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ABSTRACT

The link prediction task has attracted significant attention from the graph commu-
nities. However, GNN-based methods still exhibit subpar performance in the link
prediction task for large-scale, multi-relational knowledge graphs. Previous works
utilize hyperbolic space to model hierarchical relations and employ path aggrega-
tion to alleviate the over-smoothing problem. The two approaches are comple-
mentary in their advantages, but both encounter the issue of over-squashing. The
former experiences curvature collapse during training, while the latter struggles
to distinguish the similar entities connected by the same relation. Specifically,
we utilize hyperbolic space path aggregation for the curvature stability and anti-
symmetry weight in the update process to alleviate the issue of over-squashing.
Our method achieves improvements on two standard transductive datasets and
eight inductive versions. Further analysis reveals the potential relationship be-
tween curvature and types of relation.

1 INTRODUCTION

Knowledge graph contains a large number of structured facts (h, r, t), where a fact expresses a di-
rected relation r from a head entity h to a tail entity t. The complex KGs, such as FreeBase (Berant
et al., 2013), DBPedia (Auer et al., 2007), and Wikidata (Vrandečić & Krötzsch, 2014), are manual
or automatic collections from structured or unstructured heterogeneous data on the web. Knowledge
Graph has supported many downstream applications, including question answering (Berant et al.,
2013), recommender systems (Vrandečić & Krötzsch, 2014), and graph retrieval-augmented gen-
eration (Edge et al., 2024). However, knowledge graphs cannot encompass all the rich facts of the
open world. Therefore, the multi-relational link prediction task has received widespread attention in
the research community.

Multi-relational link prediction aims to infer missing facts in knowledge graph triplets and enhance
the structural integrity of knowledge graphs. Previous methods can be broadly categorized into
several paradigms. Heuristic embedding-based methods (Bordes et al., 2013; Yang et al., 2015;
Sun et al.; Li et al., 2022a; Xiao & Cao, 2024) employ heuristic relational operations to embed
triplets into the low-dimension semantic space, enabling the model to capture relational patterns
such as symmetry, anti-symmetry, inversion, and composition. Graph neural network-based meth-
ods (Vashishth et al., 2020; Zhu et al., 2021; Zhang & Yao, 2022; Zhu et al., 2023; Zhang et al., 2023)
capture relational local interactions through iterative neighborhood aggregation, with advantages
in being lightweight and providing path explanations. Relational attention-based methods (Shang
et al., 2024; Chen et al., 2021; Liu et al., 2024) use relational attention or transformer to capture
global information, which enhances the model capacity for the noisy links; however, it often results
in a larger number of parameters. Large language model-based methods (Wang et al., 2022; Sax-
ena et al., 2022; Liu et al., 2022) align the semantic information from vast amounts of text with the
structural features within knowledge graphs, achieving excellent integration results for certain richly
described datasets (such as WN18RR); however, their assistance is limited for private and complex
data. Hyperbolic space-based methods (Montella et al., 2021; Balaževic et al., 2019; Montella et al.,
2021; Liang et al., 2024a) attempt to model the non-uniformity of graphs through non-Euclidean
geometries with different curvatures, proving particularly effective for hierarchical relations.

Recent works, particularly those based on path-based graph neural networks and hyperbolic space
with negative curvature, have provided striking insights. First, path-based work transforms indepen-
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dent node and relation features into path features conditioned on the query relation. Incorporating
path-ordering in local structure aggregation can enhance the model’s ability to represent frequently
occurring relational patterns and address the feature collapse caused by the over-smoothing prob-
lem (Zhu et al., 2021). Second, work based on hyperbolic space leverages the property of exponen-
tial expansion in hyperbolic space, which is beneficial for hierarchical relations (Liang et al., 2024b)
(tending towards tree-like structures).

However, graph neural network in hyperbolic space faces the issue of curvature collapse, making sta-
ble multi-layer training difficult. Previous works based on hyperbolic space have employed heuristic
score functions (such as MuPE (Balaževic et al., 2019) and AttH (Montella et al., 2021)) or shallow
layers (HGCN (Chami et al., 2019) utilizing only two layers), which limit the true expressive power
of hyperbolic space. Through further analysis of HGCN in appendix E, we found that the greater
number of layers in HGCN leads to a gradual decline in performance across most datasets, as well
as a faster curvature collapse. These phenomena indicate that existing modeling methods based on
hyperbolic space encounter issues of over-smoothing (similar node features after multi-aggregation)
and over-squashing (feature compression on long-range or aggregated structures).

Previous works based on path aggregation have low performance on one-to-many tails and many-
to-one heads. We provide Balanced Forman curvature (Topping et al., 2022) and the MRR Metric
about different relation categories in the WN18RR and FB15k237. E Through these analyses, we
can understand that the phenomenon of over-squashing is common in knowledge graphs.

We propose a model, namely HypPath, that gains advantages by path aggregation in hyperbolic
space. Specifically, we enhanced the expressive power of path aggregation features by utilizing the
Möbius operator and distances in hyperbolic space. Furthermore, we utilized anti-symmetric weight
representing the rotational invariance of hyperbolic space and tangent space at the origin to update
path features, alleviating the over-squashing. Finally, we combine Euclidean score and Hyperbolic
distances to form the final scores of triplets.

Our main contributions are as follows,

• We are the first to express KGs as path aggregation in the hyperbolic space and propose a
typical model, namely HyPNet.

• We define an update function in Hyperbolic space to alleviate over-squashing in KGs and the-
oretically analyze the convergence of the module defined in hyperbolic space.

• We achieve improvement with fewer parameters on two standard transductive datasets,
WN18RR and FB15k-37, and eight inductive versions.

2 RELATED WORK

2.1 MULTI-RELATIONAL LINK PREDICTION

Heuristic Embedding Methods Early research about multi-relational link prediction primarily op-
erated in Euclidean space, designing explicit score functions to evaluate the interaction of triplets.
TransE (Bordes et al., 2013) is a pioneering work in this direction, modeling relations as transla-
tion vectors between entity embeddings. Subsequent improvements focused on the expressive score
function. DistMult (Yang et al., 2015) uses diagonal matrices to capture symmetric relations; RotatE
(Sun et al.) encodes relations as rotations in complex Euclidean space to model anti-symmetry and
inverse relations; House (Li et al., 2022a) leverages Householder parameterization to enhance the
expressiveness of embedding transformations; TuckER (Balazevic et al., 2019) captures high-order
interactions between entities and relations through powerful tensor decomposition. Recent advance-
ments, such as MIG-TF (Yusupov et al., 2025) and HAQE (Liang et al., 2024b), further improve
the modeling of compositional and symmetric relations. Although this paradigm is scalable and
computationally efficient, it often neglects the global topology of the graph (e.g., multi-hop paths),
limiting its ability to capture complex structural dependencies.

Graph Neural Network-Based Methods GNN-based methods encode the topological structure
of the graph to model multi-hop relational dependencies, compensating for the structural neglect
of Euclidean heuristic methods. Early works such as CompGCN (Vashishth et al., 2020), adapted
composition graph convolutional networks to knowledge graphs. Neural Bellman-Ford Networks
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(NBFNet) (Zhu et al., 2021) established a general path-based reasoning framework. Recent methods
optimize the balance between local and global information through adaptive message-passing mech-
anisms, such as Adaprop (Zhang et al., 2023) and A* Net (Zhu et al., 2023). In contrast, MGTCA
(Shang et al., 2024) integrates Euclidean and hyperbolic spaces in convolutional attention to model
heterogeneous relational patterns. This paradigm still faces limitations, including over-squashing
in deep architectures and a limited ability to capture long-range dependencies. Logic rule-based
methods incorporate symbolic reasoning into embedding learning to improve interpretability and
generalization in KGC. DRUM (Sadeghian et al., 2019) and RNNLogic (Qu et al., 2020) learn dif-
ferentiable logical rules via neural networks, while RulE (Tang et al., 2024) jointly embeds entities,
relations, and logic rules for end-to-end reasoning. This paradigm offers interpretability advantages,
but its scalability is limited on large knowledge graphs, and it may struggle to generalize to rare or
unseen relations.

Large Language Model-Based Methods Pretrained large language models (LLMs) introduce a
new paradigm for KGC, leveraging semantic information from entity textual descriptions for global
reasoning. SimKGC (Wang et al., 2022) demonstrates that strong textual representations alone can
achieve competitive performance. KGT5 (Saxena et al., 2022) directly generates missing triplets,
while transformer-based frameworks such as KnowFormer (Liu et al., 2024) integrate textual in-
formation with knowledge graph structure, achieving strong performance. However, this paradigm
heavily relies on high-quality textual data and may lose fine-grained structural information when
converting graphs into sequences.

2.2 HYPERBOLIC GEOMETRY

Hyperbolic geometry has emerged as a particularly powerful paradigm due to its superior ability
to represent hierarchical structures. Compared to Euclidean approaches, hyperbolic methods show
significant advantages in embedding hierarchical data. MuRP (Balaževic et al., 2019) proposes
multi-relational Poincaré embeddings, extending the Poincaré ball model to multi-relational knowl-
edge graphs. HGCN (Chami et al., 2019) combines message passing with hyperbolic geometry
to efficiently aggregate information along hierarchical paths. Recent extensions include temporal
hyperbolic embeddings introducing relation and time curvature ATTH (Montella et al., 2021), and
FHRE (Liang et al., 2024a) that perform all transformations (e.g., rotations) entirely in hyperbolic
space to preserve complex relational structures.

3 BACKGROUND AND PRELIMINARIES

3.1 MULTI-RELATIONAL LINK PREDICTION

Knowledge Graph consists of a set of triplets {(hi, rj , tk)} ⊆ E ×R× E , where E is a finite entity
set and R is a finite relation set. Each fact (hi, rj , tk) respectively denotes a directed relation rj
from the head entity hi to tail entity tk. Although knowledge graphs contain large numbers of facts,
they are still incomplete due to the complex nature of the real world. Multi-relational link prediction
aims to predict the other potential facts based on existing facts. In that way, Score Function X̂ is
an approximation of X = {0, 1}|E|×|R|×|E| which denotes a third-order binary tensor to indicate
whether each fact is correct or not. |E| and |R| denote the number of entities and relations. The
problem is reduced to ranking a set of candidates and selecting the most likely entity that makes the
query (h, rq, ?) correct. There are many types of score functions, such as the translational model and
the graph neural network. We use a path-based approach to model the score function as the paths
aggregation between two points conditioned on the query X̂ijk(tk|hi, rj).

3.2 HYPERBOLIC GEOMETRY

Hyperbolic space is a geometric structure characterized by constant negative curvature −c(c >
0), whose spatial form exhibits exponential expansion as the radius increases, in contrast to the
uniform linear growth of Euclidean space. This characteristic makes hyperbolic space suitable for
modeling hierarchical relationships, enhancing the expressive power for locally uneven knowledge
graphs, such as queries associated with the same entity or entities associated with the same query.
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Commonly used hyperbolic models include the hyperboloid model and the poincaré ball model.
There is an isomorphic mapping (one-to-one, distance-preserving) between them.

Poincaré Ball Model The poincaré ball Bd
c =

{
x ∈ Rd : c∥x∥ < 1

}
is analogous to an n-

dimensional manifold centered at the origin point 0 with a radius of c. The essence is to represent the
non-Euclidean hyperbolic geometric structure using spheres in Euclidean space. The tangent space
TxBd

c = Rd is the linear expansion at point x, and all linear transformations between tensors are
operated within the tangent space. The addition, scalar multiplication, and matrix-vector multipli-
cation defined in Euclidean space can be generalized to hyperbolic space. Because of the Rotational
invariance at origin 0, we only utilize the tangent space at the origin 0 and the three Möbius op-
erations mentioned in the following equations. More details about any point x are provided in the
appendix D. ∥ · ∥ denotes the Euclidean norm and < ·, · > denotes the Euclidean inner product.

Given x ∈ Bd
c and y ∈ TxBd

c , exponential map logc0 : TxBd
c → Bd

c and logarithmic map expc0 :
Bd
c → TxBd

c are two inverse mappings between poincaré ball Bd
c and its tangent space TxBd

c .

expc0(x, c) = tanh(
√
c∥x∥) x√

c∥x∥
, logc0(y, c) = arctanh(

√
c∥y∥) y√

c∥y∥
. (1)

• Möbius addition ⊕c can ensure that two elements x,y ∈ Bd
c , the results remain closed within

hyperbolic space, adapting to hierarchical complex structures.

x⊕c y =
(1 + 2c⟨x,y⟩+ c∥y∥2)x+ (1− c∥x∥2)y

1 + 2c⟨x,y⟩+ c2∥x∥2∥y∥2
. (2)

• Möbius scalar multiplication ⊗c scales a vector x ∈ Bd
c by the real number b without changing

its direction, and restricts the result within hyperbolic space.

b⊗c x = tanh(b arctanh(
√
c∥x∥)) x√

c∥x∥
. (3)

• Möbius matrix-vector multiplication ⊗c apply a linear transformations M ∈ Mm,n{R} to the
vector x ∈ Bd

c . Rotation invariance means M ⊗c x = Mx for all M ∈ Od(R)the rotation
around the origin 0 is consistent for the tangent space TxBd

c and the hyperbolic space Bd
c .

M ⊗c x = tanh(
∥Mx∥
∥x∥

arctanh(
√
c∥x∥)) Mx√

c∥Mx∥
. (4)

• Apart from the Möbius addition, the other Möbius operations mentioned above satisfy the gen-
eral formula as follows. Notice that, if f is a point-wise non-linearity, such as layer normalization
or activation functions, the following equation still holds. Given xH ∈ Bd

c ,

f⊗c(xH) = expc0(f(log
c
0(x

H))). (5)

For the composition function of several operations, the intermediate exponential map and loga-
rithmic map can be canceled out f⊗c

k ◦ · · · ◦f⊗c
1 = expc0 ◦fk ◦ · · · ◦f1 ◦ log

c
0. Therefore, we only

need to perform a map between hyperbolic and tangent spaces once when encountering addition
or matrix-vector multiplication.

• Geodesic distance is the shortest path between two points in hyperbolic space x,y ∈ Bd
c ,

dBc (x,y) =
2√
c

tanh−1(
√
c∥ − x⊕c y∥). (6)

3.3 PATH AGGREGATION

Graph neural networks develop rapidly on multi-relational graphs, but suffer from issues such as
heterogeneity, over-smoothing, and over-squashing. GNN has developed various approaches to link
prediction, including vanilla, composition, spectral, rewiring, subgraph, and path methods. The rep-
resentation feature conditioned on the query and path is more expressive and effective than vanilla
message passing. Since the path aggregation conditioned on the query alleviates the over-smoothing
problem, path-based methods demonstrate superior performance and versatility. Given a query
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(h, q, ?) over a graph G, the Neural Bellman-Ford Network (Zhu et al., 2021) expresses the path
aggregation as a composition of single-step message passing, where n denotes the layers, d de-
notes the dimensionality, Q denotes the initial query embedding matrix, and ∗ denotes element-wise
multiplication,

z0
q (h, t)= INDICATOR(h, t, rq) = 1u=v ∗Q, v ∈ E (7)

zn
q (h, t)=UPDATE

(
zn−1
q (h, t), AGGREGATE

(
MESSAGE(zn−1

q (h, x), er(x, t))|x ∈ E(h), r ∈ R
))

.

The path-based approach can adapt to both transductive and inductive experimental settings due to
generalization for unseen entities. Finding a way to achieve a deep, stable, and expressive condi-
tioned message passing is key to addressing large-scale and sparse multi-relational graphs.

4 METHODOLOGY

4.1 FRAMEWORK

In the following section, we emphasize the poincaré ball model and relational path aggregation as
the foundation of our work. We reconstructed the aforementioned Indicator, Message, and Update
functions using operators in hyperbolic space.

Hyperbolic Space Path Aggregation

Given a query (h, q, ?) over a graph G, we define the curvatures cq of the poincaré ball conditioned
on the query relation q, and initial edge representation for each encoder layer.

The indicator function determines the initial representation of the path, which is dictated by the
query relation. We initialize the query embedding q ∈ Rd, and use the exponential map to map the
query embedding in Euclidean space to hyperbolic space z0

q = q. Unless otherwise specified, all
vectors mentioned in the following text are defined in Euclidean space to simplify understanding.

The message function computes the n-hop path feature using the (n-1)-hop path features and the
current edge feature eq(x, t). Due to the particularity of addition in hyperbolic space and the prop-
erties of composition functions in the tangent space, we directly utilize multiplication in Euclidean
space rather than addition, that is MESSAGE : mn

q = zn−1
q (h, x) ∗ enr (x, t). Our edge features

are designed with flexibility to handle structures of various complexities. An independent version
is designed for the relatively simpler structure, such as on WN18RR. And a dependent version is
designed for the more complex structure, such as on FB15k-237,

er = log
cq
0

(
− exp

cq
0 (q0)⊕c exp

cq
0 (bnr )

)
,

er = log
cq
0

(
W n

r ⊗c exp
cq
0 (q0)⊕c exp

cq
0 (bnr )

)
. (8)

The aggregation function is a set operator that is independent of the path set. We still use prin-
cipal neighborhood aggregation(PNA) (Corso et al., 2020) as the NBFNet does, which is a com-
bination of maximum, minimum, average, and summation. Finally, the aggregated path features
are obtained through a linear transformation g1(·) : R13d → Rd for dimensionality reduction
Φ(Mn

q ) = g1(PNA(mn
q (x))), x ∈ E(h).

The update function is particularly noteworthy; we design a novel update mechanism to enhance the
training stability of deeper models. We define an anti-symmetric weight A = M −MT − γI and
bias b to transform the path feature, where γ is a scale factor. Notice that we use the same anti-
symmetric and bias for each encoder layer. For simplicity, we omit the Layer Normalization (Ba
et al., 2016) and the Activation Function ReLU preceding the logarithmic map in the update function.

UPDATE : zn
q = zn−1

q + σ
(
log

cq
0

(
exp

cq
0 (Azn−1

q )⊕ exp
cq
0 (Φ(Mn

q (x)))⊕ exp
cq
0 (b)

))
. (9)

Theorem 1. For the update function defined in Euclidean space,

zn
q = zn−1

q + σ(Azn−1
q +Φ(Mq(x)) + b), x ∈ E(h), t /∈ E(h). (10)

If A is an anti-symmetric matrix, the solution z̃n
q of the update function Eq. (10) converges. Further-

more, the update function defined in the Hyperbolic space Eq. (9) also satisfies. The implementation
using Euclidean operators is an upper bound for the implementation using hyperbolic operators.
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Proof 1. See in the appendix C.

The learnable curvature and the model parameters of HGCN often experience asynchronous learning
processes, which can lead to curvature collapse when stacking high layer. Anti-symmetric matrices
A can maintain the norm of zn

q constant across different layers n, preserving its representation
without shrinkage during the aggregation process. The training stability allows the stacking of more
layers in GNNs. Experimentally, HyPNet stabilizes the learnable curvature, ultimately improving
the model’s performance.

The score function consists of two components, the main component use a simple two layer MLP
with ReLU g2(·) : Rd → R1 as decoder, while the additional term is the hyperbolic distance in the
poincaré ball, i.e.,

s(h, q, t) = −dBc (0, exp
cq
0 (zn

q (h, t))) + g2(z
n
q (h, t)). (11)

Final logits p(h, q, t) = σ(s(h, q, t)) denote the score of a node v to be a tail of the initial query
(h, q, ?). Any inductive link prediction model only requires deterministic relation features to adapt
to the inductive setting. HyPNet can be trained on any entity with a deterministic relation set,
enhancing expressiveness and scalability.

The loss function is binary cross entropy over positive and sampled negative triplets, which is a
standard practice for multi-relational link prediction,

L = − log p(h, q, t)−
n∑

i=1

1

n
log(1− p(h′

i, q, t
′
i)), (12)

where (h, q, t) is a positive triple in the graph and {(h′
i, q, t

′
i)}ni=1 are negative samples obtained by

corrupting either the head u or tail v of the positive sample.

5 EXPERIMENT

5.1 DATESETS

We use two standard transductive datasets and eight inductive versions extracted from FB15k-237
and WN18RR. Detailed statistics of the dataset can be found in the appendix D. We use reciprocal
facts (t, r−1, h) for data augmentation and message passing. r−1 is the inverse relation of r. Each
inverse relation is treated as an independent new relation.

5.2 BASELINES

We compare HyPNet with several baselines. The transductive Multi-relational Link Prediction task
includes 20 baseline methods with five different types, including Euclidean space-based methods
TransE (Bordes et al., 2013), DistMult (Yang et al., 2015), RotatE (Sun et al.), TuckER (Balazevic
et al., 2019), RulE (Tang et al., 2024), and MetaSD (Li et al., 2022b); large language model-based
methods KGT5 (Saxena et al., 2022), SimKGC (Wang et al., 2022), N-Former (Liu et al., 2022);
graph neural network-based methods CompGCN (Vashishth et al., 2020) RED-GNN (Zhang & Yao,
2022), AdaProp (Zhang et al., 2023), ULTRA (Galkin et al.), NBFNet (Zhu et al., 2021); relational
attention-based methods HittER (Chen et al., 2021), MGTCA (Shang et al., 2024), KnowFormer
(Liu et al., 2024); Hyperbolic space-based methods MuRP (Balaževic et al., 2019), ATTH (Mon-
tella et al., 2021), FHRE (Liang et al., 2024a). The Inductive Multi-relational Link Prediction task
includes 7 baseline methods, including DRUM (Sadeghian et al., 2019), RED-GNN (Zhang & Yao,
2022), A*Net (Zhu et al., 2023), AdaProp (Zhang et al., 2023), Ingram (Lee et al., 2023), SimKGC
(Wang et al., 2022), NBFNet (Zhu et al., 2021), and KnowFormer (Liu et al., 2024).

5.3 TRANSDUCTIVE PERFORMANCE

In the transductive multi-relational link Prediction task, we selected two standard datasets, FB15k-
237 (Toutanova et al., 2015) and WN18RR (Dettmers et al., 2018), to evaluate the performance
of HyPNet. As shown in Table 1, HyPNet surpasses two types of foundation models: path-based
methods and hyperbolic space-based methods, demonstrating that the advantages of both can be
complementary to some extent.
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Table 1: Transductive Multi-relational Link Prediction Results. Best results are bold, second results
are underlined.

Class Method FB15k-237 WN18RR
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Euclidean Space TransE 0.310 0.218 0.345 0.495 0.232 0.061 0.366 0.522
DistMult 0.342 0.249 0.378 0.531 0.451 0.414 0.466 0.523
RotatE 0.338 0.241 0.375 0.533 0.476 0.428 0.492 0.571
TuckER 0.358 0.266 0.394 0.544 0.470 0.443 0.482 0.526
RulE 0.362 0.266 0.400 0.553 0.519 0.475 0.538 0.605
MetaSD 0.391 0.300 0.428 0.571 0.491 0.447 0.504 0.570

Large Language KGT5 0.276 0.210 - 0.414 0.508 0.487 - 0.544
Model SimKGC 0.336 0.249 0.362 0.511 0.666 0.587 0.717 0.800

N-Former 0.373 0.279 0.412 0.556 0.489 0.446 0.504 0.581

Graph Neural CompGCN 0.355 0.264 0.39 0.535 0.479 0.443 0.494 0.546
Network RED-GNN 0.374 0.282 - 0.589 0.519 0.465 - 0.602

ULTRA 0.368 0.272 - 0.564 0.480 0.414 - 0.614
NBFNet 0.415 0.321 0.454 0.599 0.551 0.497 0.573 0.666

Relational Attention HittER 0.373 0.279 0.409 0.558 0.503 0.462 0.516 0.584
MGTCA 0.393 0.291 0.428 0.583 0.511 0.475 0.525 0.593
KnowFormer 0.430 0.343 - 0.608 0.579 0.528 - 0.687

Hyperbolic Space MuRP 0.335 0.243 0.367 0.518 0.481 0.440 0.495 0.566
ATTH 0.351 0.255 0.386 0.543 0.490 0.443 0.508 0.581
FHRE 0.345 0.255 0.375 0.528 0.494 0.458 0.510 0.563

Ours HyPNet 0.431 0.340 0.467 0.611 0.565 0.510 0.594 0.699

HyPNet outperformed on all eight metrics compared to all Euclidean space-based methods, Hyper-
bolic space-based methods, large language model-based methods, and graph neural network-based
methods, apart from the WN18RR performance of SimKGC. WN18RR is a knowledge base ex-
tracted from WordNet, which contains many common words and lexical relations between them.
The entities and relations in WordNet have clear semantics and are widely present in the training
texts of large language models. Rich descriptions enable LLM to achieve the best performance on
WN18RR.

Notably, compared with the base model NBFNet, HyPNet improved the MRR metric by 1.6 and
0.9 on the two types of datasets, respectively. Compared to another comparable relational attention-
based method, Knowformer, we surpassed it on FB15k-237 using nearly half the number of pa-
rameters (approximately 300M vs 600M). However, on WN18RR, we only exceeded it in terms of
Hit@10. This may be due to the smaller size of the WN18RR dataset, as the overall hierarchical
relationships are not as complex as those in FB15k-237.

5.4 INDUCTIVE PERFORMANCE

We follow the 8 versions of standard inductive datasets (Teru et al., 2020) from FB15k-237 and
WN18RR. As shown in Table 2, HyPNet achieved competitive results on the FB15k-237 dataset,
but the performance on WN18RR was not satisfactory. HyPNet achieved the best results in all
Hit@10 metrics for all versions of FB15k-237 and the v1 version of WN18RR.

We were unable to achieve baseline results comparable to those reported in the original paper with
† under the current software environment. Specifically, during the training process of the inductive
setting WN18RR, we observed multiple instances where the validation MRR is high but the test
MRR is low. This may be due to the risk of over-fitting associated with the complex hyperbolic
space when the dataset is small. Techniques such as weight decay or reducing curvature do not fully
address this phenomenon.
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Table 2: Inductive Multi-relational Link Prediction. Best results are bold, second results are un-
derlined. In the inductive setting of NBFNet on WN18RR, † indicates the baseline results that we
replicated.

Method v1 v2 v3 v4
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

FB15k-237
DRUM 0.333 0.247 0.474 0.395 0.284 0.595 0.402 0.308 0.571 0.410 0.309 0.593
RED-GNN 0.369 0.302 0.483 0.469 0.381 0.629 0.445 0.351 0.503 0.442 0.340 0.621
A*Net 0.457 0.381 0.589 0.510 0.419 0.672 0.476 0.389 0.629 0.466 0.365 0.645
AdaProp 0.310 0.191 0.551 0.471 0.372 0.659 0.471 0.377 0.637 0.454 0.353 0.638
Ingram 0.293 0.167 0.493 0.274 0.163 0.482 0.233 0.140 0.408 0.214 0.114 0.397
NBFNet 0.442 0.335 0.574 0.514 0.421 0.685 0.476 0.384 0.637 0.453 0.360 0.627
KnowFormer 0.466 0.378 0.606 0.532 0.433 0.703 0.494 0.400 0.659 0.480 0.383 0.653

HyPNet 0.463 0.372 0.619 0.517 0.408 0.705 0.485 0.391 0.662 0.471 0.356 0.669

WN18RR
DRUM 0.666 0.613 0.777 0.646 0.595 0.747 0.380 0.330 0.477 0.627 0.586 0.702
RED-GNN 0.701 0.653 0.799 0.690 0.633 0.780 0.427 0.368 0.524 0.651 0.606 0.721
AdaProp 0.733 0.668 0.806 0.715 0.642 0.826 0.474 0.396 0.588 0.662 0.611 0.755
Ingram 0.277 0.130 0.606 0.236 0.112 0.480 0.230 0.116 0.466 0.118 0.041 0.259
SimKGC 0.315 0.192 0.567 0.378 0.239 0.650 0.303 0.186 0.543 0.308 0.175 0.577
A*Net 0.727 0.682 0.810 0.704 0.649 0.803 0.441 0.386 0.544 0.661 0.616 0.743
KnowFormer 0.739 0.702 0.806 0.697 0.651 0.776 0.467 0.406 0.571 0.646 0.609 0.727

NBFNet † 0.701 0.622 0.827 0.648 0.569 0.778 0.429 0.355 0.548 0.590 0.527 0.690
HyPNet 0.716 0.629 0.841 0.668 0.589 0.786 0.398 0.330 0.511 0.623 0.546 0.739

5.5 ABLATION STUDY
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Figure 1: Statistics of the shortest distance from
query to the answer tail entity in the FB15k-237
test set. In the WN18RR dataset, almost all short-
est path distances are within 2.

Number of Layers n Figure 1 conducts a sta-
tistical analysis about the shortest paths to the
tail entities in the test set of FB15k-237 and
found that almost all paths are within 8 hops.
The results of the Table 3a show that HyPNet
prevents the over-smoothing phenomenon, and
the increase in MRR is positively correlated
with the statistics of the shortest paths in the
test set. In different experiments, γ can achieve
the best results within the range of 0.1 to 0.5.

Value of γ The scale factor γ > 0 measures the
matrix properties of A. As γ > 0 approaches 0,
A becomes closer to an antisymmetric matrix;
a larger γ indicates that the decay rate of the
feature norm is faster. In different experiments,
γ can achieve the best results within the range
of 0.1 to 0.5.

Relation Category Performance There are
four relation category, one-to-one, one-to-
many, many-to-one, and many-to-many, and
two query category head query (?, r, t) and tail
query (h, r, ?). 1 Regarding the MRR perfor-

1Relation category focus on the average number of tails per head and the average number of heads per tail.
The category is one if the average number is smaller than 1.5 and many otherwise.
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mance of FB15k-37, we can observe in Table 3c that, except for a slight decline in the 1-1 Relation,
all other metrics have significantly increased, especially A and B. Both of these relation types rep-
resent multiple outgoing edges that share the relationship, indicating that hyperbolic space path
aggregation alleviates the effects of overcrowding. However, the results for 1-1 suggest that the cur-
rent framework is not fully compatible with Euclidean space, and exploring how to integrate spaces
is a meaningful avenue for further research.

For the learnable curvature, the curvature of each relation will ultimately oscillate around a certain
value. The parameters have little impact on the model’s performance, possibly because it is sufficient
to ensure the relative magnitude of the scores. The numerical value of the curvature only needs to
meet the computational precision requirements to prevent issues in training caused by the curvature
being too small or negative.

Table 3: Ablation study of FB15k-237 MRR performance.

Method Layer number (n)
2 4 6 8

HyPNet 0.336 0.384 0.431 0.432
(a) Different number of layers.

Method Scale factor (γ)
0.1 0.3 0.5 0.7

HyPNet 0.430 0.428 0.431 0.420
(b) Different values of balance.

Method Relation Category
1-to-1 1-to-N N-to-1 N-to-N

TransE 0.498/0.488 0.455/0.071 0.079/0.744 0.224/0.330
RotatE 0.487/0.484 0.467/0.070 0.081/0.747 0.234/0.338
NBFNet 0.578/0.600 0.499/0.122 0.165/0.790 0.348/0.456

HyPNet 0.570/0.588 0.506/0.144 0.206/0.794 0.358/0.470
(c) MRR Performance by relation category. The slash distinguishes two queries
(?,r,t) and (h,r,?) formed from the same triple.

6 CONCLUSION

We propose HyPNet that combines the advantages of hyperbolic space for hierarchical relations and
path aggregation to prevent over-smoothing. We extended the antisymmetric matrix for stable multi-
layer GNN training into hyperbolic space. HyPNet extracts the widely existing one-to-many, many-
to-one, and many-to-many relationships (tree structures) in the graph. HyPNet achieved results
comparable to the previous state-of-the-art on the FB15k-237 and WN18RR standard datasets in
both transductive and inductive settings, while using only half the parameters.

7 LIMITATION

HyPNet has two notable limitations. First, the convergence rates of the model parameters and train-
able curvatures are inconsistent, which results in high variance in the learning outcomes on some
smaller inductive setting datasets, making it difficult to surpass previous work. Second, although the
model utilizes hyperbolic space to model hierarchical relationships, it cannot adapt to other types
of curvature. In the future, we hope to expand the range of curvature, integrate different types of
relationships, and innovate the rewiring methods of graph structures.
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9 REPRODUCIBILITY STATEMENT

The complete source code for HyPNet is publicly available at the anonymous repository: https:
//anonymous.4open.science/r/anonymous_HyPNet-B0B0. We implement HyPNet
in Pytorch 2.8.0, CUDA 12.8, Python 3.12.3, using 4 NVIDIA GeForce RTX 5090 GPUs with
32GB of Memory and an INTEL(R) XEON(R) GOLD 6530 CPU @2.6GB. Main dependencies
explicitly listed in a README.md file within the repository.

By providing explicit model formulation, public code with clear dependencies, and standardized
datasets, we ensure that HyPNet’s results can be fully replicated by the research community.

REFERENCES
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Ivana Balaževic, Carl Allen, and Timothy Hospedales. Multi-relational poincaré graph embeddings.
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A USE OF LLMS

LLM is used solely for translation, and the paper does not utilize any directly generated text.

B HYPERBOLIC GEOMETRY DETAILS

The Poincaré ball model is one of five isometric models of hyperbolic geometry (Cannon et al.,
1997). The Riemannian metric of poincaré ball gB is conformal to Euclidean metric gR = I , where
gB = (λc

x)
2gR with a factorλc

x = 2/(1− c∥x∥2).
Defined by the HNN (Ganea et al., 2018), the exponential map and logarithmic map at any point on
the poincaré ball x ∈ Bd

c and the corresponding tangent spaceTxBd
c ,

expc
x(v) = x⊕c

(
tanh

(√
c
λc
x∥v∥
2

)
v√
c∥v∥

)
, (13)

logc
x(y) =

2√
cλc

x

tanh−1(
√
c∥ − x⊕c y∥)

−x⊕c y

∥ − x⊕c y∥
. (14)

The generalization of a bias translation in the poincaré ball is naturally given by moving along
geodesics. From the perspective of parallel transport, Mobius translation of a point x ∈ Bd

c by a
bias b ∈ T0Bd

c is given by

x⊕c b = expcx(P
c
0 → x(logc0(b))) = expcx

(
λc
0

λc
x

logc0(b)

)
. (15)

C PROOF OF THEOREM 1

Lemma 1 (I,ax equivalence theorem (Lax & Richtmyer, 1956)). A well-posed initial value problem
of a system of linear partial differential equations, a consistent linear differential equation converges
if and only if the equation is stable.

The difference equation dz
dt = Az + Mx + b compatible with the differential equation zn =

(I +∆t ·A) zn−1 + ∆t · Bxn−1 + ∆tc. When the ∆t = 1, it is the update function defined in
Euclidean space Eq. (10).
Definition 1 (Stablity of Ordinary Difference Equation). Giver a linear ODE z′(t) = Az(t), a
solution z(t) of the ODE with initial condition z(0) is stable if for any ϵ > 0, there exists a δ > 0

such that any other solution h̃(t) of the ODE with initial condition h̃(0) satisfying |z(0)− z̃(0)| ≤ δ
also satisfies |z(t)− z̃(t)| ≤ ϵ, for all t ≥ 0.

If A is diagonalizable, i.e. P−1AP = Λ, where Λ is a diagonal matrix of the eigenvalues of A
and the columns of P are the corresponding eigenvectors.

|z(t)− z̃(t)| = |eAt(z(0)− z̃(0))| = ePRe(Λ)P−1t|z(0)− z̃(0)|. (16)
If max1,2,...,d Re(Λ) <= 0, the ODE is stable.
Lemma 2 (Stablity of Neural Deep Graph Network (Gravina et al., 2023)). The solution of an ODE
z′(t) = fG(z(t)) = σ(Az(t) + Φ(Z(t)) + bt) is stable and non-dissipative if

∀i = 1, 2, . . . , n, Re(λi(J(t))) = 0, (17)
where J(t) ∈ Rn×n be the Jacobian matrix of f , and λi denotes the i-th eigenvalue. Re(·) denotes
the real part of a complex number. J(t) does not change significantly over time.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

If weight is anti-symmetric A = W −W T , J(t) can be divided into two parts as follows,

J(t) = Dtestdiag
[
σ′ ((W −W T )z(t) + V z(t) + b

)]
(W −W T ), (18)

First, the activation function derivative part guarantees to be within [0, 1] regardless of whether tanh
or ReLU, thus J(t) does not change significantly over time. The second anti-symmetric matrix
satisfies the Re(λi(A(t))) = 0.

Lemma 3 (Hyperbolic Triangle Inequality). In poincaré ball model, the logarithmic mapping has
an identity relationship with hyperbolic distance.

dBc (−u,w) = dBc (0,−u⊕c w) = 2∥logc0(−u⊕c w))∥. (19)

Geodesics are the shortest distances in hyperbolic space and still satisfy the triangle inequality.
Given u,v,w ∈ Bd

c ,
dBc (−u,w) ≤ dBc (−u,v) + dBc (−v,w), (20)

Given x,y ∈ T0Bd
c , another version is as follws,

∥logc0(expc0(x)⊕c exp
c
0(y))∥ ≤ ∥logc0(expc0(x))∥+ ∥logc0(expc0(y))∥ = ||x||+ ||y||. (21)

The above inequality degenerates into an equality when points x and y are collinear.

Theorem 1. For the update function defined in Euclidean space

zn = zn−1 + σ(Azn−1 +Φ(M(x)) + b),x ∈ E(h), t /∈ E(h). (22)

If A is an anti-symmetric matrix, the solution z̃n of the update function Eq. (10) converges. Further-
more, the update function defined in the Hyperbolic space Eq. (9) also satisfies. The implementation
using Euclidean operators serves as an upper bound for the implementation using hyperbolic oper-
ators.

Proof 1. Lemma 1 shows that our update function defined in Eudiean Eq. (10) is compatible with
the corresponding ordinary differential equation with ∆t = 1, and Lemma 2 demonstrates that the
corresponding ordinary differential equations are stable and non-dissipative. The combination of
the first two lemmas indicates that Eq. (10) is convergent.

log
cq
0

(
exp

cq
0 (Azn−1

q )⊕ exp
cq
0 (Φ(Mn

q (x)))⊕ exp
cq
0 (b)

)
≤ Azn−1

q +Φ(Mq(x)) + b (23)

Lemma 3 indicates that the norm of the update function implemented in hyperbolic space Eq. (9)
has the upper bound as the norm of Eq. (10), essentially stating that hyperbolic space and Euclidean
space of the same dimension are homeomorphic manifolds.

D DATASETS STATIC

WN1818RR (Dettmers et al., 2018) is a static KG extracted from WordNet, which contains the
common words and lexical relations between them.

FB15k-237 (Toutanova et al., 2015) is a static KG extracted from Freebase, a large Knowledge base
that uses web links to connect real-world events.

The inductive setting means train on one graph and test on another graph. We follow the 8 version
extracted from FB15k-237 and WN18RR (Teru et al., 2020).

Table 4: Dataset Statistics for transductive knowledge graph reasoning datasets.

Dataset #Relation #Entity
#Triplet

#Train #Valid #Test

FB15k-237 237 14,541 272,115 17,535 20,466
WN18RR 11 40,943 86,835 3,034 3,134
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Table 5: Dataset Statistics for inductive knowledge graph reasoning datasets. In each split, one
needs to infer #Query triplets based on #Fact triplets.

Dataset #Relation Train Validation Test

#Entity #Query #Fact #Entity #Query #Fact #Entity #Query #Fact

FB15k-237

v1 180 1,594 4,245 4,245 1,594 489 4,245 1,093 205 1,993
v2 200 2,608 9,739 9,739 2,608 1,166 9,739 1,660 478 4,145
v3 215 3,668 17,986 17,986 3,668 2,194 17,986 2,501 865 7,406
v4 219 4,707 27,203 27,203 4,707 3,352 27,203 3,051 1,424 11,714

WN18RR

v1 9 2,746 5,410 5,410 2,746 630 5,410 922 188 1,618
v2 10 6,954 15,262 15,262 6,954 1,838 15,262 2,757 441 4,011
v3 11 12,078 25,901 25,901 12,078 3,097 25,901 5,084 605 6,327
v4 9 3,861 7,940 7,940 3,861 934 7,940 7,084 1,429 12,334

E OVER-SQUASHING IN KG

Balanced Forman curvature is a metric for measuring the over-squashing in the graph. In line with
the discussion about geodesic dispersion, one expects ♯∆ to be related to positive curvature (com-
plete graph), ♯i□ to zero curvature (grid), and the remaining outgoing edges to negative curvature
(tree). The Balanced Forman curvature is related to the Jacobian of the hidden features.
Definition 2 (Balanced Forman curvature (Topping et al., 2022)). For any edge i ∼ j in a simple,
unweighted graph G, we let Ric(i, j) be zero if min{di, dj} = 1 and otherwise

Ric(i, j) := 2
di

+ 2
dj

− 2 + 2 |♯∆(i,j)|
max{di,dj} + |♯∆(i,j)|

min{di,dj} + (λmax)
−1

max{di,dj}
(
|♯i□|+ |♯j□|

)
,

(24)
where the last term is set to be zero if |♯i□| (and hence |♯j□|) is zero. In particular Ric(i, j) > −2.

In the case of heterogeneous graphs, such as knowledge graphs, the presence of different types of
relations and entities of the same relation both increases the possibility of over-squashing. Figure 2

Metric Dataset(Layer Comparison)
Cora Pubmed Disease Airport

ROP 0.94/0.86 0.95/0.86 0.61/0.48 0.90/0.88
AP 0.94/0.88 0.95/0.87 0.58/0.49 0.90/0.90

Table 6: Comparison of different layers of HGCN on Link prediction results for homogeneous
graphs.
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(a) FB15k-237 Test
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(b) FB15k-237 Valid
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(c) WN18RR Test
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(d) WN18RR Valid
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Figure 2: The first four figures illustrate the relationship between MRR performance and curvature
across different relation categories, with results derived from NBFNet, indicating the presence of a
substantial number of tree structures in the knowledge graph (KG). The last two figures show the
rate of curvature decrease during the training phase of HGCN, revealing a converging trend before
early stopping. All subfigures indicate that both path aggregation methods and hyperbolic space
approaches face challenges related to oversmoothing.
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