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Abstract

Chain-of-Thought (CoT) reasoning enhances001
Large Language Models (LLMs) by encourag-002
ing step-by-step reasoning in natural language.003
However, leveraging a latent continuous space004
for reasoning may offer benefits in terms of005
both efficiency and robustness. Prior implicit006
CoT methods attempt to bypass language com-007
pletely by reasoning in continuous space but008
have consistently underperformed compared to009
the standard explicit CoT approach. We intro-010
duce CODI (Continuous Chain-of-Thought via011
Self-Distillation), a novel training framework012
that effectively compresses natural language013
CoT into continuous space. CODI jointly trains014
a teacher task (Explicit CoT) and a student task015
(Implicit CoT), distilling the reasoning ability016
from language into continuous space by align-017
ing the hidden states of a designated token. Our018
experiments show that CODI is the first im-019
plicit CoT approach to match the performance020
of explicit CoT on GSM8k at the GPT-2 scale,021
achieving a 3.1x compression rate and outper-022
forming the previous state-of-the-art by 28.2%023
in accuracy. CODI also demonstrates robust-024
ness, generalizable to complex datasets, and in-025
terpretability. These results validate that LLMs026
can reason effectively not only in natural lan-027
guage, but also in a latent continuous space.028

1 Introduction029

Large Language Models (LLMs) have exhibited030

remarkable reasoning capabilities (OpenAI, 2024;031

Anthropic, 2024; Google, 2024), with Chain-of-032

Thought (CoT) (Wei et al., 2022) emerging as a033

key technique for enabling step-by-step reasoning.034

The success of CoT can be explained as it allows035

human-like deliberate thinking when computing a036

sequence of reasoning tokens before deriving the037

final answer (Kahneman, 2011).038

However, conventional CoT-based methods only039

rely on natural language tokens as the medium for040

reasoning. While prior work on prompt learning041

(Lester et al., 2021) has demonstrated that trans-042

Figure 1: Comparison of reasoning strategies. No-CoT-SFT:
Train model on (Q,A) pairs via SFT. CoT-SFT: Train model
on (Q, CoT, A) triples via SFT, i.e., with explicitly annotated
CoT reasoning steps. Coconut: requires multi-stage training
to progressively replace CoT tokens with continuous represen-
tations. CODI: achieves this in a single stage by compressing
CoT tokens into continuous space via self-distillation.

forming discrete prompts into continuous represen- 043

tations can lead to efficient yet effective reasoning 044

(Li and Liang, 2021). This motivates us to inves- 045

tigate if CoT reasoning can similarly benefit from 046

continuous representations. Compared to natural 047

language, reasoning in continuous space offers the 048

following advantages. First, verbalizing the reason- 049

ing process can be inefficient, as many tokens are 050

devoted to communication rather than computation 051

(Li et al., 2024b). Second, learning annotated CoTs 052

token-by-token may cause models to overfit on su- 053

perficial linguistic cues (Lin et al., 2025). While 054

continuous representations—without the need to 055

mimic explicit targets—introduce a softer prior, 056

which may lead to improved robustness. 057

An implicit CoT algorithm replaces natural lan- 058

guage tokens with continuous representations for 059

reasoning as shown in Figure 1 (left). To effec- 060

tively learn these representations, Pfau et al. (2024); 061

Goyal et al. (2024) pretrain the model with addi- 062

tional thinking tokens from scratch. More recently, 063

the state-of-the-art method, Coconut (Hao et al., 064
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2024) adopts a curriculum learning strategy (Deng065

et al., 2024) that gradually replaces the initial CoT066

tokens with continuous thoughts. This strategy en-067

courages continuous thoughts to behave like the re-068

moved CoT tokens. Although Coconut has greatly069

improved upon earlier implicit CoT methods in070

terms of performance (Goyal et al., 2024; Deng071

et al., 2024), it lags behind CoT-SFT by a large072

margin as shown in Figure 1 (right). We hypothe-073

size that this performance gap is due to forgetting074

across stages in the curriculum learning process075

(Vijjini et al., 2021). This prompts us to ask: Can076

implicit CoT methods achieve the reasoning capa-077

bility comparable to CoT-SFT while maintaining078

their efficiency advantages?079

To address this, we propose a novel train-080

ing framework: CODI (Continuous Chain-of-081

Thought via Self Distillation). CODI enables082

implicit CoT learning in a single training step083

by leveraging self-distillation, thereby avoiding084

the forgetting issues inherent in curriculum learn-085

ing. In doing so, it achieves performance compa-086

rable to CoT-SFT while being significantly more087

efficient. CODI enables implicit CoT reasoning088

through a joint learning setup involving a teacher089

task and a student task. The teacher learns from090

the annotated CoT tokens using a cross-entropy091

loss, while the student generates a small number092

of continuous thoughts before producing the final093

answer, representing implicit CoT reasoning. We094

do not constrain the student’s continuous thoughts095

to match any specific target. Instead, we transfer096

the teacher’s reasoning knowledge to the student097

through a form of representation alignment at the098

position of answer generation, where the essence099

of the reasoning process is captured (Orgad et al.,100

2025). This allows the student to effectively mimic101

the teacher’s reasoning pattern in continuous space102

without rigid constraints. We refer to this mech-103

anism as self-distillation (Wang et al., 2023; Gou104

et al., 2021), emphasizing the model’s ability to105

distill one of its own behaviors into another.106

The main contributions are threefold:107

• We propose CODI, a novel self-distillation frame-108

work that enables LLMs to reason in a compact109

continuous space, providing an alternative to ac-110

celerate reasoning with high performance.111

• We demonstrate the effectiveness of distilling112

knowledge from explicit CoT to implicit CoT by113

aligning the hidden activations of a single token.114

• Extensive experiments show that CODI is robust,115

generalizable to complex CoT datasets, and of-116

fers a reasonable level of interpretability.117

2 Related Work 118

Implicit Chain-of-Thought Reasoning. Im- 119

plicit CoT methods aim to enhance reasoning 120

without verbalizing intermediate steps as in CoT, 121

thereby accelerating inference speed. Theoretical 122

work (Strobl et al., 2024; Merrill and Sabharwal, 123

2024) establishes that additional computational 124

tokens enhance transformers’ reasoning capacity. 125

Empirical studies (Pfau et al., 2024; Goyal et al., 126

2024) validate these insights by training LLMs with 127

extra dummy tokens before answering though in 128

a limited scale and effect. Recent efforts (Deng 129

et al., 2023, 2024) distills CoT reasoning by fine- 130

tuning. They improve over the No-CoT baseline, 131

but fall behind CoT finetuning possibly due to dis- 132

carding all intermediate tokens. Addressing this, 133

Coconut (Hao et al., 2024) reintroduces interme- 134

diate reasoning tokens via autoregressive hidden 135

state propagation, combining curriculum learning 136

from (Deng et al., 2024). While this achieves some 137

improvement over (Deng et al., 2024), Coconut 138

still lags behind explicit CoT, which we attribute to 139

forgetting in curriculum learning. CODI replaces 140

curriculum learning with a novel self-distillation 141

framework, enabling a single-step learning process 142

that avoids forgetting issues. Our work is also in- 143

spired by in-context compression (Ge et al., 2024; 144

Li et al., 2024c), though our work is compress- 145

ing the generation instead of the existing contexts. 146

Concurrent works (Xu et al., 2025; Liu et al., 2024; 147

Su et al., 2025) explore latent reasoning, but still 148

rely on explicit CoT generation. Looped transform- 149

ers (Geiping et al., 2025a; Saunshi et al., 2025; Yu 150

et al., 2025) also support latent reasoning, though 151

they primarily vary in model depth without intro- 152

ducing. In contrast, CODI emphasizes increasing 153

reasoning capability through additional tokens. 154

Knowledge Distillation. Knowledge distillation 155

(KD) (Gou et al., 2021; Xu et al., 2024) has 156

emerged as a key strategy for transferring CoT rea- 157

soning capabilities from teacher to student mod- 158

els. Traditional approaches (Hsieh et al., 2023; Ho 159

et al., 2023) train smaller student models to mimic 160

step-by-step outputs from larger teacher LLMs, mo- 161

tivated by findings that CoT reasoning emerges pre- 162

dominantly in large models (Wei et al., 2022). Self- 163

distillation (Yang et al., 2024; Dong et al., 2024) 164

leverage self-distillation to preserve the model’s 165

original behavior, akin to the KL divergence loss 166

used in RLHF (Ouyang et al., 2022). Our work 167

is based on self-distillation framework, but further 168

strengthens the teacher by providing it with richer 169
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Figure 2: CODI enables the model to generate implicit continuous CoTs by jointly training a student task and a teacher
task, and distills knowledge from the teacher to the student. The Student task (left) generates the answer by autoregressively
decoding continuous thoughts starting from a learnable bot token, while the Teacher task (right) generates the answer using the
groundtruth CoT via teacher forcing. Both tasks learn the generated texts via cross-entropy loss (Lstudent and Lteacher), and share
the same LLM. Knowledge distillation is achieved by applying LKD (L1 loss) between student and teacher hidden activation
across all layers (hstudent and hteacher).

input contexts, enabling the student to learn from170

it like knowledge distillation. Since the teacher171

and student tasks differ, CODI can also be viewed172

as a form of multitask learning (Crawshaw, 2020).173

Moreover, CODI distinguishes itself by allowing174

reason in the latent space other than natural lan-175

guage, which is rarely explored in prior knowledge176

distillation works. This innovation enables more177

flexible and efficient reasoning.178

3 CODI: Continuous Chain-of-Thought179

via Self Distillation180

Unlike traditional CoT reasoning, CODI bypasses181

autoregression in the vocabulary space, and directly182

connects the last hidden representation to the sub-183

sequent input. The key challenge in training such a184

model with continuous thoughts lies in designing185

an appropriate training objective. Conventional rea-186

soning learning in explicit CoT fine-tuning relies187

on a cross-entropy loss over annotated CoT tokens,188

which inevitably leads to discrete CoT token gener-189

ation—contradicting the definition of implicit CoT.190

3.1 Overview191

CODI addresses this challenge by introducing a192

self-distillation framework (Figure 2) with two193

training tasks: a teacher task and a student task.194

The teacher task learns explicit CoT reasoning,195

while the student task learns implicit CoT reason-196

ing. Knowledge distillation is achieved by align-197

ing the hidden activations of a key token from the198

teacher to the student via LKD. The overall train-199

ing objective is a weighted sum of three losses:200

L = αLteacher + βLstudent + γLKD, (1)201

where α, β, and γ are hyperparameters controlling 202

the balance among the objectives.1 203

3.2 Teacher Task 204

The teacher task (Figure 2, right) learns explicit 205

CoT using a cross-entropy loss: 206

Lteacher = − 1

N

N∑
i=1

logP (ri | r1:i−1, Q), (2) 207

where P denotes the output probability distribution 208

of the LLM, Q represents the question tokens, and 209

r = [c, y] is the concatenated sequence of the CoT 210

reasoning tokens c and the final answer token y. 211

3.3 Student Task 212

The student task (Figure 2, left), which per- 213

forms implicit CoT reasoning, generates contin- 214

uous thoughts by autoregressively propagating the 215

last hidden states. This process begins with a learn- 216

able <bot> (begin-of-thoughts) token and proceeds 217

until a learnable <eot> (end-of-thoughts) token is 218

reached. The model then learns the final answer 219

from the <eot> token using a cross-entropy loss: 220

Lstudent = − 1

N

N∑
i=1

logP (yi | y1:i−1, Q, Z), (3) 221

where y denotes the answer label, Q the question 222

tokens, and Z the continuous thoughts. 223

Additionally, a two-layer MLP followed by layer 224

normalization transforms the hidden representa- 225

tions of continuous thought tokens before feeding 226

them into the next step for the purpose of better 227

discriminating the latent space and the token space. 228

1A Python implementation of this framework is provided
in Figure A3.
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3.4 Self-Distillation229

If the model learns only with the student task, it230

benefits only marginally from the additional com-231

putation (Goyal et al., 2024) due to the absence of232

supervision for continuous thoughts.233

Distillation in Feature Space. To provide ex-234

plicit supervision to guide continuous thoughts, we235

adopt a feature-level distillation strategy. Recent236

work (Li et al., 2024a; Liu et al., 2023) demon-237

strates that in-context examples influence the final238

query token by shifting its hidden activation val-239

ues. Extending this idea, we show that CoT tokens240

similarly induce a shift in hidden activation values241

of a query token (can be a probing token like "An-242

swer") compared to a sequence without CoT, as243

formalized in Equation 4:244

hl
CoT ≈ hl

no-CoT + f
(
WV R(WKR)Tq

)
, (4)245

where q is the query token, hl
CoT is the hidden246

activations at layer l with CoT, hl
no-CoT is the corre-247

sponding activation without CoT, and the remain-248

ing term quantifies the shift introduced by the CoT249

rationale R. A formal proof of this “CoT shift”250

phenomenon is provided in Appendix B.251

This decomposition suggests that the key infor-252

mation from CoT reasoning accessible to the query253

token is embedded in the shift term f(·). There-254

fore, by encouraging the student’s hidden activa-255

tions hl
student to align with the teacher’s hl

teacher, we256

are able to transfer the reasoning capability from257

explicit CoT to implicit CoT.258

The Distilled Token. Rather than aligning with259

all tokens in the query sentence, we select a distil-260

lation token for alignment. Inspired by the recent261

observations (Orgad et al., 2025) that the hidden ac-262

tivations of the token intermediately preceding the263

answer, i.e., the colon (“:”) in the answer prompt264

“The answer is:” (as shown in Figure 2), encodes265

essential reasoning information. We select this to-266

ken’s hidden activations, h, for distillation.267

Loss Function. As a result, we formulate a loss268

function that aligns the teacher’s and student’s hid-269

den activations across all layers at the selected dis-270

tillation token for the student’s implicit CoT learn-271

ing. To ensure a one-way flow of knowledge, we272

apply a stop-gradient operation on hl
teacher, only273

allowing the teacher to influence the student:274

LKD =
1

M

M∑
l=1

|sg[hl
teacher]− hl

student|, (5)275

where M indicates the number of layers in the 276

LLM, sg denotes the stop-gradient operation, and 277

hl is the hidden activations of the LLM’s l-th layer 278

for the token position corresponding to the colon 279

“:” in our design. 280

3.5 Training and Inference 281

Training. The continuous thoughts are generated 282

dynamically during training, as they are not known 283

beforehand. To achieve this, we decode them step 284

by step, with a cache storing previous keys and 285

values to maintain efficiency. When applying a dis- 286

tance metric between two hidden activations, we 287

observed significant norm variations across layers 288

(Deng et al., 2023; Cheng and Durme, 2024). To 289

address this, we normalize each layer’s hidden acti- 290

vations by dividing them by the standard deviation 291

of the teacher’s corresponding hidden activations 292

within the current batch. 293

For the distillation task, we adopt the same 294

model for both the teacher and student roles for 295

two primary reasons. (1) Reference Learning: 296

The model must first learn to perform explicit CoT 297

reasoning before it can effectively compress and 298

transfer this capability into continuous space as 299

implicit CoT. (2) Training Efficiency: While it is 300

feasible to train separate teacher and student mod- 301

els—as explored in Section 4.4—this setup intro- 302

duces additional complexity. The teacher must be 303

pre-trained, and maintaining two distinct models 304

during training doubles memory consumption. 305

For training data, we exclude the final CoT 306

step—the step responsible for generating the final 307

answer—because including this step could allow 308

the teacher’s hidden activations to take a shortcut. 309

Specifically, the model might directly copy the re- 310

sult from the last CoT step to the token responsible 311

for generating the exact answer token, bypassing 312

the reasoning process. This behavior would under- 313

mine the quality of the target hidden activations, as 314

they would no longer fully encode the reasoning 315

patterns. The ablation results demonstrating the 316

impact of this exclusion are presented in Table 2. 317

Inference. The inference process in CODI mir- 318

rors the student task during training (Figure 2, left). 319

The model autoregressively decodes n continuous 320

thoughts following the question and the bot token. 321

Once the reasoning process is complete, the eot 322

token is manually inserted to terminate continu- 323

ous reasoning and switch the model to language 324

generation mode, decoding the final answer. 325
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Figure 3: Results on five datasets (Top: GPT-2, Bottom: LLaMa3.2-1b-Instruct). CODI consistently outperforms all
previous implicit CoT methods by a substantial margin. When using GPT-2, CODI even matches the performance
of CoT-SFT on the in-domain GSM8k and GSM8k-NL datasets.

4 Experiments326

We demonstrate CODI’s effectiveness in continu-327

ous space reasoning through experiments on math-328

ematical and commonsense reasoning tasks.329

4.1 Experimental Setup330

Training Data. We utilize three datasets to train331

our models–GSM8k-Aug, GSM8k-Aug-NL, and332

CommonsenseQA-CoT. (1) We use the GSM8k-333

Aug dataset from (Deng et al., 2023), which has334

proven effective for training implicit CoT methods335

(Deng et al., 2024; Hao et al., 2024). This dataset336

extends the original GSM8k training set (Cobbe337

et al., 2021) to 385k samples by prompting GPT-4.338

To facilitate implicit CoT training, all natural lan-339

guage interleaving within the CoT is removed, leav-340

ing only structured mathematical expressions such341

as “<< 10 ÷ 5 = 2 >><< 2 × 2 = 4 >><<342

6 × 4 = 24 >>”. (2) We also use GSM8k-Aug-343

NL, a version that preserves natural language ex-344

planations, to assess both the generalizability and345

effectiveness of our approach to compress more ver-346

bose CoTs. (3) CommonsenseQA-CoT is derived347

from CommonsenseQA (Talmor et al., 2019), a348

multiple-choice QA dataset built from ConceptNet-349

based questions (Speer et al., 2017). As it lacks350

CoT annotations, we generate 8.1k CoT examples351

using GPT-4o-mini, filtered by correctness. The352

1.2k-example validation set is used for evaluation.353

Examples and statistics are in Appendix C. 354

Evaluation Benchmarks for OOD. For math- 355

ematical reasoning, we assess model robustness 356

on three out-of-domain (OOD) benchmarks: (1) 357

SVAMP (Patel et al., 2021), a dataset of grade- 358

school arithmetic word problems with simple vari- 359

ations designed for robustness test; (2) GSM- 360

HARD (Gao et al., 2022), a modified version of 361

the GSM8k test split where numbers are replaced 362

with values of larger magnitude to increase diffi- 363

culty; and (3) MultiArith (Roy and Roth, 2015), a 364

subset of MAWPS (Koncel-Kedziorski et al., 2016) 365

containing multi-step mathematical word problems. 366

Examples and statistics are in Appendix C. 367

Baselines. We consider the following baselines: 368

(1) CoT-SFT: Finetunes the model on CoT data, 369

enabling it to generate intermediate steps followed 370

by the final answer. (2) No-CoT-SFT: Finetunes 371

the model using only direct answers, without gen- 372

erating intermediate steps. (3) iCoT (Deng et al., 373

2024): Implements a curriculum learning strategy 374

called "Stepwise Internalization", which injects 375

CoT’s reasoning patterns into the model’s inter- 376

nal states. This allows the model to generate direct 377

answers with higher accuracy during inference. (4) 378

Coconut (Hao et al., 2024): Build upon iCoT by 379

autoregressively generating intermediate continu- 380

ous CoT representations, similar to the approach in 381
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our work. (5) CODI: our method trained with six382

continuous thought tokens, matching the setup in383

Coconut. Baseline (1) is sampled 10 times and their384

average is reported (temperature=0.1), while base-385

lines (2)–(5) are deterministic models, and their re-386

sults are reported from a single run. Two base mod-387

els are considered: GPT-2 (Radford et al., 2019)388

and LLaMA3.2-1b-Instruct (Meta, 2024). More389

implementation details are in Appendix A.390

4.2 Main Results391

Mathematical Reasoning. From the results on392

GSM8k in Figure 3 (leftmost column), we observe393

that CODI largely outperforms existing implicit394

CoT methods. With both GPT-2 and LLaMA-1b,395

CODI surpasses Coconut by over 20%. Remark-396

ably, CODI is the first continuous CoT method397

to achieve performance comparable to CoT-SFT398

when using GPT-2, reaching 99% of its accuracy.399

In contrast to iCoT, which fails to scale effectively400

to larger models, CODI successfully extends to401

LLaMA-1b, achieving 90% of CoT-SFT perfor-402

mance. These results verify CODI’s effectiveness403

on in-domain mathematical reasoning tasks.404

Compress More Verbose CoTs. Previous works405

(Deng et al., 2024; Hao et al., 2024) primarily406

trained on GSM8k-Aug, which consists only of407

mathematical expressions. To evaluate CODI’s408

generalizability, we extend our analysis to a more409

complex CoT dataset, GSM8k-Aug-NL. Figure 3410

(2nd column) shows that both GPT-2 and LLaMA-411

1b perform worse on it compared to GSM8k-Aug.412

This decrease in performance stems from the ad-413

ditional natural language tokens, which add noise414

and make imitation learning more difficult. Sur-415

prisingly, CODI surpasses CoT-SFT when using416

GPT-2 and achieves a higher relative score improve-417

ment on LLaMA1b compared to models trained418

on GSM8k-Aug. Moreover, CODI surpasses all419

other implicit CoT methods, especially at the size420

of LLaMA-1b, suggesting the effectiveness of self-421

distillation. Furthermore, with the average CoT422

length increased to 65.5 (Figure 4), CODI achieves423

a compression ratio of 8.2, suggesting that the opti-424

mal compression ratio is dataset-dependent. These425

results demonstrate CODI’s ability to handle more426

complex CoT training data, showcasing its applica-427

bility to diverse reasoning datasets.428

Commonsense Reasoning. As shown in Fig-429

ure 3 (rightmost column), CoT-SFT largely out-430

performs No-CoT-SFT for GPT-2, which performs431

nearly random guessing (five choices per question).432

Figure 4: Efficiency comparison of different reasoning meth-
ods in terms of inference time per math problem on GSM8k.
Measured with batch size = 1 on an Nvidia A100 GPU. CoT
Token counts are shown in parentheses.

This indicates that training on CoT benefits GPT-2. 433

Interestingly, CODI surpasses even CoT-SFT. We 434

attribute this to GPT-2’s limited capacity for gener- 435

ating coherent natural language CoTs—CoT-SFT 436

struggles to replicate the quality of the training 437

CoTs, whereas CODI faces less burden by rea- 438

soning in a continuous space with fewer tokens. 439

For LLaMA-1b, we observe that CoT data actu- 440

ally hurts performance. We think it is because we 441

force the model to reason in GPT-4o-mini’s pattern 442

which may diverge from LLaMA’s original pattern. 443

Interestingly, CODI outperforms CoT-SFT by a 444

large margin and achieves accuracy comparable to 445

No-CoT-SFT. This shows that our latent reasoning 446

model could better capture intermediate thought 447

processes in continuous spaces, demonstrating the 448

benefit of learning latent representations rather than 449

overfitting of specific CoT patterns. 450

Efficiency. CODI utilizes a fixed set of six con- 451

tinuous thoughts, enclosed by two special tokens, 452

resulting in a total of eight "tokens" for reason- 453

ing. As shown in Figure 4, CODI achieves sub- 454

stantial efficiency gains, with a speedup of approxi- 455

mately 2.7× (3.1× CoT compression) for compact 456

CoTs trained on GSM8k-Aug and 5.9× (8.2× CoT 457

compression) for verbose CoTs trained on GSM8k- 458

Aug-NL, demonstrating CODI’s effectiveness in 459

reducing reasoning overhead. 460

Compression Ratio. The number of continuous 461

thoughts used during training is a crucial hyperpa- 462

rameter, affecting both the computation allocation 463

and the compression ratio. As shown in Figure 5, 464

CODI consistently outperforms Coconut across all 465

compression ratios. Interestingly, both methods 466

exhibit a similar trend: accuracy peaks when using 467

six continuous thoughts. We attribute this to the 468

dataset’s structure, specifically the average num- 469

ber of CoT steps. When fewer than six continuous 470

thoughts are used, the model lacks sufficient ex- 471

pressiveness to capture reasoning steps effectively. 472
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Figure 5: Accuracy on GSM8k against the number of contin-
uous thought tokens used during training.

Conversely, beyond six, the additional complexity473

may not provide further benefits, as most problems474

do not require additional reasoning steps. Instead,475

the increased sequence length introduces optimiza-476

tion challenges, outweighing any potential gains.477

4.3 Out-of-Distribution (OOD) Evaluation478

To assess robustness, we evaluate CODI—trained479

on GSM8k-Aug—on OOD datasets. Remarkably,480

CODI consistently outperforms all the other im-481

plicit CoT baselines and even CoT-SFT across all482

three OOD benchmarks with GPT-2 (Table 1). Us-483

ing LLaMA-1b, CODI also performs better com-484

pared to iCoT and Coconut. It also demonstrates485

stronger performance relative to its in-domain re-486

sults. We attribute CODI’s robustness to its re-487

duced tendency to overfit. Unlike CoT-SFT, which488

is trained to mimic exact natural language CoT489

annotations, CODI generates continuous thoughts490

without direct imitation targets. This lack of rigid491

supervision likely prevents memorization and pro-492

motes greater adaptability to unfamiliar inputs.493

Models SVAMP GSM-Hard MultiA

GPT-2

No-CoT-SFT 16.4 4.3 41.1
CoT-SFT 41.8 9.8 90.7
iCoT 29.4 5.7 55.5
Coconut 36.4 7.9 82.2
CODI 42.9 9.9 92.8

LLaMA-1b

No-CoT-SFT 44.1 7.1 70.9
CoT-SFT 66.7 15.6 99.3
iCoT 40.9 4.4 39.0
Coconut 48.8 9.9 90.1
CODI 61.1 12.8 96.1

Table 1: Performance comparison (accuracy %) on OOD
datasets, i.e., trained on GSM8k-Aug and evaluated on other
datasets. The best results are in bold, and the second-best
results are underlined.

Methods (GPT-2) Accuracy

No-CoT-SFT 19.1%
CODI 43.7%
- ind. static teacher 27.1%

w/ multitask student 42.2%
- w/o L1 loss 24.5%
- w/ CoT last step 31.7%
- w/o Projection 42.5%

Table 2: Ablation studies. ind. static teacher refers to intro-
ducing an independently trained teacher model. w/ multitask
student allows the student model to also learn CoT generation.

4.4 Ablation Studies 494

Independent Teacher. To evaluate the need of 495

self-distillation, we tested settings where the stu- 496

dent does not share the model with the teacher 497

(Table 2). Without learning explicit CoT genera- 498

tion (ind. static teacher), the model performs 499

badly and fails to generate meaningful continuous 500

CoTs after decoding. Adding an explicit CoT gen- 501

eration objective (w/ multitask student) signif- 502

icantly restores performance, indicating the impor- 503

tance of reference learning. 504

Distillation Loss. Table 2 shows that removing 505

the L1 loss (Equation 5) linking the teacher and 506

student tasks (w/o L1 Loss) leads to a signifi- 507

cant performance drop, indicating the importance 508

of supervision from distillation. While the model 509

performs well in CoT generation due to multitask 510

learning, it fails to integrate this skill into continu- 511

ous CoT reasoning, treating them as independent 512

tasks rather than a unified reasoning process. 513

Others. Keeping the final step of the CoT chain 514

appears to negatively impact performance, support- 515

ing our claim that it provides shortcuts. Further- 516

more, the projection layer of continuous thought 517

tokens slightly enhances CODI’s effectiveness. 518

5 Interpretability Analysis 519

Interpreting CODI’s continuous thoughts is inher- 520

ently challenging because these representations 521

lack explicit imitation targets. However, CODI 522

exhibits an ability to produce observable intermedi- 523

ate results (Figure 6) within its continuous thoughts 524

by projecting its last hidden state into vocabulary 525

space via the model’s word embeddings – treating 526

it in the same way as a standard text token. Addi- 527

tionally, the corresponding operands contributing 528

to these intermediate results can often among the 529

top-ranked attended tokens of the latent repre- 530

sentation. For example, the second thought token, 531

z2, attends to both "1" and "7" to produce the de- 532

coded token "7". While the operator itself (e.g., 533
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Figure 6: A case study illustrating CODI’s interpretability by analyzing its attended tokens and decoded tokens of each of the
six latent thought tokens, z1 · · · z6. Attended tokens: these represent the top-10 tokens that the continuous thought attends to
when generating the next thought/token. Some attended tokens appear in the form of ‘zi = x’, indicating attention to the i-th
continuous thought. Here x represents the top-1 token that the latent thought maps to in vocabulary space. The model always
attends to the first token in the sentence, so we remove that for better visualization. Decoded tokens: these are the top-5 words
that the continuous thoughts are projected back to in vocabulary space by multiplying them with the vocabulary embeddings.

×) is not explicitly visible in the attention mech-534

anism—since operators are in the context—it is535

reasonable to infer that the transformer layers im-536

plicitly perform this operation. Another interesting537

observation is that each intermediate result is sepa-538

rated by a seemingly meaningless continuous token.539

We hypothesize that these tokens act as placehold-540

ers or transitional states during the computation541

of intermediate results. This aligns with the idea542

that the transformer may require multiple passes to543

complete the calculation for each intermediate step.544

More case studies are in the Appendix E.545

Total Steps 1 2 3

Accuracy 97.1% 83.9% 75.0%

Table 3: CODI’s top-5 intermediate results matching refer-
ence CoT across problems requiring different numbers of step.

Beyond the case study, we aim to establish that546

CODI’s interpretability is a general pattern by an547

accuracy metric. We extract all correctly predicted548

answers, decode the corresponding intermediate549

results, and compare them against the reference550

intermediate solutions. Table 3 reveals that when551

there is only one intermediate result, CODI cor-552

rectly matches the reference 97.1% of the time. For 553

CoT sequences with lengths up to 3, CODI con- 554

sistently achieves over 75% accuracy in decoding 555

valid intermediate results. These findings high- 556

light CODI’s reliability in generating meaningful 557

intermediate reasoning steps, demonstrating its po- 558

tential to effectively handle reasoning tasks with 559

interpretable intermediate outputs. 560

6 Conclusion 561

We introduced CODI, a novel paradigm for rea- 562

soning in continuous space. Our extensive experi- 563

ments demonstrate CODI’s effectiveness as the new 564

SOTA implicit CoT approach, while achieving a 565

high compression ratio. Furthermore, CODI shows 566

its robustness, generalisable to complex datasets, 567

and interpretability. Future research should explore 568

CODI’s application to more diverse and challeng- 569

ing tasks. A promising direction is the integration 570

of multimodality, leveraging continuous representa- 571

tions for seamless modality merging. We hope this 572

work inspires further exploration into reasoning 573

in representations more compact and robust than 574

language, paving the way for more efficient and 575

versatile reasoning paradigms. 576
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7 Limitations577

Implicit CoT methods inherently trade off inter-578

pretability compared to explicit CoT. While CODI579

provides a straightforward probing mechanism for580

inspecting continuous thoughts, it operates at the581

token level and faces limitations in reconstructing582

multi-token entities. For instance, a rare number583

like 35649 may span multiple tokens due to the tok-584

enizer’s behavior, but the current probing technique585

only decodes the first token, leaving the remaining586

components unobserved. More sophisticated prob-587

ing techniques may be necessary to recover and588

visualize full semantic units.589

Moreover, our approach focuses on knowledge590

transfer by probing the token (“:”) responsible for591

generating the first answer token. However, this592

choice may be suboptimal, as some answers begin593

with “-”, and removing such cases improves perfor-594

mance, suggesting that critical reasoning informa-595

tion might also reside in the token generating the596

second answer token. Additionally, probing the to-597

ken that concludes the CoT reasoning—potentially598

summarizing the entire process—could offer alter-599

native supervision signals. Furthermore, the cur-600

rent answer prompt, “The answer is:”, is an arbi-601

trary design choice that may influence the effec-602

tiveness of knowledge transfer. Investigating these603

aspects further could enable CODI to extend its604

distillation framework to broader reasoning tasks.605

Another limitation of the current continuous606

training approach is the absence of intermediate607

gradients until the end of the sequence. With six608

continuous thought tokens, the first token’s gradi-609

ent is backpropagated from six or more steps away610

(specifically, from the token generating the final611

answer), which may introduce optimization chal-612

lenges. This issue could become more pronounced613

when scaling to more complex problems requiring614

longer continuous reasoning chains.615

Finally, while we don’t have sufficient compu-616

tation resources to scale the training of CODI on617

larger models, a concurrent paper (Geiping et al.,618

2025b) has demonstrated the feasibility of scaling619

a latent reasoning model to 3.5B parameters and620

800 billion tokens with 4096 GPUs. The resulting621

model appears to be learning meta-strategies and622

abstractions for problem solving, as opposed to623

memorising as in existing LLMs trained on explicit624

CoT data. This is particularly encouraging, since625

not all reasoning steps can be easily verbalised626

(such as visual-spatial reasoning, emotional and so-627

cial reasoning, and motor reasoning). While Geip-628

ing et al. (2025b) focuses on pre-training, we pro- 629

posed an efficient fine-tuning approach for equip- 630

ping existing pre-trained LLMs with latent reason- 631

ing capabilities. 632
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A Implementation Details876

For all experiments, we use the AdamW optimizer877

(Loshchilov and Hutter, 2019) with a cosine sched-878

uler (without cycles) and a linear warm-up over the879

first 3% of steps. The effective batch size is 128.880

Both α and β are set to 1 (Equation 1). We ap-881

ply LoRA (Hu et al., 2022) finetuning with a rank882

of 128 and an alpha value of 32, using bfloat16883

precision.884

For GPT-2, we set the learning rate to 3e-3 and885

γ to 1. Training runs for 40 epochs, taking approx-886

imately 36 hours on a single A100 (80GB).887

For LLaMA-3.2-1b, we use a learning rate of 8e-888

4 and set γ to 20, as we observe that its distillation889

loss has a much smaller magnitude. The model is890

trained for 10 epochs, requiring approximately 48891

hours on a single A100 (80GB).892

For iCoT training of GPT-2, we use a learning893

rate of 5e-5 and train for 100 epochs, removing 4894

tokens per epoch for GSM8k-Aug-NL. For iCoT895

training of LLaMA-1b, we use a learning rate of896

1e-5 and train for 50 epochs, removing 8 tokens per897

epoch for GSM8k-Aug and 16 tokens per epoch for898

GSM8k-Aug-NL. LoRA is not used during train-899

ing.900

For Coconut training of GPT-2, we use a learn-901

ing rate of 1e-4 and train for 25 epochs without902

continuous tokens and 25 epochs with continuous903

tokens (50 epochs in total). For iCoT training of904

LLaMA-1b, we use a learning rate of 1e-5 and train905

5 epochs for both stages (10 epochs in total). LoRA906

is not used during training.907

B Proof: CoTs Contribute a Shift in908

Hidden Activation909

In this section, we provide a proof to demonstrate910

why Chain-of-Thought (CoT) contributes a shift911

in hidden activation. This proof is largely inspired912

by the work of (Li et al., 2024a), which analyzed913

In-Context Learning.914

In a typical CoT training dataset, the input usu-915

ally consists of four components: the question Q,916

the rationale R, the prompt for the answer P (e.g.,917

"The answer is:"), and the final answer A.918

We analyze the attention activation of the last919

prompt token, q—in this case, ":"—at the l-th trans-920

former layer. The output activation al from the921

attention heads of this token is given by:922

al = WV [Q;R;P ]softmax(
WK [Q;R;P ]Tq√

d
)

(6)923

where WK and WV are the model’s key and 924

value parameters, [Q;R;P ] represents the concate- 925

nation of the three inputs, and
√
d is a scaling fac- 926

tor. 927

For simplicity of analysis, inspired by (Li et al., 928

2024a), we omit the softmax operation and the scal- 929

ing factor, as these do not affect the core conclusion. 930

With this simplification, the following derivation 931

holds: 932

al ≈ WV [Q;R;P ]WK [Q;R;P ]Tq 933

=
(
WV Q(WV Q)T +WV R(WV R)T 934

+WV P (WV P )T
)

q 935

=
(
WV [Q;P ](WV [Q;P ])T 936

+WV R(WV R)T
)

q 937

=
(
Wno-CoT +WV R(WKR)T

)
q 938

= alno-CoT +WV R(WKR)Tq 939

Here, Wno-CoT is defined as 940

WV [Q;P ](WK [Q;P ])T , accounting for the 941

contribution of Q and P without the CoT rationale. 942

Correspondingly, alno-CoT represents the attention 943

activation excluding CoT. 944

The additional term WV R(WKR)Tq represents 945

the contribution of the CoT rationale R to the hid- 946

den activation. We can get the hidden activation 947

by transforming the attention activation by a non- 948

linear function f : 949

hl ≈ hl
no-CoT + f

(
WV R(WKR)Tq

)
(7) 950

Thus, we conclude that the rationale R in the 951

CoT primarily contributes a shift in hidden acti- 952

vation values, emphasizing its role as an additive 953

factor in the latent representation. This shift can be 954

effectively captured and learned using a distance 955

metric. 956

C Datasets 957

We provide examples and statistics of training 958

datasets and evaluation benchmarks. 959

C.1 Statistics 960

The statistics of training data are shown in Table 961

A1, and the statistics of evaluation benchmarks are 962

shown in Table A2. 963

12



Training Dataset Num. Data Avg. CoT Tokens

GSM8k-Aug 385,620 20.3
GSM8k-Aug-NL 384,625 49.0
CommonsenseQA-CoT 8,096 85.0

Table A1: Training data statistics.

Evaluation Benchmark Data Size

GSM8k 1,319
SVAMP 1,000
GSM-Hard 1,319
MultiArith 500
CommonsenseQA 1,221

Table A2: Evaluation Benchmark statistics.

C.2 Examples964

GSM8k-Aug

Question = "Out of 600 employees
in a company, 30% got promoted
while 10% received bonus. How many
employees did not get either a
promotion or a bonus?"
CoT = "«600*30/100=180»
«600*10/100=60» «180+60=240»
«600-240=360»"
Answer = "360"

965

GSM8k-Aug-NL

Question = "Jen shared a pack of
chocolates among her friends. She
gave 20% to Lucy, 30% to Sarah and
the remaining were shared equally
among four others. If the pack
contained 100 chocolates, how many
chocolates were each of the four
others getting?"
CoT = "The total percentage given to
Lucy and Sarah is 20% + 30% = 50%.
So, the remaining percentage that
was shared among the others is 100%
- 50% = 50%. The total number of
chocolates shared among the others
is 100 * 50 / 100 = 50 chocolates.
So, each of the four others received
50 / 4 = 12.5 chocolates."
Answer = "12.5"

966

CommonsenseQA-CoT

Question: "The sanctions against
the school were a punishing blow,
and they seemed to what the efforts
the school had made to change?
Choices: A: ignore B: enforce C:
authoritarian D: yell at E: avoid"
CoT = "The context of the sentence
indicates that the sanctions are
undermining or dismissing the
efforts made by the school to
change. The word "ignore" fits best
here, as it conveys the sense of
the sanctions not acknowledging the
school’s efforts."
Answer = "A"

967

SVAMP

Question = "There are 87 oranges and
290 bananas in Philip’s collection.
If the bananas are organized into
2 groups and oranges are organized
into 93 groups. How big is each
group of bananas?" Answer = "145"

968

MultiArith

Question = "There are 64 students
trying out for the school’s trivia
teams. If 36 of them didn’t get
picked for the team and the rest
were put into 4 groups, how many
students would be in each group?"
Answer = "7"

969

GSM-Hard

Question = "Janet’s ducks lay 16
eggs per day. She eats three
for breakfast every morning and
bakes muffins for her friends every
day with 4933828. She sells the
remainder at the farmers’ market
daily for $2 per fresh duck egg.
How much in dollars does she make
every day at the farmers’ market?"
Answer = "-9867630.0"

970

D CODI’s Pattern Learning 971

Given that CODI’s continuous thoughts can often 972

be decoded into intermediate results, it raises a 973
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GPT-2 No-CoT-SFT CODI Coconut Res Op-Res

Accuracy 19.1% 43.7% 34.1% 34.0% 35.7%

Table A3: Comparison of GPT-2 finetuned on two
datasets derived from CODI’s decoded thoughts. Res:
using intermediate results as CoT. Op-Res: using inter-
mediate operators and results as CoT.

question: is CODI effectively equivalent to a GPT-974

2 fine-tuned on a dataset containing CODI’s de-975

coded patterns? We created a dataset containing976

only intermediate results (e.g., “CoT: 20, 7, 27.977

Result: 9” translated from the case study in Fig-978

ure 6). Additionally, since some cases of CODI979

show decoded operators like ‘×’ and ‘−’ inter-980

leaved with intermediate results, we also create a981

synthetic CoT dataset that includes both operators982

and results (e.g., “CoT: ×, 20, ×, 7, +, 27.983

Result: 9”). As shown in Table A3, while models984

trained on the two synthetic datasets outperform the985

No-CoT-SFT baseline, they perform much worse986

compared to CODI, though perform on par with987

Coconut. These result suggest that CODI learns988

richer information from the teacher task through989

distillation than pure imitation on language-level990

intermediate results alone, highlighting the advan-991

tages of our training framework.992

E Interpretability Case Studies993

More case studies on the interpretability of CODI994

are provided in Figure A1 and Figure A2995

F CODI Code996

The example Python code of CODI is illustrated in997

Figure A3.998
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Figure A1: CODI’s interpretability on problems involving two steps.

Figure A2: CODI’s interpretability on problems involving one step.
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class ContinuousCoTviaKnowledgeDistillation:
def __init__(self,):

self.num_latent = 6
self.alpha, self.beta, self.gamma = 1, 1, 1

self.llm = get_gpt2_model()
self.prj = nn.Sequential(

nn.Linear(hidden_dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, hidden_dim),
nn.LayerNorm(hidden_dim),

)

def forward(x, y, x_cot_y):
# teacher learning
y_teacher = self.llm(x_cot_y)
teacher_ce_loss = cross_entropy(y_teacher, x_cot_y) # loss1

# student learning
latent = self.llm(torch.cat([x, bot_token], dim=1))[:, -1]
latent = self.prj(latent)
past_key_values = latent.past_key_values

# continuous CoT reasoning
for i in range(self.num_latent):

latent = self.llm(latent, past_key_values)
latent = self.prj(latent)
past_key_values = latent.past_key_values

y_student = self.llm(torch.cat([eot_token, y], dim=1), past_key_values)
student_ce_loss = cross_entropy(y_student, y) # loss2

# knowledge distillation
knowledge_distillation_loss = smooth_l1_loss(

y_teacher.hidden_states[:, teacher_exact_answer_token_position-1],
y_student.hidden_states[:, student_exact_answer_token_position-1]

) # loss3
# normalisation
knowledge_distillation_loss /= y_teacher.hidden_states[:,

teacher_exact_answer_token_position-1].std()

return self.alpha*teacher_ce_loss + self.beta*student_ce_loss + self.gamma*
knowledge_distillation_loss

Figure A3: Example Python code illustrating the ContinuousCoTviaKnowledgeDistillation class.
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