0(x0)p(ζ|x0)

α. When α = 1, this recovers
the conditional p0(x0|ζ). Higher values (α > 1) biases sampling toward the conditioning signal ζ,
while lower values (α < 1) promotes diversity. To sample from this tempered distribution, guidance
methods modify the unconditional diffusion transition rates (Nisonoff et al., 2024). However,
guidance fails to sample from the intended distribution (Chidambaram et al., 2024; Bradley &
Nakkiran, 2024), producing corrupted samples at high α values. Recent works propose finetuning
approaches using reinforcement learning to sample from tempered distributions (Domingo-Enrich
et al., 2025; Venkatraman et al., 2024; Fan et al., 2023; Black et al., 2024; Clark et al., 2024; Uehara
et al., 2025). In this work, we address the theoretical and practical challenges of sampling from
tempered distributions in discrete diffusion models. This work makes the following contributions:

1. We derive the exact transition rates required to sample from the tempered distribution with
unnormalised mass p0(x0)p(ζ|x0)

α in discrete diffusion.
2. We propose an algorithm based on Sequential Monte Carlo, that asymptotically samples

from the intended tempered distribution by exploiting previously forgone properties of the
guided transition rate matrix, without any additional learning.

3. We validate our approach through low-dimensional experiments and demonstrate its effec-
tiveness on controlled image and text generation, achieving strong conditional control with
low perplexity on text dataset.

2 BACKGROUND WORK

2.1 CONTINUOUS TIME MARKOV CHAINS

A Continuous Time Markov Chain (CTMC) {Xt}t∈[0,1] is a Markov process on a finite state space
X = {1, . . . , S}. The evolution of Xt is governed by a time-dependent rate matrix Rt : X ×X → R,
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which defines infinitesimal transition probabilities pt+∆t|t(xt+∆t|xt) given by

δxt+∆t,xt
+Rt(xt, xt+∆t)∆t+ o(∆t), (1)

where δa,b is 1 if a = b and 0 otherwise.

The probability mass pt of Xt evolves according to the Kolmogorov Forward Equation (KFE):

∂tpt(x) =
∑
y ̸=x

pt(y)Rt(y, x)︸ ︷︷ ︸
incoming mass

−
∑
y ̸=x

pt(x)Rt(x, y)︸ ︷︷ ︸
outgoing mass

, (2)

which can be written in vector form (Eq. (3)), where Rt satisfies mass conservation (Eq. (4)). For
simplicity we define Rt(x) := Rt(x, x).

∂tpt = R⊺
t pt, (3) Rt(x, x) = −

∑
Rt(x, y) for y ̸= x (4)

To obtain approximate samples X̃t, one may use the Euler sampling algorithm (Campbell et al.,
2024), initialising X̃0 ∼ p0 and updating subsequent samples in intervals of ∆t following:

X̃t+∆t ∼ p̃Euler
t+∆t|t(·|x̃t), with p̃Euler

t+∆t|t(x̃t+∆t|x̃t) ∝ δx̃t+∆t,x̃t
+Rt(x̃t, x̃t+∆t)∆t.

A more comprehensive overview including the treatment of reverse-time CTMC can be found in
Appendix B.

2.2 DISCRETE DIFFUSION MODEL

Discrete diffusion models are generative models that rely on a pair of stochastic processes formulated
as Continuous Time Markov Chains on finite state spaces X with |X | = S: a forward process corrupt-
ing the data distribution p0 into a base distribution p1, and a learned reverse process reconstructing
from p0 to p1. Campbell et al. (2022) learn the reverse rate matrix through likelihood objectives,
while Lou et al. (2024) instead learn the reverse rate matrix using a score entropy objective. In their
work, Lou et al. (2024) propose the masking diffusion model, which extends the state space X with a
masking state m = S +1 to form an extended state space X = {1, . . . , S,m}. At time t, the masking
process sends the current state to the masking state m according to a time-dependent noise schedule
σ : [0, 1]→ R+, with transition probability pmask

t|0 :

pmask
t|0 (xt|x0) = δxt,x0

e−σ(t) + δxt,m(1− e−σ(t)) (5)

For sufficiently large σ(1), the masking process mixes to a point mass at m at time t = 1. To sample
from a masking diffusion model, we start at the masking state m at t = 1 and apply Euler sampling in
reverse time with learned rate matrix R̃t. For high-dimensional data like text, the process extends to
X d by corrupting each dimension independently (Shi et al., 2024).

3 GUIDANCE

Let {Xt}t∈[0,1] be a reverse-time CTMC with probability mass pt and rate matrix Rt. For a condi-
tioning variable ζ, we write pt(ζ|xt) and pt(xt|ζ) as the conditioned probability desnity of ζ given
Xt = xt and the conditioned probability mass of xt given ζ respectively. With guidance scale α,
we aim to sample from the tempered distribution p0(x0)p0(ζ|x0)

α/Zα, where Zα is a normalis-
ing constant. When α = 1, this recovers p0(x0|ζ). Higher values (α > 1) bias sampling toward
high likelihood regions of ζ, while lower values promote diversity. Guidance modifies Rt to Rα

t
(Definition 3.1) under the premise that it samples correctly from the intended tempered distribution.
However, guidance fails to do so when α ̸= 1 as shown in Figure 1.
Definition 3.1. The guided rate matrix Rα

t is defined as,

∀x ̸= y. Rα
t (x, y|ζ) = Rt(x, y)

[
pt(ζ|y)
pt(ζ|x)

]α
(6) ∀x. Rα

t (x, x|ζ) = −Rα
t (x|ζ) (7)
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We defer the learning of guided rate matrix to Section 6.1. One might expect the guided rate
matrix Rα

t to represent the time-reversal corrupting process starting at the tempered distribution
p0(x0)p0(ζ|x0)

α/Zα. However, as shown in Proposition 3.2, this is not the case.

Proposition 3.2. Let Mt[·] denote the evolution of probability mass at time t under the corrupting
process pcorrupt

t|0 of Xt, the unconditional diffusion model. Define pα,true
t as:

pα,true
t = Mt

[
p0(·) p0(ζ|·)α/Zα

]
.

Then,

pα,true
t (xt) ∝ pt(xt)E

[
p0(ζ|X0)

α|Xt = xt

]
.

The true tempered rate matrix Rα,true
t given by

∀x ̸= y, Rα,true
t (x, y|ζ) = Rt(x, y)

E[p0(ζ|X0)
α|Xt=y]

E[p0(ζ|X0)α|Xt=x] ,

∀x, Rα,true
t (x, x|ζ) = −

∑
y ̸=x

Rα,true
t (x, y|ζ),

satisfies the reverse-time Kolmogorov Forward Equation:

∂tp
α,true
t = −

[
Rα,true

t

]⊺
pα,true
t .

From Proposition 3.2, it follows that Rα
t = Rα,true

t holds only for α = 1. Furthermore, for α = 1,
guidance requires that the base distribution p1 is independent of the conditioning variable ζ to
correctly sample from the conditioned distribution p0(X0|ζ), as shown in Corollary 3.3.
Corollary 3.3. If p1(x1|ζ) = p1(x1), then guidance samples correctly from the conditioned distribu-
tion p0(x0|ζ).

While (Nisonoff et al., 2024) presents similar results to Corollary 3.3, our lemma establishes that the
independence condition is necessary.
Learning Rα,true

t most often requires expensive simulation-based objectives to estimate the gradients
of a reverse path-wise KL divergence (Domingo-Enrich et al., 2025; Denker et al., 2024; Uehara
et al., 2025). Therefore, we focus instead on sampling from pαt (xt) ∝ pt(x)pt(ζ|xt)

α.

4 DEBIASING GUIDANCE WITH SEQUENTIAL MONTE CARLO

Our objective is to sample from the tempered distribution 1
Zα

0
p0(x0)p0(ζ|x0)

α. To that end, we first
introduce an importance sampling method, which we later leverage through resampling.

4.1 IMPORTANCE SAMPLING THE TEMPERED DISTRIBUTION

We consider the importance sampling method to compute the expectation of a function h under the
distribution of probability mass pαt (xt) =

1
Zα

t
pt(xt)pt(ζ|xt)

α where Zα
t is the normalising constant.

We write the expectation as:

Ex∼pα
t
[h(x)] =

1

Zα
t

∑
x∈X

h(x)pt(x)pt(ζ|xt)
α, (8)

For importance sampling, we consider a proposal in the form of a reverse time CTMC {Yt}t∈[0,1],
with rate matrix Qt and initial distribution p1. We construct unnormalised importance weight
{Wt}t∈[0,1] such that:

Ex∼pα
t
[h(x)] =

E[Wt · h(Yt)]

E[Wt]
(9)

where E is an expectation over the joint distribution Law(Wt, Yt).

Proposition 4.1 provides one form of the unnormalised importance weights {Wt}t∈[0,1].

3
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Proposition 4.1. Let proposal {Yt}t∈[0,1] be a reverse-time CTMC with rate matrix Qt and initial
distribution p1(·). Define {Wt}t∈[0,1] by

Wt =
dPbase

t

dQt

(
dPα=1

t

dPbase
t

)α

,

where we have path space measures Pbase
t = Law{Xτ}τ∈[t,1], Pα=1

t = Law{Xτ | ζ}τ∈[t,1]

and Qt = Law{Yτ}τ∈[t,1]. Then the Radon-Nikodym derivatives can be written

as,

ln
dPt

dQt

base

=
∑
τ≥t

Yτ+ ̸=Yτ

lnRt(Yτ+ , Yτ )

+

∫ t

1

Qτ (Yt)−Rτ (Yt) dτ

ln
dPα=1

t

dPbase
t

=
∑
τ≥t

Yτ+ ̸=Yτ

lnRα=1
t (Yτ+ , Yτ |ζ)

+

∫ t

1

Rτ (Yτ )−Rα=1
τ (Yτ |ζ)dτ,

such that for any pαt -integrable function h and time t ∈ [0, 1], we have

Ex∼pα
t
[h(x)] =

E[Wt · h(Yt)]

E[Wt]
,

where the expectation is taken over Law(Wt, Yt)

The proof is in Appendix D. The result extends to stochastic differential equations (Appendix D.1).

For practical implementation, we approximate the CTMC by discretising time into T steps. For
times t < s, we denote the transitions derived from rate matrices Qt, Rt, and Rα=1

t as qt|s(xt|xs),
pt|s(xt|xs), and pt|s(xt|xs, ζ) respectively. To this end, we consider a discretisation of Proposition 4.1
in Appendix E. We also present Algorithm 1 in Section 4.2, a pseudo-code of the discretised version
of the proposed sampling method.

4.2 RESAMPLING AND SEQUENTIAL MONTE CARLO

To approximate samples from the tempered distribution pα0 , we leverage resampling. Given a set of
K weights and samples (w(i)

t , y
(i)
t ) ∼ Law(Wt, Yt), resampling yields approximate samples from

pαt by sampling the categorical distribution,

Cat

{ w
(i)
t∑K

j=1 w
(j)
t

}K

i=1

, y
(i)
t

 , (10)

where y
(i)
t is sampled with probability w

(i)
t∑K

j=1 w
(j)
t

.

This suggests an algorithm to obtain samples from the tempered distribution p0(x0)p0(ζ|x0)
α by

resampling at time t = 0. However, this approach suffers from a significant challenge: weight
degeneracy. As t approaches 0, the variance of weights Wt increases dramatically, requiring an
impractical number of samples. Sequential Monte Carlo (SMC) addresses this challenge by per-
forming resampling steps at intermediate times 0 < t < 1, obtaining approximate samples of pαt
while resetting the weights to maintain the importance sampling equality. Effectively, this eliminates
samples from low-likelihood regions and duplicates those in high-likelihood regions. The resampling
step is flexible in both algorithm choice and timing. In Section 6.3, we explore partial resampling
where only a subset of samples participate. Resampling is typically triggered when the effective
sample size (ESS) falls below a threshold, where ESS is defined as:

ESSK
t =

(
K∑
i=1

w
(i)
t

)2

/

K∑
i=1

(w
(i)
t )2 ∈ [1,K] (11)

We emphasize that the resampling procedure allows us to leverage importance sampling to generate
asymptotically unbiased samples rather than purely computing expectations. The full algorithm to
sample from the tempered distribution can be found in Algorithm 1 detailed in Algo. 2 (App. F) for
our experiments.

4
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Algorithm 1 Main Algorithm
Require: Number of particles K; Proposal Rate Matrix Proposal Transition Qt; Unconditional

rate matrix Rt; Time grid {tl}Tl=1 for potential resampling; ESS threshold ESS THRESHOLD;
Resampling algorithm resample.

1: Initialisation:
2: Sample {y(i)1 }Ki=1 i.i.d. from p1.
3: Set ŵ(i)

1 ← 1 for i = 1, . . . ,K.
4: for l = 1 to T do
5: for i = 1 to K do
6: ▷ Step 1: Evolve samples and weights
7: Obtain (y

(i)
l+1, ŵ

(i)
l+1) by evolving joint system (Yt,Wt) from (y

(i)
l , ŵ

(i)
l ) at time tl

8: end for
9: ▷ Step 3: Resample; see Appendix G for other resampling algorithms

10: Set ESS←
(∑K

i=1 ŵ
(i)
l

)2
/
∑K

i=1(ŵ
(i)
l )2

11: if ESS ≤ ESS THRESHOLD then

12: Set y(i)l+1, ŵ
(i)
l+1 ← resample({y(i)l }, {ŵ

(i)
l })

13: end if
14: end for
15: Output:
16: Particles {x(i)

T }Ki=1

D |V| KL(π||σSMC) KL(π||σGuided)

1 50 0.002± 0.001 0.004± 0.003
2 3 0.035± 0.179 0.074± 0.082
2 10 0.013± 0.012 0.081± 0.052
2 100 1.725± 0.743 6.690± 1.194
2 200 5.948± 1.042 12.906± 0.542

Table 1: Forward KL divergence be-
tween the target tempered distribu-
tion π and the empirical distribution
of samples from the guided process
and SMC algorithm. Method with a
lower KL divergence is highlighted.

A B C D E F

Guidance α

A B C D E F

SMC Samples

A B C D E F

Target

α
=

2

Guidance SMC Samples Target

α
=

4

Figure 1: Visualization of 1D (left) and 2D (right) discrete
distributions. Orange circles: target distribution; green: SMC
approximation; red: standard guidance. Left: six states (A-F)
with probability mass shown by disk size. Right: nine states at
α = 2 (top) and α = 4 (bottom).

5 NUMERICAL VERIFICATION

We validate our algorithm’s ability to sample from the tempered distribution p0(x0)p0(ζ|x0)
α/Zα

using low-dimensional examples. These experiments use explicitly specified probability mass p0(x0)
and conditional likelihood p0(ζ|x0), enabling direct computation of the guided ratio matrix. This
setup verifies algorithmic correctness independent of learning effects and allows evaluation of the KL
divergence between sampled and target distributions.

Experimental setup We evaluate on state spaces of dimension one (V) and two (V2), where V
is a finite vocabulary. Our proposal uses per-dimension Euler sampling (Campbell et al., 2024)
with 100 discretization steps and 50,000 samples. For each dimension, we generate 30 different
tempered target distributions π ∝ p0(x0)p0(ζ|x0)

α by combining different choices of p0(x0),
p0(ζ|x0), and temperature α. We sample from each target using both guidance and SMC, then
compute KL divergences between the true tempered distribution and the empirical distributions σSMC

and σGuided. Results in Table 1 show that guided processes significantly deviate from targets while
SMC achieves approximate sampling, demonstrating superior sampling across all combinations.
Qualitative examples are shown in Figure 1.

5
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6 EXPERIMENTS

Section 5 demonstrated SMC’s ability to sample tempered distributions with sufficient particles and
discretisation steps. In practice, for image and text generation tasks, computing rate matrices is
computationally intensive, limiting feasible particle counts and step sizes. For these practical settings,
we use the guided rate matrix as our proposal in SMC, with guidance temperature β distinct from the
SMC temperature α, and provide guidance on resampling strategies.

6.1 LEARNING THE GUIDANCE TERM

We consider two approaches to obtain the guided rate matrix Rα
t , DEFT and CFG.

DEFT For discrete diffusion models, we extend Doob’s h-transform Efficient FineTuning (DEFT,
Denker et al. (2024)) by showing that the conditional rate matrix Rα=1

t decomposes into an
unconditional rate matrix Rt and a guidance term pt(ζ|y)/pt(ζ|x): Rα=1

t (x, y) = Rt(x, y) ×
pt(ζ|y)/pt(ζ|x). We model the guidance term with a neural network g and parameterize the con-
ditional rate matrix as Rα=1

t (x, y|ζ) = Rt(x, y)g(x, y, t) while keeping the unconditional rate
parameters fixed. We use this guidance term in both pixel-level image generation and controlled text
generation.
CFG In text generation, we extend classifier-free guidance (Ho & Salimans, 2022a). We ob-
tain the conditional rate matrix Rα=1

t (x, y|ζ) by finetuning the learned unconditional rate matrix
Rt(x, y|ζ), concatenating conditions to the inputs. For α > 1, the guided rate matrix follows
[pt(ζ|y)/pt(ζ|x)]α =

[
Rα=1

t (x, y|ζ)/Rt(x, y)
]α

There are other ways of finding a guided rate matrix (Nisonoff et al., 2024) Vignac et al. (2023)
considers a first-order Taylor approximation of the guidance term; Kerby & Moon (2024); Li et al.
(2024) consider a training-free approach by Monte Carlo estimates of the guidance term.

We present results using the CFG approach for text experiments and the DEFT approach for image
experiments. For DEFT results on text, see Appendix J. We begin by discussing partial resampling, a
key component of our SMC implementation, followed by a detailed account of our experiments and
findings.

6.2 PARTIAL RESAMPLING

SMC methods suffer from mode collapse in high dimensions when using few particles. In this
scenario, most particle weights decay rapidly, leaving only a small subset with significant weights.
During resampling, particles with low weights are discarded, often resulting in only one or two
unique particles. Figure 3 (middle) demonstrates this effect: a batch of 16 particles collapses into
identical images. We adopt a partial resampling scheme which effectively mitigates mode collapse
by resampling only a subset of particles. We select the K most and least weighted samples for
resampling, which preserves sample diversity and maintains unbiased sampling from the target
distribution as shown in Figure 3 (right). We detail partial resampling algorithms in Appendix G. In
our experiments, we use Algorithm 4, set K = ⌊N/4⌋, resampling half of all generated samples.

6.3 CLASS-CONDITIONAL PIXEL-LEVEL IMAGE GENERATION

We evaluate our method on MNIST class-conditional generation using 28× 28 grayscale images with
pixel values in {0, ..., 255}. We first detail the experimental setup; we then study partial resampling
for mitigating mode collapse in SMC and analyze its impact on generation control.
Dataset and Training Details We train an unconditional SEDD model (Lou et al., 2024) parame-
terized by a U-Net (Ronneberger et al., 2015) for 20k steps. Using 20% of MNIST, we finetune a
guidance network for 4k steps with DEFT using the SEDD denoising score entropy loss. The guid-
ance network is a U-Net with learned condition embeddings added to each layer, at 50% parameters
of the unconditional network.
Does SMC improve conditional control? For class-conditioned generation, we evaluate sample
consistency with target conditions using a pre-trained digit classifier. Figure 2 shows accuracy for
various SMC temperatures α and number of particle N , using Rα=1

t as the proposal. We compute
accuracies within each SMC run and confidence intervals across 10 independent runs. Higher SMC
temperatures yield better accuracy across all particle counts. Partial resampling achieves higher

6
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accuracy with lower variance, which indicates that it effectively reduces mode collapse. We further
investigate mode collapse for MNIST in Appendix H

5 10 20 50 100
Number of Particles

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
Partial Resampling

no smc
α = 1.0

α = 2.0

α = 3.0

5 10 20 50 100
Number of Particles

0.4

0.6

0.8

1.0
No Partial Resampling

Figure 2: Accuracy on Class-Conditioned Image generation. SMC classification accuracy versus
particle count for different twist temperatures (α), with and without partial resampling. Partial
resampling and higher α achieve better peak accuracy. Dotted lines show baseline accuracy without
SMC. Values averaged over 50 runs.

Experiments on MNIST demonstrate that our method successfully addresses two key challenges in
conditional generation. Partial resampling effectively mitigates mode collapse while maintaining
sample diversity, and higher SMC temperatures improve conditional control across all particle counts.
These results validate our theoretical framework for a standard image generation task.

6.4 CONTROLLED TEXT GENERATION

We validate the approach on three controlled text generation: Sentiment Controlled Generation,
Toxicity Controlled Generation, and Text Infilling. These high-dimensional experiments demonstrate
the algorithm’s practicality.

6.4.1 DATASET AND TRAINING DETAILS

In all experiments, we use the pre-trained 320M non-embedding parameters sedd-medium, a Score
Entropy Discrete Diffusion (SEDD) model (Lou et al., 2024). When guiding with CFG we finetune
sedd-medium and when guiding with DEFT we finetune sedd-small for 2k steps to serve as
the guidance term pt(ζ|y)/pt(ζ|x) for the large sedd-medium model, on task-specific datasets:

Toxicity Controlled Generation Following (Liu et al., 2021), we use human-annotated comments
from the Jigsaw Unintended Bias in Toxicity Classification challenge1, with texts labelled toxic when
50% or more annotators mark them as such. A prompt The generated text is toxic is
concatenated to the transformer input as the condition.
Sentiment Controlled Generation. We follow the setup in (Amini et al., 2024), using the Stanford
Sentiment Treebank, a dataset of movie reviews, as the finetuning dataset. A prompt ”The generated
text is of positive sentiment” or ”The generated text is of negative sentiment” is concatenated to the
transformer input as the condition.
Text Infilling. We finetune on 10% of the OpenWebText training dataset. For each sentence,
randomly sampled indices (START, END) define the token range to mask. The masked sentence
ζ is concatenated to the model input throughout generation. The entire partial masked sentence
[PREFIX] [MASK] [SUFFIX] is passed to the network as the condition

We evaluate samples using fluency and conditional control metrics, averaging across 5 runs and 50
particles for SMC or 250 particles for guidance, with 100 discretization steps and partial resampling.
For fluency, we compute generative perplexity (Liu et al., 2021) using GPT2-XL as the reference
model. For sentiment and toxicity tasks, we use a LoRA-finetuned GPT2-XL to account for stylistic
differences. For conditional metrics, we use a pre-trained classifier for sentiment accuracy, the
Perspective API for toxicity scores, and measure the success rate of generating unmasked tokens.

1https://bit.ly/3cvG5py
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6.4.2 ABLATING GUIDANCE AND SMC TEMPERATURE

We study how guidance temperature β and SMC temperature α impact both conditional control and
fluency metrics across toxicity, sentiment, and infilling tasks.
Our findings: SMC-based methods improve considerably on conditional control metrics for
low-to-mid guidance temperature β and with high SMC temperature α. For high guidance
temperature, the guidance baseline improves conditional metrics but at the cost of higher perplexity.
This implies that guidance-generated samples drift from the distribution of the fine-tuning dataset.
Hence, we conclude that the optimal approach is to combine SMC with high SMC temperature and
mid-to-low guidance temperature (see Appendix I for more results).

Method Temperature Sentiment Control Toxicity Control Text Infilling

α β Perplexity Accuracy ↑ Perplexity Toxicity ↑ Perplexity BERT ↑ GLEU ↑ Accuracy ↑

SMC 1.0 1.0 84.410±8.647 0.839±0.047 66.558±9.085 0.451±0.244 65.048±30.951 0.583±0.038 0.701±0.021 0.992±0.015

1.2 93.225±7.281 0.840±0.065 58.913±1.945 0.384±0.231 - - - -

SMC 2.0 1.0 80.500±3.554 0.882±0.048 62.192±6.998 0.577±0.232 67.062±42.959 0.584±0.032 0.703±0.022 0.996±0.014

1.2 83.767±7.457 0.877±0.050 88.650±3.325 0.547±0.222 - - - -

SMC 4.0 1.0 77.538±11.209 0.875±0.048 89.125±4.062 0.595±0.231 73.562±26.980 0.587±0.029 0.708±0.019 0.998±0.013

1.2 85.170±7.253 0.872±0.057 109.200±3.518 0.611±0.208 - - - -

SMC 8.0 1.0 80.283±6.825 0.868±0.059 77.000±3.420 0.561±0.252 80.583±45.478 0.576±0.038 0.699±0.022 0.998±0.015

1.2 78.388±6.606 0.875±0.060 88.800±1.549 0.558±0.230 - - - -

Guidance - 1.0 80.283±6.825 0.837±0.056 67.475±8.467 0.455±0.244 63.915±31.375 0.583±0.037 0.701±0.021 0.991±0.018

1.2 78.388±6.606 0.837±0.006 70.525±10.079 0.505±0.246 - - - -

Reconstruction - - 44.673±11.687 0.548±0.105 44.319±13.885 0.130±0.123 53.697±26.543 0.595±0.038 0.706±0.021 1.000±0.000

Table 2: Performance comparison of Sequential Monte Carlo, Guidance, and Reconstruction across
three tasks: sentiment control, toxicity control, and text infilling. Results show mean ± standard
deviation. α is the SMC temperature and β the guidance temperature. Light blue marks the best

overall result per metric, while light purple marks the best result between Guidance and SMC for
text infilling. Text infilling results (grey columns) have been run for 1000 steps.

6.4.3 SCALING UP DISCRETISATION STEP

We further investigate sample qualities by increasing discretization steps to 1000, effectively allocating
10x compute. For text infilling, we employ two additional metrics: BERTScore (Zhang* et al.,
2020) with the DeBERTa model (He et al., 2021), and GLEU-4 (Wu et al., 2016). For sentiment
and toxicity-controlled generation, we compare against a baseline prompting method, while for
infilling, we evaluate against a reconstruction method that overwrites the sampling trajectory with
the partially masked sentence. Table 2 summarises our results. SMC with a high SMC temperature
significantly outperforms the base guidance method across all tasks. Notably, for toxicity and
sentiment-controlled generation our SMC-based method significantly outperforms a simple prompting
strategy in generating strong conditions. However, for infilling and despite their theoretical guarantees,
guidance and SMC approaches underperform compared to the reconstruction method, even though
it is known to be biased (Wu et al., 2024). This indicates an inadequate learning of the guided rate
matrix. While SMC can strengthen the base guidance method, it cannot fully compensate for an
imperfectly learned guided rate matrix.

7 CONCLUSION AND FUTURE WORK

This work addresses a fundamental challenge in diffusion models: accurate sampling from tempered
distribution. We make three key contributions. First, we derive the exact transition rate to sample from
the tempered distribution; second, we propose an SMC-based algorithm that asymptotically samples
from the tempered distribution; third, we demonstrate its practicality in controlled generation. Our
empirical results validate the practicality of our theoretically correct algorithm. In low dimensions,
it significantly outperforms standard guidance methods. In high dimensions, our method achieves
superior control while maintaining sample quality. However, our experiments also reveal that the
effectiveness depends on the quality of the learned guided rate matrix.
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A RELATED WORK

Diffusion models have emerged as a powerful class of generative models that can be interpreted
through various theoretical frameworks, including score-based modeling (Song & Ermon, 2020; Song
et al., 2021), flow matching (Lipman et al., 2023; 2024), variational methods (Ho et al., 2020) and
stochastic interpolant (Albergo & Vanden-Eijnden, 2023; Albergo et al., 2023). Their versatility has
led to successful applications across diverse domains, from image and video generation (Rombach
et al., 2022; Podell et al., 2023; Blattmann et al., 2023) to molecular design (Cornet et al., 2024;
Vignac et al., 2023; Hoogeboom et al., 2022), protein design (Watson et al., 2023), and text generation
(Shi et al., 2024; Lou et al., 2024; Gulrajani & Hashimoto, 2023), where controlled generation is
often crucial.
Two primary approaches have been developed for controlled generation: classifier guidance (Dhariwal
& Nichol, 2021) and classifier-free guidance (Ho & Salimans, 2022b). Classifier guidance incorpo-
rates gradients from a trained classifier to steer the generation process, while CFG eliminates the
need for a separate classifier by jointly training conditional and unconditional models. For scenarios
with limited data where training classifiers or conditional models is impractical, DEFT (Denker et al.,
2024) demonstrates that fine-tuning a small network can learn classifier scores directly, enabling
guidance of unconditional models. However, recent theoretical analyses (Chidambaram et al., 2024;
Bradley & Nakkiran, 2024) have revealed fundamental limitations of guidance methods. Specifically,
as the guidance temperature parameter increases to strengthen conditioning, these methods fail to
sample from their intended tilted target distributions. This limitation is particularly relevant for
applications requiring precise control over generated samples.
In the discrete setting, several approaches have been proposed to adapt guidance methods. Nisonoff
et al. (2024) adapt Classifier Free Guidance, Vignac et al. (2023) use Taylor expansions to approximate
guidance terms with a property-predicting regressor. Li et al. (2024) introduce SVDD, integrating
value functions for reward-based sampling without fine-tuning. Kerby & Moon (2024) develop a
training-free guidance framework for discrete data generation.
Recent works propose finetuning approaches using reinforcement learning to sample from tempered
distributions (Domingo-Enrich et al., 2025; Venkatraman et al., 2024; Fan et al., 2023; Black et al.,
2024; Clark et al., 2024; Uehara et al., 2025). Black et al. (2024) introduce Denoising Diffusion Policy
Optimization (DDPO), which reformulates the denoising process as a multi-step decision problem.
Clark et al. (2024) propose Direct Reward Fine-tuning (DRaFT), demonstrating that backpropagation
through the entire sampling procedure can effectively optimize differentiable reward functions. Fan
et al. (2023) develop DPOK, which combines policy optimization with KL regularization for fine-
tuning text-to-image models, showing improvements in both image-text alignment and image quality
compared to supervised fine-tuning approaches.

B A PRIMER ON CONTINUOUS-TIME MARKOV CHAINS

B.1 DEFINITION

A Continuous-Time Markov Chain {Xt}t∈[0,1] on finite state space X = {1, . . . , |X |} is collection
of time-indexed random variables taking values on X . A CTMC {Xt}t∈[0,1] obeys the Markov
property, that is, for all A ⊆ X , n ∈ N, t1, . . . , tn ∈ [0, 1], and 0 ≤ x1 < · · · < xn ≤ 1 ∈ X :

P(Xt ∈ A|Xt1 = x1, . . . Xtn = xn) = P(Xt ∈ A|Xtn = xn). (12)

The initial distribution p0(x0) and transition probability pt|s(xt|xs) are defined as,

p0(x0) = P(X0 = x0) pt|s(xt|xs) = P(Xt = xt, Xs = xs). (13)

Notably, a CTMC is càdlàg by convention, that is for every t ≥ 0:

1. lims→t+ X(s) = X(t) (right-continuous at t),
2. lims→t− X(s) exists (finite left-hand limit at t).
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B.2 THE TRANSITION RATE MATRIX

One way to characterise a CTMC is through the time-dependent transition rate matrix Rt (also
known as the generator), defined as,

∀x, y ∈ X . Rt(x, y) = lim
∆t→0

pt+∆t|t(xt+∆t|xt)− δx,y

∆t
(14)

where δa,b is 1 if a = b and 0 if otherwise.

By definition, a first-order approximation of the transition probability is:

pt+∆t|t(xt+∆t|t|xt) = δxt+∆t,xt
+Rt(xt, xt+∆t)∆t+ o(∆t). (15)

By noticing that
∑

y∈X pt+∆t|t(y|x) = 1, we derive the mass conservation property of Rt,

Rt(x, x) = −
∑

y∈X :x̸=x

Rt(x, y) (16)

By convention, we define Rt(x) as,

Rt(x) =
∑

y∈X :x ̸=x

Rt(x, y). (17)

B.3 THE KOLMOGOROV EQUATIONS

In this section, we outline both Kolmogorov Forward and Backward Equation that govern respectively
the change of the probability mass, and expectations of some function over time.

Kolmogorov-Forward Equation. The Kolmogorov Forward Equation (or the continuity equation)
governs the change of probability mass over time. It states that the probability mass pt satisfies the
following equation:

∀0 ≤ t ≤ 1. ∂tpt(xt) =
∑

y∈X :xt ̸=y

Rt(y, xt)pt(y)︸ ︷︷ ︸
incoming probability mass

−
∑

y∈X :xt ̸=y

Rt(xt, y)pt(xt)︸ ︷︷ ︸
outgoing probability mass

(18)

In other words, the rate of change of probability mass equals the difference between incoming and
outgoing probability flows. In matrix notation, this equation is:

∂tpt = R⊺
t pt (19)

Kolmogorov Backward Equation Given a function h : X → R, the Kolmogorov Backward
Equation states that the function ut(x) defined as,

ut(x) = E[h(X1)|Xt = x], (20)

satisfies the ordinary differential equation,

∂tut(x) = −
∑
y

Rt(x, y)ut(y), (21)

writing ut as a column vector, this can be written in matrix form,

∂tut = −R⊺
t ut. (22)

B.4 REVERSE-TIME CTMC

Time-reversed CTMC is a core concept of diffusion model. A reverse-time CTMC {Yt}∈[0,1] with
time-dependent rate Rt is defined as Yt = Ŷ1−t where {Ŷt}t∈[0,1] is a forward-time CTMC with
transition rate R1−t. The reverse-time Kolmogorov Equations are then obtained by applying a change
of variable t 7→ 1− t.

13
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C PROOF FOR SECTION 3

In this section, we prove Proposition 3.2.

Proposition 3.2. Let Mt[q] denote the evolution of probability mass q up to time t under the
corrupting process. Define pα,true

t as:

pα,true
t = Mt

[
p0(·) p0(ζ|·)α/Zα

]
.

Then,

pα,true
t (xt) ∝ pt(xt)E

[
p0(ζ|X0)

α|Xt = xt

]
.

The true tempered rate matrix Rα,true
t given by:

∀x ̸= y, Rα,true
t (x, y|ζ) = Rt(x, y)

E[p0(ζ|X0)
α|Xt=y]

E[p0(ζ|X0)α|Xt=x] ,

∀x, Rα,true
t (x, x|ζ) = −

∑
y ̸=x

Rα,true
t (x, y|ζ),

satisfies the reverse-time Kolmogorov Forward Equation:

∂tp
α,true
t = −

[
Rα,true

t

]⊺
pα,true
t .

Proof. Recall that {Xt}t∈[0,1] is a reversed-time CTMC corresponding to the unconditonal discrete
diffusion model. Let {pcorrupt

t|s (xt|xs)}t>s and {pt|s(xt|xs)}t<s be the transition probability of the
forward-time corrupting process and reverse-time generative process. We first show pαt (xt) ∝
pt(xt)E

[
p0(ζ|X0)

α|Xt = xt

]
. By definition,

pα,true
t (xt) = Mt[p0(·)p(ζ|·)α/Zα] (23)

∝
∑
x0

pcorrupt
t|0 (xt|x0)p0(x0)p(ζ|x0)

α (24)

=
∑
x0

p0|t(x0|xt)
pt(xt)

p0(x0)
p0(x0)p(ζ|x0)

α (25)

= pt(xt)
∑
x0

p0|t(x0|xt)p(ζ|x0)
α (26)

= pt(xt)E[p(ζ|X0)
α|Xt = xt]. (27)

We denote Zt,α the normalising constant of pαt such that:

pα,true
t (xt) =

1

Zt,α
pt(xt)E[p(ζ|X0)

α|Xt = xt] (28)

An other intermediate result that we need is to show that the normalising constant Zt,α is independent
of the time t

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Zt,α =
∑
y

pαt (y) (29)

=
∑
y

pt(y)E[p(ζ|X0)
α|Xt = y] (30)

=
∑
y

∑
x0

pt(y)p(ζ|x0)
αp0|t(x0|y) (31)

=
∑
y

∑
x0

p(ζ|x0)
αpt|0(y|xo)p0(x0) (32)

=
∑
x0

p(ζ|x0)
αp0(x0)

(∑
y

pt|0(y|x0)

)
(33)

=
∑
x0

p(ζ|x0)
αp0(x0) (34)

= E[p(ζ|X0)
α] (35)

We see that Zt,α equals E[p(ζ|X0)
α] which is independent of t and as a consequence ∂tZt,α = 0. We

also denote the normalising constant as Zα := Zt,α. We now prove the main result of the proposition
with the following derivation:

We first introduce the following notation to make derivation lighter:

wt,α(xt) = E[p(ζ|X0)
α|Xt = xt] (36)

Noticing w satisfies a reverse-time Kolmogorov Backward Equation, we have:

∂tp
α
t (xt) = ∂t[

1

Zα
pt(xt)wt,α(xt)] (37)

=
1

Zα
[pt(xt)∂twt,α(xt) + wt,α(xt)∂tpt(xt)] (38)

=
1

Zα

[∑
y

wt,α(y)pt(xt)Rt(xt, y)−
∑
y

wt,α(xt)pt(y)Rt(y, xt)

]
(39)

=
1

Zα

∑
y ̸=xt

wt,α(y)pt(xt)Rt(xt, y)−
∑
y ̸=xt

wt,α(xt)pt(y)Rt(y, xt)

 (40)

=
1

Zα

∑
y ̸=xt

pt(xt)wt,α(xt)Rt(xt, y)
wt,α(y)

wt,α(xt)
−
∑
y ̸=xt

pt(y)wt,α(y)Rt(y, xt)
wt,α(xt)

wt,α(y)


(41)

=
∑
y ̸=xt

pα,true
t (xt)R

α
t (xt, y)−

∑
y ̸=xt

pα,true
t (y)Rα

t (y, xt) (42)

(43)

and the last equation is the reverse time Forward Kolmogorov Equation which concludes the proof.

D PROOF OF PROPOSITION 4.1

Proposition 4.1. Let proposal {Yt}t∈[0,1] be a reverse-time CTMC with rate matrix Qt and initial
distribution p1(·). Define {Wt}t∈[0,1] by

Wt =
dPbase

t

dQt

(
dPα=1

t

dPbase
t

)α

,

15
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where we have Pbase
t = Law{Xτ}τ∈[t,1], Pα=1 = Law{Xτ | ζ}τ∈[t,1], Q = Law{Yτ}τ∈[t,1]. Then,

ln
dPt

dQt

base

=
∑
τ≥t

Yτ+ ̸=Yτ

lnRt(Yτ+ , Yτ )− lnQt(Yτ+ , Y sτ ) +

∫ t

1

Qτ (Yt)−Rτ (Yt) dτ

and

ln
dPα=1

t

dPbase
t

=
∑
τ≥t

Yτ+ ̸=Yτ

lnRα=1
t (Yτ+ , Yτ |ζ)−lnRt(Yτ+ , Yτ ) +

∫ t

1

Rτ (Yτ )−Rα=1
τ (Yτ |ζ)dτ.

For any pαt -integrable function h and time t ∈ [0, 1],

Ex∼pα
t
[h(x)] =

E[Wt · h(Yt)]

E[Wt]
.

Proof. Via the Radon-Nikodym Theorem, we seek to compute the importance weight (i.e. the
Radon-Nikodym derivative 2)

dPα
t

dQt
=

dPbaset

dQt
· dPα

t

dPbase
t

=
dPbaset

dQt
· pt(ζ|Yt)

α, (44)

where dPα
t

dPbase
t

= pt(ζ|Yt)
α follows by construction of Pα

t and a direct application of the disintegration
theorem (Léonard, 2014) (i.e. the product rule), then considering α = 1 it follows that pt(ζ|Yt)

α =(
dPα=1

t

dPbase
t

)α
, and thus the importance weights between our proposal and the tilted path measure reduce

to:

Wt =
dPα

t

dQt
=

dPbase
t

dQt

(
dPα=1

t

dPbaset

)α

, (45)

Finally, the Radon-Nikodym derivative between two arbitrary reverse-time CTMC path measures P′
t

and Q′
t with transition rate matrix R′

τ and Q′
τ evaluated at the path Y , is known to be the following

Appendix C.1 of (Campbell et al., 2024), that is,

dP′
t

dQ′
t

=
exp(−

∫ t

1
R′

τ (Yt) dτ)

exp(−
∫ t

1
Q′

τ (Yt) dτ)

∏
τ≥t

Yτ+ ̸=Yτ

R′
t(Yτ+ , Yτ )

Q′
t(Yτ+ , Yτ )

(46)

We refer the readers to (Campbell et al., 2024) for an accessible sketch of this result, which follows
(Del Moral & Penev, 2017). Then, substituting Equation 46 into the RNDs of Equation 45 concludes
the proof.

D.1 ITÔ PROCESS COUNTERPART

The core result in Proposition Proposition 4.1 is in noticing that pt(ζ|Yt)
α =

(
dPα=1

t

dPbase
t

)α
and

decomposing the IS weight via the chain rule and applying Girsanovs Theorem.

Due to the very modular nature of our result our proposition seamlessly extends to Stochastic
Differential Equations.

Proposition D.1. Let proposal {Yt}t∈[0,1] be a reverse-time SDE with drift bt(x), diffusion coeficient
gt and initial distribution p1(·) and Xt also be a reverse-time SDE with drift ft, diffusion coeficient
gt and initial distribution p1(·). Define {Wt}t∈[0,1] by

Wt =
dPbase

t

dQt

(
dPα=1

t

dPbase
t

)α

, (47)

2We consider all RND’s evaluated at Yt that is when we write dP′
t

dQ′
t

it is short for dP′
t

dQ′
t
(Yt).
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where we have Pbase
t = Law{Xτ}τ∈[t,1], Pα=1 = Law{Xτ | ζ}τ∈[t,1], Q = Law{Y b,p1

τ }τ∈[t,1].
Then,

ln
dPt

dQt

base

=

∫ 1

t

1

g2τ
(fτ (Yτ )− bτ (Yτ ))

⊤←−d Yτ +

∫ 1

t

1

2g2τ
(||2fτ (Yτ )||2 − ||bτ (Yτ )||2)dτ

and

ln
dPα=1

t

dPbase
t

=

∫ 1

t

1

g2τ
(f ·|ζ

τ (Yτ )− fτ (Yτ ))
⊤←−d Yτ +

∫ 1

t

1

2g2τ
(||f ·|ζ

τ (Yτ )||2 − ||fτ (Yτ )||2)dτ

Where f
·|ζ
τ (yτ ) = fτ (yτ )− g2τ∇ ln pτ (ζ|yτ ) as per (Denker et al., 2024, Proposition 2.2).

For any pαt -integrable function h and time t ∈ [0, 1],

Ex∼pα
t
[h(x)] =

E[Wt · h(Yt)]

E[Wt]
.

Proof. Equation 47 follows directly from Proposition 4.1. Then, for the RNDs between two reverse
time SDEs, we use Equation 64 in Vargas et al. (2024). Note for the VP-SDE case; these expressions
can be simplified further as done in (Vargas et al., 2023, Equation 9). Note as with the rest of our
results, we require that p1(y1|ζ) = p1(y1) which is approximately true in the limit for VP-SDE as
p1(·|ζ) ≈ N (0, I).

D.2 ALTERNATIVE PROOF OF PROPOSITION 4.1 WITHOUT RADON-NIKODYM THEOREM

In this appendix, we present an equivalent statement of Proposition 4.1 and a proof that does not rely
on the Radon-Nikodym Theorem.

Proposition 4.1. Let proposal {Yt}t∈[0,1] be a reverse-time CTMC with rate matrix Qt and initial
distribution p1(·). Define {Wt}t∈[0,1] by,

Wt = exp(At),

A0 = 0,

At =
∑
t≤τ

Yτ+ ̸=Yτ

[lnRτ (Yτ+ , Yτ )− lnQτ (Yτ+ , Yτ )] +
∑
t≤τ

Yτ+ ̸=Yτ

α ln(Rα=1
τ (Yτ+ , Yτ |ζ)/Rτ (Yτ+ , Yτ ))

+

∫ t

1

[
Qτ (Yt)−Rτ (Yt) + αRτ (Yτ |ζ)− αRα=1

τ (Yτ |ζ)
]
dτ.

For any pt-integrable function h and time t ∈ [0, 1],

Ex∼pα
t
[h(x)] =

E[Wt · h(Yt)]

E[Wt]
.

where the expectation is taken over the law of (Yt,Wt).

Proof. We closely follow the sketches of (Carbone et al., 2023; Albergo & Vanden-Eijnden, 2024).
Assume p1(x1) = p1(x1|ζ). We first show that the coupled system (Yt, At) with At defined as,

W0 = 0 (48)

At =
∑
t≤τ

Yτ+ ̸=Yτ

[lnRt(Yτ+ , Yτ )− lnQt(Yτ+ , Yτ )] +
∑
t≤τ

Yτ+ ̸=Yτ

α [ln pt(ζ|Yτ )− ln pt(ζ|Yτ+)] (49)

+

∫ t

1

[Rτ (Yt)−Qτ (Yt)− α∂t ln pt(ζ|Yt)] dτ, (50)

satisfies,

Ex∼pα
t
[h(x)] =

E[eAth(Yt)]

E[eAt ]
, (51)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Write ∆At(x, y) = lnRt(x, y)− lnQt(x, y)+α(ln pt(ζ|y)− ln pt(ζ|x)). Define ft(y, a) to be the
joint density of (Yt, At), the joint density is governed by the (reverse-time) continuity equation,

∂tft(y, a) = −

∑
z ̸=y

Qt(z, y)ft(z, a−∆A(z, y))− ft(y, a)Qt(y) + [Qt(y)−Rt(y)− α∂t ln pt(ζ|y)] ∂aft(y, a)

 ,

f1(y, a) = δ(a)p1(x1) (52)

Define gt(y) =
∫

R eaft(y, a)da. Then, via dominated convergence theorem (i.e. ∂tgt(y) =∫
R ea∂tft(y, a)da) and substituting ∂tft(y, a) from Equation 52, it follows that

∂tgt(y) =

∫
R
ea
∑
z ̸=y

Qt(z, y)ft(z, a−∆A(z, y))da (53)

By a change of variable a′ = a−∆A(z, y), then,∫
R
ea
∑
z ̸=y

Qt(z, y)ft(z, a−∆A(z, y))da =

∫
R
ea

′ ∑
z ̸=y

e∆A(z,y)Qt(z, y)ft(z, a
′)da′ (54)

=
∑
z ̸=y

Rt(z, y) ·
pt(ζ|y)α

pt(ζ|z)α
· gt(z) (55)

And finally, by integration by parts, and noting that
∫

R eaft(y, a)da = Qt(y)gt(y), we have∫
R
ea [Qt(y)−Rt(y) + α∂t ln pt(ζ|y)] ∂aft(y, a)da = [Qt(y)−Rt(y)− α∂t ln pt(ζ|y)] gt(y).

(56)

Combining the three cases, we have:

g1(y) = p1(y) (57)

∂tgt(y) = −

∑
z ̸=y

Rt(z, y) ·
pt(ζ|y)α

pt(ζ|z)α
· gt(z)−Qt(y)gt(y) + [Qt(y)−Rt(y)− α∂t ln pt(ζ|y)] gt(y)

 .

(58)
(59)

Notice that g reduces to a system of ODEs and thus, by the Picard-Lindelöf theorem, has a unique so-
lution. Recall that Zα

1 =
∑

x p1(x)p1(ζ|x)α = p(ζ)α, writing p(ζ) as the density of ζ. Substituting
gt(y) = pt(y) · pt(ζ|y)α/Zα

1 , then,

L.H.S = ∂tg(y) (60)

=
1

Zα
1

[pt(ζ|y)α∂tpt(y) + pt(y)∂t(pt(ζ|y)α)] (61)

R.H.S = − 1

Zα
1

∑
z ̸=y

Rt(z, y) ·
pt(ζ|y)α

pt(ζ|z)α
· gt(z)−Qt(y)gt(y) + [Qt(y)−Rt(y)− α∂t ln pt(ζ|y)] gt(y)


(62)

= − 1

Zα
1

pt(ζ|y)α∑
z ̸=y

Rt(z, y)pt(z)− pt(ζ|y)α
∑
z ̸=y

Rt(y, z)pt(y)− α∂t ln pt(ζ|y)pt(y)pt(ζ|y)α


(63)

=
1

Zα
1

[pt(ζ|y)α∂tpt(y) + pt(y)∂t(pt(ζ|y)α)] (64)

= L.H.S (65)
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Since p1(y) = p1(y | ζ), it follows that the boundary condition g1(y) = p1(y) is fulfilled. Then,

E[eAt ] =
∑
x

∫
R
eaft(x, a)da =

∑
x

gt(x) =
∑
x

pt(x)pt(ζ|x)α/Zα
1 = Zα

t /Zα
1 (66)

Similarly, for an arbitrary function h if we define ght (x) =
∫

R eah(x)ft(x, a)da, we may show that

E[eAth(x)] =
∑
x

∫
R
eah(x)ft(x, a)da =

∑
x

h(x)pt(x)pt(ζ|x)α/Zα
1 . (67)

Combining the two equations, we have,

E[eAth(x)]

E[eAt ]
=

1

Zα
t

∑
x

h(x)pt(x)pt(ζ|x)α, (68)

as desired.

To finish off the proof, we show that following:

1. ∀x ̸= y. α(ln pt(ζ|y)− ln pt(ζ|x)) = α(lnRα=1
t (x, y)− lnRt(x, y))

2. ∂t ln pt(ζ|xt) = αRα=1
t (x)− αRt(x)

The first equation follows from the definition of the guided ratio matrix Rα=1
t (x). To show that

∂t ln pt(ζ|xt) = αRt(x)− αRα=1
t (x), recall,

pt(ζ|xt) = E[pt(ζ|X0)|Xt = xt], (69)

Therefore,

∂t ln pt(ζ|xt) =
1

pt(ζ|xt)
∂tpt(ζ|xt) (70)

=
1

pt(ζ|xt)

∑
y

Rt(xt, y)pt(ζ|y) (Reverse-Time) Kolmogorov Backward Equation

(71)

= Rα=1
t (xt)−Rt(xt) Definition of Rα=1

t (72)

This concludes the proof.

E STATEMENT AND DERIVATION OF DISCRETISED WEIGHTS

In this appendix, we show a discrete time version of Proposition 4.1 and the proof.

Proposition E.1. Define {Ŵtk}k∈{1,...,T} as:

Ŵ0 = 1,

Ŵtk =
∏

1≤j<k

ptj+1|tj (Ytj+1
|Ytj )

qtj+1|tj (Ytj+1 |Ytj )

·
∏

1≤j<k

[
ptj+1|tj (Ytj+1

|Ytj , ζ)

ptj+1|tj (Ytj+1 |Ytj )

]α
.

If p1(x1) = p1(x1|ζ), then for any function h : X → R and k ∈ {1, . . . , T},

1

Zα
tk

∑
x

h(x)ptk(x)ptk(ζ|x)α =
E
[
Ŵtkh(Ytk)

]
E
[
Ŵtk

] ,

where the expectation is taken over the law of (Yt, Ŵt).
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Proof. First note that,

ptj+1|tj (Ytj+1
|Ytj , ζ) = pcorrupt

tj |tj+1
(Ytj |Ytj+1

)
Mt[p0(x0|ζ)](Ytj+1)

Mt[p0(x0|ζ)](Ytj )
(73)

= pcorrupt
tj |tj+1

(Ytj |Ytj+1
)
pt(Ytj+1

)pt(ζ|Ytj+1
)

pt(Ytj )pt(ζ|Ytj )
(74)

= ptj+1|tj (Ytj+1
|Ytj )

pt(ζ|Ytj+1
)

pt(ζ|Ytj )
. (75)

Then it follows that,

Ŵtk =
∏

1≤j<k

ptj+1|tj (Ytj+1
|Ytj )

qtj+1|tj (Ytj+1
|Ytj )

∏
1≤j<k

[
pt(ζ|Ytj+1)

pt(ζ|Ytj )

]α
(76)

=
∏

1≤j<k

ptj+1|tj (Ytj+1 |Ytj )

qtj+1|tj (Ytj+1 |Ytj )

[
ptk(ζ|Ytk)

p1(ζ|Y1)

]α
(77)

=
∏

1≤j<k

ptj+1|tj (Ytj+1
|Ytj )

qtj+1|tj (Ytj+1 |Ytj )

[
ptk(ζ|Ytk)

p(ζ)

]α
Y1 = X1‘ ⊥ ζ (78)

=
1

Zα
1

∏
1≤j<k

ptj+1|tj (Ytj+1
|Ytj )

qtj+1|tj (Ytj+1
|Ytj )

Zα
1 [ptk(ζ|Ytk)]

α
=
∑
x

p1(x)p1(ζ|x)α = p(ζ)α.

(79)

Then,

E
[
Ŵtkh(Ytk)

]
=
∑
Ytk

Ŵtkh(Ytk)qtk(Ytk)

=
1

Zα
1

∑
{yi}k

i=1:yk=Ytk

Ŵtkh(Ytk)

k−1∏
j=1

q1(y1)qtj+1|tj (ytj+1 |ytj )

=
1

Zα
1

∑
{xi}k

i=1:xk=Ytk

h(Ytk)pt(ζ|Ytk)
αq1(x1)

k−1∏
j=1

ptj+1|tj (xtj+1 |xtj )

=
1

Zα
1

∑
Ytk

h(Ytk)pt(ζ|Ytk)
αpt(Yk) Both Yt and Xt starts at p1

Similarly,

E
[
Ŵtkh(Ytk)

]
= Zα

t /Zα
1 . (80)

Combining the two equation lends us to,

1

Zα
tk

∑
x

h(x)ptk(x)ptk(ζ|x)α =
E
[
Ŵtkh(Ytk)

]
E
[
Ŵtk

] (81)

This concludes the proof.
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F SAMPLING WITH APPROXIMATE TRANSITION DISCRETISED WEIGHT

The exact transition probabilities ptj+1|tj and qtj+1|tj is typically unknown. In practice, we ap-
proximate these transitions using numerical methods such as Euler sampling. As the time step ∆t
approaches zero, these approximations converge to the true weights Wt. In Algorithm 2, we show the
pseudocode of Algorithm 1 using the approximated transition probability q̃t|s and p̃t|s.

Algorithm 2 Main Algorithm with Approximate Transition
Number of particles K; Approximate Proposal Transition q̃t|s; Approximate transition p̃t|s;

Temperature α; Time-grid {tl}Tl=1; ESS threshold ESS THRESHOLD; Resampling algorithm
resample. Initialisation: Sample {x(i)

1 }Ki=1 i.i.d. from p1. Set ŵ(i)
1 ← 0 for i = 1, . . . ,K.

l = 1 to T i = 1 to K Step 1: Propagate Sample x
(i)
l+1 ∼ q̃tl+1|tl

(
·|x(i)

l

)
Step 2: Update and Nor-

malize Weights Set ŵ(i)
l+1 ← ŵ

(i)
l ·

p̃tl+1|tl (x
(i)
l+1|x

(i)
l )

q̃tl+1|tl

(
x
(i)
l+1|x

(i)
l )
·
[
p̃tl+1|tl (x

(i)
l+1|x

(i)
l ,ζ)

p̃tl+1|tl

(
x
(i)
l+1|x

(i)
l )

]α
Step 3: Resample; see

Appendix G for other resampling algorithms Set ESS←
(∑K

i=1 w
(i)
l

)2
/
∑K

i=1(w
(i)
l )2 ESS ≤

ESS THRESHOLD w̃
(i)
l ← ŵ

(i)
l /

∑
i ŵ

(i)
l Set x(i)

l+1, ŵ
(i)
l+1 ← resample({x(i)

l }, {w̃
(i)
l }) Out-

put: Particles {x(i)
T }Ki=1
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G PSEUDOCODE FOR RESAMPLING ALGORITHMS

In this section, we introduce various resampling strategies for Sequential Monte Carlo methods.
Ultimately, the goal of resampling algorithm is to replace low weighted particles with high weighted
particles to reduce the variance of weights such that the expectation of any function ϕ remains
unchanged.

More specifically, consider at iteration l of a SMC algorithm, given K particles {x(i)
l }Ki=1 and

{w(i)
l }Ki=1 from some joint distribution Q induced by the SMC algorithm. A resampling algorithm

returning {x̃(i)}Ki=1 and {w̃(i)}Ki=1 generates consistent samples as long as for any bounded and
continuous function ϕ, EQ[w(i)ϕ(x(i))] = EQ[w̃(i)ϕ(x̃(i))] where EQ notes an expectation on Q.

G.1 MULTINOMIAL RESAMPLING

The simplest and most common resampling strategy is the multinomial resampling, which involves
the particles in the next iteration independently following a categorical distributions distributed
according to the normalised weights.

Algorithm 3 Multinomial Resampling

Number of Particles K; Particles {x(i)}Ki=1; Normalised Weights {w(i)}Ki=1 i = 1 to K

Sample x̃(i) ∼
∑K

j=1 w
(i)δx(i)(dx) w̃(i) = 1/K Output: Particles {x̃(i)}Ki=1 and Weights

{w̃(i)}Ki=1

G.2 PARTIAL RESAMPLING

We further consider employing a partial resampling strategy adapted from (Martino et al., 2016),
which we found to prevent mode collapse of samples effectively.

Algorithm 4 Partial Resampling

Number of Particles K; Particles {x(i)}Ki=1; Normalised Weights {w(i)}Ki=1; Resample
Size M Set Resample Indices I = {i|w(i) among the ⌊M/2⌋ highest or ⌈M/2⌉ lowest} i = 1

to K i ∈ I Sample x̃(i) ∼
∑K

j=1 w
(i)δx(i)(dx) Set w̃(i) ← 1/M

∑
i∈I w

(i) Set x̃(i) ← x(i) Set
w̃(i) ← w(i) Output: Particles {x̃(i)}Ki=1 and Weights {w̃(i)}Ki=1
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H DOES PARTIAL RESAMPLING MITIGATE MODE COLLAPSE?

The MNIST dataset visually demonstrates mode collapse and the effectiveness of partial resampling
(Section 6.2). Using SMC with guidance temperature β = 1 and SMC temperature α = 3, we
observe mode collapse in Figure 3 (centre), where 16 particles converge to identical images. Partial
resampling (Figure 3, right) maintains both diversity and stronger conditional control compared to
naive guidance (Figure 3, left), which occasionally generates incorrect digits.

Figure 3: Class-Conditioned Im-
age Generation ζ = 4: Left
to right: Independent guidance,
SMC without partial resampling,
SMC with partial resampling.
The latter produces high-quality
digit 4 samples without mode col-
lapse.
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I FIGURES ON TEXT RESULTS

Figures 4, 6, and 5 show how α and β affect perplexity and control metrics. With high α, SMC
outperforms guidance across tasks, with the gap narrowing at high β but at the cost of deteriorating
perplexity, indicating that the proposal is unable to sample from high likelihood region. For toxicity,
SMC achieves better control until β > 1.4 with comparable perplexity. For sentiment, SMC improves
accuracy until β > 1.2 with slightly higher perplexity, while at β > 1.4 and α = 1, it achieves lower
perplexity with equal accuracy. For infilling, SMC maintains superior or equal accuracy across all β,
with better perplexity at β ∈ {0.4, 0.6} or at α = 1, β > 1.4.
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Figure 4: Toxicity controlled generation: SMC
achieves better toxicity scores across all guid-
ance temperatures β. While baseline methods
match SMC’s control at high β, perplexity dete-
riorates.
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Figure 5: Text infilling: SMC achieves higher
accuracy across all guidance temperatures, with
better perplexity at β ∈ 0.4, 0.6 and at β ≥ 1.6
with α = 1.
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Figure 6: Sentiment control gen-
eration: For guidance tempera-
tures β ∈ {0.2, 0.4}, SMC ap-
proaches achieve notably better
accuracy compared to guidance,
though at the cost of slightly higher
perplexity. For guidance tempera-
ture greater than 1.4 and for α = 1,
SMC method achieves lower per-
plexity compared to guidance.
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J ADDITIONAL TEXT GENERATION RESULT

We display results on text generation control when using the DEFT guidance term. We find that:

For toxicity-controlled generation, SMC-based methods outperform guidance on control metrics
across the guidance temperature range [0.0, 2.0], which is even more apparent for higher SMC
temperature α. This is at the expense of a slightly degraded perplexity compared to guidance. At
high guidance temperature, the guidance method is on par with SMC-based methods on toxicity
score, at the expense of a significantly deteriorated perplexity. This indicates that at high guidance
temperatures, the samples deviate from the fine-tuned data distribution. In that scenario, a good
balance between perplexity and control generation is in the mid-to-low range of guidance temperature.
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Figure 7: Toxicity controlled generation: Guidance is performed with DEFT. SMC methods show
improved toxicity scores across all proposal temperatures β, particularly for high β, demonstrating
enhanced generation control.

For text infilling, SMC-based methods achieve superior accuracy for guidance temperatures
β ∈ [0.2, 0.8]. However, at high guidance temperatures, both SMC and guidance methods at-
tain comparable optimal accuracy and perplexity. In this specific scenario, despite lacking theoretical
guarantees, the guidance method proves more practical due to its lower computational cost while
maintaining equivalent performance.

For sentiment-controlled generation, SMC methods achieve higher accuracy for guidance temper-
atures β < 0.6, which comes at the cost of a slight increase in perplexity. At higher guidance
temperatures (β > 1.2), both SMC and standard guidance converge to similar accuracy levels around
0.85, with comparable perplexity until β = 1.6. Beyond this point, all methods show significant
perplexity deterioration, with SMC methods exhibiting slightly higher perplexity than standard
guidance.
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Figure 8: Text infilling: Guidance is performed with DEFT. SMC based methods show improved
accuracy for β ∈ {0.2, 0.4, 0.6, 0.8} while keeping a lower perplexity for β ∈ {0.4, 0.6}
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Figure 9: Sentiment controlled generation: Guidance is performed with DEFT. For guidance
temperature lower than 0.6 SMC methods show improved accuracy while having higher perplexity.
For larger guidance temperature accuracy and perplexity are relatively similar.
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K SAMPLES

ant EOT a very funny and rewarding small comedy . EOT a rather else altogether EOT genuinely
sweet and EOT evokes its low-budget constraints fairly well EOT , evocative EOT ’s spooky . EOT
an interesting concept EOT here ’s the treat . EOT a solidly entertaining film in its own right EOT
supremely goofy pleasure EOT demonstrated extraordinary faith EOT an unflinching meditation on
how business can change those who enter EOT love the film . EOT – deep down you ’ve a family EOT
a fascinating glimpse EOT of place with its oscar-worthy predecessors EOT pounding, offering fine
acting moments , EOT it ’s a surest bet EOT an engaging fantasy EOT , the material actually springs
to life EOT director credit gyllen brings together caine and grant EOT star charisma EOT consistent
EOT what ’s best about dustin gondry ’s sophisticated read my lips EOT EOT ... scotches . EOT ’s
surprisingly faithful EOT EOT dazzling EOT make up for the execution ’s weak comic buttons . EOT
curiously funny, intriguing , EOT just that satisfying exploration of love and companionship EOT
EOT emotional sympathy EOT make it entertaining , EOT ungainly work EOT strongest films EOT
funny EOT to sharp writing EOT make for a great director ’s to make, everlasting EOT innocence
EOT though not technically proficient or as EOT remark to ‘ believer ’ in some time EOT sometimes
insightful writer EOT mr. honorably EOT and unforgettable characters EOT cool, cocky, and – dare i
say twice – hollywood-esque EOT powerful story EOT surprisingly sweet EOT engaging, compelling
tale EOT beautiful EOT vibrant air EOT but ultimately winning film EOT its simple expressiveness
EOT enriched than limited by its exceptional lead performances EOT of impressively challenging
social drama EOT the rich formalism EOT EOT keep you EOT of laughs EOT quieter EOT the
praises EOT some monster movie EOT as his penchant for documentaries EOT is latin star to young
international hip-hop audiences EOT often funny romantic comedy EOT smoother EOT only enhance
his good looks EOT immensely enjoyable EOT one of the most idiosyncratic comedies EOT oddly
watchable EOT ambitious EOT directed personalities EOT interesting, i must say , EOT faithful , EOT
well, EOT well lived EOT compelling and gripping EOT everyone ’s comic relief EOT truly funny
EOT enjoy EOT elegant delivery EOT idea EOT familiarity EOT to hold you well past its 90 minutes
EOT find love EOT fresh sense EOT has spliceed together bits and pieces of hagney ’s reign EOT
for good, scary movies EOT gaining this movie EOT flaccid satire , EOT EOT respectable, sweetly
adventurous EOT a film EOT smart and subtle EOT vibrant and EOT their fathers EOT her maternal
fury of faith EOT EOT protagonists EOT is surprisingly insightful and fun and entertaining EOT that
acts as if it never had any idea what EOT , originality and technical skill EOT argue EOT above all,
blue crush is nothing to overlook . EOT sulky and beautiful rendering of an intense mystery about
the world ’s greatest teacher EOT daring teacher EOT cinematic stamp EOT warm , EOT its inviting
EOT sexy EOT is realistically terrifying EOT a surprising entree EOT invigoratingly irresistible EOT
action-power appeal EOT slyly debated film EOT mention, engaging premise EOT , there are enough
laughs to keep on clicking through EOT puts us off-center in the unfolding of bielinsky ’s clever
scenario , EOT the local flavor and french musicmaking traditions EOT elegance EOT it has a real “
story ” EOT at least the funniest idea EOT works well on different levels, until it is actually funny .
EOT , cleverly crafted and EOT scenes brimmed EOT allows you to forgive its basic humanity EOT
that tickles the chills of EOT subtle EOT the film a stunning lesson in human-scale acting , EOT ’s a
film school exercise with dignity and wit that “ should have been right to grow up EOT a riot like john
ritter ’s brothers ... EOT thumbs up EOT seemingly EOT they ’re the target audience because EOT
sensitive performances and EOT magnificent landscape EOT caric ballot EOT bring more goodies
. EOT as cohesive , EOT some first-time director EOT of the finest kind EOT a spirited EOT ’re out
tonight EOT style and color EOT a cleverly written and thoroughly winning portrayal of titular kid
a woodman who ’s become a self image with kids EOT emotional evolution EOT she ’s a tempting
bouquet – if you live a minute ... come and see the charm of the movie EOT is credible EOT a classical
actress EOT delicious camera work EOT a treat , EOT a more absorbing piece EOT all builds up to
the easy, endearing knockout . EOT still charming – likely his next film wo n’t be the greatest date
movie EOT , sweet EOT . EOT most good-hearted EOT a few good ideas EOT a feel-good thriller
EOT , illuminating study EOT large metaphor EOT successful EOT fresh is “ fresh ” again EOT tell
this tale EOT felt and affecting EOT

Figure 10: Sentiment control - positive samples - SMC β = 1.0, α = 2.0. EOT indicates End Of Text
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having a difficult time telling what time in the past year . EOT a pale successor EOT an odd bit
of an erratic EOT killing time EOT wobbly EOT mean-spirited EOT ’s no energy EOT carries little
insight on either end of the other EOT dangerous comedy EOT a slightly flat , EOT the little the seams
EOT EOT it drags EOT perverse EOT this bland EOT the cheapness EOT poorly EOT any teen movie
starring slackers or EOT succeeded EOT brain strain EOT ill writing EOT may also not have been
the grossest american bike movie of 2002 . EOT absurdities EOT it ’s too simpleminded – EOT has
the idea been sealed in a jar EOT this obvious rip-off EOT racist EOT is wit, or even good acting ,
EOT more like satire than illuminating examination EOT despite snow dogs, leaves us cold . EOT
the action is predictable with many subplots and EOT very insecure EOT ’s still flibbled together its
clichés . EOT bad combination EOT particularly suspenseful at times EOT deep technical blues vs
blues EOT are so smeary, blurry and jagged EOT form 51 is n’t really scary enough for “ midnight
flick ”, and EOT thought you or i were paying full price for this, and rent those instead EOT is a minor
miracle EOT handbags in saving private ryan EOT like ‘ to suck ’ EOT its clichéd scenes of war EOT
poorly dubbed dialogue, and EOT ’s hard to imagine a product more repellent than adam sandler
’s 2002 EOT EOT weighted a sci-fi story that ’s bottom-heavy and tired EOT wrong things EOT
stiflingly EOT EOT endless exposition EOT simply overcooked EOT evasive EOT call an “ ambitious
failure EOT EOT even less ambitious failure EOT ridiculous and sloppy EOT no air conditioning EOT
the ragged pacing EOT a loud, crassly predictable rehash EOT how lame it all is EOT ends world
traveler ’s lackluster title EOT have done with all the subtlety from earlier had taken in favor of more
user-friendly computer tutorial EOT EOT mind settles into a irksome parade of human frailty and
death . EOT smug and exploitative EOT the whining EOT this latest comedy tangents of pratfalls,
injuries and pranks EOT to anyone who suffered through halfway through david rifkin ’s sweet home
‘ alabama EOT old pickup EOT should have been ordered off the screen EOT like the plague EOT
neges toward fuzziness EOT its skewed acting , EOT an odd, painful and obnoxious attempt at a
documentary EOT , repetitious and contrived EOT lacks a moment of considerable poignancy . EOT
chaos and EOT EOT cold, emotionally opaque EOT stands nowhere EOT frustrating EOT dull EOT
suffered EOT characteristic quirks EOT half-step EOT , it ’s hopeless . EOT there ’s nothing new
to be taken from ‘ fatal attraction ’ 4ever EOT is painfully bad . EOT unfaithful hollywood fluff
EOT have little interest in jez begley ’s book EOT no foundation for disney EOT EOT , herzog is the
director ’s logistically and EOT is it not hagiographic, though EOT need more than plot EOT rocks
and holes EOT with lots of solips EOT ving EOT at times maddeningly repetitive . EOT rendered all
round square edges, blurry images and murky and EOT ’s cloying, manipulative EOT trial EOT on
sub-zero animation EOT an annoying , EOT went to the restroom but want my money back . EOT
water torture EOT pompous EOT rigid idea EOT insufferable EOT as boring and pedestrian EOT ,
heavy-handed EOT marginal insights EOT from lost ring to snatch on stage EOT hampered by a
shabby script EOT gold is a real hollywood dog story EOT limpid and pretentious endeavor EOT is
subtler than it might have been . EOT the film with relentlessly nasty situations EOT ’s not handled
well EOT wastes dialogue EOT sensible violence EOT of all the male junkie post-about obsessive
relationships EOT is a testament to the author ’s work EOT have had room for more creative action
. EOT empty farce EOT liar zone EOT could call it tacky EOT painfully awful EOT forget about
the fact that kennedy has nothing to offer up his act EOT the faintest hopefulness , EOT EOT flat
EOT , spiteful idiots EOT is superficial and EOT describe characters ’ frustrations EOT end zone
EOT familiar and thoroughly recycled plot . EOT tired EOT aimless direction, pathetic acting, heavy
dialogue, tissue-thin characters EOT EOT of inept filmmaking EOT last 15 years EOT the picture
just EOT nothing except they ca n’t – anything, really, seems to matter very much EOT a noticeable
amount of its own EOT neat EOT best elsewhere EOT waste ; EOT human behavior , EOT too fancy
EOT derivancy EOT distinct comic direction EOT this m-out-l lesbian comedy EOT does n’t give a
complete picture . EOT shallow plot EOT could have any interest in silly fluff EOT , tedious , EOT ’s
not clear what this turkey is

Figure 11: Sentiment control - negative samples - SMC β = 1.0, α = 2.0. EOT indicates End Of
Text
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or it really costs that far to finish rail. EOT I always thought the part time NDP would be on the hook
for this, but then they had to master the ndp’s fiscal policies. EOT Fess up........ EOT He managed it
brilliantly. EOT You are wrong in that regard. Harper suggested enough to leave the potential harm to
children (and adults) to see. EOT Agreed. Further increasing the income of Quebec will likely lead to
increased income tax charges for Ontario governments attempts to do same. EOT rumps.. the globe
loses again.. its only readership is NK EOT once again putting alt lunatic whining over the real picture
bud EOT Alaska hasn’t cut the PF yet Walker over spent our PFD for the same 40 years. Walker
has 3 more session to do some cuts cutting back PFD dividends not PFD raiding the new gas line.
Enough Permanent fund cut already Walker and Governor Walker and Governor Walker. Time for
legislature and real leadership in Alaska needing new taxes. EOT Yes Bravo Orange Pail! EOT Sorry
son but don’t look forward to Ducks game, it’s always good to find out who has the better quarterback.
EOT Trump is fleeing the Trump administration right now. EOT Sorry, you’ve undermined the whole
point of your comment ... EOT How about everyone familiar with Dale Wright? EOT One less
Hawaii Democrat. EOT Where’s Cory Gardner. EOT Silly Senate. EOT Happy New Air Canada
- what a touch of sweet irony. EOT Great comments! EOT Seems like your actions out in front of
the world for all people to see. EOT there is no illegal world building EOT Trudeau ? EOT Not to
fast.....tax Vancouver got it fair share. EOT LOL....... EOT Maybe our Senators Cory and Murkowski
will vote for a repeal. EOT This is about criminal charges underway and emails continue to be the
target. Mueller will investigate the names Hillary, let Mueller have his look and hopefully does find
Hillary exists. EOT I’m sure snakes are the least human kind. EOT Great pleasant surprise. EOT
I agree with you! EOT The problem is that guys like Meredith and Crapwell will just fade away.
EOT Alceste three times is running as a republican. EOT Wrong case. Can’t find a place right there.
EOT http://JustPeace.org That’s Fairbanks, Fairbanks EOT Yep. His opening rhinos ring louder every
posting. EOT Not China nor NK. Neither have threatened NK. EOT Maybe they break the law along
with other citizens who drive motorized vehicles. EOT What were you wearing? Wear the ladies
locker? EOT Get a clue who play each string on the violin. EOT I have been discouraged about
owning a home when rental prices have gone down significantly. It seems like there is only reason
for gray market rentals any more. If I could find an area that had a small amount of rental units and
never close it with no decision but rent, then I could buy in. EOT More Liberal tabloidism fleeced
by paid leftist disinformation efforts. Good riddance! EOT Didn’t happen to read your post either.
EOT Wrong Old Spice.... EOT IRT Gary Crum, we don’t need any new information when it comes to
responding to the DP. EOT why? EOT Then why tax the PFD earnings when Anchorage borough and
developers pay local property taxes with PFD earnings? EOT Agreed! Pay you to Netflix any network
programming than you get in actual services you pay for. EOT You wanted Hillary is a lot different
than wishing Hillary lost...... EOT Does every car require a plate handle or do democrats have ? EOT
They have not given up anything re producing soft fishing. The dairy industry will not be on any side
of the deal when NAFTA gets a bad looks up. First side to lose the deal is at risk. EOT Agreed. EOT
I assume it isn’t you Gary EOT Yeahhhh trump juice! EOT I remember long ago the Cons and the
NDP were slamming each other behind the scenes. EOT Your tolerance must be getting really old.
EOT Wouldn’t say Amy hasn’t heard here. EOT So Berkie and Caldwell belong in jail? EOT the big
question is ”which will they write it” EOT How was this deficit announced 6 months ago? EOT Very
good article thanks for posting Vic. EOT Completely untrue. South America is producing the most
efficient portion of the world’s oil soon. BTW, if your planning on expanding pipelines, move ahead
and avoid Alberta. EOT Wow. Can’t even conceive of imagining how naı̈ve trumpsters are. EOT Nah.
It was a big one. EOT Prove it. Tax my dividend too. EOT Did’t the letter writer say Lame County?
EOT Yep! That’s who you ”democratic” voted into office. EOT EOT Agreed! Harper! Has to go.
EOT Sorry but not quite. The data you are referencing is one game show. EOT So Alaska needs our
own modern rail system? We don’t need a modern system of satellites like the majority of lights on
the nation. EOT I find it hilarious that idiot trump does nothing to mitigate

Figure 12: Toxicity control - non toxic samples - SMC β = 1.2, α = 4.0. EOT indicates End Of Text
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when commuters were most busy......... EOT Eh. Used that logic. EOT Better hope the coming
recession never happens EOT Enough with your infomeration Bombing homes works better. EOT
Just keep Trump in. It could be our destiny to get rid of all Obama’s puppet masters EOT Here’s
my only thought regarding your comment: Keep up! EOT How did I need any further contribution
to that? EOT Someone please refute my fact. EOT The phony Liberals who ”thought” a love of
country above party will have no spine. As always, the press will focus on facts and Republicans
will relentlessly call out real Liberalism. EOT That’s a fact. Comey’s firing does have been the direct
result of Comey’s conduct acting inappropriately for US intelligence. Comey is not the person fired
out of political motivation, but Trump was rejected as for the US Criminal Code but rather the federal
judge has rejected him. EOT ”: An extension for the appeal period or even an extension for each
waiver signed may be all Kobachak’s congressional breaks.” As I pointed out in a Civil Comments
form on behalf of Kobachak in 2016 there was nothing further to see in Kobachak’s case. He picked
a fight and all is well with his formerly a non-friend and ally. EOT So? The author is anonymous?
at least he doesn’t have a secret. BTW, you seem to assume that Kobachak doesn’t share your own
psychology. Darn it. EOT I am a retired member of the Sierra Club, although I am also a member
of the California chapter at https://fight.org/ and the Northeast chapter at https://www.sanfrust.org/
The health issue in Puerto Rico is significant and I think about it from a personal perspective. Trump
is really sparking passions in his comments so will face criticism. Aside from that aways, he needs
to understand what actually took place in Texas City and events that resulted in this disaster there.
EOT Our government is only better than you. EOT Now that Trudeau has been given free rein in
unilateral withdrawal from the U.S., then why would we subject ourselves to further a significant
trade relationship that the Chinese and Russians absolutely want? It can only work here if we remove
big historical barriers such as the Suzuki’s and tackle these for our benefit. The world is entering a
new era of mutual respect. EOT This is more of exactly what’s expected. EOT That’s wording that
selectively is used. Only a few extreme views dominate the discussion. These are only three of 10.
EOT More that some people do disagree with the process as they may have alternative theories. I also
suggest you get educated and understand the current science and the reality of climate change. EOT
Aloha, go year long in different neighborhoods like season after year. I see day in and day out the
exact same homeless; no different penalty for visiting Eugene; same as anywhere else. EOT Thanks
for the linking C of B page to Quebec. Donna can’t cut it. EOT The crime is not unusual, per say.
They are allowed their privacy, but selectively. No tunnels to break, but it is a crime. EOT The IPCC
failing to release public information regarding the case runs contrary to the article’s recommendation.
Quite clearly his fate is not to be ended in death as was indicated by the way he was raised when
confronted with simply not being born. EOT Again, are you not proud of your experience and reach?
EOT I agree. This analysis does not take into account that the content of most of our English-language
newspapers is particularly bias. To what appears to be happening in Canada a few days, but every
once in a while a Canadian newspaper is going to highlight certain facts because of the importance
a story that few would know. It has also been said that many newspapers insist on showing all
news every week and not just the stories that are the most important. EOT If i can looked at things
differently and see more from the top - it emerges I see less as ’completely out of line’ as others feel I
have looked more towards the ’top’. EOT We are all doing the best we do, sometimes it takes the
next thing. EOT Having a minimum wage for the smaller employees in Alaska must be expensive
because the businesses have to do their work at home thru government, education and the overall
economy. My monthly cost of organic food is $10.71 per hour plus. So how can I go through the
trouble and earn that many per hour rather than having a loss on these goods? I paid lucky so I will
have to stock up while in retirement, but that is still very expensive. Remember you not only need the
help with government but with income, earned through education, and the rest of the economy. EOT
Sure, a lot of kids are taking hitches and missing their focus. The selection of character, athleticism
and tougher focus is what determines the chance of success. EOT It’s not everything. He did hate the
west in his first election. EOT It’s the First Amendment folks to blame ... I say to ”vide wolf, flock”

Figure 13: Toxicity control - non toxic samples - Guidance β = 1.2. EOT indicates End Of Text
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