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Abstract
Human character animation is often critical in entertainment content production, including video games, virtual reality or
fiction films. To this end, deep neural networks drive most recent advances through deep learning and deep reinforcement
learning. In this article, we propose a comprehensive survey on the state-of-the-art approaches based on either deep learning
or deep reinforcement learning in skeleton-based human character animation. First, we introduce motion data representations,
most common human motion datasets and how basic deep models can be enhanced to foster learning of spatial and temporal
patterns in motion data. Second, we cover state-of-the-art approaches divided into three large families of applications in human
animation pipelines: motion synthesis, character control and motion editing. Finally, we discuss the limitations of the current
state-of-the-art methods based on deep learning and/or deep reinforcement learning in skeletal human character animation and
possible directions of future research to alleviate current limitations and meet animators’ needs.

CCS Concepts
• General and reference → Surveys and overviews; • Applied computing → Media arts; • Computing methodologies → Mo-
tion processing; Physical simulation; Neural networks; Supervised learning; Unsupervised learning; Reinforcement learning;

1. Introduction

Humans and their representations are ubiquitous in culture. In the
past decades digital technologies brought more and more tools to
assist designers, animators and artists, with the goal of increasing
their creative capabilities and the realism of their artworks while re-
ducing production costs. For instance, digital doubles have brought
to life non-human fictional creatures like the Na’vi in Avatar or
even visual identity of long time deceased actors like Grand Moff
Tarkin in Rogue One in 2016 portrayed by the British actor Peter
Cushing, even though he passed away in 1994. Within this context,
computer-assisted human character animation plays a central role,
such as for the synthesis of the motion of digital doubles. Another
example is the video game production, where animation and con-
trol of the characters directly condition the success of a game.

However, animation of human characters is challenging: the way
humans move is very diverse and is influenced by many factors in-
cluding the mood, the intentions, the activity or even individual
characteristics. In addition, Newton’s second law of motion inher-
ently makes human motion a dynamic process, while our under-
standing of biomechanics is far from being comprehensive. In prac-
tice, compromises therefore need to be made to balance between
production costs, the realism, the amount of manual work, and the
level of expertise of the animator. The research area of character
animation has been active for decades to mitigate these compro-
mises and make animation more accessible, starting from pioneer-
ing works such as editing and deforming motion examples [WP95],

retargeting motions to new characters [Gle98], controlling charac-
ters using motion graphs [KGP02; MC12], etc.

Over the past few years, Deep Neural Networks (DNNs) have
emerged as a powerful means to enhance the performance and ca-
pabilities of character animation, as evidenced by the growing num-
ber of publications on the topic leveraging Deep Learning (DL) and
Deep Reinforcement Learning (DRL) (see Figure 1). These two
techniques have shown an unprecedented ability to address com-
plex tasks in a wide variety of domains not restricted to animation,
such as computer vision, Natural Language Processing (NLP) and
many more. Humans are outperformed by artificial intelligence al-
gorithms in a growing number of tasks such as image classifica-
tion or playing Go. This is notably due to the fact that DNNs are
powerful function approximators, able to learn sophisticated pat-
terns in complex real-world phenomena from data. Moreover, once
the training is complete, training data is discarded, leaving compact
models that are able to meet performance requirements of real-time
applications or to scale to embedded systems. In animation, DL &
DRL based approaches attempt to handle the human motion com-
plexity and provide promising perspectives for cheaper and faster
animation techniques with more and more fidelity and creative ca-
pabilities.

In this article, we present an overview of the recent growing
trend of DL & DRL in skeletal character animation, focused on hu-
manoid characters. Skeletal here means using a representation de-
rived from a skeleton, as commonly used in the movie and game in-
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Figure 1: Histogram of the peer-reviewed publications over the
past decade in human skeletal character animation using Deep
Learning (DL) and/or Deep Reinforcement Learning (DRL) ad-
dressed in this survey.

dustries in combination with 3D skinned meshes (see Section 2.1).
On the one hand, DL is particularly effective at building compact
models from such human motion data, e.g. for motion synthesis
and editing. On the other hand, DRL, which is concerned with how
agents ought to act in a simulated environment in order to maximise
some cumulative reward, is well-suited for character control where
characters are agents, and their actuation model parameters are ac-
tions. The goal of this review is therefore to provide researchers
involved in character animation and related fields with an overview
of existing DL & DRL based methods in that domain, best practices
to represent and process motion data with DNNs and the most suc-
cessful approaches for different well-studied families of problems.

In the last decade, various state-of-the-art reports have studied
character animation topics: Pejsa and Pandzic [PP10] covered mo-
tion planning, motion graphs and parametric models for motion
synthesis in interactive applications from examples; Geijtenbeek
and Pronost [GP12] reviewed the literature on physical simula-
tion for interactive character animation; then Karg et al. [KSG*13]
studied the generation and recognition of motions based on af-
fective expressions; finally, Wang et al. [WCW14] presented an
analysis of state-of-the-art techniques in 3D human motion synthe-
sis while focusing on motion capture data-driven methods. How-
ever, none of these reviews covered DL or DRL based methods
because most recent advances appeared since 2015, as shown in
Figure 1. More recently, Alemi and Pasquier [AP19] reviewed the
topic of data-driven movement generation with Machine Learning
(ML). While their paper includes the review of some DL-based
methods, numerous other advances have emerged in very recent
years. In addition, some of the ML approaches presented by Alemi
and Pasquier [AP19], such as Hidden Markov Models or Principal
Component Analysis, are clearly outperformed by DL as of today.
In contrast, our work addresses state-of-the-art of DL and DRL in
skeletal human character animation.

This paper is organised as follows: in Section 2, we begin with an
overview of low-level concerns encountered when processing hu-
man motion data with DNNs, presenting pose representations (Sec-
tion 2.1) and human motion datasets (Section 2.2) frequently used

in the literature, as well as how to efficiently and successfully learn
spatial (Section 2.3) and temporal (Section 2.4) features.

Next, Section 3 covers motion synthesis, that we define as the
process of creating perceptually plausible motion sequences with a
desired style or expressed emotion for instance. Motion synthesis
models are thus capable of generating different motions depending
on inputs, including low-level parameters (e.g., latent variables),
high-level parameters (e.g. trajectory or specific action to perform)
or historical parameters (e.g. past motions to be extrapolated). In
this review, we divide motion synthesis approaches into three cate-
gories: predictive in the short-term (Section 3.1), predictive in the
long-term (Section 3.2) and generative (Section 3.3). The first fo-
cuses on deterministically synthesising motion segments from few
past frames while the second tries to generate longer plausible mo-
tion continuations. The third category covers motion synthesis from
other types of parameters, such as the trajectory to follow, and relies
on generative models.

Section 4 deals with the task of controlling the motion of char-
acters so that they react naturally to user inputs while accounting
for environment and biomechanical constraints. We divide these
approaches into kinematic (Section 4.1), physical (Section 4.2)
and biomechanical (Section 4.3) control. Kinematic approaches di-
rectly produce motions as joint positions or angles. In contrast, both
physical and biomechanical approaches strive to obey the laws of
physics, while differing in the actuation model: physical models are
actuated by forces and torques, while biomechanical models (a.k.a.
musculoskeletal models) are driven by muscle activations.

Finally, Section 5 gathers motion editing approaches at large, i.e.
methods aiming to process or transform some aspects of existing
motion data. Motion cleaning (Section 5.1) improves motion data,
e.g. by removing noise or filling in missing information such as
marker or joint positions. Note that we distinguish here markers
and joints completion from motion prediction and in-betweening
that are addressed in Sections 3.1 and 3.2 respectively, although all
three might be formulated as completion from partial observations.
Then, retargeting (Section 5.2) strives to transfer the motion from
a source character to a target character, while motion style transfer
(Section 5.3) edits the style of a motion segment while preserving
the action performed and the character.

2. Human Motion Representation, Data and Modelling

In both DL and DRL, choices of input and output spaces for DNNs
are often impactful on the effectiveness of the learning and on what
specific aspects of the data will be retained. When dealing with
human motion, the pose representation mainly determines these
input and output spaces. Moreover in DNNs, the computational
workflow can be structured around spatial and temporal aspects of
motion. In this section we explore the different human pose repre-
sentations commonly encountered in deep animation and their key
strengths and weaknesses (Section 2.1), commonly used datasets
(Section 2.2), as well as DNN architectures structured with respect
to spatial (Section 2.3) and temporal (Section 2.4) domains.
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2.1. Pose Representation

Traditional animation approaches typically use 3D rigged skele-
tons with skinned meshes, which provides a good trade-off be-
tween quality and complexity. Rigging offers convenient ways to
manipulate 3D models as strings do for a puppet, while skinning
is the process of binding actual 3D meshes to animated characters.
In that framework, human motions are usually represented as se-
quences of poses separated by constant time intervals whose rate
generally ranges from 30 to 250 hertz. At each time step, the state
of the human body is then represented as a set of links (i.e. bones)
connected by joints. This skeletal representation is a good compro-
mise for the complexity and the diversity of human movements that
can be represented. When bone lengths are kept constant over time,
the Degrees of Freedom (DOFs) are the orientations of the bones,
commonly expressed relative to their parent. In the following, we
call such a representation an angular pose representation, as op-
posed to a positional pose representation where the skeleton DOFs
are the coordinates of the joint positions, which does not explicitly
constrain bone lengths to remain constant over time.

2.1.1. Positional Pose Representations

In a positional pose representation, each joint is directly repre-
sented by its position, generally expressed at each time step in
the body’s local coordinate system [HSKJ15; HSK16; WHSZ19;
HAB20; DHS*19; HHS*17; ZLX*18; HHKK17; SCNW19;
TCHG17; KAS*20], which allows the decomposition of the whole
motion into the local movements of limbs with respect to the body
itself and the global movement of the body with respect to its en-
vironment. Although different coordinate systems could be formu-
lated to embed the set of joint positions, positional pose representa-
tions almost always rely on the Cartesian coordinate system. It has
neither discontinuities nor singularities and constitutes a convenient
space for interpolation, visualisation and optimisation. Moreover,
within the framework described here, positional pose representa-
tion does not present some of the limitations inherent to angular
representations presented in the following section. However, it suf-
fers from some limitations related to the structure of human mo-
tions. For instance, joint positions do not encode the information
of bone orientations around themselves which is often needed for
concrete applications in animation, in order to display more natural
mesh deformations. Positional representations also do not explic-
itly constrain bone lengths to remain constant over time, therefore
requiring reliance on additional constraints to ensure that the skele-
ton does not break apart. For these reasons, communities closer
to animation, such as computer graphics, rarely use purely posi-
tional pose representations, while on the opposite, communities
more commonly involved in deep learning, such as computer vi-
sion, are more prone to employing these representations.

2.1.2. Angular Pose Representations

Angular representations have been widely used in animation
mainly because their hierarchical nature allows straightforward ori-
entation of any joint together with all of its descendants, while
keeping bone lengths constant. Indeed, the position of each joint
is described with respect to its parent as a 3D rigid transformation,
often decomposed into a variable rotation and a fixed translation,

corresponding to the joint orientation and the bone dimensions re-
spectively. Main differences among angular pose representations
are determined by the parameterisation of the rotations, however
there are also representations working at the level of rigid transfor-
mation parameterisations.

Formally, the set of all rotations of R3 equipped with the com-
position is the 3D rotation group often denoted SO(3), standing for
special orthogonal group of dimension 3. SO(3) can be identified
with the group of orthogonal 3×3 matrices with determinant 1 un-
der the matrix multiplication. Similarly, the 3D special Euclidean
group whose elements are proper 3D rigid transformations (i.e. ex-
cluding reflections) is SE(3) = SO(3)×R3. Both SO(3) and SE(3)
are Lie groups, i.e. differentiable spaces that locally resemble Eu-
clidean space. Furthermore, a Lie algebra is associated to every Lie
group, called so(3) and se(3) for SO(3) and SE(3), respectively.
Lie algebras are vector spaces tangent to their Lie group at the iden-
tity element completely capturing its local structure, making them
compelling as representation spaces.

Euler Angles. The most intuitive parameterisation of SO(3) is
probably Euler angles, that represents a 3D orientation as three
successive rotations around different axes, e.g. yaw, pitch and roll.
However, it suffers from the well-known gimbal lock when two of
the three rotation axes align, causing a DOF to be lost. Gimbal lock
can be avoided only if at least one rotation axis is limited to a range
smaller than 180◦, which is not always possible in practice. As a
result, Euler angles are unsuitable for Inverse Kinematics (IK), dy-
namics and spacetime optimisation [Gra98]. Moreover, they do not
work well for interpolations since the space of orientations is highly
nonlinear [Gra98]. Finally, multiple conventions exist for the axes
considered, including their order, which requires to define them for-
mally in each application to avoid any ambiguity. For these reasons,
this representation is inappropriate for a lot of applications.

Lie Algebras. A popular angular pose representation in skeletal
character animation consists in representing each joint rotation as
an element of so(3), where the direction and magnitude of the vec-
tor correspond to the axis and angle of the rotation [Gra98], respec-
tively. Since such a vector is an element of so(3), the parameterisa-
tion is defined by the exponential map from so(3) to SO(3) which
can be efficiently computed with the Rodrigues’ formula [Rod40].
This pose representation is often called exponential map, and is
sometimes confused with the so-called axis-angle representation
that is equivalent but separates the vector into a unit vector and a
scalar describing the axis and the magnitude of the rotation.

Since Lie algebras are locally linearised versions of their Lie
group, so(3) is a compelling space to work with elements of SO(3).
However, as all parameterisations of SO(3) in R3, the exponen-
tial map representation has singularities [Gra98] leading to losing
a DOF in some parts of the representation space, even though these
are located on the spheres of radius 2kπ for k ∈ N+, since a rota-
tion of 2π about any axis is equivalent to no rotation. Therefore,
this representation is often well-suited in animation since control
and simulation deal with small time steps and thus with small ro-
tations that stay inside the sphere of radius 2π, far from the sin-
gularities. It has been employed in early works in deep anima-
tion [THR06; TH09], and broadly exploited for motion synthe-
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sis [CM11; ALP15] and prediction [FLFM15; JZSS16; BBKK17;
MBR17; LZLL18; TMLZ18; GWLM18; GMK*19; LWY*19;
GC19; KGB19; WAC*19; CSY20; MLS20; LCZ*20; CSK*21;
LCC*21], as well as in other topics [HKS17; AP17; MSZ*18;
JL20]. However, as quality needs increase, long-term correlations
are more and more important and inevitably imply larger rotations,
getting close to the singularities of the parameterisation.

Similarly to the exponential map representation which
uses so(3) to represent joint orientations w.r.t. their parents,
Liu et al. [LWJ*19] proposed a pose representation using se(3) to
represent rigid transformations of each joint w.r.t. its parent. The
main motivation for choosing such a representation is to explicitly
encode both geometric constraints (i.e. bone lengths) and actual
DOFs (i.e. joint orientations) together. Nevertheless, it still has
the same singularities as the exponential map representation. As
we will see in the following paragraphs, other parameterisations
in higher-dimensional spaces than R3, i.e. over-parameterised
representations, are able to prevent such singularities.

Rotation Matrices. In computer graphics, rotation matrices are
widely used to represent 3D rotations. The corresponding param-
eterisation is the identity since elements of SO(3) are 3× 3 ma-
trices. Rotation matrices have no singularity and can be integrated
together with joint translations into a 4× 4 homogeneous matrix,
which is elegant and effective when involved in computations like
composition or inverse. However, such a representation is particu-
larly difficult to work with when its parameters must be estimated
since the representation is over-parameterised. Indeed, not all 3×3
matrices belong to SO(3). By definition, a matrix R ∈ R3×3 must
satisfy R>R = I and det(R) = 1 to be a valid 3D rotation. For in-
stance, predicting the orientation of a joint in matrix representation
would require to solve a constrained optimisation problem to en-
sure the validity of the rotation, which can be tedious.

Unit Quaternions. A more compact representation than rota-
tion matrices are unit quaternions. Lying in R4, they are free
of singularities, suitable for interpolation [Gra98], numerically
stable and computationally efficient [PGA18]. Like so(3), the
space of unit quaternions has the same local geometry and topol-
ogy as SO(3) [Gra98]. However, unit quaternions are also over-
parameterised, but have only four parameters (in comparison to
nine parameters for rotation matrices). Thus, they must be con-
strained to remain on the unit 4-sphere. This angular representa-
tion has been popularised in DL-based animation with QuaterNet,
a quaternion-based framework for human motion prediction pro-
posed by Pavllo et al. [PGA18; PFAG20] (see Section 3.1). In that
framework, Pavllo et al. introduced a penalty term in the loss func-
tion for all quaternions predicted by the network that minimises
their divergence from the unit length. It encourages the network to
predict valid rotations and leads to better training stability. More-
over, the predicted quaternions are also normalised after computing
the penalty to enforce their validity. According to the authors, the
distribution of predicted quaternion norms converges to a Gaussian
with mean 1 during the training, suggesting that the model actu-
ally learns to represent valid rotations. Since Pavllo et al. [PGA18]
showed promising results using quaternions, their use is gain-
ing popularity [KPKH20; AWL*20; ASS*20; ALL*20; PFAG20;
LCC19; VYCL18; HYNP20; GWE*20].

Gram-Schmidt-like. Zhou et al. [ZBL*19] recently pointed out
that all representations in Rn with n≤ 4 have discontinuities which
can be unfavorable for DNNs training. They therefore introduced
a continuous representation of n-dimensional rotations SO(n) with
n2−n dimensions. The mapping from SO(n) to the representation
space simply drops the last column vector of the input n× n ma-
trix. The inverse mapping back to SO(n), called Gram-Schmidt-
like process, is a Gram-Schmidt process over the n− 1 column
vectors followed by the computation of the last column vector by
a generalisation to n dimensions of the cross product. In the case
of SO(3), this Gram-Schmidt-like representation gives a 6D repre-
sentation. Zhou et al. [ZBL*19] also provided a method to further
reduce the dimensionality from 6D to 5D while still keeping a con-
tinuous representation using a stereographic projection combined
with normalisation. However, they empirically found that nonlin-
earities introduced by the projection can make the learning process
more difficult. To the best of our knowledge, very few works have
investigated this promising representation of 3D rotations.

Figure 2: Illustration of the error accumulation problem with an-
gular representations: even small angular errors along the kine-
matic chain can lead to large accumulated joint positioning errors
(left-hand stick figure, see color gradient). This is problematic in
optimization-based methods, e.g. DL/DRL, when penalizing joint
orientation deviations. This is not the case with positional represen-
tations (right-hand stick figure) where joint positions are directly
optimized.

Hierarchical Representation Limitations. In skeletal character
animation, a hierarchical modelling approach is used in conjunc-
tion with angular pose representations, i.e. the representation of
the joint orientations relative to their parents. In that context, posi-
tional errors over proximal joints (e.g. the shoulder) are propagated
and accumulated down the kinematic chains. This is problematic in
optimisation-based methods such as DL or DRL since equally dis-
tributed joint orientation errors will result in growing joint position
errors along the kinematic chains as depicted in Figure 2, making
it difficult to accurately handle end effectors. This is especially true
in motions sequences involving fast or ample movements, e.g. run-
ning.

To solve this problem, Pavllo et al. [PGA18; PFAG20] performed
Forward Kinematics (FK) to convert quaternion-based poses pre-
dicted by their DNN into 3D joint positions, and then penalised
absolute position errors instead of angular errors. Since FK is a
differentiable operation with respect to joint orientations, they can
train their network end-to-end using a positional loss.
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While recent works have followed the same approach [ASS*20;
ALL*20], Ghorbani et al. [GWE*20] recently pointed out that ap-
plying FK is computationally expensive especially for motion se-
quences that are long or involve numerous joints. To this end, they
proposed to hierarchically weight joint angle errors based on their
impact on the positions. They set the weight of a joint as its max-
imum path length down to all of the connected end effectors in
an average skeleton. While ablative studies showed improved per-
formances when joint weighting was enabled, the results were not
compared to Pavllo et al.’s FK-based approach [PGA18; PFAG20],
neither were the choice of the weights assessed.

2.1.3. Hybrid Representations

As mentioned above, both angular and positional approaches for
representing human poses have advantages and drawbacks that
sometimes depend on the application or viewpoint, dividing re-
searcher communities. For this reason, several works have pro-
posed hybrid representations with the goal of mitigating drawbacks
while keeping benefits of both types of representations.

Aberman et al. [ALL*20] presented a novel data-driven ap-
proach for retargeting motions between homeomorphic skeletons
(see Section 5.2) along with an interesting and elegant represen-
tation of human motion illustrated in Figure 3. In this work, both
angular and positional information are combined: a static compo-
nent S consisting of a set of 3D positional offsets describes the
skeleton in some arbitrary pose (similar to a T-pose but specific to
a pose sequence), while a dynamic component Q specifies the se-
quence of orientations of each joint along time (with respect to S)
represented using unit quaternions. The separation between static
and dynamic partial representations enables the authors to design
an architecture such that each component is processed in a separate
branch. In continuation of Pavllo et al.’s work [PGA18; PFAG20],
Aberman et al. [ALL*20] penalised errors in the positional space
after performing FK, while also penalising errors in the quater-
nion space. Following this work, Shi et al. [SAA*20] addressed
the reconstruction of 3D kinematic skeletons from 2D keypoints
estimated from monocular video while dividing the motion repre-
sentation into static bone lengths and dynamic joint orientations.
To this end, a DNN called MotioNet learns to map 2D keypoints to
a symmetric static skeleton, represented by its bone lengths and a
dynamic sequence of joint rotations (quaternions) which are then
combined through FK to get a full kinematic skeleton.

Finally, the success of multiple recent methods in skeletal char-
acter animation mixing different pose representations suggests that
DNNs benefit from redundant pose information. In addition to
joint orientations, researchers fed their models with joint posi-
tions [LLL18], joint positions and velocities [HKS17; MSZ*18;
ZSKS18; LZCvdP20; SZKZ20; SZKS19] or even joint positions
and linear and angular velocities [HKPP20].

2.2. Human Motion Datasets

Another crucial aspect of data-driven approaches is the choice of
dataset, from which a DL-based model will learn a deep repre-
sentation of human motion. In particular, large amounts of high-
quality motion data are necessary to constitute so-called benchmark

Figure 3: Representation of skeletal motion data as a graph
in [ALL*20]. The nodes of the graph correspond to joints and the
edges to armatures. Each of the J armatures holds a time-varying
tensor Q modelling the temporal sequence of rotations at its cor-
responding joint, and a time-independent vector S modelling the
bone offset to the parent joint. The global motion of the root joint R
is processed separately. Figure from [ALL*20].

datasets and to provide robust assessment procedures. In this sec-
tion we introduce a selection of human motion datasets that are the
most relevant for this survey. Although many datasets have been
proposed, only a small number of them have been repeatedly ex-
ploited and even fewer can be considered as standard benchmarks
(see Figure 4). Table 1 provides relevant information about these
datasets most commonly used in the works presented in this sur-
vey.

The two most widely used databases in skeleton-based deep hu-
man animation are CMU [Uni03] and Human3.6M [IPOS14]. Both
are standard large-scale human motion datasets for learning and
evaluation. Despite the fact that the CMU dataset was released
about a decade earlier than Human3.6M, they have a compara-
ble size (see Table 1). The main advantage of Human3.6M over
CMU is the presence of RGB+D videos synchronized with human
pose sequences, making it sometimes more suitable for tasks closer
to computer vision such as motion prediction, even though CMU
is also often leveraged. To obtain convincing results, several re-
searchers provide evaluations of their work over both CMU and
Human3.6M data [BBKK17; LZLL18; LWY*19; GC19; KGB19;
MLSL19; CSY20; LCZ*20; ZPK20; CHW*20; LKS*20; LCC*21;
CSK*21; BGG*20; ASS*20].

Beyond these two standard human motion databases, a few oth-
ers are noticeable, e.g. for the types of motion they contain, for
the annotations that are included, or even for the environment
in which they were captured. A few years after the release of
CMU, Müller et al. [MRC*07] proposed HDM05, a public well-
documented database of systematically recorded motion capture
data. Complementary to CMU which contains a large number of di-
verse motion sequences, HDM05 is composed of a limited number
of specific motion sequences (one hundred) which were executed
from 10 to 50 times by five actors. As an example, a cartwheel
starting with the left hand has been performed 21 times. More re-
cently, Shahroudy et al. [SLNW16] proposed NTU RGB+D, one
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Table 1: Summary of the main datasets presented in Section 2.2.

Dataset URL Size Availability
Joints Representation Miscalleneous

CMU [Uni03] </> 3.9∗ 106 frames @ 120 Hz → 9.1 h 29 angular Public
HDM05 [MRC*07] </> 3.6∗ 105 frames @ 120 Hz → 0.8 h 31 angular Public

Human3.6M [IPOS14] </> 3.6∗ 106 frames @ 50 Hz → 20.0 h 32 angular RGB+D On request
Holden et al. [HSK16] </> 6.0∗ 106 frames @ 120 Hz → 13.9 h 21 positional Public

NTU RGB+D [SLNW16] </> 4.0∗ 106 frames @ 30 Hz → 37.0 h 25 positional RGB+D+IR On request
NTU RGB+D 120 [LSP*20] </> 8.0∗ 106 frames @ 30 Hz → 74.1 h 25 positional RGB+D+IR On request

3DPW [vMHB*18] </> 5.1∗ 104 frames @ 30 Hz → 0.5 h 23 angular RGB Public
AMASS [MGT*19] </> 1.8∗ 107 frames @ [60,250] Hz → 41.5 h 52 angular Body mesh Public

Mixamo [Ado] </> 2.7∗ 105 frames @ 30 Hz → 2.5 h 52 angular Body mesh Public
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Figure 4: Histogram of the number of papers using a given dataset
among the works in skeleton-based deep human animation covered
in this survey.

of the largest datasets for 3D skeleton-based action recognition. It
contains 60 action classes as well as RGB and infrared (IR) videos
and depth map sequences (D) synchronized with motion sequences.
Later on, Liu et al. [LSP*20] added another 60 classes to constitute
NTU RGB+D 120, roughly doubling the size of the dataset. How-
ever, the motion sequences in these two datasets are represented
only by joint positions which limits their use in skeleton-based hu-
man animation. Since motion capture systems need dedicated en-
vironment e.g. for a multicamera setup, human motion datasets are
mostly captured in the lab, resulting in a lack of in the wild data.
To this end, von Marcard et al. [vMHB*18] proposed a pose esti-
mation method, leveraging inertial measurement units in addition
to a hand-held camera, accurate enough to capture a new dataset
called 3DPW consisting of human pose sequences in the wild syn-
chronized with RGB videos. It contains challenging sequences in-
cluding walking in the city, going up-stairs, or taking the bus for a
total of more than 51000 frames.

A special need of data occurs from the use-case of retargeting
(see Section 5.2), which consists in transferring the movements of
a character to another one with a different morphology, i.e. motion
data with diversity among morphologies. Unfortunately, most hu-
man motion datasets feature only a very limited number of subjects
with minor morphological differences. As a result the so-called

Mixamo Dataset [Ado] is often used to train or evaluate models
for retargeting. Indeed Mixamo is a computer graphics technol-
ogy company developing services for 3D character animation in-
cluding an online animation store with downloadable animation se-
quences performed by numerous 3D character models with varied
morphologies. This diversity of character models is crucial to the
task of retargeting.

Finally, existing datasets were also gathered to build larger
human motion databases. Holden et al. [HSK16] constructed
a dataset by collecting CMU [Uni03], HDM05 [MRC*07],
MHAD [OCK*13] and Xia et al. [XWCC15] in addition to inter-
nal motion capture sequences. This data was retargeted to a uniform
skeleton structure and resampled to 120 frames per second. More
recently, Mahmood et al. [MGT*19] proposed AMASS, which
unifies 15 different optical marker-based motion capture datasets
(including CMU [Uni03], HDM05 [MRC*07], SFU [Uni19], Hu-
manEva [SBB09]). The size of AMASS, initially around 42 hours
of data, is still increasing. Motion sequences in AMASS are
parameterised using the Skinned Multi-Person Linear (SMPL)
model [LMR*15], a learnt model of human body shape and pose
that provides a parameter space from which the skeleton, the joint
orientations and the body mesh can be computed.

2.3. Learning Spatial Features

Besides the pose representation and the dataset, the network archi-
tecture can also have a significant impact on the deep representation
learned. In this section, we present different types of architectures
leveraged to learn spatial correlations in motion data. While most
DNNs designed to address tasks related to skeletal character ani-
mation do not exploit the prior knowledge we have about geometric
and structural aspects of the human skeleton, e.g. its symmetry or
its hierarchical structure, a few methods proposed various clever ar-
chitectures to benefit from this prior knowledge. We present them in
the following sub-sections, divided into three categories: spatially-
structured architectures, Convolutional Neural Networks (CNNs)
and Graph Convolutional Networks (GCNs).

2.3.1. Spatially-Structured Architectures

A first group of approaches to help DNNs learn spatial correlations
rely on network architectures structured around the human skele-
ton, such that the function computed by the network intrinsically
encodes human skeleton characteristics. These approaches split the
skeleton into body parts and process the corresponding data either
in parallel network branches or hierarchically.
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In parallel approaches, the main difference is usually related to
the targeted task, which conditions the architecture of individual
branches. Wang and Neff [WN15] extracted deep motion signa-
tures with an independent autoencoder for each branch (i.e. limb
or torso) and concatenated the outputs. Guo and Choi [GC19] re-
lied instead on fully connected layers for each branch, whose out-
puts are merged using a shared layer to predict the next frame.
Nakada et al. [NZC*18] similarly divided the body into sep-
arate modules responsible for controlling muscle activations of
body parts from preprocessed common visual information. Finally,
Jain et al. [JZSS16] predicted future poses with one Recurrent Neu-
ral Network (RNN) per body part, whose inputs are the neighbour-
ing RNNs predictions at the previous timestamps as well as their
own previous predictions.

Hierarchical approaches can be either top-down or bottom-
up. Wang et al. [WHSZ19] proposed a spatial encoder that sep-
arates the human pose into five body parts, then encodes and
merges them two by two recursively. Both Li et al. [LWY*19]
and Bütepage et al. [BBKK17] used a similar top-down approach
with a finer human pose split at the input. In contrast, Ak-
san et al. [AKH19] proposed a bottom-up scheme where the hu-
man pose is predicted step by step from the root joint (e.g. pelvis)
to the end effectors, i.e. the root is first predicted and then the other
joints are recursively predicted using neighbouring predictions as
additional inputs.

2.3.2. Convolutional Neural Networks

Another type of architecture sometimes employed to model spa-
tial correlations relies on 2D convolutions, i.e. in the spatial and
temporal domains. To this purpose, the skeleton graph is flat-
tened along the spatial dimension. CNNs are particularly efficient
at learning spatial correlations in data whose structure is regular
such as images. However, learning the spatio-temporal dynamics
of human joints remains challenging with CNNs because the graph
structure of the human skeleton cannot be meaningfully flattened
along a single dimension. To capture the spatial correlations of
joints from different limbs, Li et al. [LZLL18] proposed to en-
large the convolutional kernels in the spatial domain. More recently,
Zang et al. [ZPK20] proposed to adaptively model the spatial cor-
relations with deformable convolutional kernels whose relative po-
sitions of the entries are learned. The problem of learning patterns
in irregular data structures like human poses with CNNs can be
overcome by extending convolutions to graph-structured data, as
we will see next.

2.3.3. Graph Convolutional Networks

To leverage CNNs while properly handling the graph-structure typ-
ically used in animation to represent skeletons, Graph Convolu-
tional Networks (GCNs), an extension of CNNs, have been re-
cently considered in different frameworks working on human mo-
tion data. GCNs come in two different flavours [BBL*17]. Spa-
tial approaches map neighbourhoods of each node in the graph to
Euclidean patches on which a convolution is applied. Spectral ap-
proaches operate in the Fourier domain of the feature signals sam-
pled on the graph, which depends on the graph Laplacian opera-
tor [SNF*13]. By analogy with the convolution theorem, convolu-

tion filters are defined as spectral coefficients that are multiplied by
the Fourier transforms of the signals.

Aberman et al. [ALL*20] resorted to a simple implementation
of spatial GCNs. The supports of convolution kernels around each
joint are defined as d-ring neighbourhoods on the skeleton graph in
the spatial dimension and extended to the temporal axis to obtain
2D skeleto-temporal convolutions. The operation of such GCNs
is limited to skeletons sharing the same topology. However, the
motion retargeting network they proposed includes skeletal pool-
ing/unpooling layers, based on the fusion/duplication of the signals
of adjacent edges. The pooling layers bring the input topology to
a common primal skeleton on which the core processing is per-
formed. The result is transformed back to the original topology by
the unpooling layers. Such a network can cope with any topology
that is homeomorphic to the primal skeleton.

The other contributions leveraging GCNs [MLSL19; CSY20;
LCZ*20; LCC*21] relied on the spectral approach of Kipf and
Welling [KW17]. Here, the output F l+1 of the graph convolu-
tional layer l fed with a feature signal F l is formulated as F l+1 =
σ(ÂF lW l) where W l is the tensor of learnable convolution filter
weights, Â depends only on the graph adjacency matrix and σ is a
non-linear activation function. In all of the proposed approaches the
weights of the adjacency matrix are learnt in addition to the convo-
lution filter. Mao et al. [MLSL19] built their adjacency matrix from
a fully connected graph of joints and thereby simultaneously learnt
the motion correlations between joints that are physically con-
nected and joints that are far apart but whose motion are dependent,
e.g. hands and feet during walking. Cui et al. [CSY20] objected that
this scheme may result in unstable training and separately learnt
two graph adjacency matrices, one in which the weights of non-
connected joints in the skeleton are forced to 0 and another with full
joint connectivity. Two papers by Li et al. [LCZ*20; LCC*21] pro-
posed GCNs that operate at multiple scales, the finest scale corre-
sponding to individual joints and the coarser scales to increasingly
large body parts. While scales are analysed in parallel branches
in [LCC*21], in [LCZ*20] the features at various scales are ad-
ditionally fused within each graph convolutional block.

2.4. Learning Temporal Features

The temporal dimension of motion data is informative of the nature
of the action being performed as well as the way it is performed.
In the following sub-sections we review the approaches taken to
model human dynamics, most of which rely either on RNNs or
CNNs.

2.4.1. Recurrent Neural Networks

RNNs are neural networks designed to process each timestep of a
time series one after another, and can thereby handle variable length
sequences. They maintain an internal state that captures the tempo-
ral context of the signal. RNNs are most of the time based on Long
Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU).

Long Short-Term Memory. A common LSTM is composed of a
memory cell that remembers values over arbitrary time intervals,
and three gates – an input gate, an output gate and a forget gate – to
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regulate the flow of information into and out of the cell and to avoid
a common problem with RNNs known as the vanishing (or explod-
ing) gradient problem. In general, the problem is that the gradients
used to update the network weights can become extremely small
(or large), either preventing the network from further learning or
making the network diverge, respectively. In the case of RNNs, the
backpropagation through time heavily relies on the chain rule to
compute gradients which exponentially decrease (vanishing prob-
lem) or increase (exploding problem) if any weight is greater or
smaller than 1, respectively.

The memory cell remembers values over arbitrary time intervals,
making LSTM effective at capturing both short-term and long-term
temporal dependencies. Indeed, LSTMs have proven to be power-
ful for learning temporal dependencies by achieving state-of-the-art
performance in key applications e.g. NLP, machine translation, etc.
In human motion related problems, LSTMs have been broadly em-
ployed, e.g. in motion prediction [FLFM15; CAW*19; LWJ*19;
KGB19; JZSS16] and generation [HAB20; HYNP20; GSAH17;
WYZ*20; WHSZ19; WACD20], in both physical [WMR*17;
HTS*17; MAP*19; MTA*20] and kinematic [WCX17; LLL18;
WCX21] character control, as well as in motion cleaning [ZLX*18]
and style transfer [WCAD18].

Gated Recurrent Unit. As an alternative to LSTMs, GRUs have
also been widely used, such as in motion prediction [MBR17;
TCHG17; GWLM18; GWRM18; PGA18; GMK*19; WAC*19;
XLM19; GC19; CPAM20; AAR*20; LCZ*20], in motion gen-
eration [YK20; BKL18; ASS*20; GWE*20] or in motion edit-
ing [VYCL18; JL20]. GRUs rely on a gating mechanism similar
to LSTMs in order to avoid the vanishing gradient problem but
have only two gates, a reset gate and an update gate. As a result,
GRUs use fewer parameters and therefore less memory, are compu-
tationally less expensive [GC19] and thus train faster than LSTMs.
They can process entire motion datasets [MBR17] instead of train-
ing action-specific models [FLFM15; JZSS16]. However, as shown
by Weiss et al. [WGY18], the LSTM is strictly stronger than the
GRU as it can easily perform unbounded counting, while the GRU
cannot. Thus, LSTMs seem more accurate than GRUs on longer se-
quences. In summary, the choice between LSTM and GRU depends
on the processed data and the considered application.

Besides pure LSTM or GRU, extensions [TMLZ18] or combina-
tions of both [WAC*19] have been used to model human dynamics.
Bidirectional LSTMs (BiLSTMs) stack two LSTMs running for-
ward and backward, respectively. As a result, temporal information
is processed and preserved in both directions, i.e. past and future,
which is helpful on certain tasks. For instance, BiLSTMs are lever-
aged to map an example motion into an embedding within an im-
itation learning framework [WMR*17], to build a long plausible
motion sequence from a set of short motion clips [XXN*20] or
even to refine 3D motion data [LZZ*19; LZZL20].

2.4.2. Temporal Convolutions

CNNs provide an alternative to RNNs for learning temporal pat-
terns in motion data. They can be either 1D along the tempo-
ral dimension, or use 2D spatio-temporal convolutions. Stacking
several convolutional layers can efficiently capture both short and

long range temporal patterns since lower and higher layers will
capture dependencies between nearby and distant frames, respec-
tively. CNN-based approaches are more computationally efficient
than RNN-based ones because they process whole motion segments
at once rather than frame by frame, allowing greater parallelism.
However, CNN-based architectures often contain elements that do
not allow variable length inputs (e.g. a few fully connected layers
after convolutions) limiting their use in practice. As a result, they
are quite rare in motion synthesis [HSK16; HGM19; DHS*19],
prediction [BBKK17; PFAG20; CSY20; CSK*21] or character
control [HBM*20] with regard to RNNs but more frequent in other
tasks where fixed-length motion sequences are more suitable, e.g.
motion editing [LCC19; ZYC*20; SGXT20; SAA*20; KPKH20;
ALL*20; HHKK17; AWL*20; DAS*20; LAT21] (see Section 5).

2.4.3. Miscellaneous

Other approaches to better model the temporal flow of human mo-
tions include motion phase representation, spectral decomposition
of motion data and spatio-temporal attention. For instance, several
authors investigated the representation and learning of the phase
of movements in the context of kinematic character control, which
is detailed in section 4.1. In the character controller network pro-
posed by Holden et al. [HKS17], the network weights are com-
puted as a spline function of the phase, whose control points, repre-
senting network weights configurations during the human locomo-
tion cycle, are learned. Other works [ZSKS18; SZKS19; SZKZ20;
LZCvdP20] use a gating network instead of the cyclic phase to
blend expert weights, resulting in a mixture-of-experts scheme. In
the context of motion prediction, Mao et al. [MLSL19; MLS20] and
Cai et al. [CHW*20] learned temporal correlations in the frequency
domain by applying at the input and the output of their network a
Discrete Cosine Transform (DCT) and its inverse, respectively.

3. Motion Synthesis

Synthesising motion data is of strong practical interest to the media
and entertainment industry. Besides generating realistic and diverse
sequences, a key challenge is to be able to control various aspects
of the motion using high-level parameters. In this section we dis-
tinguish the tasks of short-term (Section 3.1) and long-term (Sec-
tion 3.2) motion prediction, and motion generation (Section 3.3).
The first focuses on the short-term deterministic extrapolation of
motion, i.e. up to one or two seconds, from a past conditioning
clip, while the second operates beyond this temporal horizon, with
the purpose of generating plausible and diverse continuation of
the observed motion. Indeed, reproducing ground-truth animations
quickly becomes impossible because of the stochastic nature of hu-
man motion [FLFM15; PGA18; ZLX*18]. On the contrary, the
ability to generate diverse sequences is often a desired feature in
long-term motion prediction. In the third category, the goal is to
synthesise from non-historical parameters pose sequences that are
both consistent with the distribution of samples in a reference train-
ing dataset, and sufficiently diverse to capture its variations. We re-
strict our survey to general-purpose approaches and exclude works
targeting application-specific contexts such as the synthesis of ges-
tures from speech or dance animations from music. We summarise
the methods presented in this section in Table 2.
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Figure 5: Illustration of the Encoder-Recurrent-Decoder (ERD) architecture originally proposed by Fragkiadaki et al. [FLFM15] and
leveraged in both short and long term motion prediction in its original formulation and modified/extended versions. An RNN captures motion
dynamics in a latent space. The encoder and decoder feedforward DNNs map skeletal poses to this latent representation and back.

3.1. Short-term Prediction

Short-term motion prediction consists in observing the motion on
a given temporal horizon and predicting the motion for the near
future. Let us note Xt the 3D pose of a skeleton at time t: when ob-
serving the set of poses Xt−Tp , . . . ,Xt , we aim at predicting future
poses Yt+1, . . . ,Yt+Tf where Tp and Tf denote the past and future
temporal observation and prediction windows, respectively. Motion
prediction is useful for many applications including robotic naviga-
tion in crowds, human-robot interaction, video surveillance, virtual
reality experiences or cloud gaming. In particular, the capability to
predict the 3D positions of human end effectors rather than trajec-
tory provides a much richer and helpful information.

Classical approaches have been developed roughly between
2000 and 2015 using techniques such as spatio-temporal autore-
gressive models, Hidden Markov Models or Gaussian processes.
These “classical” techniques are out of the scope of this section.
With the development of DL techniques, as well as the production
of larger mocap databases (as presented in section 2.2), it has be-
come a natural path to use DL for human motion prediction. There
are multiple difficulties in this particular task of predicting human
motion with DL, namely:

• When the motion is stationary and periodic, the repeating pat-
terns can be discovered and used for future prediction. Unfortu-
nately, human motion in real-world scenario is rarely stationary.
The first challenge is thus to design deep models that account for
aperiodic and non-stationary motion.
• Articulated human motion can only be efficiently predicted if

spatial and temporal dependencies can be captured. For instance,
modelling the dependency between the right arm and the left
leg during a walk cycle. The second challenge is to model these
spatial and temporal dependencies.
• DL offers the advantage of leveraging large quantities of data.

However, the plausibility of the future prediction given the past
observations should be explicitly enforced. In particular, Mar-
tinez et al. [MBR17] showed that many classical ML approaches
can be beaten by a simple baseline: the zero-motion prediction
(this can partially be explained by the discontinuity of the first
frame prediction). The third challenge is therefore to ensure the
plausibility and realism of the predicted motion.

• Humans rarely act in an empty environment. Constraints such
as objects, or other humans in the scene, should be taken into
account for prediction. The fourth challenge is to predict future
motion in a dynamic and constrained environment.

We first review the existing methods, organised w.r.t. framework
used. Then, we examine the existing answers that authors have pro-
posed to the four aforementioned challenges.

3.1.1. Classes of methods

Various approaches have been applied to the problem of short-term
motion prediction, and are presented according to the framework
they built on, namely: Sequence to Sequence (Seq2Seq), direct
feedforward networks, Graph Convolutional Networks (GCNs) and
Generative Adversarial Networks (GANs).

Sequence to Sequence. Popular and widely used in motion pre-
diction, Seq2Seq-based approaches generally consist in training an
RNN in some latent space. Both the RNN and the hidden latent rep-
resentation are trained jointly. Known issues of these techniques are
the convergence to a mean pose, as well as finding the trade-off in
exposing the model to its own errors so that it can recover from de-
viations. We describe hereafter the main solutions proposed in the
literature.

Fragkiadaki et al. [FLFM15] pioneered the Encoder-Recurrent-
Decoder (ERD) architecture, in which an LSTM network is trained
in the hidden layer of an autoencoder, enabling the network to learn
a representation suited for motion prediction, as illustrated in Fig-
ure 5. Papers that pursued this scheme generally opted for a GRU
module afterwards.

Some papers incorporated the skeletal structure in the network.
Jain et al. [JZSS16] learnt motion dynamics using a spatio-temporal
graph modelling body parts, using an RNN architecture, which can
be viewed as a structural-RNN architecture. Aksan et al. [AKH19]
proposed a structured prediction mechanism, composed of a hierar-
chy of sub-layers connected to the kinematic chain of the skeleton.
This enables an explicit modelling of body part motion prediction
at a local and global scale. This structured prediction is compati-
ble with different flavours of joint representation (exponential map
or unit quaternions), as well as different types of prediction net-
works (simple RNN, Seq2Seq, etc.). Li et al. [LWY*19] proposed
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an approach where the RNN is trained on a hierarchical decom-
position of joints, as well as on two different temporal horizons
to maintain global consistency. Yang et al. [YKL21] used an RNN
network based on GRUs to predict the lower body motion, given
past observations of the upper body.

Although the prediction of joint positions is usually preferred,
some authors opted for different pose representations and the as-
sociated loss function. To improve recent RNN approaches, Mar-
tinez et al. [MBR17] proposed the following improvements: first,
instead of feeding unrealistic noise at learning, they incorporated
network predictions to drive the network to recover from its own
mistakes. Second, they proposed a residual architecture that takes
into account first-order derivatives. Hence, they used a GRU in the
latent representation, forcing weight sharing between encoder and
decoder: motion continuity is enforced through residual connec-
tions. Chiu et al. [CAW*19] learned a hierarchical and multi-scale
latent representation where an RNN is trained to predict human ve-
locities. Gui et al. [GWLM18] proposed a GRU-based Seq2Seq ar-
chitecture, incorporating adversarial training to decrease the short-
term discontinuity and increase the long-range realism. In addi-
tion, they advocated that the loss function should be based on a
geodesic loss, leveraging the properties of the Lie structure of or-
thogonal matrices. Pavllo et al. [PGA18; PFAG20] proposed an au-
toregressive model based on two GRU layers in the space of quater-
nions, therefore avoiding the gimbal lock issue at the expense of
constraining quaternions to remain on the unit 4-sphere (see Sec-
tion 2.1.2). The total loss for the pose is composed of a quaternion
loss and a positional loss obtained after FK.

Finally, some methods took inspiration from the Seq2Seq frame-
work but replaced the RNN prediction layer: Li et al. [LZLL18]
used two encoders to learn latent representations of both short and
long term horizons. A convolutional architecture is trained instead
of an RNN to predict future poses. Xu et al. [XLM19] proposed
a hierarchical Seq2Seq model that encodes each sequence into a
latent representation. The prediction is then seen as a completion
in this latent representation, obtained by vector addition. A sin-
gle fully connected completion network is trained to this goal.
Gui et al. [GWRM18] leveraged a meta-learning scheme within a
Seq2Seq approach using GRUs to adapt the model’s parameters to
new training examples. To the best of our knowledge, the work of
Wang et al. [WAC*19] is the only approach using DRL for motion
prediction. The prediction problem is decomposed into K steps, and
the progressive prediction is trained using an imitation learning ap-
proach.

Direct Feedforward. Less used than Seq2Seq-based methods, di-
rect feedforward techniques aim at computing the prediction net-
work F directly from the entire set of poses given the past obser-
vations: Yt+1, . . . ,Yt+Tf = F(Xt−Tp , . . . ,Xt).

Bütepage et al. [BBKK17] trained such a feedforward network
after a temporal encoding of human motion. Feature learning is
evaluated thanks to an action classifier. Guo and Choi [GC19]
proposed a combination of two DNNs for human motion predic-
tion: the first network, called SkelNet, assembles the prediction of
different body parts, while the second network, called Skel-TNet,
accounts for temporal dependencies modelled through an RNN.

Zang et al. [ZPK20] proposed a deformable spatio-temporal con-
volution approach that captures in the past sequence the most rel-
evant poses, through a masking mechanism. Based on this tem-
poral attention, parameters for the prediction of the future mo-
tion are generated on the fly, as in few-shot learning methods.
Cai et al. [CHW*20] leveraged the increasingly popular trans-
former architecture [KNH*21]. Originally designed for processing
data sequences in NLP, it relies on attention mechanisms to bet-
ter account for long-range dependencies than RNNs. The attention
weights learnt in a transformer model capture the relevance of data
sequence items to other items that can be far apart. Because these
weights modulate the input data prior to convolution, transformer
networks can be viewed as extensions of CNNs and RNNs in which
the learnt convolution kernels are made data-dependent. This in-
creased expressiveness comes at the price of larger training data
volume requirements. More specifically, in [CHW*20] joints are
converted using a Discrete Cosine Transform (DCT). The decod-
ing of the future pose is done progressively in accordance with the
skeleton topology.

Graph Convolutional Networks. As described in Section 2.3.3,
Graph Convolutional Networks (GCNs) leverage the graph nature
of the human skeleton, and have therefore been used to design pre-
diction methods that act on such graphs. They were first used in the
context of short-term motion prediction by Mao et al. [MLSL19],
who proposed an approach where poses are encoded in a latent
space using DCT decomposition. This representation is then fed
to a GCN for feedforward prediction, while the connectivity of the
graph is learned through the adjacency matrix, which enables to
learn the temporal and spatial dependencies between body joints.
They also proposed an attention mechanism applied to the DCT
coefficients of the observed sequence [MLS20], where the main
idea is to focus on relevant history information to predict the fu-
ture poses. Approaches based on GCNs have also been proposed
to capture skeletal and motion information at different scales. For
instance, Li et al. [LCZ*20; LCC*21] used GCNs to capture the
skeleton structure over different scales, ranging from individual
joints to increasingly large body parts. A cross-scale fusion block
then merges the features over scales and feeds this representation
into a GRU-based decoder [LCZ*20]. As an alternative, scales can
be analysed in parallel branches to extract features used both for
action recognition and motion prediction [LCC*21]. The predicted
motion category is then used in the motion prediction network.
Similarly, in order to capture relevant motion information at dif-
ferent scales, Lebailly et al. [LKS*20] proposed a temporal incep-
tion module, using 1D temporal convolutions at different scales,
combined with a GCN to predict the future poses. Unlike previous
approaches that represent skeletal connections with a single adja-
cency matrix, Cui et al. [CSY20] relied on a double graph convo-
lutional approach to better learn the dynamic relationships between
skeletal joints, therefore learning a connective graph to represent
the natural kinematic links of the human skeleton and a global
graph to account for the dynamics of non-connected joints. Convo-
lutions over these two graphs are then used to predict future poses.
GCNs have also been used to explore the prediction of human-
object interactions: Corona et al. [CPAM20] built on the work of
Martinez et al. [MBR17] and explicitly incorporated the modelling
of such interactions. As adjacency matrices typically vary in time
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in these dynamic interactions, the resulting graph representation is
learned to capture their dynamics.

3.1.2. Spatial and Temporal Dependencies

One difficulty in motion prediction is to leverage the spatial and
temporal dependencies that exist in human motion. In the spatial
domain, human joints are directly related to their parents but indi-
rectly related to other joints (e.g. symmetry or regularity in motion).
In the temporal domain, the repeating patterns (or information re-
dundancy) can greatly help in predicting the future motion. Model-
ing the motion over various scales greatly helps for short-term mo-
tion prediction. This is closely related to attention mechanisms that
have been well studied in the DL community. Researchers started to
investigate spatial dependencies first, then rapidly studied both spa-
tial and temporal dependencies especially through temporal atten-
tion mechanisms. We here review the different solutions that have
been proposed in the literature.

Jain et al. [JZSS16] used a spatio-temporal graph that explic-
itly models the body structure (spine, arm, and leg) and captures
the spatial dependencies. Bütepage et al. [BBKK17] learned a tem-
poral encoding of motion using different time scales and convo-
lutions, while a graph network is used to encode the hierarchical
structure of the skeleton. Li et al. [LZLL18] explicitly used two la-
tent representations for short-range and long-range observation. By
doing so, they expected to benefit from long-range motion consis-
tency, as well as to improve the dynamics of short-term prediction.
Cui et al. [CSK*21] used a temporal attention mechanism, jointly
with dilated convolutions, to capture long-range motion features.
Capturing temporal and spatial dependencies between body joints
has also been explored using GCNs [MLSL19; CSY20; LCZ*20;
MLS20; LKS*20], as already detailed in Section 3.1.1, to match
the graph nature of the human skeleton. Cai et al. [CHW*20] lever-
aged the transformers concept that learns the spatial correlations as
well as the temporal smoothness of the predicted skeletons.

3.1.3. Plausibility and Realism

Data-driven approaches to predict future motion can face the issue
of predicting unrealistic poses in terms of biomechanics. In addi-
tion, motion prediction can suffer from a lack of realism whatever
the temporal range of prediction. We present here the proposed so-
lutions to these problems.

To improve plausibility, Gui et al. [GWLM18] included two dis-
criminators at training time: a fidelity and a continuity discrimi-
nator. The fidelity discriminator assesses whether the prediction
is smooth enough, while the continuity discriminator encourages
the prediction to be consistent with past observations, thus lim-
iting the discontinuities. It is also possible to rely on a discrim-
inator to discriminate from real sequences, however results show
that this improves the prediction by a small margin only [LZLL18].
Cui et al. [CSY20] used the Gram matrix in the loss function to add
more consistency between the predicted and ground-truth poses.
They also included bone length preservation.

Pavllo et al. [PGA18] proposed to mix a teacher-forcing ap-
proach (i.e. feeding the network with ground-truth motions) with
an approach where the network is fed with its own predictions.

The network is first trained with teacher-forcing and progressively
switches to its own predictions through a curriculum schedule. This
progressive training improves the error and the model stability.
Cai et al. [CHW*20] used a dictionary mechanism, similar to a
memory cell. This dictionary encodes motion that could be similar
but seen in slightly different contexts. Bourached et al. [BGG*20]
proposed an out-of-distribution approach, where samples can be
augmented thanks to a Variational Autoencoder (VAE) learned on
Human3.6 [IPOS14] and CMU [Uni03] datasets. Using graph con-
volutional layers, the VAE models connectivity, positions and tem-
poral frequencies, which helps to limit the distribution shift and
to regularise the training. More specifically, this mechanism helps
producing larger quantities of plausible training data.

3.1.4. Context, Environment and Interactions

Modelling human motion in an empty environment, without ob-
jects or humans, is already a difficult task. However, context, envi-
ronment and surrounding characters are crucial for predicting mo-
tions in real-life scenarios, especially to avoid unrealistic situations,
e.g. character collisions or incorrect interactions with the environ-
ment. This is an even more complex task, mainly due to the lack
of databases and the large variety of situations that can be encoun-
tered.

To better predict interactions between a human and all ob-
jects of the scene, Corona et al. [CPAM20] proposed to incor-
porate the context and the interaction between humans and ob-
jects in a novel context-aware motion prediction architecture. To
do so, a convolutional method over the graph of objects and per-
sons is learned, building on the RNN implementation proposed
by Martinez et al. [MBR17]. The graph relationships are also
learned, initialised so that the prediction of one object only de-
pends on itself, and progressively accounting for interactions. Sim-
ilarly, to account for both scene and social contexts in the predic-
tion, Adeli et al. [AAR*20] proposed a Seq2Seq approach with a
GRU architecture, where the scene and social contexts are captured
independently through the analysis of monocular video. The spatio-
temporal features are first extracted by a CNN, then fed to the de-
coder module to account for context.

3.2. Long-term Prediction

The goal of long-term motion prediction is either to extrapolate
a past conditioning clip to the future (i.e. forecasting, see Sec-
tion 3.2.1) or to interpolate between known past and future char-
acter poses, often far apart both temporally and spatially (i.e. in-
betweening, see Section 3.2.2). Unlike short-term prediction ap-
proaches, the time horizons considered are larger and the synthe-
sised motions are not constrained to reproduce the ground truth.
Instead, the goal at large is to generate a diversity of plausible con-
tinuations of the original clip.

3.2.1. Forecasting

Most of the approaches in this category are based on the Encoder-
Recurrent-Decoder (ERD) model originally proposed by Fragki-
adaki et al. [FLFM15] for motion prediction and presented in sec-
tion 3.1. The generation is conditioned by a past window of mo-
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tion frames. The temporal context is captured by an RNN operat-
ing in the latent space at the output of the encoder, as illustrated
in Figure 5. As pointed out by many authors [HHS*17; ZLX*18;
LWJ*19; WCX21; GWE*20], future motion predicted by ERD net-
works tend to converge to a motionless state or to diverge from hu-
man motion. This is attributed to several issues that many of the
approaches presented below aim at mitigating. Although some of
these issues are also relevant to short-term motion prediction (sec-
tion 3.1), they are exacerbated when targeting longer prediction
horizons.

A major downside of the ERD architecture is the accumulation
of errors along time at the output of the RNN. As a result, the qual-
ity of the generated motion degrades as the prediction moves away
from the past conditioning sequence. Wang et al. [WCX21] and
Kundu et al. [KGB19] treated the ERD model as the generator of a
GAN and added a corresponding discriminator to improve the plau-
sibility of the motion predictions. Kundu et al. [KGB19] concate-
nated a stochastic component r to the output of the ERD encoder
and complemented the discriminator with a critic network that re-
gresses r from the predicted motion sequence. The regressed value
is fed back to the ERD decoder to refine the predicted sequence.
This encourages the learning of a one-to-one-mapping between the
stochastic input to the GAN and the generated motion, thereby min-
imising the risk that the output collapses to a single mode of the
motion distribution, a well-known issue with GANs [GPM*14].

Several authors [HHS*17; GWE*20] ascribed the regression to-
wards a static pose to the ill-posedness of long-term motion pre-
diction and advocated the use of external control signals to disam-
biguate the task. For instance, Ghorbani et al. [GWE*20] built the
RNN cell of their network around a conditional VAE that is con-
ditioned on external constraints, such as action type and character
gender, as well as on the hidden state of the RNN at the previous
time step. Cao et al. [CGM*20] conditioned their motion prediction
scheme on the environment the character moves in, specified using
a 2D picture. The past motion history is provided as a sequence of
2D joint heatmaps in the scene. A first conditional VAE network
samples a plausible 2D target end location of the predicted motion
sequence inside the environment, from which a second network
predicts the 3D trajectory of the character center. Finally, a third
network promotes this point trajectory into a 3D pose sequence.

The RNNs at the core of the ERD model create other issues.
Training an RNN using ground-truth future samples rather than ex-
posing it to its own predictions creates a difference in behaviour
between the training and inference stages that is detrimental to per-
formance, a phenomenon referred to as exposure bias [PGA18;
GWE*20]. As a mitigation measure, Zhou et al. [ZLX*18] pro-
posed an auto-conditioning network that is trained alternately in
open loop on ground-truth motion and in closed loop on its own
predictions. Gopalakrishnan et al. [GMK*19] strike a balance be-
tween the two training modes in their loss function and gradually
increase the weight of the closed-loop term. RNNs have a ten-
dency to overly focus on recent poses and fail to capture long-
term temporal dependencies of human motion. To counter this ef-
fect, Tang et al. [TMLZ18] augmented their RNN with a tempo-
ral attention mechanism that encourages pose predictions to align
to previous poses in a pose embedding. To the same purpose,

Liu et al. [LWJ*19] proposed a hierarchical RNN cell that cap-
tures a global motion context in addition to the RNN hidden state
at every frame.

Unlike for short-term motion prediction where the goal is to min-
imise deviations from the ground truth, diversity and randomness
in the generated motion sequences is encouraged by complement-
ing the past sequence input with a stochastic component. In ERD
networks this can be achieved by adding random noise to the la-
tent pose representations at the output of the encoder [XLM19],
or by stacking a random vector to the latent representation of the
RNN [KGB19]. Stochasticity can also be embedded in the RNN
cell, as in [GWE*20] where this cell is built around a conditional
VAE whose random latent code drives motion generation.

Other works proposed more expressive models of the skeleton or
of the motion dynamics to improve the realism of synthesised ani-
mations. For instance, representations of the articulated bone struc-
ture as quaternions [PGA18] or as 3D rigid transformations in the
Lie algebra se(3) [LWJ*19] were shown to generate more natural
motion sequences. Please refer to Section 2.1 for a detailed presen-
tation of these approaches. Gopalakrishnan et al. [GMK*19] incor-
porated short-term motion history in their representation of pose
by complementing joint angles with their local temporal deriva-
tives up to order 3. The prediction of motion dynamics is cast by
Wang et al. [WCX21] in a probabilistic framework. The transition
of character pose xt at time t to the next frame is expressed by a
probability density function p(xt+1 | xt), modelled as a multivari-
ate Gaussian Mixture Model (GMM). Their network builds on two
RNN cells that predict the GMM parameters at each time step by
maximising its likelihood.

Many authors acknowledged that learning a motion manifold for
a large diversity of styles and movements is a difficult problem. To
facilitate this task, several authors [GSAH17; LWJ*19; GMK*19;
WHSZ19] learned separate sub-networks for modelling the spatial
and temporal components of human motion. The prediction net-
work of Gopalakrishnan et al. [GMK*19] is a two-level hierarchi-
cal RNN where the upper layer sketches a trajectory for future mo-
tion while the lower layer synthesises poses on this trajectory. The
decoder in the ERD network architecture of Wang et al. [WHSZ19]
features a forward and a backward motion predictor, whose outputs
are concatenated to reconstruct the full-length motion sequence.
The authors argue that since the backward predictor forces the de-
coder to pay attention to the last few frames output by the encoder,
it encourages the model to first learn short-term temporal correla-
tions before accounting for longer-term dependencies.

Unlike all previous approaches, Hernandez-Ruiz et al. [HGM19]
did not rely on an RNN. They instead reformulated motion predic-
tion as a temporal inpainting task and built their model on a GAN.
They fed the generator with the past conditioning motion clip, and
encoded it into frame-specific latent representations that are pro-
cessed at multiple scales before being decoded into an output pose
sequence.

3.2.2. In-betweening

The task of interpolating motion between starting and ending char-
acter poses, often far apart, is referred to as In-betweening. It can
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be viewed as a long-term prediction task conditioned on past and
future contexts.

Yu et al. [YKK*19] proposed a simple scheme for interpolating a
motion sequence from starting and ending positions of end-effector
joints. Their main objective is computational efficiency, in order to
generate terrain-adaptive character motion in real time for video
games. They cascaded two fully connected networks: the first in-
terpolates the trajectories of the end effectors in time, the second
infers full poses at each frame.

The main purpose of other works is to generate plausible and
diverse motion over long transitions bounded by a starting and
an ending keyframe. Kaufmann et al. [KAS*20] leveraged a deep
convolution denoising autoencoder, in which pooling layers en-
sure large receptive fields to capture long-range spatial and tempo-
ral joint correlations. A curriculum learning scheme feeds the en-
coder with sequences containing increasingly large temporal gaps
to improve the training. Xu et al. [XXN*20] proposed a temporally
hierarchical scheme in which the transition segment is split into
equal length sub-segments. Trajectory constraints are provided at
each sub-segment endpoint. The transition sequence is initialised
by sampling a motion clip from the training dataset for each sub-
segment. Next, the style of each clip is changed to match the style
of a reference sequence throughout the whole transition sequence.
This stage leverages a motion autoencoder with separate content
and style embeddings, that is trained in an unsupervised way. Style
transfer is performed by linearly combining the content latent code
of the initial clips and the style latent code of the reference style se-
quence. Finally, transitions between the endpoints of consecutive
sub-segments are generated using forward and backward LSTM
networks, and the plausibility of the generated sequence is en-
hanced by combining the generation network with a discriminator
in a GAN framework. Harvey et al. [HYNP20] pointed out that
in-betweening between distant keyframes may result in stalling or
teleportation artifacts if the temporal evolution of the motion is not
monitored during the generation process. To deal with this issue,
they proposed an ERD architecture that is fed with the pose repre-
sentation deltas between the current and the target frame, in addi-
tion to the character pose at the current timestep and the end pose.
The time-to-arrival is encoded in a sine wave and added, rather than
stacked, to the latent code that is input to the RNN, forcing the net-
work to take this piece of information into account during training.

3.3. Generative Synthesis

Unlike motion prediction methods, approaches covered in this sec-
tion synthesise human motion by processing a random seed with a
deep generative network, optionally conditioned on semantic cues
typically pertaining to the character trajectory or motion style. They
are grouped in the following sub-sections based on the deep gen-
erative framework they build on. As an exception, in the scheme
proposed by Holden et al. [HSK16] the synthesis process is purely
deterministic and driven by high-level cues.

3.3.1. Restricted Boltzmann Machines

Initially proposed by Smolensky [Smo86], Restricted Boltzmann
Machines (RBMs) build on a parametric expression of the prob-
ability density function of the data distribution from which new
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Figure 6: A Restricted Boltzmann Machine (RBM) can be repre-
sented by two fully-connected neural networks whose outputs pro-
vide the conditional probabilities of hidden variables H given vis-
ible variables V and vice-versa. Sampling from these probabilities
builds a chain of hidden H( j) and visible V ( j) samples that con-
verges to the model distribution. The chain is initiated by drawing
V (0) from the training set.

samples are to be generated. This density depends on visible units
V that correspond to the variables to be synthesised and hid-
den units H. An RBM can be represented as a bipartite graph in
which hidden units are conditionally independent given the visi-
ble units, and vice-versa. The form of the probability density func-
tion P(H,V ) in an RBM provides simple closed-form expressions
for P(H|V ) and P(V |H) as fully connected layers with a sigmoid
activation. These layers are usually trained using an approximate
gradient ascent scheme known as Contrastive Divergence [Hin02].
Once P(H|V ) and P(V |H) have been determined, new samples
are generated using a Markov Chain Monte Carlo (MCMC) sam-
pling process initiated by visible units V (0) drawn from the training
dataset. Given V (i), P(H|V (i)) is computed and hidden units H(i)

are drawn from that distribution. Next, evaluating and sampling
from P(V |H(i)) yields V (i+1). This alternated sampling scheme be-
tween V (i) and H(i) is stopped after K steps, V (K) providing the
sought generated sample (see Figure 6).

Conditional RBMs. Taylor et al. [THR06] extended the RBM
generative framework to the synthesis of time series by introduc-
ing an autoregressive model that conditions the visible and hidden
variables at the current time step on the visible variables at past
time steps. The formulation of this Conditional RBM (CRBM) dif-
fers from the original RBM only by additional bias terms in the
expressions of P(H|V ) and P(V |H). These biases are learnt during
training. The optimisation and sampling processes are otherwise
unchanged. Motion sequences can be generated using a CRBM by
mapping character joint positions or rotations to its visible units.
When the training dataset contains different categories of motion,
the generated category is dictated in principle by the selection of
the initial MCMC sample V (0), although transitions between dif-
ferent types of motion can be forced by adding noise to the hidden
states.

Factored CRBMs. The same authors [TH09] proposed the Fac-
tored CRBM (FCRBM) architecture to better control the motion
category or style. It is essentially a gated CRBM consisting of three
layers: the visible units at the previous time steps form the input
layer, the same units at the current time step are the output layer,
and the connections between these two layers are gated using mul-
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Figure 7: In a Variational Autoencoder (VAE) a motion sequence
is mapped by an encoder to a random latent code that is con-
strained to follow a prior Gaussian distribution. This code is
mapped back by a decoder to the input motion data. Once the full
network is trained, feeding the decoder with samples drawn from
the prior generates stochastic motion sequences.

tiplicative weights that form a third hidden layer. To obtain a more
efficient representation, the third-order interaction tensor between
the 3 layers is factored into three matrices of pairwise interactions.
The weights in the hidden layer are defined as linear functions of
a one-hot vector of motion style labels that control motion synthe-
sis. Transitions between motion styles can be introduced at will by
appropriate settings of the motion style labels over the sequence.
Alemi et al. [ALP15] applied the FCRBM model to the genera-
tion of controlled affective variations of walking motion, based on
time-varying valence and arousal labels.

Hierarchical FCRBMs. Chiu and Marsella [CM11] noted that
CRBM and FCRBM approaches are prone to overfitting when try-
ing to generalise to a rich set of styles and motion, because the
training dataset can only sparsely sample the set of all possible
style combinations and transitions. To mitigate this issue, they pro-
posed a Hierarchical FCRBM (HFCRBM) model, corresponding
to a Deep Belief Network with an FCRBM on top of a simplified
CRBM where the temporal dependency on past visible states has
been removed. The dynamics of the synthesised sequence is con-
trolled exclusively by the upper FCRBM. In their multi-path ap-
proach, a separate FCRBM is learnt for each motion style, the out-
put visible layers are linearly combined with predefined weights
defining the desired motion style, and the result is fed to the bot-
tom layer of the HFCRBM. Thus, rather than relying on a unique
FCRBM to represent all styles, the mixing of styles is performed
by mixing individual FCRBM instances within the hidden layer of
the HFCRBM.

3.3.2. Variational Autoencoders

Structured as an encoder followed by a decoder, an autoencoder is a
DNN whose input and output represent the same data. The encoder
output provides an intermediate latent code with a dimension of-
ten lower than the input data. Thus, autoencoders provide a scheme
for non-linear dimensionality reduction. As illustrated in Figure 7,
the distribution of the latent codes in a Variational Autoencoder
(VAE) [KW14] is further constrained to follow a predefined prior
distribution, typically a multivariate normal distribution, endowing
the autoencoder with a generative capability. Thus, VAEs provide
a convenient way to embed a stochastic component into the gener-
ation of human motion.

Various approaches have been proposed to extend the
VAE framework to the modelling of temporal sequences.
Toyer et al. [TCHG17] relied on a Deep Markov Model, essentially
a VAE in which the latent code is conditioned on its value at the pre-
vious time step. Habibie et al. [HHS*17] combined a VAE and an
RNN. Motion generation is driven by the random latent code sam-
ples, as well as by control variables that constrain the trajectory and
velocity of the character. The RNN is conditioned on encodings on
these control variables. At inference time, its cell state is initialised
with the latent code value. The concatenation of cell state outputs
at each time step is fed to the decoder to produce the synthesised
motion sequence.

Du et al. [DHS*19] built on the motion graph framework pro-
posed by Min and Chai [MC12], in which motion sequences are
represented as a graph of motion primitives. The segmentation of
motion sequences into primitives is dependent on the type of mo-
tion and typically hand-crafted. Autoencoders learn embeddings
for each primitive, and the latent codes for these embeddings are
further encoded by Conditional VAEs trained on dataset samples
for the considered primitives. The conditioning of the primitive-
specific VAEs ensures that they reproduce the style of the input mo-
tion, which is encoded as a Gram matrix in the embedding space,
following prior work in motion style transfer [HSK16] (see Sec-
tion 5.3). To synthesise a motion sequence, a path is determined
in the motion graph based on user-defined trajectory controls, and
motion primitives are generated along this path using the VAEs.

Yan et al. [YRV*18] and Aliakbarian et al. [ASS*20] relied on
similar network architectures for stochastic motion prediction. Pose
sequences are mapped to lower-dimensional features by an encoder
and transformed back to motion data by a decoder. The VAE oper-
ates on the encoded features, its output is fed to the decoder to
synthesise the motion clips. Yan et al. [YRV*18] processed small
pose sequences called motion modes that capture short-term mo-
tion features. During training, their VAE maps a pair of (past, fu-
ture) mode features to a random latent code (encoder) then to a
prediction of the future mode feature (decoder). It thereby captures
the transition between the two modes. At inference time, the VAE
and RNN decoders generate a stochastic prediction of the future
mode, given a past conditioning mode and a draw of the VAE ran-
dom latent code. Aliakbarian et al. [ASS*20] argued that stacking
the past sequence information and the random generating seed in a
vector and feeding it to the decoding network leaves the possibility
that the stochastic component is assigned low weights during train-
ing and is thus effectively ignored by the network. This concern is
confirmed by experimental evidence. To avoid this, they proposed
a mix-and-match perturbation strategy and formed a vector by re-
placing randomly selected components of the past sequence feature
by corresponding components of the VAE latent code. Feeding this
vector to the decoder forces it to account for both the past context
and the stochastic input.
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Figure 8: A Generative Adversarial Network (GAN) consists of
two networks: the generator produces “fake” motion samples from
random seeds, the discriminator tries to differentiate them from
“real” ones drawn from the training dataset. The two modules are
trained jointly, aiming at an equilibrium where the generator out-
puts cannot be distinguished from the training data.

3.3.3. Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a popular alternative
to VAEs for generating samples from random seeds. In a GAN,
new samples are synthesised by a generator network that operates
in conjunction with a discriminator network (see Figure 8). The
generator transforms a random seed drawn from a known prior dis-
tribution to a sample which aims to be similar to the contents of the
training dataset, the discriminator assesses this similarity. The two
networks are trained jointly with adversarial losses, the generator
being driven to produce samples that the discriminator ultimately
should not be able to distinguish from the training dataset samples.

Barsoum et al. [BKL18] pointed out that relying on a GAN
for long-term motion prediction has several intrinsic advantages.
GANs do not suffer from the temporal error accumulation is-
sues of RNNs and will produce one instance of all possible out-
puts instead of averaging these possible outputs as ERD networks
tend to do. GANs also natively embed a stochastic component.
Any motion generation network can be wrapped into a GAN by
adding a discriminator network to improve the plausibility of the
generated sequences [BKL18; WCX21; HYNP20]. Other works
focused their contribution on optimising the architecture of the
GAN generator network to facilitate and improve its training.
Wang et al. [WACD20] proposed an adversarial autoencoder ar-
chitecture [MSJG15] where a GAN enforces a prior on the distri-
bution of the latent code of an autoencoder. Yan et al. [YLX*19]
fed the generator with a sequence of random samples drawn from
a Gaussian process with a predetermined covariance function.
Through a series of purely convolutional modules made up of a
spatio-temporal upsampling layer followed by a graph convolution
on the skeleton features, they gradually increased the spatial and
temporal resolution of their output to produce a pose sequence.
Wang et al. [WYZ*20] split their generator into separate spatial
and temporal sub-networks: the lower layer maps the input random
seed and conditioning action label via an RNN to a sequence of
low-dimensional latent codes that model temporal transitions. The
upper layer decodes each latent code into a skeletal pose. The gen-
erator is regularised by a helper action classifier network through
a cycle consistency constraint: the conditioning action label fed to

the generator should agree with the result of the classification of
the motion sequence it produces.

3.3.4. Normalising Flows

Generative models based on Normalising Flows [DKB14] synthe-
sise samples by applying a composition of invertible elementary
transforms to a latent variable drawn from a known prior distri-
bution. Unlike in GANs or VAEs, owing to the form of the ele-
mentary transforms, the probability density function of the gener-
ated samples can be computed in closed form. Thus, the genera-
tive network can be trained by maximum likelihood optimisation.
Henter et al. [HAB20] adapted this framework to the generation of
motion sequences. Each transform layer in the generator network is
conditioned by a control signal that encodes the past trajectory of
the root joint and holds an LSTM unit whose hidden state captures
temporal dependencies.

3.3.5. Miscellaneous

Deterministic Generation. Holden et al. [HSK16] conditioned
their motion generation approach on purely deterministic con-
straints that specify the trajectory and velocity of the character.
They leveraged an autoencoder operating on temporal chunks of
poses to learn a latent manifold of human motion. A separate
feedforward network maps the autoencoder embedding to high-
level, semantically interpretable controls of the motion. Generating
high-dimensional motion embedding samples from a set of low-
dimensional control parameters is severely under-constrained. To
disambiguate the generation to the largest possible extent, the scope
of the approach is restricted to human locomotion, and a compre-
hensive set of trajectory and foot contact constraints is imposed.

Deep Generative Models Sampling. After training a deep gen-
erative model driven by an input random seed, motion sequences
are often obtained by drawing independent samples from the seed
and feeding them to the generator network. Yuan et Kitani [YK20]
proposed a better sampling strategy to enforce diversity in the gen-
erated sequences and cover minor modes of their distribution. To
this end, they computed correlated random seeds by applying a set
of affine transforms to a random variable drawn from a Gaussian
distribution. The parameters of the affine transforms are learnt by a
front-end network that can be conditioned on the same conditioning
data used by the generative model. Each seed generates one motion
sequence. Diversity among these sequences is enforced through a
repulsion loss term that maximises the dissimilarity between the
generated sequences. Another loss term enforces consistency of the
random seeds with the prior distribution of the generative model.
The relative weights of these two terms define a trade-off between
the conflicting goals of diversity and fidelity to the training data
distribution.
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Table 2: Summary of the methods presented in Section 3. Miscellaneous data includes hand-crafted, synthetic, proprietary, unspecified or
other public datasets.
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[FLFM15] × DL × × so(3)
[JZSS16] </> × DL × × so(3)

[BBKK17] × DL × × × so(3)
[MBR17] </> × DL × × so(3)

[GWLM18] × DL × × × so(3)
[GWRM18] × DL × × Unknown
[LZLL18] </> × DL × × × × so(3)
[AKH19] </> × DL × × SO(3)

[CAW*19] </> × DL × × × 3D velocities
[GC19] </> × DL × × × so(3)

[LWY*19] × DL × × × so(3)
[MLSL19] </> × DL × × × × DCT
[WAC*19] × DRL × × × so(3)
[AAR*20] × DL × × × × 3D positions
[CHW*20] × DL × × × DCT
[CPAM20] × DL × × 3D positions
[CSY20] × DL × × × × × × so(3)
[LCZ*20] </> × DL × × × × × so(3)
[LKS*20] </> × DL × × × × 3D positions
[MLS20] </> × DL × × × × DCT
[PFAG20] × DL × × × Quaternions
[ZPK20] × DL × × × Unknown

[BGG*20] </> × DL × × × × DCT
[CSK*21] × DL × × × × × so(3)
[LCC*21] × DL × × × × × × so(3)
[YKL21] × DL × × × Ad hoc
[PGA18] </> × × DL × × × Quaternions
[XLM19] × × DL × × Unknown
[GSAH17] × DL × × × Unknown
[TMLZ18] × DL × × so(3)
[ZLX*18] </> × DL × × 3D positions
[GMK*19] </> × DL × × so(3)
[HGM19] </> × DL × × × 3D positions
[KGB19] </> × DL × × × × × so(3)
[LWJ*19] </> × DL × × × se(3)
[WHSZ19] × DL × × × × × 3D positions
[YKK*19] × DL × × Unknown
[CGM*20] × DL × × × × 3D positions
[GWE*20] × DL × × × × Quaternions
[KAS*20] × DL × × × 3D positions
[XXN*20] × DL × × × Euler Angles
[HHS*17] × × DL × × × × 3D positions
[HYNP20] </> × × DL × × × × Quaternions
[WCX21] × × DL × × × × Unknown
[THR06] </> × DL × × × so(3)
[TH09] × DL × × × so(3)
[CM11] × DL × × so(3)
[ALP15] × DL × × so(3)
[HSK16] </> × DL × × × 3D positions

[TCHG17] × DL × × × 2D positions
[BKL18] </> × DL × × × × 3D positions

[YRV*18] </> × DL × × × × 3D positions
[DHS*19] × DL × × × × × 3D positions
[YLX*19] × DL × × × × Unknown
[ASS*20] </> × DL × × × × Quaternions
[HAB20] </> × DL × × × × × × 3D positions

[WACD20] </> × DL × × × × Euler Angles
[WYZ*20] </> × DL × × × × Unknown

[YK20] </> × DL × × × × 3D positions

Section Dataset Architecture
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Figure 9: Overall idea of the mixture-of-experts scheme used in [ZSKS18; SZKS19; SZKZ20; LZZL20]: a gating network first computes
blending weights for a number of expert networks, based on a number of features extracted from the current frame xt . Each expert specialises
in a particular movement. They are then blended together to dynamically compute the weights of a motion prediction network, which outputs
information relevant to the next frame xt+1 including the pose of the animated character. This output is typically fed back into the network
(autoregression) at time t +1.

4. Character Control

Controlling character motions that react naturally to user inputs,
while accounting for environment constraints as well as biome-
chanical limitations, is another challenge involved in creating be-
lievable virtual characters. In this section, we explore this topic
through three main axes: how to make characters move and interact
with the virtual environment using kinematic (Section 4.1), phys-
ical (Section 4.2) or biomechanical (Section 4.3) control. Finally,
we summarise the methods presented in this section in Table 3.

4.1. Kinematics-based

Kinematic approaches typically produce motions as joint angles,
based on a set of motion examples and high-level controls (e.g.
user inputs, interactions with the environment). Because of the re-
quirement of generating motions in an online fashion when con-
trolling characters in video games or other interactive applications,
RNNs and other autoregressive models are often considered to
be more appropriate than CNNs, as the future pose is predicted
from the previous motion as well as a control signal. For instance,
Lee et al. [LLL18] used a four-layer LSTM model for controlling
characters playing basketball and tennis. However, as mentioned
in Section 3.2, such approaches often tend to fail in the long run,
as errors in the prediction are fed back into the input and accumu-
late, eventually either converging to an average pose or introducing
high frequency artifacts. According to Starke et al. [SZKS19], these
models also often suffer from low responsiveness due to the large
variation of the memory state in the case of interactive character
control, as the internal memory state is high dimensional.

To overcome these limitations, Holden et al. [HKS17] proposed
the use of a specialised architecture called Phase-Functioned Neu-
ral Network (PFNN), which provides the phase variable to repre-
sent the progression of the motion. In their seminal work, the phase
is defined based on alternating foot contacts, and used to generate
the weights of the regression network at each frame. A trade-off
between compactness and runtime speed can then be achieved by
precomputing the phase-function for a number of fixed intervals,

then interpolating the precomputed elements at runtime. One ma-
jor limitation of PFNN is that phase functions need to be manually
defined, which can be in some cases extremely complex [ZSKS18;
SZKZ20]. Zhang et al. [ZSKS18] therefore proposed to rely on a
mixture-of-experts scheme to dynamically compute the weights of
a motion prediction network (see Figure 9 for an illustration of the
general concept). In their architecture, a gating network first com-
putes blending weights for a number of expert networks, each spe-
cialising in a particular movement. This approach was first demon-
strated for creating complex quadruped character controllers and
then extended by Starke et al. [SZKS19] to compute goal-directed
series of motions and transitions, while potentially interacting with
the environment. The idea was pushed one step further through the
use of local motion phases [SZKZ20], which are defined based on
how each body part contacts external objects. Unlike previous ap-
proaches where different actions are considered to be synchronised
by a single global phase variable, their approach describes each
motion by a set of multiple independent and local phases for each
bone. It then enables neural networks to learn asynchronous move-
ments of each bone, as well as its interaction with external elements
of the virtual environment. While the previous approaches relied
on autoregressive DNNs to generate controlled character motions,
Ling et al. [LZCvdP20] demonstrated that a VAE using a similar
mixture-of-experts scheme is also viable to produce stable high-
quality human motions, while being usable in a DRL context to
produce goal-directed motions.

Simultaneously, a few approaches explored the creation of con-
trollable expressive human motions from high-level semantic fac-
tors. For instance, Alemi and Pasquier [AP17] trained a FCRBM on
a dataset of motion capture data containing movements from dif-
ferent subjects, expressions, and trajectories. This model can then
be used to generate modulated walking movements in real time.
Mason et al. [MSZ*18] explored a similar question from the per-
spective of generating characters moving in different styles when
there is little data available for a new style and proposed a few-shot
learning approach. The goal of few-shot learning is to learn (part
of) a model able to generalise out of a single or very few exam-
ples. In their work, Mason et al. [MSZ*18] adapted a pre-trained
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PFNN (modelling style-independent components of the motions),
coupled with a set of residual adapters (modelling style-dependent
components) learned separately for each new style.

While some of the approaches mentioned above have been
demonstrated to be compatible with multi-character control,
such character interactions are typically handled by directly in-
cluding information about the other characters’ relative posi-
tions [SZKZ20], or indirectly through information about objects
both characters are interacting with and the action to be per-
formed [LLL18; SZKZ20]. Wang et al. [WCX17] also proposed
to generate character interactions based on the history motion data
of both characters, relying on a variant of the ERD architecture to
improve animation stability, where multiple LSTM layers consti-
tute the recurrent network.

Finally, despite the impressive advances made by the aforemen-
tioned methods, traditional animation approaches are still com-
monly used in animation pipelines to control human characters be-
cause of the quality of the motions produced. However, novel ap-
proaches, such as Learned Motion Matching [HKPP20], have re-
cently begun to be explored with the goal of breaking down and
replacing individual components of animation algorithms by indi-
vidual specialised neural networks. They balance the advantages of
more traditional approaches with the scalability of neural network
based models.

4.2. Physics-based

Physics-based approaches generate animations in agreement with
physical laws. All but a few methods in this section rely
on multibody simulations for physical coherence. DL has also
been combined with optimisation-based motion control to gen-
erate physically coherent animations. Early works such as
Grzeszczuk et al. [GTH98] or Peng et al. [PBvdP16] pioneered the
use of deep learning in physically realistic animation. While these
were limited to animals, humans were quickly considered as well.

Multibody Simulations. The actuators of a multibody system are
typically driven by a DNN trained by Reinforcement Learning
(RL), where human characters commonly have between 22 and 62
DOFs. In a nutshell, Reinforcement Learning (RL) is a framework
to learn to control a system by maximising a reward signal. There-
fore designing the reward is an important aspect of RL algorithms.
The learned model (i.e. the agent) takes as inputs observations (i.e.
the states) from the system and outputs actions that impact the sys-
tem. In the animation context, the states are often a combination
of proprioceptive information (e.g. positions, angles, velocities and
angular velocities of the joints and the root of the body, end-effector
contacts), the phase of the gait, as well as external information (e.g.
terrain height, interacting object information) and task information
(e.g. path to follow, direction of the goal). Similarly, the reward is
often a combination of physics-based penalties (e.g. losing balance,
using more energy to produce a motion) and task-specific rewards
(e.g. matching a reference motion, satisfying a desired velocity for
locomotion). Typically the actions are used to control the character
and consist of either torques applied at the joints of the multibody
system or target angles for said joints that are converted to torques
by Proportional-Derivative (PD) controllers. The dynamics of the

Control Policy

Physical
states

Policy Learning

Weights update

Target pose or torques

Torques

Learning
Algorithm

Physical
Simulation

Optional
PD Controller

Optional
User Controls

Simulation

Figure 10: Illustration of the typical architecture for animation us-
ing multi-body simulations. A Deep Neural Network (DNN) takes
as input information about the state of the character, its surround-
ings and optionally user inputs such as the desired direction. It then
generates either joint torques or target poses fed to a Proportional-
Derivative (PD) controller. Due to the feedback loop, the model is
trained by Reinforcement Learning (RL).

multibody system is then computed by a physical simulator (e.g.
Bullet or MuJoCo), as illustrated in Figure 10.

Training a DRL model is different from supervised DL. Rather
than using a labeled dataset, the model is typically trained by in-
teracting with the environment and improves at the same time. The
most popular DRL algorithm for animation is Proximal Policy Op-
timisation (PPO) [SWD*17]. Common practices to improve train-
ing include imitating reference motion capture data; using two con-
trollers: a low-level one for locomotion or low-level actions and a
higher one for long term goals; enforcing symmetry of the motion;
using a curriculum, that is, learning increasingly difficult tasks;
clever state initialisation; early termination based on the lack of
end-effector contacts or low rewards received.

Optimisation-based Motion Control. These methods first com-
pute a set of constraints (e.g. footstep positions) based on the en-
vironment and a simplified model of the character dynamics (e.g.
an inverted pendulum model). The animation is then generated by
solving a constrained optimisation problem combining these trajec-
tory and character-level constraints. DL is used here to accelerate
and approximate one or several computationally demanding steps.

4.2.1. Character Locomotion

Locomotion was the first task addressed by multibody simulations
and DRL. Peng and van de Panne [PvdP17] first compared dif-
ferent action spaces for planar locomotion of bipeds and animals:
torques, target joint angles, target joint angle velocities and muscle-
activations. They observed that using target joint angles as action
space performs well and is the most robust in all cases. It is also
the fastest to train in 5 out of 7 cases. Biped locomotion was then
quickly considered in 3D. Several works have developed two-level
controllers. For instance, Peng et al. [PBYV17] used a high-level
controller to output future footsteps, while a low-level controller
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trained to imitate reference motions is used to actuate the character.
Merel et al. [MTT*17] also constructed low-level controllers that
imitate reference motion clips and control actuation. However, mul-
tiple low-level controllers are trained using generative adversarial
imitation learning. Each controller is trained on a specific skill such
as walking, turning, running, and the high-level controller selects
the most appropriate instance. Similarly, Merel et al. [MAP*19]
trained a character that only perceives its environment through ego-
centric vision, where a LSTM-based vision-driven high-level con-
troller learns to select among a number of low-level controllers that
have learned to imitate short motion clips. Low-level policies can
also be combined [PCZ*19] by multiplying their distribution over
actions and exponentially weighting them by a weight computed by
another neural network. Bergamin et al. [BCHF19] proposed to se-
lect short motion capture clips using a motion matching approach.
Target angles are then extracted from the selected clip and a subset
of these angles are corrected by a DRL model to stabilise the result-
ing motion. Chentanez et al. [CMM*18] used a similar approach to
reproduce a reference clip provided as input, i.e. without including
a mechanism for automatic clip selection.

Improving physical character locomotion has also been ex-
plored through the use of curricula, training scenarii where the
agent is requested to perform a sequence of typically increas-
ingly difficult tasks. For instance, building a curriculum of en-
vironments [HTS*17] can help to train an agent that is able
to move forward and run, jump, crouch and turn as needed.
Xie et al. [XLKvdP20] also compared four environment generat-
ing curricula to learn to walk over stepping stones. The resulting
policy can then be used to walk over difficult terrain where footstep
locations are given. The state includes the height of the pelvis with
respect to the lowest foot and the reward includes incentives for
placing the foot at the center of a stone and progressing towards the
next one. Curricula can also be constructed by assisting the charac-
ter. Yu et al. [YTL18] trained a model to generate symmetric and
low-energy motion to create more realistic motion without using
motion capture data. Symmetry is encouraged by an additional loss
function. The curriculum is automatically created by including and
reducing forces that help with forward motion and left-right bal-
ance, leading to different gaits emerging for different target veloc-
ities. Abdolhosseini et al. [ALX*19] also addressed learning sym-
metric gaits by either duplicating observed data by symmetry or by
enforcing symmetry in the network. As the approaches discussed
so far typically train one model for each morphology, Won and
Lee [WL19] developed a parametric DRL controller allowing the
shape of the character to be modified during locomotion. At the
heart of the training algorithm is an adaptive body shape sampling
mechanism that progressively restricts the agent to body shapes it
has not mastered yet.

Other types of approaches have also been explored in the com-
munity. Rajamäki and Hämäläinen [RH17; RH19] developed a
sampling-based approach for locomotion: a Monte Carlo Tree
Search explores possible actions to maximise rewards over multiple
future time steps. In the tree, each child node is one time step ahead
of its parent. The impact of a sequence of candidate actions is eval-
uated by physical simulations. The expansion of the tree (that is, the
trajectories explored) is driven in part by GAN models. After a set
budget, the most promising action is selected for the next time step.

Babadi et al. [BNH19] later leveraged Rajamäki and Hämäläinen’s
approach to train a DRL network that directly predicts the next ac-
tion, without looking ahead, as most models in this section do. The
Monte Carlo Tree Search approach is used to quickly produce ad-
equate reference motions. Plausible states are extracted from these
motions and serve as initial states during training of a DRL model.
The authors highlighted a significant reduction in training time.

A few approaches also explored the use of DL-based opti-
misation techniques to physically animate walking characters.
Kwon et al. [KLvdP20] first computed rough successive center
of mass and footstep positions using an inverted pendulum on a
cart model, refined these estimates and added contact forces, tim-
ings and durations using a centroidal dynamics model, then mod-
ified these estimates to take external forces into account and fi-
nally generated a full-body motion using an IK solver. A DNN
was trained to approximate these last two steps for real time per-
formance. Mordatch et al. [MLA*15] trained an RNN model to
predict the next pose of a character to generate physically realistic
trajectories. Their model was not trained to reproduce the output
of a given dynamical system. Instead, they jointly generated phys-
ically realistic trajectories and trained the network on these trajec-
tories, which were generated by solving an optimisation problem
balancing physical realism (equations of motion, non-penetration,
and force complementarity) and the stability of the neural network.

4.2.2. Other Motions

More complex types of motion have also been considered in addi-
tion to or instead of locomotion. Peng et al. [PALvdP18] trained
DRL models to imitate motion clips. Their approach is applied to
locomotion and various acrobatics and martial arts skills. The re-
ward of the training algorithm includes both an imitation term and
a task specific one. The model is trained incrementally, starting by
the end of the motion. Three approaches are proposed to sequence
skills: 1) using the closest clip to compute the imitation reward,
2) using a skill selection vector and 3) learning one policy per skill
and using at every time step the policy expected to produce the
highest rewards based on the current state. Peng et al. [PKM*18]
developed a similar approach based on videos rather than motion
clips. For each video clip, 2D and 3D poses are extracted and a 3D
reference pose trajectory is reconstructed by optimising in the la-
tent space of an autoencoder. Furthermore, the dataset is augmented
by rotations and a curriculum is automatically constructed by an-
other agent trained to propose initial states. Ma et al. [MYT*21]
proposed to impose space-time bounds around samples of a trajec-
tory rather than an imitation reward to learn from reference mo-
tions. These bounds only allow small deviations in joint angles and
in the positions of the center of mass and end effectors. Learn-
ing is possible using only a binary reward tied to the respect of
these bounds and early termination. Furthermore, to learn differ-
ent styles, they proposed different additional rewards to steer the
model towards animations resulting in a different energy level or
convex hull volume. They also sampled initial states to favour states
from which the current model achieves relatively lower rewards.
Ranganath et al. [RXKZ19] compressed the action space using
principal or independent component analysis, reducing the size of
the output of the DRL model. Their method is otherwise similar
to [PALvdP18].
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While some approaches learn a different model for each motion
clip, Merel et al. [MHG*19] trained a single controller able to ex-
ecute many skills. They trained a VAE embedding current and fu-
ture states from motion capture clips and decoding the action from
the embedding and the current state. They then trained a high-level
controller to set the value of the latent variable based on the task.
On a side note, Wang et al. [WMR*17] learned a similar embedding
(although based on previous rather than future states), but used it
only for reproducing a given clip, not to automatically generate new
animations. Won et al. [WGH20] took as input a motion controller
and trained a controller for a physically simulated character that
can reproduce all motions of the input controller. At runtime, the
trained controller is used to track such a motion. They used a two-
level model by clustering generated motions, training one model by
cluster and combining them in a mixture. They demonstrated their
results on walking, running, acting and performing various dance
styles. They also compared additive to multiplicative combination
of different reward terms and chose the latter, arguing that it forces
all reward terms to be high and that they obtained better results with
complex motions such as dancing.

4.2.3. Interactions

DRL has also been used to animate characters interacting with
other characters and complex objects. On a side note, some meth-
ods already described above have been applied to simple interac-
tions such as pushing an object [PBYV17; PKM*18; PCZ*19].
Liu and Hodgins [LH17] tackled animating a character walking
on a ball, balancing on a bongo board or skateboarding by gen-
erating control fragments from motion capture data and training
a controller to select a generated control fragment at runtime. A
control fragment is a short (0.1s) segment of motion capture data
and an associated linear control policy. The same authors [LH18]
later addressed basketball dribbling. One controller is first learned
for the body and legs. Then, a second controller is trained for the
arms. Both are based on control fragments extracted from motion
capture data. For these two controllers, the actions are corrected
by a linear model and a DRL model, respectively. Transitions be-
tween control fragments are also learned. Basketball has also been
addressed by Park et al. [PRL*19], together with obstacle racing,
chicken hopping, fighting with other characters and various other
skills. A DRL controller is trained to correct target poses generated
by a RNN and then fed to PD controllers. The RNN uses multi-
objective character control similar to [LLL18]. Pushing character
interaction much further, Haworth et al. [HBM*20] used multi-
agent DRL to train a two-level model for crowd animation inspired
by Peng et al. [PBYV17], where the low-level controls one charac-
ter based on two future footstep targets provided by the high-level
controller. The latter is specific for each character whereas the for-
mer is shared. The input of the high-level controller includes a ve-
locity field of nearby objects and agents.

Merel et al. [MTA*20] extended their previous work [MAP*19]
to object manipulation tasks from egocentric vision. It in-
volves a hierarchical controller based on a latent space (similar
to [MHG*19]), learning tasks step by step and task variations. No-
tably, the object is not part of the state. The character can move
objects between shelves or catch and throw balls.

Interactions with objects of the scene have also been explored

with respect to clothes, in order to animate an upper human body
dressing up [CYT*18]. The key ideas include using haptic infor-
mation in the state, dividing the task into subtasks, using the end
states of one subtask as initial states for training the next one and
including cloth deformation in the reward.

4.3. Biomechanics-based

Concurrently to joint-actuated approaches for motion control, neu-
ral networks have also been explored in the context of muscu-
loskeletal simulation. The general idea is that the complexity of
traditional musculoskeletal models usually leads to costly simula-
tions, and that neural network controllers can provide an efficient
solution by learning biomimicking controls using data simulated
offline with a detailed biomechanical model, to efficiently output
optimal muscle activations at runtime.

Lee and Terzopoulos [LT06] originally applied this idea to de-
sign novel neuromuscular control models of the human head-neck
system (comprising of 7 cervical vertebrae and 72 neck muscles)
learned in supervised frameworks, first using shallow neural net-
works generating both pose and tone control signals for the move-
ments of the head. Then, Nakada and Terzopoulos [NT15] im-
proved head stability in a larger range of situations using deep
stacked denoising autoencoders. Nakada et al. [NZC*18] further
generalised the concept to full-body human biomechanical simu-
lation (193 bone model actuated by a total of 823 muscles) by
designing a sensorimotor control system made of 20 fully con-
nected DNNs. In their framework, 5 DNNs per retina are respon-
sible for extracting visual information required to direct eye/head,
arm and leg movements, while 10 additional DNNs are responsi-
ble for the neuromuscular control of the 216 neck muscles, of the
29 muscles of each arm, and of the 39 muscles of each leg. More
specifically, the limbs and head are driven by one voluntary motor
DNN each, responsible for generating efferent activation signals
for the corresponding muscles to execute realistic controlled move-
ments, and one reflex motor DNN each, responsible for computing
muscle activation adjustments due to low-level muscle dynamics.
Lee et al. [LPLL19] also explored full-body musculoskeletal sim-
ulation using DRL, with a two-level approach presented to learn
simultaneously trajectory mimicking and muscle coordination.

Finally, motion realism brought by such musculoskeletal ap-
proaches generally comes at the expense of complex modelling
and costly simulations, which might explain to some extent why
joint-actuation approaches are still most commonly used. To bridge
the gap between both worlds, and “generate human-like motion
comparable to muscle-actuation models, while retaining the ben-
efit of simple modelling and fast computation offered by joint-
actuation models”, Jiang et al. [JVDL19] proposed an approach to
formulate the optimal control problem in the joint-actuation space
while having an equivalent solution to the same problem in the
muscle-actuation space. Both the metabolic energy function and
state-dependent torque limits expressed in the joint-actuation space
are approximated using fully connected DNNs and learned in a DL
framework, and then used in conjunction with a policy learning al-
gorithm built upon previous work [YTL18] (See section 4.2).
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Table 3: Summary of the methods presented in Section 4. Miscellaneous data includes hand-crafted, synthetic, proprietary, unspecified or
other public datasets.
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[AP17] × DL × × 3D ×
[HKS17] </> × DL × × 3D ×
[WCX17] × DL × × × 3D ×
[LLL18] × DL × × 3D ×

[MSZ*18] </> × DL × × 3D ×
[ZSKS18] </> × DL × × 3D ×
[SZKS19] </> × DL × × 3D ×
[HKPP20] × DL × × 3D ×

[LZCvdP20] × DL & DRL × × × 3D ×
[SZKZ20] × DL × × × 3D ×
[MLA*15] × DL × × MuJoCo 3D × ×
[HTS*17] × DRL × MuJoCo 3D × × ×

[LH17] × DRL × ODE 3D ×
[MTT*17] × DRL × × × MuJoCo 3D ×
[PBYV17] </> × DRL × × Bullet 3D ×
[PvdP17] × DRL × × Unknown 2D × ×
[RH17] </> × DRL × ODE 3D × × ×

[WMR*17] × DRL × × × × MuJoCo 3D × ×
[CMM*18] × DRL × × MuJoCo 3D ×
[CYT*18] × DRL × DART 3D ×

[LH18] × DRL × × ODE 3D ×
[PALvdP18] </> × DRL × × Bullet 3D × × ×
[PKM*18] </> × DRL × × Bullet 3D ×
[YTL18] </> × DRL × DART 3D × ×

[ALX*19] </> × DRL × × Bullet 3D × ×
[BCHF19] × DRL × × Bullet 3D ×
[BNH19] </> × DRL × × ODE 3D × × ×

[MAP*19] × DRL × × MuJoCo 3D ×
[MHG*19] × DRL × × × MuJoCo 3D ×
[PCZ*19] × DRL × × Bullet 3D × × ×
[PRL*19] </> × DL & DRL × × × DART 3D ×
[RH19] </> × DRL × ODE 3D × × ×

[RXKZ19] × DRL × × × Unknown 3D ×
[WL19] × DRL × DART 3D × × ×

[HBM*20] × DRL × × Unknown 3D ×
[KLvdP20] </> × DL × × Unknown 3D × × × ×
[MTA*20] </> × DRL × × MuJoCo 3D ×
[WGH20] </> × DL & DRL × × Bullet 3D ×

[XLKvdP20] </> × DRL × Bullet 3D × ×
[MYT*21] × DRL × × Bullet 3D ×

[LT06] × DL × × Unknown 3D ×
[NT15] × DL × × Unknown 3D ×

[NZC*18] × DL × × Unknown 3D ×
[JVDL19] </> × DL & DRL × × OpenSim 3D ×
[LPLL19] </> × DL & DRL × × OpenSim 3D ×

Section Dataset Architecture Model & Simulation

5. Motion Editing

So far we looked at how motion data can be synthesised, either
for predictive or generative purposes, and how to build frameworks
for interactively controlling virtual characters. Besides these ap-
plications, another important area of character animation is mo-
tion editing, which diversifies the creative capabilities of artists. In
this section, we focus on DL-based approaches for motion editing
problems divided into three topics: motion cleaning (Section 5.1),
motion retargeting (Section 5.2) and style transfer (Section 5.3).
Finally, we summarise the methods presented in this section in Ta-
ble 4.

5.1. Cleaning

As mentioned by several authors, projection to and in-
verse projection from learnt manifolds of human motion can

be used to clean motion data, e.g. to perform operations
such as denoising, fixing corrupted information or filling in
missing motion sequences. Such problems have for instance
been explored using RBMs [WN15], convolutional autoen-
coders [HSKJ15], temporal autoencoders [BBKK17; LAT21],
spatio-temporal RNNs [WHSZ19], sequential RNNs [JL20], BiL-
STMs [LZZ*19], as well as RNN-based GANs [WCX21]. While
most approaches typically clean motion data through direct pro-
jection and inverse projection (e.g. [WN15; HSKJ15]), then fix
residual errors as a post-process, it is also possible to include ad-
ditional constraints during training. For instance, it is possible to
enforce bone length constraints and smoothness by including spe-
cific loss functions [LZZ*19; LZZL20], or to include an addi-
tional perceptual loss measuring the difference in high-level fea-
tures extracted by a pre-trained perceptual autoencoder [LZZL20],
which improves overall visual quality at the cost of a slight in-
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crease in reproduction error. Lohit et al. [LAT21] also proposed
to optimise the latent representation to minimise the error between
the reconstructed sequence and the correct information of the in-
put sequence, which they applied to filling missing joint trajecto-
ries. While most approaches focus on cleaning directly kinemat-
ics skeletal data, Holden [Hol18] proposed an approach producing
joint transforms directly from raw marker data, in a way which is
robust to errors in the input data. This approach is based on learning
a deep denoising feedforward neural network using marker loca-
tions synthetically reconstructed from motion capture data, where
the marker data is corrupted in terms of occlusions and positional
shifts.

Several authors also proposed to train neural networks to au-
tomatically detect ground contact events (i.e. whether the feet
are in contact with the floor or not), in order to prevent foots-
liding artefacts. These approaches typically rely on motion data
augmented with foot contact information to output foot contact
probabilities. To this end, foot contact can be either manually
annotated [SCNW19], or automatically computed using different
heuristics, usually based on empirical positional [YKL21] or ve-
locity [ZYC*20] thresholds. Using such data, different architec-
tures have been proposed to automatically estimate foot contacts,
such as relying on a fully connected neural network [SCNW19],
on a temporal CNN with residual connections [ZYC*20], or on
an RNN with GRUs followed by linear layers and ReLU activa-
tion [YKL21]. At runtime, the network estimates the ground con-
tact information of each pose, which are then often used within an
IK framework to remove footskate artifacts [SCNW19; YKL21].
This information can also be included as an additional zero veloc-
ity loss within a state-of-the-art method for pose and shape estima-
tion [ZYC*20], or combined with other constraints into a physics-
based optimisation [SGXT20]. Shi et al. [SAA*20] also identified
the importance of foot contacts to mitigate footskating artifacts,
and proposed a network predicting simultaneously joint rotations,
global root positions, as well as foot contact labels from estimated
2D joint positions, which are then fed into an integrated FK layer
that outputs 3D positions.

5.2. Retargeting

Retargeting [Gle98] refers to the task of transferring the movements
of a source character in a skeletal animation sequence to a target
character with a different morphology, i.e. to a skeleton with differ-
ent bone lengths and possibly a different topology. For clarity, and
consistently with the literature, in the remainder of this section the
source character will be referred to as A and the target character
as B. As pointed out by Aberman et al. [ALL*20], there is no for-
mal specification of the task. The purpose at large is to abstract out
the dynamics of the source sequence and to reproduce it on a char-
acter whose body proportions differ. Effectively, the sought goal is
to synthesise a retargeted sequence for the new morphology whose
motion mimics the source while remaining visually plausible and
natural. Since it is difficult in practice to obtain ground-truth pairs
of (source, target) sequences with exactly the same motion, most
learning approaches to retargeting, and all the schemes surveyed in
this section, rely on unpaired training data without motion corre-
spondences across characters.

In the seminal work of Villegas et al. [VYCL18], the retarget-
ing network is built around two RNNs. An encoder RNN captures
the motion context of the source sequence in its hidden state and
forwards it to a decoder RNN that outputs each frame of the retar-
geted sequence. A reference pose of the target skeleton is provided
to the decoder. Besides regularisation loss terms, network training
is driven by an adversarial loss and a cycle consistency loss. The ad-
versarial loss attempts to minimise discrepancies between the joint
velocities of ground truth (true) and retargeted (fake) sequences.
The cycle consistency loss ensures that a motion sequence of char-
acter A that is retargeted to B and then back to A remains as close
as possible to the original.

Lim et al. [LCC19] and Kim et al. [KPKH20] reported that
the above approach tends to generate unrealistic motion. To mit-
igate this issue, Lim et al. [LCC19] retargeted the motion of the
root joint separately from the poses at each time step, and com-
bined the results to construct the output sequence. The retargeted
poses are computed as joint rotations, represented as quaternions,
to be applied to a reference pose of the target skeleton. The cy-
cle consistency loss of Villegas et al. [VYCL18] is replaced by a
reconstruction loss associated to self-retargeting to the same char-
acter. Kim et al. [KPKH20] argued that CNNs are better suited than
RNNs for retargeting because they can more accurately capture the
short-term motion dependencies that mostly condition the perfor-
mance of the task. Accordingly, their scheme relies on a purely
convolutional network with temporally dilated convolutions that re-
targets whole motion sequences in one batch.

Aberman et al. [ALL*20] extended the scope of retargeting to
skeletons with different topologies, subject to the condition that all
considered topologies are homeomorphic. This implies that they
can all be reduced to a common primal skeleton by merging pairs of
adjacent bones. Their representation of skeletal motion based on ar-
matures separates the temporally invariant bone offset vectors that
define the character morphology from the time-varying bone rota-
tions at each joint that capture the motion dynamics (see Figure 3).
These two components are processed in distinct parallel branches
of the retargeting network. Importantly, a motion sequence is mod-
elled as a graph whose edges correspond to armatures. This pro-
vides a principled formalism for processing motion data sampled
on the skeletal graph. The retargeting network includes three types
of modules: space-time graph-convolutional operators acting on
spatio-temporal joint neighbourhoods, graph pooling and graph un-
pooling operators. Graph pooling merges features of two adjacent
edges (armatures) into a single feature. Each graph unpooling op-
erator is designed as the inverse of a graph pooling operator, split-
ting one edge into two adjacent edges whose features are copied
from the original feature. An autoencoder, composed of an encoder
followed by a decoder, is learnt for every skeletal structure rep-
resented in the training dataset. An encoder fed with motion data
for character A generates embeddings of the static bone offset and
dynamic joint rotation components for this motion, expressed in
the common primal skeleton topology. A decoder for character B
maps these embeddings to the retargeted motion for this character.
Retargeting is achieved by composing the encoder for the source
character with the decoder for the target character.
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Table 4: Summary of the methods presented in Section 5. Miscellaneous data includes hand-crafted, synthetic, proprietary, unspecified or
other public datasets.
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[HSKJ15] × DL × × × 3D positions
[WN15] × DL × × × Unknown

[BBKK17] × DL × × × so(3)
[Hol18] × DL × × × Euler Angles

[LZZ*19] × DL × × × 3D positions
[WHSZ19] × DL × × × × × 3D positions

[JL20] </> × DL × × × × so(3)
[LZZL20] × DL × × × × 3D positions
[SAA*20] </> × DL × × × × 3D positions & Quaternions
[SGXT20] × DL × × × 2D positions
[ZYC*20] </> × DL × × × 2D positions
[LAT21] × DL × × × × × 2D positions
[WCX21] × DL × × × × Unknown
[YKL21] × DL × × × Ad hoc

[SCNW19] × × DL × × 3D positions
[VYCL18] </> × DL × × × × Quaternions
[LCC19] </> × DL × × × × Quaternions
[ALL*20] </> × DL × × × × 3D positions & Quaternions
[KPKH20] </> × DL × × × × Quaternions
[HSK16] </> × DL × × × 3D positions

[HHKK17] × DL × × × 3D positions
[WCAD18] × DL × × × × Unknown
[AWL*20] </> × DL × × × × 3D positions & Quaternions
[DAS*20] × DL × × × Quaternions
[WACD20] </> × DL × × × × Euler Angles

Section Dataset Architecture

5.3. Style Transfer

Neural Style Transfer refers to algorithms manipulating data
such as images, videos or human animations with DNNs to
make the stylistic components look like another data sample.
Gatys et al. [GEB16] first introduced a method to perform neu-
ral style transfer on images, using the Gram matrix of the deep
features as the artistic style information of an image. In human an-
imation, style transfer aims at transferring the style from one mo-
tion sequence to another whose content is retained, called hereafter
style and content motion sequences, respectively. For example, we
might want to edit a particular motion by affecting the state of mind
of the character (e.g. enthusiastic, sad, angry) while preserving the
performed action, e.g. locomotion from point A to point B.

In the context of DL-based skeletal animation,
Holden et al. [HSK16] pioneered human motion style trans-
fer using their deterministic generation model (see Section 3.3).
In this framework, different types of constraints can be applied
on the generated motion, such as trajectory, bone lengths or
joint positions, solving a constrained optimisation problem in a
learnt human motion manifold. Gradients are back-propagated
through an autoencoder representing the manifold to optimise
latent representations. Style transfer constitutes a particular
case, where both joint positions and style are constrained with
respect to the content and style motion sequences, respectively.
Moreover, Holden et al. [HSK16] followed prior work in image
style transfer [GEB16] by using the Gram matrix in the latent
representation as a style similarity measure and thus do not
require style annotations. They further improved this approach by

training a feedforward network to perform style transfer thousands
of times faster [HHKK17]. Gradients are back-propagated to
train the feedforward network instead of optimising the latent
representation.

Alternatively to the Gram matrix, style annotations can also
be used to guide the learning of a style transfer model.
Smith et al. [SCNW19] divided the task of style transfer into spa-
tial and temporal style variations networks, both taking as inputs
joint positions as well as a one-hot style vector, where the networks
are applied consecutively to predict corresponding style variations.
However, this approach requires motion data registered with similar
poses in different styles. Wang et al. [WCAD18; WACD20] lever-
aged an LSTM-based Sequential Adversarial Autoencoder whose
encoder learns to map motions to separate content and style en-
codings: two additional discriminators are trained to recover style
labels from content and style encodings, respectively. The encoder
tries to fool the former and helps the latter in order to free the con-
tent encoding from the style information while preserving it in the
style encoding. At runtime, both the content and style motion se-
quences are encoded into separate content and style embeddings.
The decoder combines the content embedding of the content mo-
tion sequence and the style embedding of the style motion sequence
to produce the style transfer output. Following these works, Aber-
man et al. [AWL*20] also extracted content and style encodings but
with two separate encoders. Furthermore, the style encoder learns
a common embedding from both 2D and 3D joint positions with a
triplet loss, which enables style extraction from videos. The output
motion is synthesised from the content encoding while the style
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is controlled by the style encoding through temporally invariant
Adaptive Instance Normalisation (AdaIN). Moreover, a multi-style
discriminator assesses the output motion style.

Beyond general-purpose style transfer, Dong et al. [DAS*20] fo-
cused on translation from adult to child motions and vice versa.
In this particular case, retargeting is not sufficient since it does
not capture the natural stylistic differences between adults and
children [DAS*20]. This work leverages the capacity of Cycle-
GAN [ZPIE17] to learn the mapping between adult and child mo-
tion distributions without paired training data, which is critical due
to the very limited availability of child data.

6. Discussion

In this state-of-the-art review we explored the recent and promising
trends to address challenges in skeleton-based human animation
with DL and DRL. After a general overview of pose representa-
tions and motion data processing with DNNs, we covered motion
synthesis, character control and motion editing based on DL and/or
DRL. In this section, we discuss some of the limitations and poten-
tial future work directions.

First, a pose/motion representation should characterise the hu-
man motion as precisely as possible, while being suitable for op-
timisation (e.g. avoid the error accumulation problem) and other
common applications such as skinning and rigging. However, no
simple representation fulfills all these requirements. The success
of different approaches [PGA18; PFAG20; ALL*20] suggests that
expressing loss functions in the joint positions space is helpful, al-
though the joint orientations are more expressive to represent hu-
man poses. To better animate human characters, it is necessary to
develop more general pose/motion representation frameworks suit-
able for learning both temporal and spatial patterns, probably com-
bining the advantages of hierarchical orientations and absolute po-
sitions, such as the approach proposed by Aberman et al. [ALL*20]
for skeletal convolutions in the case of motion retargeting (see Fig-
ure 3). Finally, the spectral domain of human motion remains as of
today almost unexplored [MLSL19; MLS20; CHW*20] whereas,
e.g. artifacts related to high-frequencies like noise or footskate
might be easier to prevent and/or remove in such a domain.

Second, approaches in short-term motion prediction attempt to
forecast future motion exactly, with a ground truth being the only
solution. Many of them are autoregressive, i.e. (partial) outputs are
fed back to the model to predict distant future motion frames. As a
result, they suffer from instability and tend to either diverge or con-
verge to a mean pose. This is exacerbated when targeting longer
horizons since the problem of deterministic prediction becomes
more and more ambiguous. Ill-posedness can be mitigated either by
adding contextual information or by modeling and sampling from a
distribution of possible future outcomes. Hopefully, both short and
long term motion prediction could be achieved by a single powerful
stochastic model with a quasi-deterministic short-term behaviour,
from which stochasticity could emerge in the long term.

Third, important aspects of generative models in motion synthe-
sis include the quality (e.g. perceptual plausibility, absence of ar-
tifacts), the intermodal and intramodal diversity, and the level of

representation detail (e.g. ample arm movements versus subtle fin-
ger manipulations), but also the ability to control high-level pa-
rameters in synthesised motions. Currently, generative models still
fail to fully represent the human motion distribution in the con-
sidered scope, with all the diversity and modes it is made of. One
reason for this is the lack of in-the-wild motion data, mainly be-
cause reliable motion capture systems generally require markers to
be placed on the subject captured and a dedicated room for a multi-
camera setup. Future advances in marker-less motion capture from
image/video might help to collect more and more diverse motion
data, and hopefully to build strong human motion generative mod-
els, maybe directly from image/video. Moreover, generative mod-
els would also benefit from motion data with higher skeleton res-
olution, i.e. from capturing more joints. This would both improve
the quality of skinned character animation based on skeletal motion
data and enable models to account for more subtle details of human
motion, especially those expressed by the hands, the feet and the
head. Another promising opening to obtain favorable results with
limited amount of in-the-wild data might be self-supervised learn-
ing. In such a framework, a representation of the data would first be
learnt over in-the-lab data (i.e. the pretext task) then fine-tuned over
in-the-wild data (i.e. the downstream task). Although advances in
DL allow to model the human motion distribution with increasing
diversity and fidelity, general-purpose approaches are most of the
time too general and lack flexibility. Indeed, the difficulty to em-
bed hard constraints in DL, e.g. desired precise action(s) or phys-
ical correctness, and the tendency of neural networks to be black
boxes prevent animators from adjusting model behaviours to spe-
cific needs or from interactively editing the generated sequences.

Fourth, unlike with deep generative models used in motion syn-
thesis, interactivity is at the core of character control with mod-
els dynamically reacting to user input flows while trying to pro-
vide diverse motions that are accurate, physically realistic and per-
formed like real humans would do in a similar situation. On the
one hand physics and biomechanics based approaches rely on the
laws of physics – often into multibody physical simulations – with
actuation models, while on the other hand kinematics-based ap-
proaches directly produce character motion without hard physi-
cal constraints. As of today, the former provide humanoid con-
trollers that are mostly correct physically speaking since hard con-
straints are part of the models themselves. Although these con-
trollers e.g. manage locomotion, jumping and specific actions such
as lifting, carrying, or pushing objects, they often fail to imi-
tate human naturalness. It appears to us that the approaches clos-
est to providing natural human motion rely more on real-world
data besides their physical model, e.g. the framework proposed
by Peng et al. [PKM*18] which consists in imitating motions ex-
tracted from video using deep pose estimation or the data-driven
controller proposed by Bergamin et al. [BCHF19] where the policy
network computes corrective offsets added to reference motions.
Approaches in kinematics-based character control are exclusively
data-driven, which makes it easier to obtain more natural results.
However, the lack of physical models/simulation prevents produced
animations from being physically correct. In practice, real-world
animation pipelines still mostly prefer traditional rather than au-
tomated methods due to their unpredictable behaviours and lower
quality, although promising advances have been made with DL
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and DRL. Finally, we could expect approaches in character con-
trol to increasingly rely on (data-driven) deep generative models
together with biomechanical or physical models (e.g. [JVDL19;
LPLL19; PRL*19; WGH20]) to bring strengths from both types
of approaches and converge to diverse, natural, high-quality and
physically-plausible controllers. Further advances on the flexibility
or the interactivity at runtime are also expected.

Fifth, motion editing has still not been explored very ex-
tensively even though promising methods have been published
(e.g. [HSKJ15; HSK16; ALL*20; AWL*20; DAS*20]). Yet this
topic is important to empower animators in other fields of human
animation. A significant contribution in this respect is the motion
editing framework proposed by Holden et al. [HSK16], where low-
level motion parameters learnt by a motion modelling network are
mapped to high-level, human understandable controls by means of
a disambiguation network. This latter network is trained separately
and its inputs can be fine-tuned to the editing task at hand. To the
best of our knowledge, this work has not been followed up. In our
opinion, the main remaining challenges are the interpretability and
controllability of the method, especially in a professional content
production workflow. Interpretability refers to determining some
relationship between the latent representation and the physical con-
trol, while controllability refers to the explicit control of animations
given some latent representation. To the best of our knowledge, no
method has achieved these two goals at the moment. Removing or
preventing artifacts is also a critical part of motion editing, e.g. for
motion data pre-processing or post-processing in animation work-
flows. As an example, footskate artifacts are widespread but there
is still no successful fully automated method to reliably fix this ar-
tifact in motion data. In the future we expect a growing number
of works in motion editing at large, and maybe even new topics to
emerge like retargeting did 20 years ago.

Lastly, most of the studies covered in this survey suffer from
a lack of perceptual and user studies, which are crucial. For in-
stance, in motion prediction most works compare their results to
others using statistical metrics, such as the mean squared error over
predicted joint angles, which are not suited to evaluate how plausi-
ble or natural predicted motions would be perceived. Other topics
also mostly skip perceptual and user studies although sometimes no
ground truth exists, e.g. character control. This is particularly strik-
ing in motion generation where ground truth is equivocal and the
inception score is mainly used to assess the diversity of synthesised
motions. We therefore expect more perceptual and user studies as
well as performance metrics involving perceptual cues in the future.

To conclude this survey, we have presented a summary of the ad-
vances made over the last few years in human animation based on
deep neural networks, either trained using DL or DRL. These ap-
proaches are skyrocketing today in the field of animation, and will
probably increasingly find their place in real-world applications in
the entertainment industry to animate synthetic characters.
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