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Abstract
This study addresses the challenge of automat-
ically detecting semantic column types in rela-
tional tables, a key task in many real-world appli-
cations. Zero-shot modeling eliminates the need
for labeled tabular data, making it ideal for sce-
narios where data collection is costly or restricted
due to issues such as privacy concerns. However,
existing zero-shot models often perform poorly
when dealing with a large number of semantic
types and show limited understanding of tabu-
lar structure. We propose an efficient zero-shot
table generation approach that constructs struc-
tured pseudo-tables using publicly available data.
Fine-tuning an open-source LLM on these syn-
thetic tables enables it to better capture tabular
structure and improve column type annotation.
Experiments show that our method outperforms
state-of-the-art zero-shot and few-shot models by
at least 10.4% and 7%, respectively.

1. Introduction
Column type annotation, i.e., identifying or tagging the se-
mantic types of columns, or classes, inside a table, is crucial
for different information retrieval tasks like data integra-
tion (Hai et al., 2023), data cleaning (Limaye et al., 2010;
Kandel et al., 2011), schema matching (Rahm & Bernstein,
2001), and data discovery (Fernandez et al., 2018b;a). One
emerging application, for example, is automatically tagging
sensitive columns in a table, such as personal information,
before deciding what information can be released.

Supervised learning-based methods (Hulsebos et al., 2019;
Zhang et al., 2019; Deng et al., 2022; Suhara et al., 2022;
Sun et al., 2023; Hoseinzade & Wang, 2024) have shown
promising results. These models primarily leverage BERT’s
pre-training on large-scale textual corpora, fine-tuning it
for labeled tabular training data by adding task-specific out-
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put layers to classify each column into a predefined set of
semantic types. However, these models are highly depen-
dent on labeled tabular training data. Collecting high quality
labeled tabular training data is a resource-intensive and time-
consuming process. In many cases, such data might not exist
in the required format or it could be confidential because
privacy concerns and regulations such as HIPAA and GDPR
impose restrictions on sharing sensitive data in domains
like healthcare, finance, and government, making it nearly
impossible to collect and use training data in these fields.

Large Language Models (LLMs) have been proposed as a
solution to data availability challenges to perform zero-shot
column type annotation without the need for labeled tabular
datasets (Kayali et al., 2024; Korini & Bizer, 2023; Feuer
et al., 2024). These models, pre-trained on extensive textual
corpora are attractive for scenarios where labeled data is
difficult to obtain. However, despite their potential, current
LLM-based zero-shot models for column type annotation
suffer from the following limitations:

Performance: LLM performance in zero-shot classification
often falls short, particularly when dealing with closely re-
lated classes like ”addressRegion,” ”addressLocality,” ”stree-
tAddress,” and ”PostalAddress” (Feuer et al., 2024). These
models struggle to distinguish such classes without learning
subtle differences between them, unlike supervised models
that rely on labeled tabular data for this purpose.

Structure: LLMs, being primarily trained on unstructured
textual data, struggle to learn the structural relationships
between columns within tables (Li et al., 2024; Sui et al.,
2024). So, zero-shot models based on LLMs are less effec-
tive at capturing table-specific details like values in the same
column or rows, unlike supervised models, which directly
learn them from tabular training data.

The question is how to design a zero-shot learning model
that can understand different classes and table structures
without the need for user-provided tabular training data.
We propose a novel zero-shot framework, ZTab, that lever-
ages two LLMs to meet these requirements. ZTab uses a
description LLM to generate representative sample values,
called class descriptions, for each semantic type (e.g., Coun-
try: Canada, UK, France), and use class descriptions to
construct pseudo-tables labeled by column semantic types.
Unlike prior zero-shot methods that rely solely on inference-
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time prompting, ZTab fine-tunes an annotation LLM using
these pseudo-tables to learn differences of classes. ZTab ad-
dresses the above challenges as follows. For performance,
like supervised learning, the fine-tuning on the pseudo-
tables helps better distinguish between similar semantic
types, and like zero-shot learning, no user-provided training
data is needed. For structure, the fine-tuning on pseudo-
tables with realistic column combinations and value pat-
terns allows the model to learn both relationships between
columns and typical distributions within columns.

Our key contributions are as follows:

• Efficient and diverse fine-tuning table generation:
Instead of directly generating one table at a time
from LLMs, which often produces low-quality tables
(Berkovitch et al., 2024), ZTab generates class descrip-
tions using an LLM and constructs fine-tuning pseudo-
tables using class descriptions. This approach allows
efficient generation of a large number of diverse tables
needed for fine-tuning and robust generalization of the
annotation LLM.

• Improved zero-shot performance: ZTab’s fine-tuning
on an LLM using pseudo-tables improves the existing
zero-shot performance by at least 10.4% on average
over multiple datasets (Table 1). The performance is
measured by micro-F1 score.

2. Problem Definition
We study the task of data generation-based zero-shot
column type annotation: assigning semantic types
(c1, c2, . . . , cn) to the columns of a table T =
(t1, t2, . . . , tn), where each ci is selected from a predefined
set C, without relying on user-provided training data. The
solution to this problem has the learning phase that builds a
model, and the deployment phase that applies the model to
predict column semantic types for a given table.

Learning Phase: The inputs are: (1) a predefined set
of semantic types C = {c1, c2, . . . , cm} (e.g., Name,
Date), and (2) a collection of table schemas S =
{S1, S2, . . . , Sk}, where each schema Si = {h1, h2, . . . }
is a list of column headers selected from C. For example,
Si = {”Country”, ”Locality”} represents a table with two
columns labeled as “Country” and “Locality”. The learning
phase uses only these schema-level inputs to build a model
Ma, without access to any actual table content.

Deployment Phase: Given a new table T without headers
and candidate type set C, model Ma (from learning phase)
predicts a semantic type from C for each column in T .

3. ZTab
ZTab works in two phases. In the Learning Phase, it fine-
tunes an open-source LLM Ma, called the annotation LLM,

Algorithm 1 Learning Phase of ZTab
Require: Set of classes C, Table schema collection S, Annotation

LLM Ma, Description LLM Md, Schema sampling ratio r,
Class description size e, row size k

Ensure: Fine-tuned LLM Ma

{step 1: class descriptions generation}
1: D← empty list
2: for each class ci in C do
3: d← ClassDescriptionGeneration(ci, e, Md)
4: Add d to D
5: end for
{Step 2: handling missing classes}

6: Cmissing ← C \ {
⋃

Si∈S Si}
7: Smanual ← {{ci} : ci ∈ Cmissing}
8: S← S ∪ Smanual

{Step 3: fine-tuning}
9: for each epoch do

10: Srand ← randomly select r percent of S
11: Prompts, Labels← ∅
12: for each Si = {h1, ..., hn} in Srand do
13: Tablei(t1, ..., tn)← TablePopulation(Si, D, k)
14: prompti←PromptConstruction(Tablei, C)
15: Add prompti to Prompts
16: Add labeli = (h1, ..., hn) to Labels
17: end for
18: for each batch (Promptsbatch, Labelsbatch) do
19: Outputs←Ma(Promptsbatch)
20: Loss← Loss(Outputs, Labelsbatch)
21: Ma ← UpdateWeights(Ma, Loss)
22: end for
23: end for
24: return Ma

using structured fine-tuning pseudo-tables. The fine-tuning
pseudo-tables are constructed based on example values of
the semantic types in C, called class descriptions, and the ta-
ble schemas in S. For each class c in C, the class description
of c is a set of representative instances of c and is generated
using another LLM Md, called the description LLM. The
fine-tuning pseudo-tables serve as the training data to fa-
miliarize the annotation LLM with structured tabular data.
By generating fine-tuning pseudo-data from leveraging the
LLM Md pre-trained on the world corpus, ZTab addresses
the data availability challenge. In the Prediction Phase, the
fine-tuned LLM Ma is used to predict semantic types of
columns in new tables. Let us detail these phases.

3.1. Learning

The learning phase, described in Algorithm 1, consists of
three main steps described below:

Class description generation: For each semantic type
ci ∈ C, we query an LLM Md, the description LLM, to
generate up to e examples of ci serving as its class descrip-
tion. The detail is captured by the function ClassDescrip-
tionGeneration(ci, e, Md) explained shortly. These class
descriptions, denoted by D, are used to generate fine-tuning
pseudo-tables during the fine-tuning step.
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Handling missing classes: This step creates one table
schema for each class in C not contained in any table
schema Si ∈ S and add these schemas to S. The inten-
tion is to ensure that all semantic types/classes in C are
represented in the fine-tuning process.

Fine-tuning: This step fine-tunes the annotation LLM Ma

in multiple epochs. During each epoch, it randomly selects
r percent of the table schemas from S, denoted Srand, and
constructs a pseudo-table Tablei of k rows for each schema
Si in Srand, done by the function TablePopulation(Si, D,
k). It then represents Tablei by creating one prompt for
each column in the table, done by the function PromptCon-
struction(Tablei, C), and stores the prompts in prompti.
The prompts Prompt and the table headers Labels for the
schemas in Srand are used to fine-tune Ma (i.e., lines 18-22),
on a batch basis as in (Brown et al., 2020). The fine-tuning
cost is determined by the schema sampling ratio r and the
row size k. A small value of k is often sufficient for good
performance of ZTab. More details are given in appendix A.

Below, we explain the bold face functions in Algorithm 1.

ClassDescriptionGeneration(ci, e, Md): For the class ci,
the description LLM Md is provided with the prompt ”Gen-
erate e real-world examples of the semantic type ci com-
monly found in web tables.”, where e is the class description
size. In response, Md generates up to e instances for the
class ci. For example, with ci being the class ’City’ and
e = 50, Md will generate up to 50 city names to form the
class description for the class City. Note that Md can be
replaced with any knowledge base such as DBpedia or Wiki-
data; we choose an LLM pre-trained on the world corpus
for better generalization of models.

TablePopulation(Si, D, k): This function populates the
table schema Si by randomly selecting k values from the
corresponding class description in D for each semantic type
in Si. Thanks to the random selection of values from the
class description, for the same schema Si selected in differ-
ent epochs, the table generated for Si could be very differ-
ent, allowing the fine-tuning to encounter a diverse range of
training examples, which is essential for a better model gen-
eralization. An alternative is to generate tables (one table
at a time) using LLMs directly, but it tends to produce low-
quality tables as discussed in (Berkovitch et al., 2024). Our
fine-tuning benefits from a large number of diverse tables
that are generated efficiently from class descriptions.

PromptConstruction (Table, C): For a given Table =
(t1, t2, . . . , tn) with n columns and k rows and a collection
of semantic types C = {c1, c2, . . . , cm}, this function gen-
erates n prompts, one for each column in Table. Figure 1
shows the prompt generated for a column ti ∈ Table, which
has four parts: (1) Introduction: The general instruction
about the table structure. (2) Table Presentation: The table

These are values of columns in a table. Each column
starts with Column: followed by the values of that
column. First, look at all the columns to understand the
context of the table.

Column 1: t11, t12, . . . , t1k
Column 2: t21, t22, . . . , t2k
...

Column n: tn1, tn2, . . . , tnk

Your task is to annotate the Target Column using one
semantic type that matches the values of the Target
Column and the context of the table from the following
list: c1, c2, . . . , cm.

Target Column: ti1, ti2, . . . , tik
Semantic Type:

Figure 1. The prompt for the target column ti in a table with n
columns and k rows.

Algorithm 2 Prediction Phase of ZTab
Require: New Table T = (t1, t2, . . . , tn), set of semantic types/-

classes C, Fine-tuned Model Ma from Algorithm 1
Ensure: Predicted Class for Each Column in T
1: Prompts←PromptConstruction(T , C)
2: for each prompti corresponding to column ti in Prompts

do
3: Outputi ←M(prompti)

{label remapping}
4: hi ← arg max

cj∈C
cosine similarity(E(Ma, Outputi), E(Ma, cj))

5: end for
6: return (h1, ..., hn)

data presented column-by-column. (3) Task Description:
The instruction for the LLM to annotate the target column.
(4) Target Column: The target column for which the model
is expected to predict the semantic type. While each prompt
focuses on prediction for one target column, the entire table
is presented in each prompt to help infer the target column’s
semantic type in the context of other columns in the table.

3.2. Prediction

Algorithm 2 presents the prediction phase. In this phase, the
fine-tuned model Ma produced by Algorithm 1 is applied
to a new table T without column headers to annotate its
columns using the semantic types in C. First, PromptCon-
struction (T , C) is used to generate the prompts for the
columns in T . Ma(prompti) denotes the tokens generated
by Ma for prompti, which may not be a member of C.
label remapping is used to map the generated tokens to the
most similar class in Cpred, i.e., hi, where similarity is mea-
sured based on the embeddings E(Ma, ·) extracted from
Ma. Finally, (h1, · · · , hn) are returned as the predicted
semantic types for the columns (t1, · · · , tn).
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Zero-shot Few-shot Supervised Learning
(Ours) Baseline Reference Reference

Dataset ZTab ZTabw/o S ArcheTypeZS GPTcol-ZS GPTtable-ZS Chorous GPTcol-FS GPTtable-FS Doduo ArcheTypeFT

SOTABsch 78.0 72.1 40.1 55.5 64.0 60.3 65.4 68.2 86.3 85.1
SOTABsch-s 76.2 72.1 40.1 55.5 64.0 60.3 65.4 68.2 81.1 83.0
SOTABdbp 78.5 74.2 48.3 59.4 70.0 64.8 67.0 72.4 85.2 83.6
T2D 96.2 93.9 81.6 87.9 89.4 83.4 90.1 92.1 91.1 88.0
Average 82.2 78.1 52.5 64.6 71.8 67.2 72.0 75.2 85.9 84.9

Table 1. Micro-F1 score of different methods.

4. Evaluation Method
Datasets: We use four datasets: T2D (Chen et al., 2019),
SOTABsch, SOTABsch-s, and SOTABdbp (sot, 2023), summa-
rized in Table 2. For each dataset, the schema collection S
is extracted by including the table header (i.e., the list of
semantic types for columns in the table) of each training
table, with duplicates preserved and C set to class list of
dataset.

Dataset # Class (C) # Training Tables # Test Tables
SOTABsch 82 44,769 609
SOTABsch-s 82 10,631 609
SOTABdbp 46 37,631 279
T2D 37 160 109

Table 2. Summary of datasets.

Metric: We evaluate the performance by the micro F1-score
collected on test tables, following previous works (Feuer
et al., 2024; Korini & Bizer, 2023; 2024). All the F1-scores
are multiplied by 100 (e.g., 80% is written as 80).

ZTab: Our main model, ZTab, uses ChatGPT-3.5 as the
description model (Md) and Qwen-7B (Bai et al., 2023) as
the annotation model (Ma). Qwen-7B is fine-tuned for 20
epochs using LoRA (rank 256), with batch size 1, gradient
accumulation 8, and learning rate 1×10−5. We set the class
description size to e = 500, row size to k = 3, and schema
sampling rate r to 2.5% for SOTAB datasets and 100% for
T2D. Further analysis is provided in Appendix A.

ZTabw/o S: This variant removes the use of the schema
collection S and relies only on the class descriptions D.
It creates single-column pseudo-tables in Step 2 of Algo-
rithm 1, without leveraging the multi-column structure that
ZTab uses during fine-tuning.

Baselines and References: Zero-shot models, ArcheTypeZS
(Feuer et al., 2024), GPTcol-ZS, GPTtable-ZS (Korini & Bizer,
2023), and Chorous (Kayali et al., 2024), serve as our
baselines, as they share the same zero-shot constraint as
ZTab. In addition, we include few-shot models (GPTcol-FS,
GPTtable-FS (Korini & Bizer, 2023)) and supervised models
(Doduo (Suhara et al., 2022), ArcheTypeFT (Feuer et al.,
2024)) as references to highlight the performance gap be-
tween ZTab and methods that rely on labeled training data.
These reference models are not considered baselines, as they

fall outside the zero-shot setting.

5. Results
Table 1 details the comparison on individual datasets. ZTab
outperforms the best zero-shot model (GPTtable-ZS) by 10.4%
and outperforms the best few-shot model (GPTtable-FS) by
7%. While supervised models slightly outperform ZTab due
to their access to complete user-provided training data, ZTab
operates without depending on any user-provided tabular
training data same as zero-shot models.

Roughly speaking, the improvement of ZTab over zero-shot
baselines increases as the number of classes in the dataset
increases. This highlights a common difficulty of existing
LLM based zero-shot models in dealing with datasets with a
large number of classes where semantically similar classes
can confuse the model. ZTab addresses this ambiguity by
providing a few examples of each class via class descrip-
tions, demonstrating its ability to resolve class overlap and
improve accuracy.

Compared to the zero-shot baselines, ZTab pays in fine-
tuning time: approximately 1 hour for T2D, and approxi-
mately 8, 12, and 18 hours for SOTABsch-s, SOTABdbp, and
SOTABsch, respectively. This cost is justifiable by the large
performance gain (at least 10.4%) over zero-shot baselines.

ZTab outperforms ZTabw/o S by leveraging both class de-
scriptions and the table schema collection. This allows the
model to utilize the global context of the table during predic-
tion, leading to improved performance across all datasets.

6. Conclusion
We presented ZTab, a novel zero-shot framework for col-
umn type annotation designed to overcome the limitations of
existing zero-shot models. ZTab has the performance close
to fully supervised models but requires no labeled training
data, similar to zero-shot learning. These performances are
achieved by using two LLMs, one LLM is used for generat-
ing pseudo-fine-tuning tables from provided semantic types
and table schemas, and one open-source LLM is fine-tuned
using the pseudo-tables, similar to supervised learning. This
fine-tuning allows the LLM to effectively learn the structure
of tabular data and distinguish between similar classes.
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A. Analysis
In this section, we analyze the effect of different components of ZTab, namely, class description size e, schema sampling
rating r, prompt design, base LLM M , Description LLM Md, and row size k.

Class Description Size: Table 3 presents the performance of ZTab under varying class description sizes e, i.e., 500 (i.e.,
All), 50, 25, 12, and 6. The best performance is achieved with the full size, as more examples of classes lead to more diverse
pseudo-training tables, which improves the model’s ability to generalize. However, ZTab demonstrates robust performance
even with as few as 6 examples per class, by leveraging the extensive knowledge encoded in LLM’s pre-training on large
textual corpora. For the best performance, we recommend the full class description size e = 500 for more example diversity.

Class Description Size
Dataset All 50 25 12 6
SOTABsch 78.0 76.9 76.4 75.7 75.1
SOTABsch-s 76.2 74.2 74.3 73.5 72.8
SOTABdbp 78.5 76.4 76.2 75.3 75.1
T2D 96.2 95.9 95.4 95.6 95.2

Table 3. Micro-F1 score for ZTab with different class description sizes e.

Prompt Design: We explore alternative table presentations and prediction methods of the PromptConstruction function.
The table presentation can be either column-by-column or row-by-row (see Fig 2), and the prediction method can be either
predicting all columns together or predicting one target column at a time. Table 4 compares the performance of ZTab with
these alternative prompt designs.

Table:

| Column 1 | Column 2 | ... | Column n |
| t11 | t21 | ... | tn1 |
| t12 | t22 | ... | tn2 |

...
| t1k | t2k | ... | tnk |

Figure 2. Row-by-row presentation of a table with n columns and k rows.

The best performance is observed with the column-by-column presentation and target column prediction. The column-by-
column presentation allows ZTab to focus on the context of each column individually, which simplifies the learning and leads
to more accurate results because the values within each column present examples of the same semantic type. In contrast, the
row-by-row presentation introduces values of different semantic types on each row, which makes it harder for the row-based
reading to capture the relationships between columns. When predicting all columns together, ZTab’s performance tends
to decrease, particularly when using smaller annotation LLMs like Mistral, because the model may generate an incorrect
number of semantic types for a table (e.g., predicting four or six types for a table with five columns). Furthermore, even if
ZTab detects the correct semantic types, it may not align them correctly with the corresponding columns.

Present Predict SOTABsch SOTABsch-s SOTABdbp T2D
col-by-col target 78.0 76.2 78.5 96.2
col-by-col all 74.0 73.5 75.2 94.4
row-by-row target 74.3 74.1 74.3 95.1
row-by-row all 71.5 71.1 72.0 92.4

Table 4. Micro-F1 score for ZTab using different prompt designs.

Annotation Models Ma: Table 5 compares the performance of ZTab based on various open-source annotation LLMs
Ma: Doduo (BERT, 110M parameters), Phi3-mini (3.8B parameters), LLaMA3 (8B parameters), Mistral (7B parameters),
and Qwen (7B parameters). To have full control over the fine-tuning process, we only utilize open-source LLMs as the
annotation models. In general, larger models achieve higher micro-F1 scores. In the absence of user-provided training data
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and when relying on small examples of semantic types (i.e., class descriptions), a powerful annotation LLM helps capture
general knowledge needed for accurate column type annotation in the zero-shot setting. Compared to the zero-shot baselines
in Table 1, which use the closed-source GPT-3.5-Turbo-1106 model (whose parameter count is unpublished), the ZTabs
based on the above open-source and probably smaller models (except for Doduo) are highly competitive due to the effective
fine-tuning using the pseudo-data generated by our approach.

Dataset Qwen Mistral LLama3 Phi3 Doduo
SOTABsch 78.0 75.3 73.1 70.0 51.5
SOTABsch-s 76.2 74.1 71.9 68.7 49.7
SOTABdbp 78.5 75.2 68.6 70.1 45.3
T2D 96.2 93.5 86.4 90.7 74.4

Table 5. Micro-F1 score for ZTab of different base models M .

Schema Sampling Ratio: Table 6 shows the number of schemas and unique schemas of different datasets. Table 7 shows
how ZTab performs with different schema sampling ratios r. We consider the three SOTAB datasets that have a large table
schema collection S.

The worst performance occurs at the small sampling ratio of 1% due to too few schemas used in each epoch. Increasing
to 2.5% improves the results but a further increase provides little additional benefit. This is because many schemas in S
are redundant (see Table 6), sampling all of them is unnecessary and the 2.5% sampling ratio captures enough variety of
schemas over the specified number of epochs and provides wide and most likely all class coverage.

Dataset #Schemas #Unique Schemas
T2D 160 64
SOTABsch 44,769 4,189
SOTABsch-s 10,631 1,643
SOTABdbp 37,631 1,780

Table 6. Number of total and unique schemas in SOTAB datasets.

Schema sampling ratio
Dataset 10% 7.5% 5% 2.5% 1%

SOTABsch 77.5 77.3 76.9 78.0 74.6
SOTABsch-s 76.4 75.8 75.9 76.2 73.8
SOTABdbp 78.2 77.9 77.3 78.5 74.3

Table 7. Micro-F1 score for ZTab using different schema sampling ratios r.

Description Model Md: In all the experiments, ZTab employs ChatGPT-3.5 as the description model Md. Both open-source
and closed-source LLMs can be used for Md, however, stronger LLMs (e.g., GPT-3.5) are preferred to ensure high-quality
and semantically rich class descriptions.

Row Size k: Until now, all experiments for ZTab are based on k = 3, i.e., all pseudo-tables have 3 rows. Larger k values
add little benefit in performance but increases computational cost.
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