
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REPLACING MULTI-LAYER PERCEPTRON WITH TAY-
LOR EXPANSION

Anonymous authors
Paper under double-blind review

ABSTRACT

The Multi-Layer Perceptron (MLP) constitutes a fundamental building block of
deep learning. However, its inherent reliance on dense matrix multiplication im-
poses a substantial computational burden, especially on resource-constrained edge
devices, which poses a critical challenge to the real-time inference requirements
of edge artificial intelligence applications. In this paper, we propose T-MLP, a
novel method that mitigates this challenge by approximating the MLP via a light-
weight module that combines K-means and first-order Taylor expansion. Replaced
by T-MLP, MLP online inference is reduced to a single K-means prediction, fol-
lowed by one dense matrix multiplication and two element-wise additions. On a
commercial edge device, T-MLP yields >100× speed-up on large-scale MLP with
< 1% accuracy loss. Grounded in reduced time-complexity and hardware-friendly
footprint, T-MLP establishes a new paradigm for edge-side efficient inference.

1 INTRODUCTION

The Multi-Layer Perceptron (MLP)(Popescu et al., 2009) is the foundational substrate of modern
deep learning. An input layer, a output layer, and multiple hidden layers with nonlinear activation
functions endow the MLP with rich representational power for complex classification and regres-
sion. With the rise of edge artificial intelligence, MLPs are ubiquitously deployed on edge de-
vices across a diverse range of tasks, including image classification(Lin et al., 2020; 2021; Howard
et al., 2017; Sandler et al., 2018), network intrusion detection(Yin et al., 2023; Rosay et al., 2019;
de Almeida Florencio et al., 2018), traffic monitoring(Pan et al., 2021; Sun et al., 2025; Jabakumar,
2023; Zhang et al., 2024), automatic speech recognition(Malik et al., 2021; Siniscalchi et al., 2014)
and various AIoT-enabled deployment scenarios(Chi et al., 2024; Fatan et al., 2016; Miryala et al.,
2022; Sivapalan et al., 2022). Yet, edge devices yield < 1% of cloud servers’ peak FLOPS, es-
pecially on edge devices without GPU or NPU. The dense matrix multiplication inherent to MLPs
imposes a significant computational burden on resource-constrained edge devices, which severely
compromises the real-time inference deadlines of edge AI applications, as Figure 1 demonstrates.

G e F o r c e R T X 4 0 6 0 T i

R a s p b e r r y P i 5

0 1 2 3 4 1 9 0 0 0 2 0 0 0 0 2 1 0 0 0 2 2 0 0 0 2 3 0 0 0 2 4 0 0 0
G F L O P S

De
vic

e

 T i m e
 G F L O P S

G e F o r c e R T X 4 0 6 0 T i

R a s p b e r r y P i 5

0 . 0 0 0 0 . 0 0 5 0 . 0 1 0 0 . 0 1 5 0 . 0 2 0 0 . 0 2 5 0 . 0 3 0 0 . 0 3 5T i m e (s)

Figure 1: Edge vs. Commercial GPU:
computational power comparison and latency of
large scale matrix multiplication

Despite the pressing demand for real-time MLP
inference at the edge, a general and effective
solution remains absent. Existing optimization
methods such as quantization and pruning pri-
marily aim at compression; inference acceler-
ation is a limited by-product, which typically
yield < 4× speed-up(Xiao et al., 2023; Liu
et al., 2025). In this paper, we introduce a sim-
ple yet effective solution: replacing the MLP
with first-order Taylor expansion. Our insight
is straightforward that the first-order Taylor ex-
pansion can transform an MLP, which involves
multiple matrix multiplications, into a single
matrix multiplication, provided that the rele-
vant coefficients of the Taylor expansion are precomputed. Due to the nature of Taylor expansion,
the approximation accuracy is contingent on the distance between the expansion point and the ac-
tual input. Thus, to confine the bulk of the input distribution to the high-probability vicinity of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

each expansion point, we perform K-means clustering, adopt the resulting centroids as expansion
points, and precompute and cache the Taylor coefficients at each centroid. In this way, we transform
the MLP to a single K-means prediction, followed by one dense matrix multiplication, dramati-
cally speeding up inference while preserving the original prediction accuracy. Experimental results
demonstrate that out method achieves >100× speed-up for large-scale MLPs on edge devices.

We provide theoretical complexity analysis demonstrating the superiority of our method over the
native MLP, and empirically validate it on commercial edge hardware. Further experiment explored
the impact of width, height, and activation choice of MLP on the approximation fidelity. Finally, we
analyze the conditions under which optimal efficacy is attained.

In summary, our contributions are as follows:

1) To the best of our knowledge, we are the first to leverage approximation for MLP acceleration,
offering a novel paradigm for efficient edge inference.

2) We derive a rigorous error upper bound for our method and systematically analyze how hardware
characteristics influence its efficacy.

3) We conduct experiments on commercial off-the-shelf edge devices and validate the practical
efficacy of our method. And experimental results demonstrate that our method achieves >100×
speed-up for large-scale MLPs on edge devices.

2 RELATED WORK

2.1 MLP OPTIMIZATION METHODS

To enable efficient MLP inference, existing studies predominantly optimize MLPs via model com-
pression. Common compression techniques include quantization, pruning and Low-rank Factoriza-
tion, etc(Dantas et al., 2024). Quantization is a method that converts high-bit floating-point param-
eters to low-bit integers, enabling efficient model inference(Gholami et al., 2022; Kim et al., 2023).
Leveraging low-bit computation, quantization enables acceleration on general-purpose CPUs; how-
ever, the speed-up is inherently hardware-constrained and typically capped at < 4×(Xiao et al.,
2023; Frantar et al., 2022). Pruning accelerates inference by structurally or non-structurally eliminat-
ing unimportant weights or neurons, thereby reducing model redundancy(Vadera & Ameen, 2022).
However, the sparsity introduced by pruning yields marginal acceleration, typically less than 2×(Hu
& Yuan, 2025; Liu et al., 2025). Low-rank factorization accelerates inference by approximating the
original large matrix with the product of two smaller matrices(Goyal et al., 2019; Ou et al., 2024).
Yet, the actual acceleration is highly dependent on the factorization quality and hardware mapping,
thus speed-up is not guaranteed.

In essence, these techniques are devised for model compression; inference acceleration is not their
primary objective. Besides, our approach is orthogonal to existing methods and can be concatenated
to yield simultaneously compact and highly efficient models for edge devices.

2.2 APPROXIMATE MATRIX MULTIPLICATION

For acceleration-oriented inference, approximation serves as a potential viable paradigm. Approxi-
mate Matrix Multiplication (AMM) constitutes a pivotal research avenue for accelerating large-scale
matrix products. The prevailing paradigm projects the operand matrices into a lower-dimensional
space and subsequently performs an exact multiplication on the compressed representations(Liberty,
2013; Ghashami et al., 2016; Teng & Chu, 2019). Representative strategies include matrix sketch-
ing algorithms that deterministically(Francis & Raimond, 2022; Huang, 2019; Luo et al., 2019) or
randomly construct projection matrices to curtail computational cost(Nelson & Nguyên, 2013; Das-
gupta et al., 2010; Pagh, 2013; Kyrillidis et al., 2014; Sarlos, 2006). These methods only consider
each matrix in isolation. And there are works that introduce variations which take into account both
matrices(Francis & Raimond, 2018; Ye et al., 2016; Mroueh et al., 2016).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

More recently, several works(Blalock & Guttag, 2017; 2021) have borrowed the insight of Product
Quantization (PQ)(Ge et al., 2014): the vector product ATB is transformed into a sequence of table
lookups and several additions. Concretely, the input vector A is partitioned into disjoint sub-vectors
ai; each ai is assigned to its nearest centroid ci obtained by clustering over the training data. The
partial inner products cTi bi are precomputed and stored in a lookup table, so the online evaluation
of ATB reduces to centroid indexing, table retrieval, and several additions, drastically shrinking the
arithmetic complexity.

Originally devised for isolated matrix multiplications, these approaches cannot approximate a com-
plete MLP; yet, the product-quantization philosophy inspires us to approximate the MLP directly.
Instead of approximating isolated matrix products via discrete lookup tables, we approximate the
entire MLP as a continuous, piecewise-linear function.

3 METHOD

To enable real-time MLP inference on edge devices, we propose an approximation-centric accelera-
tion scheme. We first presents our method, termed T-MLP, and then provides a theoretical justifica-
tion of its efficacy.

3.1 TAYLOR EXPANSION COUNTERPART

Our method approximates an MLP via first-order Taylor expansion:

MLP (x) ≈ MLP (ci) +∇MLP (ci)
T (x− ci). (1)

which comprises two distinct phases: the offline phase (Steps 1–3) for precomputing MLP (ci)
and ∇MLP (ci)

T and the inference phase (Step 4) for dispatching and calculating, as illustrated in
Figure 2.

training set

Other Layers

MLP

Model

Input vector 1
Input vector 2
……
Input vector N

Store

K-means

Cluster Centroids
cluster center 1
……
cluster center k

Other Layers

MLP

Model x0:
cluster center [k]

f’(x0):
gradient vector [k]

f(x0):
output vector [k]

BP

test set

Other Layers

Model

f(x)=f(x0)+f’(x0)(x-x0)

1 2

3 4

Store

Store

Store

K-means

Predict

x

x0,f’(x0),f(x0)

Figure 2: Flow chart of T-MLP. Step 1: collect the input fed to MLP. Step 2: cluster the input. Step
3: precompute and store the Taylor expansion coefficients. Step 4: inference with T-MLP.

During the offline phase, we first identify the Taylor expansion points and precompute the corre-
sponding outputs and gradients. The fidelity of the first-order Taylor approximation degrades with
the Euclidean distance |x − ci|. To minimize this discrepancy across the entire data manifold, we
apply K-means clustering on the training inputs to obtain a representative set of centroids {ci}ki=1
and perform Taylor expansion about these centroids. To identify the centroids, we first perform the
forward pass of the well trained model over the training data set and collect every input vectors fed
to the MLP, which are subsequently compressed into k representative centroids by K-means. For ev-
ery centroid ci, we perform the forward pass again to obtain output as MLP (ci), and then perform
back-propagation to compute the corresponding gradient ∇MLP (ci)

T .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

During the inference phase, an incoming input x is dispatched to the nearest centroid ci in the learned
code-book. And the final prediction is then delivered by the first-order Taylor expansion centred at
ci.

3.2 THEORETICAL ANALYSIS

A typical MLP can be regarded as a highly intricate composite function:

f(x) = Wn(σ(. . . σ(W1(x)))), (2)

Applying a first-order Taylor expansion to this complex composite function yields an elegant linear
approximation (T-MLP):

f(x) ≈ f(x0) +∇f(x0)
T (x− x0), (3)

where f(x0) and ∇f(x0) represents the MLP’s output and first-order gradient at the expansion point
x0, which can be obtained and cached offline. With T-MLP, the MLP is transformed to a single K-
means prediction, followed by one dense matrix multiplication and two element-wise additions.

Considering the time complexity, a conventional MLP requires O(N1 × N2 + · · · + NL−1 × NL)
operations, where L represents the number of layers of MLP, and Ni represents the vector dimension.
Each term denotes the time complexity of one linear layer. And the time complexity of the T-MLP is
O(N1×NL+k×N1), where k is the number of cluster centers in K-means model. Evidently, for a
deep and wide MLP, provided the k is set to an appropriate magnitude, T-MLP is able to effectively
reduces the time complexity.

Meanwhile, by exploiting the integral-form remainder of the Taylor expansion, we establish an upper
bound on the approximation error between our proposed method and the original MLP:
Theorem 3.1 (T-MLP upper error bound). Let f : Rd → R be twice continuously differentiable on
the line segment joining ci and x. Then the approximation error satisfies

∥f(x)− f̂(x)∥ ≤ 1

2
sup

z∈[ci,x]

∥∇2f(z)∥op · ∥x− ci∥2. (4)

The detailed derivation is provided in the Appendix.

Theoretical analysis establishes that computational savings are guaranteed whenever the asymptotic
cost of the Taylor expansion-based approximation falls below that of the standard MLP. In theory, a
larger k yields higher approximation accuracy at the expense of diminishing speed-up; however, the
practical trade-off is more nuanced, and our experiments demonstrate that k exerts only a marginal
impact on the overhead of the proposed method.

4 EXPERIMENTS

In this section, to empirically validate the proposed approach. To the best of our knowledge, this
work presents the first attempt to accelerate MLP inference through approximation; therefore, we
adopt the original MLP as our primary baseline. We evaluate its performance on two representative
edge workloads: image classification and network-intrusion detection. All experiments are con-
ducted on a Raspberry Pi 5 (4 GB) on a single CPU core, a commodity edge device equipped with a
64-bit Arm Cortex-A76 processor without discrete GPU or NPU.

4.1 IMAGE CLASSIFICATION

Image classification is the gateway task for vision applications on edge devices. For the image-
classification task, we trained the classical VGG-16(Simonyan & Zisserman, 2014) model on the
CIFAR-100 dataset(Krizhevsky, 2009). The model stacks thirteen convolutional layers and termi-
nates in a three-stage MLP classifier whose fully-connected layers are dimensioned as (512, 4096),
(4096, 4096), and (4096, 100), each followed by ReLU activations. After 200 epochs of training,
the model achieves 72.2 % top-1 accuracy on the CIFAR-100 test set. We replace the classifier of
VGG16 with T-MLP, with the number of centroids progressively increasing from 5 to 320. The
experiment results are depicted in Tables 1 and Figures 3.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: VGG 16 Experiments on Raspberry Pi 5. ACC denote the accuracy of T-MLP. Tconv ,
TMLP , Tkmeans, Texpansion respectively denote the latency of the convolutional layers, the orig-
inal MLP, the K-means prediction, and the Taylor expansion computation. Tconv+MLP and
Tconv+T−MLP reports the latency of original VGG16 and our proposed method.

K Acc MSE Tconv TMLP Tkmeans Texpansion Tconv+MLP Tconv+T−MLP

5 72.09 156.04 0.07448 0.30363 1.05E-4 1.51E-4 0.37811 0.06878
25 72.21 60.43 0.07304 0.31335 1.17E-4 1.54E-4 0.3864 0.06950
60 72.03 28.19 0.0649 0.30377 1.45E-4 1.56E-4 0.36866 0.06636
100 72.17 13.48 0.07684 0.31489 1.68E-4 1.57E-4 0.39173 0.07061
180 72.35 11.87 0.06977 0.31583 2.20E-4 1.63E-4 0.38447 0.06626
320 72.17 10.61 0.06977 0.30252 3.29E-4 1.64E-4 0.37114 0.06599

0 1 0 0 2 0 0 3 0 07 1

7 2

7 3

Mo
del

 Ac
c(%

)

K

 O r i g i n M o d e l A c c
 T a y l o r E x p a n s i o n A c c

(a)

5 1 0 1 5 2 0 2 5 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 2 4 0 2 8 0 3 2 0
1 E - 4

0 . 0 0 1

0 . 0 1

0 . 1

log
10(

cos
t o

f ti
me

)

K

 T a y l o r e x p a n s i o n
 K - m e a n s
 c o n v l a y e r
 M L P

(b)

0 1 0 0 2 0 0 3 0 0

0

5 0

1 0 0

1 5 0

MS
E

K

 M S E

(c)

5 3 0 8 0 1 6 0 3 2 0

- 6

- 4

- 2

0

2

4

6

me
an

and
 sta

nda
rd

dec
iati

on

K

 d i m 0 T a y l o r
 d i m 0 o r i g i n a l
 d i m 1 T a y l o r
 d i m 1 o r i g i n a l
 d i m 2 T a y l o r
 d i m 2 o r i g i n a l
 d i m 3 T a y l o r
 d i m 3 o r i g i n a l
 d i m 4 T a y l o r
 d i m 4 o r i g i n a l

(d)

Figure 3: Experiments result of VGG-16 on Cifar-100. (a) : The comparison of Top-1 accuracy of
original VGG-16 and its T-MLP on the Cifar-100 test set. (b) : The latency of the VGG-16 convolu-
tional layers, MLP, and its T-MLP, including K-means prediction and Taylor expansion computation
on Raspberry Pi 5. (c) : The mean square error between the 100-dimensional class-score vectors
produced by the original VGG-16 model and T-MLP. (d) : The mean and standard deviation of the
first five dimensions of the 100-dimensional output vectors generated by the original VGG-16 model
and its T-MLP.

On this 100-class classification task, the T-MLP’s top-1 accuracy retains the original top-1 accuracy
to within 1%. And in terms of latency, far beyond our expectation, the T-MLP achieves a surprising
> 100× inference acceleration. When the convolutional backbone is included, end-to-end infer-
ence is still accelerated by 6×. To quantify fidelity, we measured the Mean-Square Error(MSE)
between the two output distributions. MSE decreases monotonically with increasing k, indicating
progressively tighter approximation fidelity. Inspection of the first five dimensions of output vectors

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

corroborates this trend: at k = 5 the standard deviations differ by > 1, whereas at k = 320 both
means and variances are statistically indistinguishable.

4.2 NETWORK INTRUSION DETECTION

Table 2: MLP Experiments on Raspberry Pi 5. ACC denote the accuracy of T-MLP. TMLP ,
Tkmeans, Texpansion respectively denote the latency of the original MLP, the K-means prediction,
and the Taylor expansion computation. And TT−MLP reports the latency of our proposed method

K Acc MSE TMLP Tkmeans Texpansion TMLP TT−MLP

5 85.13 43.10 5.67E-4 8.19E-5 7.02E-5 5.67E-4 1.52E-4
20 96.60 6.84 5.26E-4 6.20E-5 4.90E-5 5.26E-4 1.11E-4
35 96.73 3.89 5.79E-4 6.30E-5 5.10E-5 5.79E-4 1.14E-4
50 96.97 3.09 5.28E-4 6.26E-5 4.96E-5 5.28E-4 1.12E-4
90 97.75 1.38 5.06E-4 6.57E-5 4.98E-5 5.06E-4 1.16E-4
150 98.04 0.90 5.14E-4 6.81E-5 5.06E-5 5.14E-4 1.18E-4

0 5 0 1 0 0 1 5 09 0

9 2

9 4

9 6

9 8

1 0 0

Mo
del

 Ac
c(%

)

K

 O r i g i n M o d e l A c c
 T a y l o r E x p a n s i o n A c c

(a)

5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 6 0 7 0 8 0 9 0 1 0 0 1 2 0 1 5 0
0 . 0 0 0 0

0 . 0 0 0 1

0 . 0 0 0 2

0 . 0 0 0 3

0 . 0 0 0 4

0 . 0 0 0 5

0 . 0 0 0 6
cos

t o
f ti

me

K

 T a y l o r e x p a n s i o n
 K - m e a n s
 M L P

(b)

0 5 0 1 0 0 1 5 0
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5

MS
E

K

 M S E

(c)

5 2 5 4 5 1 5 0- 1 2
- 1 0
- 8
- 6
- 4
- 2
0
2
4
6

me
an

and
 sta

nda
rd

dev
iati

on

K

 d i m 0 T a y l o r
 d i m 0 o r i g i n a l
 d i m 1 T a y l o r
 d i m 1 o r i g i n a l
 d i m 2 T a y l o r
 d i m 2 o r i g i n a l
 d i m 3 T a y l o r
 d i m 3 o r i g i n a l
 d i m 4 T a y l o r
 d i m 4 o r i g i n a l

(d)

Figure 4: Experiments result of MLP on NSL-KDD. (a) : The comparison of Top-1 accuracy of
original MLP and its T-MLP on the NSL-KDD test set. (b) : The latency of the MLP, and its
T-MLP, including K-means prediction and Taylor expansion computation on Raspberry Pi 5. (c)
: The mean square error between the 23-dimensional class-score vectors produced by the original
MLP and its T-MLP. (d) : The mean and standard deviation of the first five dimensions of the 23-
dimensional output vectors generated by the original MLP and its T-MLP.

To secure resource-constrained edge networks, real-time identification of anomalous traffic is essen-
tial. Network-intrusion detection is thus a critical task at the edge-side network. We evaluate our

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

method on NSL-KDD(Tavallaee et al., 2009), a de-facto standard benchmark for intrusion-detection
systems (IDS). For the network intrusion detection task, we trained a three layer MLP on the NSL-
KDD dataset. The MLP layers are dimensioned as (42, 256), (256,96), and (96, 23), respectively,
and we use ReLU as activation functions. The model achieves 98.31% top-1 accuracy on the NSL-
KDD test set. Analogous to the preceding experiment, we replace the three-layer MLP with T-MLP,
while progressively increasing the k values from 5 to 150. The experimental results are depicted in
Table 2 and Figure 4.

In contrast to the previous experiment, the Taylor expansion counterpart on NSL-KDD starts with a
pronounced accuracy deficit for small k, yet the gap narrows rapidly and collapses to 0.3 % when
k reaches 150. In terms of latency, the T-MLP still achieves a 4× inference-speedup. And the
counterpart reproduces the previously observed fidelity trend: MSE versus the original MLP de-
creases monotonically with the increment of k, and the empirical mean and standard deviation of
the first-five dimensions of output vectors converge to their original values.

4.3 ABLATION STUDIES

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0

0

1

2

3

4

5

6

MS
E

W i d t h

 M S E

(a) ReLU

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

MS
E

W i d t h

 M S E

(b) SiLU

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0

0

1

2

3

4

MS
E

W i d t h

 M S E

(c) GeLU

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0

0

2

4

6

8

1 0

1 2

1 4

1 6

MS
E

W i d t h

 M S E

(d) Tanh

3 2 4 8 6 4 9 6 1 6 0 2 5 6

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

Me
an

and
 sta

nda
rd

dev
iati

on

W i d t h

 T a y l o r
 O r i g i n a l

(e) ReLU

3 2 4 8 6 4 9 6 1 6 0 2 5 6

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

Me
an

and
 sta

nda
rd

dev
iati

on

W i d t h

 T a y l o r
 O r i g i n a l

(f) SiLU

3 2 4 8 6 4 9 6 1 6 0 2 5 6

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

Me
an

and
 sta

nda
rd

dev
iati

on

W i d t h

 T a y l o r
 O r i g i n a l

(g) GeLU

3 2 4 8 6 4 9 6 1 6 0 2 5 6
- 1 5

- 1 0

- 5

0

5

1 0

1 5

Me
an

and
 sta

nda
rd

dev
iati

on

W i d t h

 T a y l o r
 O r i g i n a l

(h) Tanh

Figure 5: This figure shows how the model’s output evolves with increasing width after the MLP is
replaced by its T-MLP. (a-d) : how the mean-square error between the outputs of the original MLP
and its T-MLP varies as the model’s width increases for ReLU, SiLU, GeLU and Tanh activation
functions respectively. (e-h) : how the mean and standard deviation between the outputs of the
original MLP and its T-MLP varies as the model’s width increases for ReLU, SiLU, GeLU and Tanh
activation functions respectively.

To systematically investigate how the architectural complexity of MLPs influences the fidelity of
their Taylor expansion counterparts, we conducted a controlled ablation study. We utilized the
canonical breast cancer dataset(Wolberg & Street, 1993) to train multi-layer perceptrons (MLPs)
of varying widths and heights. After randomly reserving 20 % of the instances as a held-out test set,
we fitted a K-means model with k = 32 on the remaining training data.

Architecture sweeps were performed along two independent axes: width and height. In the width
ablation experiment, height was held constant at 3 layers, while the hidden width increased from 32
to 256. And in height ablation experiment, width was fixed at 32 per hidden layer, while the num-
ber of hidden layers progressively increased. For every configuration we recorded three summary
statistics: MSE, mean, and standard deviation between the outputs of the original MLP and its cor-
responding T-MLP. Additionally, we assessed the sensitivity of our approximation to the choice of
activation function by repeating the above protocol under four canonical activations: ReLU, SiLU,
GeLU and Tanh. The input, hidden, and output layers were dimensioned as (30, width), (width,
width), and (width, 1), respectively. And all models are trained on the training set for 50 epochs.
Comprehensive results are reported in Figure 5,6.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figures 5 and 6 illustrate how the approximation capability of the T-MLP evolves with model width
and height under four distinct activation functions. As the width and height of the original MLP
increase, its expressive power grows accordingly, leading to a more complex and rapidly varying loss
landscape. Consequently, the first-order Taylor expansion employed by T-MLP struggles to capture
these fine-grained nonlinearities, and the approximation capacity consistently deteriorates regardless
of the activation function used. This trend suggests that deeper and wider networks require a larger
number of centroids to maintain acceptable fidelity.

2 3 4 5 6

0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

MS
E

H e i g h t

 M S E

(a) ReLU

2 3 4 5 6

0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

0 . 3 0

MS
E

H e i g h t

 M S E

(b) SiLU

2 3 4 5 6
0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

MS
E

H e i g h t

 M S E

(c) GeLU

2 3 4 5 6
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

MS
E

H e i g h t

 M S E

(d) Tanh

2 3 4 5 6

- 4

- 2

0

2

4

6

8

Me
an

and
 sta

nda
rd

dev
iati

on

H e i g h t

 T a y l o r
 O r i g i n a l

(e) ReLU

2 3 4 5 6
- 6

- 4

- 2

0

2

4

6

8

1 0

Me
an

and
 sta

nda
rd

dev
iati

on

H e i g h t

 T a y l o r
 O r i g i n a l

(f) SiLU

2 3 4 5 6

- 4

- 2

0

2

4

6

8

Me
an

and
 sta

nda
rd

dev
iati

on

H e i g h t

 T a y l o r
 O r i g i n a l

(g) GeLU

2 3 4 5 6
- 4
- 3
- 2
- 1
0
1
2
3
4
5

Me
an

and
 sta

nda
rd

dev
iati

on

H e i g h t

 T a y l o r
 O r i g i n a l

(h) Tanh

Figure 6: This figure shows how the model’s output evolves with increasing height after the MLP is
replaced by its T-MLP. (a-d) : how the mean-square error between the outputs of the original MLP
and its T-MLP varies as the model’s height increases for ReLU, SiLU, GeLU and Tanh activation
functions respectively. (e-h) : how the mean and standard deviation between the outputs of the
original MLP and its T-MLP varies as the model’s height increases for ReLU, SiLU, GeLU and
Tanh activation functions respectively.

We also evaluate the acceleration effect of T-MLP under varying model widths and heights, as il-
lustrated in the Figure 7. The input, hidden, and output layers were dimensioned as (512, width),
(width, width), and (width, 1), and k is set to 512. As predicted by our complexity analysis, the
computational gap between the original MLP and T-MLP widens with height and width increasing.
At height=3 and width=512, our method already delivers > 5× speed-up. Moreover, the acceler-
ation grows super-linearly with increasing width and height, confirming that T-MLP is especially
advantageous for large-scale T-MLP.

2 3 4 5 6
0

2

4

6

8

1 0

Tim
e C

ost

D e p t h

 M L P
 T - M L P

(a) Height

2 5 6 3 8 4 5 1 2 6 4 0 7 6 8 8 9 6 1 0 2 4
0 . 0 0 0
0 . 0 0 2
0 . 0 0 4
0 . 0 0 6
0 . 0 0 8
0 . 0 1 0
0 . 0 1 2
0 . 0 1 4
0 . 0 1 6
0 . 0 1 8
0 . 0 2 0

Tim
e C

ost

W i d t h

 M L P
 T - M L P

(b) Width

Figure 7: The influence of model height and width on speed-up

5 DISCUSSIONS

In this section, we interpret the observed phenomena and derive the conditions under which optimal
acceleration–accuracy trade-offs are achieved.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

To begin with, we examine how MLP scale conditions the inference acceleration of our approach.
Experiments consistently reveal a positive scaling law: speed-up grows super-linearly with model
scale.This trend is first guaranteed by the reduced theoretical complexity, and is further amplified by
hardware properties.

As illustrated in Figure 8, although K-means prediction initially incurs slightly higher latency than
matrix multiplication at small scales, the crossover occurs as dimensionality grows, and the gap
widens thereafter. This is because, despite identical asymptotic complexity, K-means distance com-
putation outperforms matrix multiplication in practice due to reduced memory write-backs and su-
perior SIMD utilization.

On the other hand, the experimental platform itself also matters. On contemporary CPUs, GEMM
performance transitions from a compute-bound to a memory-bandwidth-bound regime once the ma-
trix scale exceeds the threshold of cache. And as illustrated in Figure 8, the latency of matrix multi-
plication does not exhibit a quadratic relationship with matrix size; instead, it undergoes a step-wise
increase once the scale exceeds the cache threshold. Yet this overhead is mitigated by our approach,
which drastically shrinks the matrix-multiplication footprint. The Raspberry Pi 5 is equipped with a
512 KB L1 cache and a 2MB L2 cache and VGG16’s classifier exceeds 60 MB, which is far beyond
the cache threshold. Whereas our method confines the matrix multiplication size to the L1 cache,
yielding orders-of-magnitude speed-ups.

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0

0 . 0 0 0

0 . 0 0 2

0 . 0 0 4

0 . 0 0 6

0 . 0 0 8

0 . 0 1 0

Tim
e C

ost

D i m e n s i o n

 M a t r i x M u l t i p l i c a t i o n
 K - m e a n s

Figure 8: Time cost of different configurations of matrix multiplication (1 × N) × (N × N) and
K-means prediction(k = N, dim = N).

Next, we examine the fidelity of our approximation. The upper bound reveals that approximation
fidelity hinges on the the local curvature (Hessian norm) and the distance between the actual input
and its assigned centroid. The Euclidean distance between them monotonically decreases with the
number of clusters k. Thus, a larger k yields a strictly tighter bound in expectation.

Empirically, the required K is strongly modulated by the data geometry. In Image Classification,
VGG-16 delivers 512-D deep features that are highly coherent and clustering-friendly; consequently
k = 320 already suffices to approximate the MLP. Conversely, in the Network Intrusion Detection
experiment, the NSL-KDD dataset provides only 42 raw hand-crafted metrics whose scales, units,
and marginal distributions are heterogeneous, thus a larger k is required. However, both theoretical
complexity and empirical experiments indicate that the latency of T-MLP is less sensitive to the
choice of k than to model width, validating the adoption of a larger k in practice.

In summary, our method excels when (i) the number of centroids k is sufficiently large, (ii) the MLP
is of substantial scale, and (iii) the target device is memory-bandwidth-constrained.

6 CONCLUSION

We propose a novel approach for efficient MLP inference on edge devices by replacing the original
network with its first-order Taylor expansion anchored at K-means centroids, achieving substantial
latency reduction. Theoretical analysis and extensive experiments corroborate the effectiveness of
the proposed method, and we further delineate the sufficient conditions for maintaining optimal
performance.

In the future work, we will incorporate second- and higher-order Taylor expansions and systemati-
cally investigate the trade-offs among cluster budget k, expansion order, and inference latency.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Davis Blalock and John Guttag. Multiplying matrices without multiplying. In Marina Meila and
Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, vol-
ume 139 of Proceedings of Machine Learning Research, pp. 992–1004. PMLR, 18–24 Jul 2021.
URL https://proceedings.mlr.press/v139/blalock21a.html.

Davis W. Blalock and John V. Guttag. Bolt: Accelerated data mining with fast vector compression.
CoRR, abs/1706.10283, 2017. URL http://arxiv.org/abs/1706.10283.

Cheng Chi, Zihang Yin, Yang Liu, and Senchun Chai. A trusted cloud–edge decision architecture
based on blockchain and mlp for aiot. IEEE Internet of Things Journal, 11(1):201–216, 2024.

Pierre Vilar Dantas, Waldir Sabino da Silva, Lucas Carvalho Cordeiro, and Celso Barbosa Carvalho.
A comprehensive review of model compression techniques in machine learning. Applied Intelli-
gence, 54(22):11804–11844, September 2024. ISSN 0924-669X.

Anirban Dasgupta, Ravi Kumar, and Tamás Sarlos. A sparse johnson: Lindenstrauss trans-
form. In Proceedings of the Forty-Second ACM Symposium on Theory of Computing, STOC
’10, pp. 341–350, New York, NY, USA, 2010. Association for Computing Machinery. ISBN
9781450300506.

Felipe de Almeida Florencio, Edward David Moreno, Hendrik Teixeira Macedo, Ricardo JP
de Britto Salgueiro, Filipe Barreto do Nascimento, and Flavio Arthur Oliveira Santos. Intru-
sion detection via mlp neural network using an arduino embedded system. In 2018 VIII Brazilian
symposium on computing systems engineering (SBESC), pp. 190–195. IEEE, 2018.

Mehdi Fatan, Mohammad Reza Daliri, and Alireza Mohammad Shahri. Underwater cable detection
in the images using edge classification based on texture information. Measurement, 91:309–317,
2016.

Deena P. Francis and Kumudha Raimond. An improvement of the parameterized frequent directions
algorithm. Data Min. Knowl. Discov., 32(2):453–482, March 2018. ISSN 1384-5810.

Deena P. Francis and Kumudha Raimond. A practical streaming approximate matrix multiplication
algorithm. Journal of King Saud University - Computer and Information Sciences, 34(1):1455–
1465, 2022. ISSN 1319-1578.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 36(4):744–755, 2014.

Mina Ghashami, Edo Liberty, Jeff M. Phillips, and David P. Woodruff. Frequent directions: Simple
and deterministic matrix sketching. SIAM J. Comput., 45(5):1762–1792, January 2016. ISSN
0097-5397.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-power computer
vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Saurabh Goyal, Anamitra Roy Choudhury, and Vivek Sharma. Compression of deep neural networks
by combining pruning and low rank decomposition. In 2019 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 952–958, 2019.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Hanyu Hu and Xiaoming Yuan. Spap: Structured pruning via alternating optimization and penalty
methods. arXiv preprint arXiv:2505.03373, 2025.

10

https://proceedings.mlr.press/v139/blalock21a.html
http://arxiv.org/abs/1706.10283

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zengfeng Huang. Near optimal frequent directions for sketching dense and sparse matrices. J.
Mach. Learn. Res., 20(1):2018–2040, January 2019. ISSN 1532-4435.

A Kingsly Jabakumar. Edge-enabled smart traffic management system: An iot implementation for
urban mobility. Research journal of computer systems and engineering, 4(2):160–173, 2023.

Sehoon Kim, Coleman Hooper, Thanakul Wattanawong, Minwoo Kang, Ruohan Yan, Hasan Genc,
Grace Dinh, Qijing Huang, Kurt Keutzer, Michael W Mahoney, et al. Full stack optimization of
transformer inference: a survey. arXiv preprint arXiv:2302.14017, 2023.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL https:
//api.semanticscholar.org/CorpusID:18268744.

Anastasios Kyrillidis, Michail Vlachos, and Anastasios Zouzias. Approximate matrix multiplication
with application to linear embeddings. In 2014 IEEE International Symposium on Information
Theory, pp. 2182–2186, 2014.

Edo Liberty. Simple and deterministic matrix sketching. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’13, pp. 581–588.
Association for Computing Machinery, 2013. ISBN 9781450321747.

Ji Lin, Wei-Ming Chen, Yujun Lin, Chuang Gan, Song Han, et al. Mcunet: Tiny deep learning on
iot devices. Advances in neural information processing systems, 33:11711–11722, 2020.

Ji Lin, Wei-Ming Chen, Han Cai, Chuang Gan, and Song Han. Memory-efficient patch-based infer-
ence for tiny deep learning. Advances in Neural Information Processing Systems, 34:2346–2358,
2021.

Shuqi Liu, Bowei He, Han Wu, and Linqi Song. Optishear: Towards efficient and adaptive pruning
of large language models via evolutionary optimization. arXiv e-prints, pp. arXiv–2502, 2025.

Luo Luo, Cheng Chen, Zhihua Zhang, Wu-Jun Li, and Tong Zhang. Robust frequent directions with
application in online learning. Journal of Machine Learning Research, 20(45):1–41, 2019. URL
http://jmlr.org/papers/v20/17-773.html.

Mishaim Malik, Muhammad Kamran Malik, Khawar Mehmood, and Imran Makhdoom. Automatic
speech recognition: a survey. Multimedia Tools and Applications, 80(6):9411–9457, 2021.

Sandeep Miryala, Md Adnan Zaman, Sandeep Mittal, Yihui Ren, Grzegorz Deptuch, Gabriella
Carini, Sioan Zohar, Shinjae Yoo, Jack Fried, Jin Huang, et al. Peak prediction using multi
layer perceptron (mlp) for edge computing asics targeting scientific applications. In 2022 23rd
International Symposium on Quality Electronic Design (ISQED), pp. 1–6. IEEE, 2022.

Youssef Mroueh, Etienne Marcheret, and Vaibhava Goel. Co-occuring directions sketching for
approximate matrix multiply. CoRR, abs/1610.07686, 2016. URL http://arxiv.org/abs/
1610.07686.

Jelani Nelson and Huy L. Nguyên. Osnap: Faster numerical linear algebra algorithms via sparser
subspace embeddings. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Sci-
ence, pp. 117–126, 2013.

Xinwei Ou, Zhangxin Chen, Ce Zhu, and Yipeng Liu. Low rank optimization for efficient deep
learning: Making a balance between compact architecture and fast training. Journal of Systems
Engineering and Electronics, 35(3):509–531, 2024.

Rasmus Pagh. Compressed matrix multiplication. ACM Trans. Comput. Theory, 5(3), August 2013.
ISSN 1942-3454.

Shengli Pan, Peng Li, Changsheng Yi, Deze Zeng, Ying-Chang Liang, and Guangmin Hu. Edge in-
telligence empowered urban traffic monitoring: A network tomography perspective. IEEE Trans-
actions on Intelligent Transportation Systems, 22(4):2198–2211, 2021.

Marius-Constantin Popescu, Valentina Balas, Liliana Perescu-Popescu, and Nikos Mastorakis. Mul-
tilayer perceptron and neural networks. WSEAS Transactions on Circuits and Systems, 8, 07 2009.

11

https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744
http://jmlr.org/papers/v20/17-773.html
http://arxiv.org/abs/1610.07686
http://arxiv.org/abs/1610.07686

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Arnaud Rosay, Florent Carlier, and Pascal Leroux. Mlp4nids: An efficient mlp-based network
intrusion detection for cicids2017 dataset. In International Conference on Machine Learning for
Networking, pp. 240–254. Springer, 2019.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Tamas Sarlos. Improved approximation algorithms for large matrices via random projections. In
2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pp. 143–
152, 2006.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. Computer Science, 2014.

Sabato Marco Siniscalchi, Torbjørn Svendsen, and Chin-Hui Lee. An artificial neural network ap-
proach to automatic speech processing. Neurocomputing, 140:326–338, 2014.

Gawsalyan Sivapalan, Koushik Kumar Nundy, Soumyabrata Dev, Barry Cardiff, and Deepu John.
Annet: A lightweight neural network for ecg anomaly detection in iot edge sensors. IEEE Trans-
actions on Biomedical Circuits and Systems, 16(1):24–35, 2022.

Jingru Sun, Chendingying Lu, Yichuang Sun, Hongbo Jiang, and Zhu Xiao. Online transfer learning
with mlp-assisted graph convolution network for traffic flow forecasting: A solution for edge
intelligent devices. Frontiers of Information Technology & Electronic Engineering, 2025.

Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani. A detailed analysis of the
kdd cup 99 data set. In 2009 IEEE Symposium on Computational Intelligence for Security and
Defense Applications, pp. 1–6, 2009.

Dan Teng and Delin Chu. A fast frequent directions algorithm for low rank approximation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 41(6):1279–1293, 2019.

Sunil Vadera and Salem Ameen. Methods for pruning deep neural networks. IEEE Access, 10:
63280–63300, 2022.

Mangasarian Olvi Street Nick Wolberg, William and W. Street. Breast Cancer Wisconsin (Diagnos-
tic). UCI Machine Learning Repository, 1993.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
conference on machine learning, pp. 38087–38099. PMLR, 2023.

Qiaomin Ye, Luo Luo, and Zhihua Zhang. Frequent direction algorithms for approximate ma-
trix multiplication with applications in cca. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI’16, pp. 2301–2307. AAAI Press, 2016. ISBN
9781577357704.

Yuhua Yin, Julian Jang-Jaccard, Wen Xu, Amardeep Singh, Jinting Zhu, Fariza Sabrina, and Jin
Kwak. Igrf-rfe: a hybrid feature selection method for mlp-based network intrusion detection on
unsw-nb15 dataset. Journal of Big data, 10(1):15, 2023.

Junfeng Zhang, Cheng Xie, Hongming Cai, Weiming Shen, and Rui Yang. Knowledge distillation-
based spatio-temporal mlp model for real-time traffic flow prediction. IEEE Transactions on
Intelligent Transportation Systems, 2024.

A APPENDIX

In this section, we derive an upper bound on the approximation error for the vector-valued function
f : Rd → Rm by means of the integral remainder.

Assume that zt = ci + t(x− ci), t ∈ [0, 1] denote the line segment between x and ci, and function f
is twice differentiable along the line segment. The first order Taylor expansion is:

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

f(x) = f(ci) +∇f(ci)
T (x− ci). (5)

And the integral remainder is:

f(x)− f̂(x) =

∫ 1

0

(1− t)∇2f(zt)[x− ci, x− ci]dt. (6)

The Euclidean norm of the difference between the original value and its Taylor-expansion approxi-
mation is:

||f(x)− f̂(x)|| ≤
∫ 1

0

(1− t)∇2f(zt)[x− ci, x− ci]dt. (7)

Since
||∇2f(zt)[x− ci, x− ci]|| ≤ sup||u||=1||∇2f(zt)[u, u]|| · ||x− ci||2 (8)

Factor out the distance term and perform integration.

||f(x)− f̂(x)|| ≤ ||x− ci||2
∫ 1

0

(1− t)∇2f(zt)opdt. (9)

Extract the supremum of the Hessian norm over the line segment.

H(i)
max(x) := sup∈[ci,x]||∇

2f(z)||op (10)

∫ 1

0

(1− t)||∇2f(zt)op||dt ≤ H(i)
max(x)

∫ 1

0

(1− t)dt =
1

2
H(i)

max(x) (11)

Then we obtain the final upper bound.

||f(x)− f̂(x)|| ≤ 1

2
supz∈[ci,x]||∇

2f(z)||op · ||x− ci||2 (12)

13

	Introduction
	Related Work
	MLP Optimization Methods
	Approximate Matrix Multiplication

	Method
	Taylor Expansion Counterpart
	theoretical analysis

	Experiments
	Image Classification
	Network Intrusion Detection
	Ablation Studies

	Discussions
	Conclusion
	Appendix

