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ABSTRACT

The value of time series prediction is getting more and more attention, and the
prediction of time series data under event disturbance has been difficult, the dif-
ferent distribution of data before and after the event and the different distribution
of dataset will lead to the poor prediction accuracy, robustness and generalisa-
tion ability of prediction model(CRP). In this paper, based on the causal rep-
resentation learning, we design the SCM structure under event disturbance and
propose the causal representation prediction model, which is divided into two
parts, CRP Encoder and CRP Decoder. CRP Encoder completes the extraction
of causal representations disturbed by events and those not disturbed by events
through the causal factor extractor and the causal representation decoupler; in or-
der to learn the causal mechanism, the equivalence of conditional structure and
causal mechanism is proved, and CNN network and causal representation coupler
are designed in CRP Decoder to learn casual representation and predict. The ex-
perimental results show that the CRP model has high prediction accuracy, good
robustness and strong generalisation ability.

1 INTRODUCTION

How to accurately enhance prediction accuracy, robustness, and generalization of time series data
under events disurbance is becoming important Kattan et al. (2015); Tzeng et al. (2014); ?); ?. Con-
ventional statistical models or machine learning models, which fundamentally rely on the assump-
tion of independent and identically distributed (IID)Annamalai et al. (2022); ?); Lv et al. (2022b),
can’t deal well with out of distributed problem(OOD),like robustness, generalization. So, reaschers
try to use causal mechanisms which are remain consistent across different datasets Lv et al. (2022b);
Schölkopf et al. (2021) and similar event disturbance Bottou et al. (2013); Parascandolo et al. (2018)
to solve this problem. Besides, some studies believes that events disturb the causal mechanisms be-
tween data before and after disturbance, leading to changes in data distribution which also belongs
to out of distribution Schölkopf et al. (2021); Aghion et al. (2009). Thus, in this paper we use casual
representation learning to extract causal representations and learn causal mechanisms,

This paper introduces the Causal Representation Prediction Model (CRP model), distinct from prior
causal representation learning models. This model extracts causal representations that differenti-
ate between those affected by an event and those unaffected. The paper outlines three essential
properties for causal representations and designs the CRP Encoder component accordingly. The
CRP Encoder comprises a causal factor extractor g and a causal representation decoupler G. g
extracts causal representations from the data and employs G to distinguish two different causal
representations. To predict data changes by using the corresponding causal mechanisms linked to
event-affected and event-unaffected causal representations, we introduce a CRP Decoder. This de-
coder includes a Casual Catch Network (CCN), an event-independent causal representation predic-
tion network f , and a causal representation coupler h. Leveraging proposed causal mechanisms and
conditional structural equivalences, the CRP model improves upon conventional neural networks
for causal representation learning to achieve accurate predictions. Contributions of this paper in
comparison to prior work include:

• Extract and distinguish the casual represnetations and prove the causal mechanism is equiv-
alent to the conditional structure if casual representations are given.
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• Propose CRP model based on causal representation learning : CRP Encoder can distin-
guish and extract the different representations; CRP Decoder learns the causal mechanisms
repectivly, makes the model highly highly prediction accuracy,robust and generalisation.

• The experimental results on the two datasets show that the CPR model outperforms other
models in the three indicators, which verifies the prediction ability, robustness, and gener-
alisation of the CRP model.

2 RELATED WORK

2.1 TIME PREDICTION METHODS UNDER EVENT DISTURBANCE

Time prediction tasks under event disturbance involve the recognition of casual relationship between
events and data. The work by Pearl and others has provided a theoretical foundation for modeling
causality Pearl (2009). Granger causality tests Granger (1988) are widely used methods for deter-
mining causality between two time series and have been applied extensively in time prediction tasks
under event disturbance. Traditional statistical methods such as Autoregressive Integrated Moving
Average (ARIMA) Shumway et al. (2017) often exhibit good fitting capabilities for both linear and
nonlinear relationships but have limitations in capturing time structural changes induced by events.In
addition, models based on neural networks have made significant progress in time prediction tasks
under event disturbance. Models that incorporate event information, such as Event-LSTM Anna-
malai et al. (2022) and N-beats Oreshkin et al. (2019), have shown improved performance by in-
creasing their dependency on event information, allowing for more accurate predictions after event
disturbance. However, these models are still constrained by the Independent and Identically Dis-
tributed (IID) assumption, which limits their ability to address Out-of-Distribution (OOD) problems
caused by events and structural changes.To tackle these challenges, recent research has shifted its
focus towards approaches rooted in causal inference and transfer learning. For instance, in a study
by Athey & Imbens (2016), causal inference was incorporated into decision tree models through
recursive partitioning, effectively reducing the model’s dependency on the IID assumption. In the
realm of transfer learning, domain adaptation techniques, as proposed by Ganin & Lempitsky (2015)
using Domain Adversarial Neural Networks (DANN), have been introduced to enhance model gen-
eralization by minimizing distribution discrepancies between source and target domains.

2.2 CAUSAL REPRESENTATION LEARNING

To harness the advantages of causal inference within the realm of machine learning, the concept of
causal representation learning was introduced Ahuja et al. (2022). This innovation, as exemplified
by Lv et al. (2022a), was initially applied to image classification tasks. It involved the identification
of invariant causal mechanisms in image classification, resulting in remarkable classification accu-
racy. Moreover, Rebuffi et al. (2017) introduced the incremental classifier and representation learn-
ing (iCaRL) technique, which bolstered the resilience and generalization capabilities of machine
learning systems.The iCITRIS method proposed by Lippe et al. (2022), a form of causal represen-
tation learning rooted in instantaneous effects, specializes in identifying causal factors from time
serise data and constructing causal graphs through differentiable causal discovery approaches. Fur-
thermore, Shen et al. (2022) introduced the disentangled generative causal representation (DEAR)
learning method, which, when supervised information is appropriately applied, enables both causal
controllable generation and causal representation learning.

While causal representation learning has been widely utilized to address out-of-distribution (OOD)
challenges, it is worth noting that there is currently no research exploring the application of causal
representation learning to tackle OOD problems in the domain of time-series prediction under event
disturbance.

3 THEORY AND METHOD

In this paper, we consider the problem of time-series prediction under event disturbances from the
perspective of causal representation learning, and develop a generic structural causal model for time-
series prediction under event disturbances, as shown in Fig. 1.
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Fig. 1. SCM structure.

3.1 THEORETICAL DEMONSTRATION

Principle 1 Penrose & Percival (1962): Causal factors S contain information that explains all the
dependencies of X → Y .

Based on Principle 1, this paper formalizes the SCM under event as follows:

X := g(S(C&I), U, V1), C⊥I⊥U⊥V1 (1)

Y := h(do(f(C), do(I), V2)), V1⊥V2 (2)
In Eq. (1) and Eq. (2), we denote X and Y as data before and after the disturbances. The causal
factor S has a mapping relationship with both X and Y , while the non-causal factor U only has a
relationship with X . S consists of event-related causal representation I and event-unrelated causal
representation C. I contains information relevant to Y and the corresponding causal mechanism
influenced by event, while C contains information relevant to Y but with causal mechanism not
influenced by event. V1 and V2 are unexplained noise variables. Model of event influence is repre-
sented by do(), g and f and h can be considered as unknown models.

As above, I contains information relevant to Y , so we use pIY to denote the probability of I leading
to Y when X as the condition space. It should be emphasized that pIY is not the same as P (Y |I),
as the former represents the probability of I leading to Y when the condition is X (where ¬I =
C ∪ U ∪ V1), whereas the latter represents the probability of I leading to Y when the condition
space is only I (where ¬I = ∅). Similarly, we also define pCY as the probability of C leading to Y
when X the condition space. pIY and pCY are the causal mechanism related to event and unrelated
to event. Based on this, as described by the SCM structure, the Bayesian distribution of P (Y ) can
be obtained as:

P (Y ) = P (I)× pIY + P (C)× pCY − P (I)× P (C)× pIY × pCY (3)

When the input of the model are I and C, the statistical dependence learned by the general machine
learning model can be expressed by P (Y |I, C) Koller & Friedman (2009).

P (Y |I, C) =
P (I ∩ C)× pIY + P (C ∩ I)× pCY − P (I ∩ C ∩ I ∩ C)× pIY × pCY

P (I ∩ C)
(4)

Because of C is independent of I , P (I ∩ C) = P (C)P (I), Simplified Eq. (5):

P (Y |I, C) = pIY + pCY − pCY × pIY (5)

Since S contains all the information for the prediction Y, i.e.pIY + pCY = 1, thus, pIY , pCY =

±
√
P (Y |I, C)− 3

4 + 1
2 Based on the above discussion, if we can obtain the causal representation

I and C, it is easy to obtain the causal mechanism subject to event by optimizing the event model h
and get casual mechnisams pIY and pCY

f∗, do∗, h∗ = argmin
h,do,f

Ep[l(do(h(I), f(C), Y ))] (6)

where l represents a certain loss function. Based on Eq. (6), if given causal representations I and C,
it is possible to optimise the model h and learn the event-related causal mechanism pIY of X → Y
, and event-irrelated pCY . Unfortunately, quite a number of researches Ahuja et al. (2022); Pearl
(2019) have shown that the learning capability of existing machine learning models is limited, and
relying on the optimisation alone it is very difficult to learn the causal mechanisms. In order to
find a suitable model h that learns causal mechanisms effectively, this paper will propose and prove

3



Under review as a conference paper at ICLR 2024

Principle 2, which states that causal mechanisms are equivalent to conditional structures given causal
representations I and C, in the expectation that causal mechanisms are learnt by machine learning
models that learn conditional structures effectively Mirza & Osindero (2014); Scharstein & Pal
(2007).

Principle 2 van Rooij & Schulz (2019): The conditional structure if a thenb can be quantified
using the value ∆∗pba

P (b|a)−P (b|¬a)
1−P (b|¬a) . A higher value of ∆∗ba signifies stronger support for the

given conditional structure. As for time prediction under the event disturbance, the existence of a
conditional structure ifSthenY is assumed.

∆∗pYS =
P (Y |S)− P (Y |¬S)

1− P (Y |¬S)
(7)

We assumes a variable ∆pYS based on Vaswani et al. (2017), ∆pYS = P (Y |S) − P (Y |¬S), which
represents the magnitude of the influence of S within the space where Y is generated. Based on
Eq. (1) and Eq. (2), the causal factors represented and the non-causal factors represented, according
to the Bayesian formula P (Y ) = P (U) × pUY + P (S) × pSY − P (U) × pUY × P (S) × pSY

and principle 1, U does not contain information used for Y prediction, i.e., pUY = 0, it can be
deduced that:P (Y |S) = pSY + P (U |S) × pUY − P (U |S) × pSY × pUY , which can be obtained
by transforming:

P (Y |¬S) = [P (¬S)× pSY + P (U ∩ ¬S)× pUY − P (S ∩ U ∩ ¬S)× pSY × pUY ]

P (¬S)
(8)

where P (U ∩ ¬S) = P (U)× P (¬S), the proof is in the appendix,Therefore,

∆pYS = 1− P (U |S)× pUY × pSY + [P (U |S)− P (U |¬S)]× pUY (9)

From Eq. (9) we know:

pSY =
∆pYS − [P (U |S)− P (U |¬S)]× pUY

1− P (U |S)× pUY
(10)

The derived result shows that pSY = ∆∗pY S when S is the cause of Y . In this scenario, the
probability function ∆∗Y S for if S then Y is equal to pSY . Hence, this study proves that the causal
is equivalent to the conditional structure, given the causal representation C and I .

Likewise, in the specified case of S, the knowledge of ¬S value does not offer extra information
for predicting Y , i.e, P (Y |¬S) ≈ 0, P (Y |S) ≈ 1. Similarly, pSY = P (Y |S) = ∆∗pYS , machine
learning models that can effectively learn the conditional structure can be used to learn the causal
mechanism.

As Bollen et al. (2011); Shojaie & Fox (2022), similar types events lead to comparable event in the
data. As a result, general machine learning techniques can be employed to learn the event do() data
influenced by similar event. Thus, learning the causal mechanism between data before and after the
event only necessitates having related causal representations. Regrettably, these causal representa-
tions are not given as priors. Directly reconstructing the causal representation and mechanisms is
somewhat impractical since they are unobservable and ambiguous. However, causal representations
must still meet specific principles. Peters et al. (2017); Schölkopf et al. (2012) suggested that causal
factors should be jointly independent.

Principle 3 Peters et al. (2017); Schölkopf et al. (2012): Independent Causal Mechanism (ICM), i.e.,
the causal mechanism of a given variable does not affect the causal mechanisms of other variables.
The detailed descripitipn of Principle3 can be seen in appendix.

In summary, firstly, according to Principle 2, we believe that when the condition of the conditional
structure the causal representation, the conditional structure is equivalent to the causal mechanism.
Therefore, we can leverage the advantages of machine learning to learn the conditional and subse-
quently learn the causal mechanisms. Secondly, based on Principles 1 and 3, suggests that causal
representations should be extracted by satisfying the following three fundamental properties:

• Property1: General neural network models learn that statistical dependence can distinguish
between causal factors S and non-causal factors U .

• Property 2:Changes in I and C respond to all changes between X and Y .
• Property 3: Dimensions of causal representations should be jointly independent.
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Fig. 2. CRP model structure.

3.2 CRP MODEL

The CRP model inspired by the above causal representation learning proposed in this paper consists
of a CRP Encoder composition and a CRP Decoder component, as shown in Fig 2. where do
represents the disturbance generated by the target event and k represents the number of the structural
layer in the decoupler G. The whole CRP model is trained on data before and after the same type
of event in history, the causal factor extractor g, the causal representation decoupler with event
attention mechanism G in the CRP Encoder component, the prediction network f , and the causal
factor coupler h. g can be used to distinguish between the pre-event data with causal factors S
and non-causal factors U ; G represents the representation extraction structure with event attention
mechanism, which is used to extract event-related causal representations I from S; and h represents
the structure for learning causal mechanisms. LFI and LFC are the loss functions designed in this
paper to optimise the extraction of I and C by G.

Sτ = g∗(Xτ ), g
∗ = argmin

g
l(g(Xτ−1, Yτ−1))Iτ

Iτ , Cτ = G∗(Sτ ), G
∗ = min

G
LFC

Yτ = h∗(do∗(Iτ ), f
∗(Cτ )), do

∗, h∗, f∗ = argmin
do,h,f

Ep(l(h(do(Iτ−1), f(Cτ−1))), Yτ−1)

(11)

Where l is an arbitrary loss function, Xτ is the target data, Xτ−1 is the training data, by continuously
inputting the training data Xτ−1 and Yτ−1 to optimise formula (14), and finally get to extract the
causal representation. Learning the causal mechanism of g∗, G∗ and h∗, complete the prediction of
time series data Xτ under the disturbance of event τ , as in Equation (14).Sτ , Cτ and Iτ are the causal
factor of the target data, the causal representation not related to the event, the causal representation
related to the event, and Yτ is the prediction result of Xτ .

3.2.1 CRP ENCODER

In order to be able to decouple the event-related causal representation I and the event-independent
causal representation C from X , this paper designs the CRP Encoder. the CRP Encoder first ex-
tracts S by satisfying property 1 through the causal factor extractor g, and then satisfies property 2
and property 3 of the causal representation through the causal representation decoupler G, the LFC

and LFI loss functions, and then I and C are extracted from the X .

Sτ = g∗(Xτ ), g
∗ = argmin

g
l(g(Xτ−1, Yτ−1)) (12)

Cτ , Iτ& = G∗(Sτ ), G
∗ = min

G
LFC , LFI (13)

The description and design of g can be seen in the appendix.

This paper extracts the causal representations from S by means of the causal representation de-
coupler G with event attention mechanism, LFC and LFI loss functions. The causal representa-
tion decoupler implemented through the Transformer is denoted as G, with causal representation
I/C = G(S). In this paper, we hope that the decoupler G can pay attention to the part related to the
event which means the parameters of the event are input into the network weights for optimisation,
so an event attention layer is set up between each layer of the Transformer. It is assumed that the
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Fig. 3. CRP model structure.

events are all seen as loose events, consisting of a set of eigenvalues Chen & Li (2020). The dis-
turbance of events Event(), m is the number of eigenvalues. The event attention layer is shown in
Fig.3, where the value of the activation of the extracted representations from layer k−1th multiplied
by the kth feature of the event is used as the attention weight, and the parameters of the kth layer of
the representation decoupler G are corrected to simulate the disturbance of the event’s kth feature on
the causal representation. The structural expression of Transformer with event attention mechanism
is shown in Eq. (14) and (15).

Ik/Ck = G(Q = EventkQ,K = EventkK,V = V ) (14)

Eventk(Ik−1) = softmax(Ik−1/Ck−1 × Ek)× Ik−1/Ck−1 (15)

Ek represents the value of kth feature of the event, Ik,Ck represents the representation extracted
after the kth layer of transformer. When k = m, Ik represents the disturbance-related causal repre-
sentation I that needs to be extracted ; when k = 0, Ik represents the causality factor S extracted by
the time convolutional network. Q is the query matrix in the transformer, K represents the attention
information related to the time sequence Y after the event disturbance, and V represents the abstract
representation of dok(S) Vaswani et al. (2017). In order to ensure that I and C can be extracted and
distinguished through G, further pairs of optimisations are proposed in this paper as in Eq. (16):

max
G

1

J

J∑
j=1

COR(cxj , c
y
j ) min

G

1

J

J∑
j=1

COR(ixj , i
y
j ) (16)

Extracting the representation of X and Y from the training set before and after the event gets I ,
denoted as IX and IY respectively. IX = ix1 , i

x
2 , . . . , i

x
J and IY = iy1, i

y
2, . . . , i

y
J . Similarly,

CX = cx1 , c
x
2 , . . . , c

x
J and IY = iy1, i

y
2, . . . , i

y
J . ixj and iyj represent the jth dimension of IX and

IY respectively, cxj and cyj represent the jth dimension of CX and CY respectively, where J is the
dimension length. As in property 2, I is more variable before and after the event, C is unchanged
before and after the event, therefore, the correlation between the values of C in the same dimension
before and after the event should be relatively large, whereas I should be less correlated due to the
influence of the event. To satisfy this condition, this paper uses COR() to calculate the correla-
tion and minimizes the correlation between the same dimensions ixj and iyj of I and maximizes the
correlation between the same dimensions cxj and cyj of C.

min
G

1

J(J − 1)

∑
j ̸=k

COR(ixk, i
y
j ) min

G

1

J(J − 1)

∑
j ̸=k

COR(cxk, c
y
j ) (17)

To unify the two optimization objectives mentioned above, this paper constructs a correlation ma-

trix C =
<iXk ,iYj >

||iXk ||×||iYj || (
<cXk ,cYj >

||cXk ||×||cYj || ). where,k, j ∈ 1, 2, . . . , J and <> is inner product operation.
According to Eq. (17), The correlations of different dimensions of I ,C need to be minimised; and
according to Eq. (16), the correlations of the same dimensions of I need to be maximised and the
correlations of the same dimensions of C need to be minimised. Based on this, the loss functions
LFC and LFI are designed as in Eq. (18).

LFC =
1

2
||QR SUM(COR)− 1||2F LFI =

1

2
||QR SUM(COR)− 0||2F (18)
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Fig. 4. CRP model structure.

QR SUM(COR) represents the sum of eigenvalues after diagonalisation of the association matrix.
According to Eq. (18) the sum of the diagonal elements is made as close as possible to 1 by wanting
the sum of the diagonal elements to be as close to 1 when C is extracted and as close to 0 when I
is extracted. According to Eq. (17), try to make non-diagonal elements of correlation matrix close
to 0 by diagonalisation, i.e., the dimensions of causal representations are jointly independent. Thus,
properties 2 and 3 of the event-related representations can be satisfied by minimising LFC and LFI .

3.2.2 CRP DECODER

In order to improve the accuracy, robustness and generalisation of timing prediction under event
disturbance, the aim is to use the CRP Decoder learn causal mechanism. The causal mechanism
subject to event disturbance is further learnt by firstly learning the conditional structure of Ix → IY

through the CCN in Decoder and introducing the effect of do() of event disturbance as in Eq. (19).

IYτ = do∗(h∗(IXτ )), do∗, h∗ = mathopargmindo,hEp(l(do(h(I
X
τ−1), )), I

Y
τ−1) (19)

In order to be able to learn the conditional structure between IX and IY , CC Layer is designed in
the CCN component as in Eq. (20)

H(IX) =

j=J∑
j=1

wjexp(

i=K∑
i=1

pij ln(I
X)) (20)

w, p, and b are unknown training parameters, J and K represent the number of parameters. The
CC Layer is a modified design based on the Product Unit Networks (PUNs) network. PUNs net-
work is commonly used for discovering numerical patterns in various domains and is capable of
effectively learning conditional structures like if − then − else structures Zhang et al. (2021);
Minaei-Bidgoli & Lajevardi (2008), which can be expressed as Y =

∑j=J
j=1 wj

∏i=K
i=1 (I)pij . How-

ever, the computational requirements are high when performing matrix operations and taking limits
due to the influence of the multiplication calculations in the PUNs network. Additionally, multipli-
cation by zero exceptions may occur. To address these issues, the CC Layer optimizes the PUNs
network by performing logarithmic calculations

∑j=J
j=1 wjexp(

∑i=K
i=1 pij ln(I)), transforming the

multiplicative factors into additive factors. This helps avoid multiplication by zero exceptions and
mitigates the computational demand.

In addition to designing the CC Layer to learn the conditional structure, this paper also introduces
the R Layer to incorporate the historical information of the event disturbance. The structure of the
R Layer is described by Eq. (21).

do(H(IX)) = CCNDecoder(b,WY, V CCNEncoder(U

j=J∑
j=1

wjexp(

i=K∑
i=1

pij ln(I
X))) (21)

Then to improve the predictive ability of the model, we add two layers gθ and fµ. Details can be
seen in appendix. Then, the CCN component as a whole consists of a multi-layer CCN Unit and
two linear mapping layers as in Eq. (22).

IY = do(H(IX)) = fµ(
∑

gθ(Decoder(b,WY, V Encoder(U
∑j=J

j=1 wjexp(
∑i=K

i=K pij ln(I
X))))) (22)
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Where, V,U,W,w, p, b are all unknown training parameters, fµ and gθ are the mapping layers of the
parameters and respectively, in this paper, a two layer MLP is used.The CCN component designed in
this paper is able to efficiently learn the causal mechanism between X and Y . This is due to the fact
that the conditional structure between X and Y can be learnt through the CC Layer, and the R Layer
is able to use the information from the disturbance of the same type of events as parameters with the
conditional structure’s outputs to be combined for causal mechanism learning. The description and
design of f can be seen in the appendix.

4 EXPERIMENT

The description of dataset and parameters can be seen in the appendix.

4.1 VERIFICATION EXPERIMENT

The prediction accuracy, robustness of the CRP model is experimentally compared with two com-
mon timing prediction methods, RNN and seq2seq, and with two newer proposed prediction meth-
ods, Dilate?, and N-beats, on the above two datasets. The results of the experimental comparison
are shown in Fig.5, Table 1, and appendix. From the results of the MSE, MAE, and RMSE mea-

Dataset Dataset1 Dataset2
Method MSE MAE RMSE MSE MAE RMSE

CRP 0.1010 0.2620 0.3178 0.0878 0.2495 0.2964
RNN 2.5059 1.3943 1.5830 2.4870 1.3932 1.5770

Seq2seq 0.6754 0.7206 0.8218 1.0647 0.7332 1.0318
Dilate 0.7733 0.7672 0.8793 1.0868 0.7891 1.0425

N-beats 2.4647 1.3921 1.5697 1.1486 1.0616 1.0717

Table 1: Results of the MSE, MAE, and RMSE measures on different datasets.

sures, the CRP model achieved better results on both datasets. Specifically, the MSE, MAE, and
RMSE scores of the CRP model are 57.44%, 45.86%, and 50.40% higher than the corresponding
scores of the Seq2seq model, which is the second highest, on dataset 1, and 97.69%, 48.37%, and
73.54% higher on dataset 2, respectively. Meanwhile, the differences of the three measures of the

(a) Dataset1 1:All samples comparasion (b) Dataset2:All samples comparasion

Fig. 5. Test results on different dataset.

CRP model are the smallest on both datasets, with the MSE score difference of 0.0132, which is
the lowest among all the models, which indicates that the prediction accuracy of the CRP model
fluctuates the least on different datasets, and has a good robustness.

4.1.1 EXPERIMENTS ON THE COUNTERFACTUAL PREDICTON OF CRP MODEL

If a model learns the causal mechanism of disturbed by events, then by changing only the disturbance
of events, the model can also get the corresponding results, i.e., the model has the ability to answer
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counterfactual questions. Based on this, in order to verify the ability of the CRP model to answer
counterfactual questions, all the parameters of the dataset 2 events were taken as negative values, and
a new test set was generated for the experiment, and the results of the experiment are shown in Table
2 and appendix. It can be found that the CRP model also has relatively high prediction accuracy

MSE MAE RMSE
Test unfact 0.1722 0.3345 0.4150

Test 0.1010 0.2620 0.3178

Table 2: Results of the counterfactual experiment.

for the counterfactual situation, with an MSE score of 83.78%. Neither the event parameters taken
in the counterfactual nor its corresponding pre-event data of the test set were present in the training
set, yet the CRP model was able to predict the counterfactual outcome better as shown appendix,
inferring that the CRP model has the ability to predict the counterfactual scenarios, i.e., the CRP
model learns the causal mechanism and has a strong generalisation ability.

5 CONCLUSION

Aiming at the time series prediction under event disturbance, this paper proposes a structure of SCM
under event disturbance based on causal representation learning, by obtaining the causal representa-
tion I which is disturbed by the event and the causal representation C which is not disturbed by the
event and learning the corresponding causal mechanism to achieve the prediction of the data. The
causal representation prediction model for time series data under event disturbance, CRP model,
which consists of two parts, CRP Encoder and CRP Decoder. CRP Encoder designs the causal
factor extractor g, based on the property that the g can distinguish between S and U ; because I
and C in S can react to the change between X and Y , through the nature of causal representa-
tion dimensions are independent of each other, the causal representation decoupler G is designed to
achieve X → I, C. Meanwhile, the equivalence rule of causal mechanism and conditional structure
is proved, which enables the neural network to learn the causal mechanism efficiently. Under the
premise of obtaining the causal representations, based on the equivalence rule, the CRP Decoder’s
CCN is designed and causal representation coupler h to learn the corresponding causal mechanism
to achieve I, C → Y .Finally, the prediction of X → Y is completed by CRP Encoder extracting
causal representation and CRP Decoder learning causal mechanism.

Comparing the three experimental results of different models on the two datasets, the CRP model
achieves the best scores, and gets up to about 89% of the MSE scores on Dataset 1, which indicates
that the CRP model has a high prediction accuracy. Comparing the differences of all models for each
experimental metric on the two datasets, the maximum difference of the CRP model is only 0.0132,
which is the lowest, indicating that the CRP model has better robustness. Analysing the results
of the counterfactual prediction experiments, the MSE score of the CRP model also reaches about
83%, indicating that the CRP model has good generalisation ability. Comprehensive analysis of the
experimental results shows that the CRP model can effectively extract the causal representations that
distinguish between those that are disturbed by events and those that are not disturbed by events in
the data, and learn the corresponding causal mechanisms.

This paper extracts and distinguishes causal representations, learns the corresponding causal mech-
anisms, and improves the predictive, robustness and generalisation abilities of the model, it does not
make assumptions about the noise, which may have an impact. This will be studied in depth in the
future.
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A APPENDIX

A.1 THE PROOF OF P (U ∩ ¬S) = P (U)× P (¬S)

Due to the independence between U and S, P (¬U ∩ ¬S) = P (¬U) × P (¬S), it follows from
De Morgan law that: P (¬(U ∪ S) = P (¬U) × P (¬S). Taking the negation on both sides yields
P (U ∪S) = 1−P (¬U)×P (¬S), i.e., P (U)+P (S)−P (U ∩S) = 1− (1−P (U))× (1−P (S)).
Simplifying further, we have P (U ∩ ¬S) = P (U)× P (¬S). Substituting P (U ∩ ¬S) = P (U)×
P (¬S) into Eq. (9) yields P (Y |¬S) = P (U |¬S)× pUY .
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A.2 THE DISCRIPTION OF PRINCIPLE3

In general, I can be decomposed into multiple as I = i1, i2, . . . , iH , and pIY =
pi1IY , pi2IY , . . . , piHI IY , where ik represents the values corresponding to different dimensions,
pikIY represents the causal mechanism corresponding to ik, and HI represents the number of dimen-
sions in I . Building upon the ICM Principle, we extend the ICM Principle to causal representations.
Firstly, the event mechanism pikY does not affect any other mechanisms pijIY , where k ̸= j.
Secondly, even if information about other disturbance-interfered mechanisms pijIY is known, it does
not provide information about the mechanism pikIY . Therefore, the final causal mechanisms under
disturbance can be decomposed into do(pIY ) =

∏HI

k=1 do(p
ik
IY ). Similarly, Representation C can

be decomposed and needs to satisfy independent causal mechanisms. The final causal mechanism
that is not disturbed by events is decomposed into:f(pCY ) =

∏HC

k=1 f(p
ck
CY ), that is, ck is the values

corresponding to different dimensions after decomposition, HC and the dimension length of C.

A.3 THE DISCRIPTION OF g

Although the display forms of the causal factor extractor g and causal representation decoupler G
in Eqs. (1) and (2) proposed in 3.1 are unknown, according to the previous analyses in this paper,
U is free of information related to Y , and the discrepancy between X and Y due to U can be re-
solved by learning statistical dependencies. In some articles, it is indeed shown that some machine
learning methods can sift out information that is not relevant to the predicted outcome ??, such as
time Convolutional Neural Networks ? (TCN Networks).TCN Networks efficiently extract informa-
tion relevant to the predicted outcome by means of structures such as causal convolutional layers.
Formally, given the pre-event time-series data X , it can be represented after the time convolutional
network as: S = g(X), where g represents the causal factor extractor implemented with the TCN
network. As mentioned in ? causal convolution results in keeping the time series data causal in the
time dimension. Therefore, it is believed in this paper that the TCN network is sufficient to distin-
guish the causal factor S, which is related to the post-event outcome, satisfying property 1, and that
the difference between S and Y that still exists is due to the event-related causal representation I ,
which is disturbed by the event, and the event-independent causal representation C.

A.4 THE DESCRIPTION OF THE TYPE OF CCN ENCODER&CCN DECODER&OTHER LAYER

Based on the fact that disturbance generated by the same type of events are similar, the event distur-
bance do() can be learned from data subject to similar event disturbance through general machine
learning techniques. Therefore, an CCN Encoder is designed in R Layer to encode the output h(IX)
of CC Layer. The training data IYτ−1 is then fed into the CCN decoder as a parameter (i.e., the dis-
turbance result of the same type of event) along with the encoding of h(IX). The CCN decoder
and CCN encoder can be in various forms, and the LSTM is used as the decoder and encoder for
training.The CC Layer and R Layer together form the CCN Unit, and the learning of the causal
mechanism of the event-disturbed causal mechanism between IX and IY is realised through a mul-
tilayer CCN Unit and a two-layer mapping, where the two mapping layers better capture the core
common properties of the causal mechanism ?.

A.5 THE DESCRIPTION OF f

Since the causal mechanism corresponding to C is not disturbed by events, it only needs to be a
model that can cater for the fact that learning has changed slightly, as models such as the MLP

can meet the requirements. Similarly, considering the causal mechanism fτ (pCY =
HC∏
k=1

fτ(pck
Y ))

which is not disturbed by events, the explicit form of PUN, which employs the above mentioned
improvements, f is shaped as in Eq. (29).

CY = f(CX) =

j=J∑
j=1

wjexp(

i=K∑
i=1

pij ln(C
X)) (23)

Finally, through the causal factor coupler, C and I are coupled into the Y that needs to be predicted.
The explicit form of h can likewise be in various forms, and considering the symmetry of decoupling
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Table 3: The introduce of dataset1

Num Event num Sub series length AUC of subseries
Sum 20758 200 / 0.9900
Train 14531 140 20 0.9921
Test 6227 60 20 0.9852

and coupling Scharstein & Pal (2007) a general Transformer network is used as the causal factor
coupler.

A.6 PRETREATMENT

The data preprocessing in this paper consists of two primary steps: First, leveraging adversarial
validation in combination with the hypothesis from ? to filter out event and data before and after the
event; Second, reducing the differences between the data through linear normalization. The results
of the adversarial validation are displayed in appendix The results of the pre-processing experiments

(a) Experiment 1:pretreatment on dataset1 (b) Experiment 2:pretreatment on dataset2

Fig. 6. Pretreatment on different dataset.

on the two datasets show that the AUC scores of the three classifiers are above 0.5, indicating that
the distribution of the data before and after the event is inconsistent.

A.7 EXPERIMENTAL DATASET

Dataset 1 comprises daily voltage data (measured in voltage) recorded by sensors in an enterprise.
Every 20 minutes, the are adjusted by workers, resulting in worker operations being the event in
Dataset 1. More details about Dataset 1 can be found Table 1.

The training and test sets for Dataset 1 are obtained by dividing the pre-processed data in a 7:3
ratio. The AUC scores of the data before and after event are greater than 0.5, demonstrating that the
pre-treatment data with notably different distributions before after event can be utilized to assess the
predictive capability of the model under event. The KS Score of the output from the training and test
set is 0.9606, which is close to 1, indicating a distinct distribution of the training output and the test
set output. Therefore, the training set and validation set can be employed to verify the robustness of
the model.

Dataset 2 is designed to assess the model’s capability to address counterfactual questions. In this
research, dataset 2 is generated using a random function based on the mean, variance, and other
features of dataset 1. The generation process is described in Algorithm 1.
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Table 4: The introduce of dataset2

Num Event num Sub series length AUC of subseries
Sum 40000 1000 / 0.9824
Train 20000 500 20 0.9726
Test 20000 500 20 0.9921

Table 5: Experiment parameters of G

Method Epoches Hidden size d model nhead num layers

Transformer Event loss¡0.001 break out 32 64 4 2

Algorithm 3 Generated dataset Algorithm

Input: N = 40000, σ2 = 0.01, k = 20
Output: Generated dataset

Generate a dataset D of size N with random numbers in the range of 0 to 1, having a variance
of σ2

Initialize an empty list disturbance Points
disturbance lengthk = random integer ∈ [1, 20]
for i = 1 to N with step 2 ∗ k do

Add Di to disturbance Points
for j = 0 to k − 1 do

if i+ j ≤ N and ij ≥ 0 then
Di+j = Di+j + random number

end if
Put Di+j into subseries before
Put Di−j into subseries after

end for
end for
for i = 1 to length of subseries do

AUC=Adversarial validatioin(subseries before, subseries after)
if AUC ≥ 0.5 then

Put subseries before, subseries after into generated dataset
end if

end for
Return Generateddataset

Algorithm 1 first creates a random sequence based on the input parameters; then it selects the time
point at which the event occurs, and performs event disturbance on the data before and after the time
point at which the event occurs, to obtain dataset 2, see Table 2. Dataset 2 is divided by 1:1 between
training and test sets. The validity of the model was verified by decreasing the ratio of the training
set to get more test sets. The lowest AUC score for the data before and after the event in dataset 2
is 0.9726 (greater than 0.5), and the KS Score for the output of the training and test sets is 0.9502
(close to 1), so dataset 2 can also be used to validate the predictive ability and robustness of the
model.

B EXPERIMENTAL PARAMETERS

The experimental environment and equipment configuration are as follows: operating system: Win-
dows 10, processor: Intel Core(TM) i5-7300HQ 7CPU @ 2.50GHz, language: Python3.7, IDE:
JetBrains PyCharm Community Edition. in order to help better understand and reproduce the exper-
iments, some experimental parameters are provided in this paper.
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Table 6: Experiment parameters of CCN.

Method Hidden size Num Layers Encoder(Decoder) Type Loss Type

R Layer 128 2 LSTM Quantile Loss
CC Layer 32 2 / Quantile Loss

B.0.1 EXPERIMENTAL COMPARISON OF DIFFERENT TYPES OF CNN ENCODER AND
CNN DECODER

The experimental comparison of the encoder and decoder of R Layer using three network struc-
tures, RNN, LSTM, and GRU, shows that the difference in the final convergence values of the three
structures is found to be small on dataset 1, and the fluctuation of the Smooth L1 values of the test
set obtained using the LSTM model as the encoder and decoder is also minimal as shown in Fig.7 .
Therefore it is reasonable to adopt LSTM as the encoder and decoder of R Layer

(a) Experiment 1:pretreatment on dataset1 (b) Experiment 2:pretreatment on dataset2

Fig. 7. Pretreatment on different dataset.

B.1 THE SPECIFIC RESULTS OF PREDICITON

(a) Specifi data comparasion on dataset1 (b) Specifi data comparasion on dataset2

Fig. 8. Pretreatment on different dataset.

B.2 COMPARASION OF UNFACT PREDICTION RESULT AND TEST RESULT

B.3 DATASET AVAILABILITY

The datasets we used in our research are available at the following links:

• Dataset1:Due to confidentiality reasons, we are unable to provide the first dataset directly.
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Fig. 9. SCM structure.

• Dataset2:
https://www.kaggle.com/code/ekrembayar/store-sales-ts-forecasting-a-comprehensive-
guide

You can get our source code from the link below:

• source code: https://github.com/342869125/CCR_Model_Causaual

If you need the complete source code, please contact the first author via email.
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