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ABSTRACT

The Multi-Layer Perceptron (MLP) constitutes a fundamental building block of
deep learning. However, its inherent reliance on dense matrix multiplication im-
poses a substantial computational burden, especially on resource-constrained edge
devices, which poses a critical challenge to the real-time inference requirements
of edge artificial intelligence applications. In this paper, we propose T-MLP, a
novel method that mitigates this challenge by approximating the MLP via a light-
weight module that combines K-means and first-order Taylor expansion. Replaced
by T-MLP, MLP online inference is reduced to a single K-means prediction, fol-
lowed by one dense matrix multiplication and two element-wise additions. On a
commercial edge device, T-MLP yields >100× speed-up on large-scale MLP with
< 1% accuracy loss. Grounded in reduced time-complexity and hardware-friendly
footprint, T-MLP establishes a new paradigm for edge-side efficient inference.

1 INTRODUCTION

The Multi-Layer Perceptron (MLP)(Popescu et al., 2009) is the foundational substrate of modern
deep learning. An input layer, a output layer, and multiple hidden layers with nonlinear activation
functions endow the MLP with rich representational power for complex classification and regres-
sion. With the rise of edge artificial intelligence, MLPs are ubiquitously deployed on edge de-
vices across a diverse range of tasks, including image classification(Lin et al., 2020; 2021; Howard
et al., 2017; Sandler et al., 2018), network intrusion detection(Yin et al., 2023; Rosay et al., 2019;
de Almeida Florencio et al., 2018), traffic monitoring(Pan et al., 2021; Sun et al., 2025; Jabakumar,
2023; Zhang et al., 2024), automatic speech recognition(Malik et al., 2021; Siniscalchi et al., 2014)
and various AIoT-enabled deployment scenarios(Chi et al., 2024; Fatan et al., 2016; Miryala et al.,
2022; Sivapalan et al., 2022). Yet, edge devices yield < 1% of cloud servers’ peak FLOPS, es-
pecially on edge devices without GPU or NPU. The dense matrix multiplication inherent to MLPs
imposes a significant computational burden on resource-constrained edge devices, which severely
compromises the real-time inference deadlines of edge AI applications, as Figure 1 demonstrates.
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Figure 1: Edge vs. Commercial GPU:
computational power comparison and latency of
large scale matrix multiplication

Despite the pressing demand for real-time MLP
inference at the edge, a general and effective
solution remains absent. Existing optimization
methods such as quantization and pruning pri-
marily aim at compression; inference acceler-
ation is a limited by-product, which typically
yield < 4× speed-up(Xiao et al., 2023; Liu
et al., 2025). In this paper, we introduce a sim-
ple yet effective solution: replacing the MLP
with first-order Taylor expansion. Our insight
is straightforward that the first-order Taylor ex-
pansion can transform an MLP, which involves
multiple matrix multiplications, into a single
matrix multiplication, provided that the rele-
vant coefficients of the Taylor expansion are precomputed. Due to the nature of Taylor expansion,
the approximation accuracy is contingent on the distance between the expansion point and the ac-
tual input. Thus, to confine the bulk of the input distribution to the high-probability vicinity of
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each expansion point, we perform K-means clustering, adopt the resulting centroids as expansion
points, and precompute and cache the Taylor coefficients at each centroid. In this way, we transform
the MLP to a single K-means prediction, followed by one dense matrix multiplication, dramati-
cally speeding up inference while preserving the original prediction accuracy. Experimental results
demonstrate that out method achieves >100× speed-up for large-scale MLPs on edge devices.

We provide theoretical complexity analysis demonstrating the superiority of our method over the
native MLP, and empirically validate it on commercial edge hardware. Further experiment explored
the impact of width, height, and activation choice of MLP on the approximation fidelity. Finally, we
analyze the conditions under which optimal efficacy is attained.

In summary, our contributions are as follows:

1) To the best of our knowledge, we are the first to leverage approximation for MLP acceleration,
offering a novel paradigm for efficient edge inference.

2) We derive a rigorous error upper bound for our method and systematically analyze how hardware
characteristics influence its efficacy.

3) We conduct experiments on commercial off-the-shelf edge devices and validate the practical
efficacy of our method. And experimental results demonstrate that our method achieves >100×
speed-up for large-scale MLPs on edge devices.

2 RELATED WORK

2.1 MLP OPTIMIZATION METHODS

To enable efficient MLP inference, existing studies predominantly optimize MLPs via model com-
pression. Common compression techniques include quantization, pruning and Low-rank Factoriza-
tion, etc(Dantas et al., 2024). Quantization is a method that converts high-bit floating-point param-
eters to low-bit integers, enabling efficient model inference(Gholami et al., 2022; Kim et al., 2023).
Leveraging low-bit computation, quantization enables acceleration on general-purpose CPUs; how-
ever, the speed-up is inherently hardware-constrained and typically capped at < 4×(Xiao et al.,
2023; Frantar et al., 2022). Pruning accelerates inference by structurally or non-structurally eliminat-
ing unimportant weights or neurons, thereby reducing model redundancy(Vadera & Ameen, 2022).
However, the sparsity introduced by pruning yields marginal acceleration, typically less than 2×(Hu
& Yuan, 2025; Liu et al., 2025). Low-rank factorization accelerates inference by approximating the
original large matrix with the product of two smaller matrices(Goyal et al., 2019; Ou et al., 2024).
Yet, the actual acceleration is highly dependent on the factorization quality and hardware mapping,
thus speed-up is not guaranteed.

In essence, these techniques are devised for model compression; inference acceleration is not their
primary objective. Besides, our approach is orthogonal to existing methods and can be concatenated
to yield simultaneously compact and highly efficient models for edge devices.

2.2 APPROXIMATE MATRIX MULTIPLICATION

For acceleration-oriented inference, approximation serves as a potential viable paradigm. Approxi-
mate Matrix Multiplication (AMM) constitutes a pivotal research avenue for accelerating large-scale
matrix products. The prevailing paradigm projects the operand matrices into a lower-dimensional
space and subsequently performs an exact multiplication on the compressed representations(Liberty,
2013; Ghashami et al., 2016; Teng & Chu, 2019). Representative strategies include matrix sketch-
ing algorithms that deterministically(Francis & Raimond, 2022; Huang, 2019; Luo et al., 2019) or
randomly construct projection matrices to curtail computational cost(Nelson & Nguyên, 2013; Das-
gupta et al., 2010; Pagh, 2013; Kyrillidis et al., 2014; Sarlos, 2006). These methods only consider
each matrix in isolation. And there are works that introduce variations which take into account both
matrices(Francis & Raimond, 2018; Ye et al., 2016; Mroueh et al., 2016).
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More recently, several works(Blalock & Guttag, 2017; 2021) have borrowed the insight of Product
Quantization (PQ)(Ge et al., 2014): the vector product ATB is transformed into a sequence of table
lookups and several additions. Concretely, the input vector A is partitioned into disjoint sub-vectors
ai; each ai is assigned to its nearest centroid ci obtained by clustering over the training data. The
partial inner products cTi bi are precomputed and stored in a lookup table, so the online evaluation
of ATB reduces to centroid indexing, table retrieval, and several additions, drastically shrinking the
arithmetic complexity.

Originally devised for isolated matrix multiplications, these approaches cannot approximate a com-
plete MLP; yet, the product-quantization philosophy inspires us to approximate the MLP directly.
Instead of approximating isolated matrix products via discrete lookup tables, we approximate the
entire MLP as a continuous, piecewise-linear function.

3 METHOD

To enable real-time MLP inference on edge devices, we propose an approximation-centric accelera-
tion scheme. We first presents our method, termed T-MLP, and then provides a theoretical justifica-
tion of its efficacy.

3.1 TAYLOR EXPANSION COUNTERPART

Our method approximates an MLP via first-order Taylor expansion:

MLP (x) ≈ MLP (ci) +∇MLP (ci)
T (x− ci). (1)

which comprises two distinct phases: the offline phase (Steps 1–3) for precomputing MLP (ci)
and ∇MLP (ci)

T and the inference phase (Step 4) for dispatching and calculating, as illustrated in
Figure 2.
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Figure 2: Flow chart of T-MLP. Step 1: collect the input fed to MLP. Step 2: cluster the input. Step
3: precompute and store the Taylor expansion coefficients. Step 4: inference with T-MLP.

During the offline phase, we first identify the Taylor expansion points and precompute the corre-
sponding outputs and gradients. The fidelity of the first-order Taylor approximation degrades with
the Euclidean distance |x − ci|. To minimize this discrepancy across the entire data manifold, we
apply K-means clustering on the training inputs to obtain a representative set of centroids {ci}ki=1
and perform Taylor expansion about these centroids. To identify the centroids, we first perform the
forward pass of the well trained model over the training data set and collect every input vectors fed
to the MLP, which are subsequently compressed into k representative centroids by K-means. For ev-
ery centroid ci, we perform the forward pass again to obtain output as MLP (ci), and then perform
back-propagation to compute the corresponding gradient ∇MLP (ci)

T .
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During the inference phase, an incoming input x is dispatched to the nearest centroid ci in the learned
code-book. And the final prediction is then delivered by the first-order Taylor expansion centred at
ci.

3.2 THEORETICAL ANALYSIS

A typical MLP can be regarded as a highly intricate composite function:

f(x) = Wn(σ(. . . σ(W1(x)))), (2)

Applying a first-order Taylor expansion to this complex composite function yields an elegant linear
approximation (T-MLP):

f(x) ≈ f(x0) +∇f(x0)
T (x− x0), (3)

where f(x0) and ∇f(x0) represents the MLP’s output and first-order gradient at the expansion point
x0, which can be obtained and cached offline. With T-MLP, the MLP is transformed to a single K-
means prediction, followed by one dense matrix multiplication and two element-wise additions.

Considering the time complexity, a conventional MLP requires O(N1 × N2 + · · · + NL−1 × NL)
operations, where L represents the number of layers of MLP, and Ni represents the vector dimension.
Each term denotes the time complexity of one linear layer. And the time complexity of the T-MLP is
O(N1×NL+k×N1), where k is the number of cluster centers in K-means model. Evidently, for a
deep and wide MLP, provided the k is set to an appropriate magnitude, T-MLP is able to effectively
reduces the time complexity.

Meanwhile, by exploiting the integral-form remainder of the Taylor expansion, we establish an upper
bound on the approximation error between our proposed method and the original MLP:
Theorem 3.1 (T-MLP upper error bound). Let f : Rd → R be twice continuously differentiable on
the line segment joining ci and x. Then the approximation error satisfies

∥f(x)− f̂(x)∥ ≤ 1

2
sup

z∈[ci,x]

∥∇2f(z)∥op · ∥x− ci∥2. (4)

The detailed derivation is provided in the Appendix.

Theoretical analysis establishes that computational savings are guaranteed whenever the asymptotic
cost of the Taylor expansion-based approximation falls below that of the standard MLP. In theory, a
larger k yields higher approximation accuracy at the expense of diminishing speed-up; however, the
practical trade-off is more nuanced, and our experiments demonstrate that k exerts only a marginal
impact on the overhead of the proposed method.

4 EXPERIMENTS

In this section, to empirically validate the proposed approach. To the best of our knowledge, this
work presents the first attempt to accelerate MLP inference through approximation; therefore, we
adopt the original MLP as our primary baseline. We evaluate its performance on two representative
edge workloads: image classification and network-intrusion detection. All experiments are con-
ducted on a Raspberry Pi 5 (4 GB) on a single CPU core, a commodity edge device equipped with a
64-bit Arm Cortex-A76 processor without discrete GPU or NPU.

4.1 IMAGE CLASSIFICATION

Image classification is the gateway task for vision applications on edge devices. For the image-
classification task, we trained the classical VGG-16(Simonyan & Zisserman, 2014) model on the
CIFAR-100 dataset(Krizhevsky, 2009). The model stacks thirteen convolutional layers and termi-
nates in a three-stage MLP classifier whose fully-connected layers are dimensioned as (512, 4096),
(4096, 4096), and (4096, 100), each followed by ReLU activations. After 200 epochs of training,
the model achieves 72.2 % top-1 accuracy on the CIFAR-100 test set. We replace the classifier of
VGG16 with T-MLP, with the number of centroids progressively increasing from 5 to 320. The
experiment results are depicted in Tables 1 and Figures 3.
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Table 1: VGG 16 Experiments on Raspberry Pi 5. ACC denote the accuracy of T-MLP. Tconv ,
TMLP , Tkmeans, Texpansion respectively denote the latency of the convolutional layers, the orig-
inal MLP, the K-means prediction, and the Taylor expansion computation. Tconv+MLP and
Tconv+T−MLP reports the latency of original VGG16 and our proposed method.

K Acc MSE Tconv TMLP Tkmeans Texpansion Tconv+MLP Tconv+T−MLP

5 72.09 156.04 0.07448 0.30363 1.05E-4 1.51E-4 0.37811 0.06878
25 72.21 60.43 0.07304 0.31335 1.17E-4 1.54E-4 0.3864 0.06950
60 72.03 28.19 0.0649 0.30377 1.45E-4 1.56E-4 0.36866 0.06636
100 72.17 13.48 0.07684 0.31489 1.68E-4 1.57E-4 0.39173 0.07061
180 72.35 11.87 0.06977 0.31583 2.20E-4 1.63E-4 0.38447 0.06626
320 72.17 10.61 0.06977 0.30252 3.29E-4 1.64E-4 0.37114 0.06599
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Figure 3: Experiments result of VGG-16 on Cifar-100. (a) : The comparison of Top-1 accuracy of
original VGG-16 and its T-MLP on the Cifar-100 test set. (b) : The latency of the VGG-16 convolu-
tional layers, MLP, and its T-MLP, including K-means prediction and Taylor expansion computation
on Raspberry Pi 5. (c) : The mean square error between the 100-dimensional class-score vectors
produced by the original VGG-16 model and T-MLP. (d) : The mean and standard deviation of the
first five dimensions of the 100-dimensional output vectors generated by the original VGG-16 model
and its T-MLP.

On this 100-class classification task, the T-MLP’s top-1 accuracy retains the original top-1 accuracy
to within 1%. And in terms of latency, far beyond our expectation, the T-MLP achieves a surprising
> 100× inference acceleration. When the convolutional backbone is included, end-to-end infer-
ence is still accelerated by 6×. To quantify fidelity, we measured the Mean-Square Error(MSE)
between the two output distributions. MSE decreases monotonically with increasing k, indicating
progressively tighter approximation fidelity. Inspection of the first five dimensions of output vectors
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corroborates this trend: at k = 5 the standard deviations differ by > 1, whereas at k = 320 both
means and variances are statistically indistinguishable.

4.2 NETWORK INTRUSION DETECTION

Table 2: MLP Experiments on Raspberry Pi 5. ACC denote the accuracy of T-MLP. TMLP ,
Tkmeans, Texpansion respectively denote the latency of the original MLP, the K-means prediction,
and the Taylor expansion computation. And TT−MLP reports the latency of our proposed method

K Acc MSE TMLP Tkmeans Texpansion TMLP TT−MLP

5 85.13 43.10 5.67E-4 8.19E-5 7.02E-5 5.67E-4 1.52E-4
20 96.60 6.84 5.26E-4 6.20E-5 4.90E-5 5.26E-4 1.11E-4
35 96.73 3.89 5.79E-4 6.30E-5 5.10E-5 5.79E-4 1.14E-4
50 96.97 3.09 5.28E-4 6.26E-5 4.96E-5 5.28E-4 1.12E-4
90 97.75 1.38 5.06E-4 6.57E-5 4.98E-5 5.06E-4 1.16E-4
150 98.04 0.90 5.14E-4 6.81E-5 5.06E-5 5.14E-4 1.18E-4
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Figure 4: Experiments result of MLP on NSL-KDD. (a) : The comparison of Top-1 accuracy of
original MLP and its T-MLP on the NSL-KDD test set. (b) : The latency of the MLP, and its
T-MLP, including K-means prediction and Taylor expansion computation on Raspberry Pi 5. (c)
: The mean square error between the 23-dimensional class-score vectors produced by the original
MLP and its T-MLP. (d) : The mean and standard deviation of the first five dimensions of the 23-
dimensional output vectors generated by the original MLP and its T-MLP.

To secure resource-constrained edge networks, real-time identification of anomalous traffic is essen-
tial. Network-intrusion detection is thus a critical task at the edge-side network. We evaluate our
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method on NSL-KDD(Tavallaee et al., 2009), a de-facto standard benchmark for intrusion-detection
systems (IDS). For the network intrusion detection task, we trained a three layer MLP on the NSL-
KDD dataset. The MLP layers are dimensioned as (42, 256), (256,96), and (96, 23), respectively,
and we use ReLU as activation functions. The model achieves 98.31% top-1 accuracy on the NSL-
KDD test set. Analogous to the preceding experiment, we replace the three-layer MLP with T-MLP,
while progressively increasing the k values from 5 to 150. The experimental results are depicted in
Table 2 and Figure 4.

In contrast to the previous experiment, the Taylor expansion counterpart on NSL-KDD starts with a
pronounced accuracy deficit for small k, yet the gap narrows rapidly and collapses to 0.3 % when
k reaches 150. In terms of latency, the T-MLP still achieves a 4× inference-speedup. And the
counterpart reproduces the previously observed fidelity trend: MSE versus the original MLP de-
creases monotonically with the increment of k, and the empirical mean and standard deviation of
the first-five dimensions of output vectors converge to their original values.

4.3 ABLATION STUDIES
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Figure 5: This figure shows how the model’s output evolves with increasing width after the MLP is
replaced by its T-MLP. (a-d) : how the mean-square error between the outputs of the original MLP
and its T-MLP varies as the model’s width increases for ReLU, SiLU, GeLU and Tanh activation
functions respectively. (e-h) : how the mean and standard deviation between the outputs of the
original MLP and its T-MLP varies as the model’s width increases for ReLU, SiLU, GeLU and Tanh
activation functions respectively.

To systematically investigate how the architectural complexity of MLPs influences the fidelity of
their Taylor expansion counterparts, we conducted a controlled ablation study. We utilized the
canonical breast cancer dataset(Wolberg & Street, 1993) to train multi-layer perceptrons (MLPs)
of varying widths and heights. After randomly reserving 20 % of the instances as a held-out test set,
we fitted a K-means model with k = 32 on the remaining training data.

Architecture sweeps were performed along two independent axes: width and height. In the width
ablation experiment, height was held constant at 3 layers, while the hidden width increased from 32
to 256. And in height ablation experiment, width was fixed at 32 per hidden layer, while the num-
ber of hidden layers progressively increased. For every configuration we recorded three summary
statistics: MSE, mean, and standard deviation between the outputs of the original MLP and its cor-
responding T-MLP. Additionally, we assessed the sensitivity of our approximation to the choice of
activation function by repeating the above protocol under four canonical activations: ReLU, SiLU,
GeLU and Tanh. The input, hidden, and output layers were dimensioned as (30, width), (width,
width), and (width, 1), respectively. And all models are trained on the training set for 50 epochs.
Comprehensive results are reported in Figure 5,6.
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Figures 5 and 6 illustrate how the approximation capability of the T-MLP evolves with model width
and height under four distinct activation functions. As the width and height of the original MLP
increase, its expressive power grows accordingly, leading to a more complex and rapidly varying loss
landscape. Consequently, the first-order Taylor expansion employed by T-MLP struggles to capture
these fine-grained nonlinearities, and the approximation capacity consistently deteriorates regardless
of the activation function used. This trend suggests that deeper and wider networks require a larger
number of centroids to maintain acceptable fidelity.
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Figure 6: This figure shows how the model’s output evolves with increasing height after the MLP is
replaced by its T-MLP. (a-d) : how the mean-square error between the outputs of the original MLP
and its T-MLP varies as the model’s height increases for ReLU, SiLU, GeLU and Tanh activation
functions respectively. (e-h) : how the mean and standard deviation between the outputs of the
original MLP and its T-MLP varies as the model’s height increases for ReLU, SiLU, GeLU and
Tanh activation functions respectively.

We also evaluate the acceleration effect of T-MLP under varying model widths and heights, as il-
lustrated in the Figure 7. The input, hidden, and output layers were dimensioned as (512, width),
(width, width), and (width, 1), and k is set to 512. As predicted by our complexity analysis, the
computational gap between the original MLP and T-MLP widens with height and width increasing.
At height=3 and width=512, our method already delivers > 5× speed-up. Moreover, the acceler-
ation grows super-linearly with increasing width and height, confirming that T-MLP is especially
advantageous for large-scale T-MLP.
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Figure 7: The influence of model height and width on speed-up

5 DISCUSSIONS

In this section, we interpret the observed phenomena and derive the conditions under which optimal
acceleration–accuracy trade-offs are achieved.
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To begin with, we examine how MLP scale conditions the inference acceleration of our approach.
Experiments consistently reveal a positive scaling law: speed-up grows super-linearly with model
scale.This trend is first guaranteed by the reduced theoretical complexity, and is further amplified by
hardware properties.

As illustrated in Figure 8, although K-means prediction initially incurs slightly higher latency than
matrix multiplication at small scales, the crossover occurs as dimensionality grows, and the gap
widens thereafter. This is because, despite identical asymptotic complexity, K-means distance com-
putation outperforms matrix multiplication in practice due to reduced memory write-backs and su-
perior SIMD utilization.

On the other hand, the experimental platform itself also matters. On contemporary CPUs, GEMM
performance transitions from a compute-bound to a memory-bandwidth-bound regime once the ma-
trix scale exceeds the threshold of cache. And as illustrated in Figure 8, the latency of matrix multi-
plication does not exhibit a quadratic relationship with matrix size; instead, it undergoes a step-wise
increase once the scale exceeds the cache threshold. Yet this overhead is mitigated by our approach,
which drastically shrinks the matrix-multiplication footprint. The Raspberry Pi 5 is equipped with a
512 KB L1 cache and a 2MB L2 cache and VGG16’s classifier exceeds 60 MB, which is far beyond
the cache threshold. Whereas our method confines the matrix multiplication size to the L1 cache,
yielding orders-of-magnitude speed-ups.
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Figure 8: Time cost of different configurations of matrix multiplication (1 × N) × (N × N) and
K-means prediction(k = N, dim = N).

Next, we examine the fidelity of our approximation. The upper bound reveals that approximation
fidelity hinges on the the local curvature (Hessian norm) and the distance between the actual input
and its assigned centroid. The Euclidean distance between them monotonically decreases with the
number of clusters k. Thus, a larger k yields a strictly tighter bound in expectation.

Empirically, the required K is strongly modulated by the data geometry. In Image Classification,
VGG-16 delivers 512-D deep features that are highly coherent and clustering-friendly; consequently
k = 320 already suffices to approximate the MLP. Conversely, in the Network Intrusion Detection
experiment, the NSL-KDD dataset provides only 42 raw hand-crafted metrics whose scales, units,
and marginal distributions are heterogeneous, thus a larger k is required. However, both theoretical
complexity and empirical experiments indicate that the latency of T-MLP is less sensitive to the
choice of k than to model width, validating the adoption of a larger k in practice.

In summary, our method excels when (i) the number of centroids k is sufficiently large, (ii) the MLP
is of substantial scale, and (iii) the target device is memory-bandwidth-constrained.

6 CONCLUSION

We propose a novel approach for efficient MLP inference on edge devices by replacing the original
network with its first-order Taylor expansion anchored at K-means centroids, achieving substantial
latency reduction. Theoretical analysis and extensive experiments corroborate the effectiveness of
the proposed method, and we further delineate the sufficient conditions for maintaining optimal
performance.

In the future work, we will incorporate second- and higher-order Taylor expansions and systemati-
cally investigate the trade-offs among cluster budget k, expansion order, and inference latency.
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A APPENDIX

In this section, we derive an upper bound on the approximation error for the vector-valued function
f : Rd → Rm by means of the integral remainder.

Assume that zt = ci + t(x− ci), t ∈ [0, 1] denote the line segment between x and ci, and function f
is twice differentiable along the line segment. The first order Taylor expansion is:
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f(x) = f(ci) +∇f(ci)
T (x− ci). (5)

And the integral remainder is:

f(x)− f̂(x) =

∫ 1

0

(1− t)∇2f(zt)[x− ci, x− ci]dt. (6)

The Euclidean norm of the difference between the original value and its Taylor-expansion approxi-
mation is:

||f(x)− f̂(x)|| ≤
∫ 1

0

(1− t)∇2f(zt)[x− ci, x− ci]dt. (7)

Since
||∇2f(zt)[x− ci, x− ci]|| ≤ sup||u||=1||∇2f(zt)[u, u]|| · ||x− ci||2 (8)

Factor out the distance term and perform integration.

||f(x)− f̂(x)|| ≤ ||x− ci||2
∫ 1

0

(1− t)∇2f(zt)opdt. (9)

Extract the supremum of the Hessian norm over the line segment.

H(i)
max(x) := sup∈[ci,x]||∇

2f(z)||op (10)

∫ 1

0

(1− t)||∇2f(zt)op||dt ≤ H(i)
max(x)

∫ 1

0

(1− t)dt =
1

2
H(i)

max(x) (11)

Then we obtain the final upper bound.

||f(x)− f̂(x)|| ≤ 1

2
supz∈[ci,x]||∇

2f(z)||op · ||x− ci||2 (12)
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