Efficient Table Generation for Zero-Shot Column Type Annotation

Ehsan Hoseinzade ! Ke Wang '

Abstract

This study addresses the challenge of automat-
ically detecting semantic column types in rela-
tional tables, a key task in many real-world appli-
cations. Zero-shot modeling eliminates the need
for labeled tabular data, making it ideal for sce-
narios where data collection is costly or restricted
due to issues such as privacy concerns. However,
existing zero-shot models often perform poorly
when dealing with a large number of semantic
types and show limited understanding of tabu-
lar structure. We propose an efficient zero-shot
table generation approach that constructs struc-
tured pseudo-tables using publicly available data.
Fine-tuning an open-source LLM on these syn-
thetic tables enables it to better capture tabular
structure and improve column type annotation.
Experiments show that our method outperforms
state-of-the-art zero-shot and few-shot models by
at least 10.4% and 7%, respectively.

1. Introduction

Column type annotation, i.e., identifying or tagging the se-
mantic types of columns, or classes, inside a table, is crucial
for different information retrieval tasks like data integra-
tion (Hai et al., 2023), data cleaning (Limaye et al., 2010;
Kandel et al., 2011), schema matching (Rahm & Bernstein,
2001), and data discovery (Fernandez et al., 2018b;a). One
emerging application, for example, is automatically tagging
sensitive columns in a table, such as personal information,
before deciding what information can be released.

Supervised learning-based methods (Hulsebos et al., 2019;
Zhang et al., 2019; Deng et al., 2022; Suhara et al., 2022;
Sun et al., 2023; Hoseinzade & Wang, 2024) have shown
promising results. These models primarily leverage BERT’s
pre-training on large-scale textual corpora, fine-tuning it
for labeled tabular training data by adding task-specific out-

!Simon Fraser University, Burnaby, Canada. Correspondence
to: Ehsan Hoseinzade <ehoseinz@sfu.ca>.

Proceedings of the 1°* ICML Workshop on Foundation Models for
Structured Data, Vancouver, Canada. 2025. Copyright 2025 by
the author(s).

put layers to classify each column into a predefined set of
semantic types. However, these models are highly depen-
dent on labeled tabular training data. Collecting high quality
labeled tabular training data is a resource-intensive and time-
consuming process. In many cases, such data might not exist
in the required format or it could be confidential because
privacy concerns and regulations such as HIPAA and GDPR
impose restrictions on sharing sensitive data in domains
like healthcare, finance, and government, making it nearly
impossible to collect and use training data in these fields.

Large Language Models (LLMs) have been proposed as a
solution to data availability challenges to perform zero-shot
column type annotation without the need for labeled tabular
datasets (Kayali et al., 2024; Korini & Bizer, 2023; Feuer
et al., 2024). These models, pre-trained on extensive textual
corpora are attractive for scenarios where labeled data is
difficult to obtain. However, despite their potential, current
LLM-based zero-shot models for column type annotation
suffer from the following limitations:

Performance: LLM performance in zero-shot classification
often falls short, particularly when dealing with closely re-
lated classes like “addressRegion,” addressLocality,” ’stree-
tAddress,” and "PostalAddress” (Feuer et al., 2024). These
models struggle to distinguish such classes without learning
subtle differences between them, unlike supervised models

that rely on labeled tabular data for this purpose.

99 99

Structure: LLMs, being primarily trained on unstructured
textual data, struggle to learn the structural relationships
between columns within tables (Li et al., 2024; Sui et al.,
2024). So, zero-shot models based on LLMs are less effec-
tive at capturing table-specific details like values in the same
column or rows, unlike supervised models, which directly
learn them from tabular training data.

The question is how to design a zero-shot learning model
that can understand different classes and table structures
without the need for user-provided tabular training data.
We propose a novel zero-shot framework, ZTab, that lever-
ages two LLMs to meet these requirements. ZTab uses a
description LLM to generate representative sample values,
called class descriptions, for each semantic type (e.g., Coun-
try: Canada, UK, France), and use class descriptions to
construct pseudo-tables labeled by column semantic types.
Unlike prior zero-shot methods that rely solely on inference-

Efficient Table Generation for Zero-Shot Column Type Annotation

time prompting, ZTab fine-tunes an annotation LLLM using
these pseudo-tables to learn differences of classes. ZTab ad-
dresses the above challenges as follows. For performance,
like supervised learning, the fine-tuning on the pseudo-
tables helps better distinguish between similar semantic
types, and like zero-shot learning, no user-provided training
data is needed. For structure, the fine-tuning on pseudo-
tables with realistic column combinations and value pat-
terns allows the model to learn both relationships between
columns and typical distributions within columns.

Our key contributions are as follows:

* Efficient and diverse fine-tuning table generation:
Instead of directly generating one table at a time
from LLMs, which often produces low-quality tables
(Berkovitch et al., 2024), ZTab generates class descrip-
tions using an LLM and constructs fine-tuning pseudo-
tables using class descriptions. This approach allows
efficient generation of a large number of diverse tables
needed for fine-tuning and robust generalization of the
annotation LLM.

* Improved zero-shot performance: ZTab’s fine-tuning
on an LLLM using pseudo-tables improves the existing
zero-shot performance by at least 10.4% on average
over multiple datasets (Table 1). The performance is
measured by micro-F1 score.

2. Problem Definition

We study data generation-based zero-shot column type
annotation, where the goal is to assign semantic
types (c1,¢2,...,¢,) to the columns of a table T =
(t1,t2,...,t,), with each ¢; from a predefined set C, with-
out using labeled training data. The solution has two phases:
a learning phase that builds a model from schema-level su-
pervision, and a deployment phase that applies it to annotate
given tables.

Learning Phase: The inputs are: (1) a predefined set
of semantic types C = {c1,¢a,...,¢m} (e.g., Name,
Date), and (2) a collection of table schemas S =
{51,853, ..., Sk}, where each schema S; = {hy,ha,...}
is a list of column headers selected from C'. For example,
S; = {"Country”, "Locality”} represents a table with two
columns labeled as “Country” and “Locality”. The learning
phase uses only these schema-level inputs to build a model
M, without access to any actual table content.

Deployment Phase: Given a new table 7" without headers
and candidate type set C', model M, (from learning phase)
predicts a semantic type from C' for each column in 7.

3. ZTab

ZTab operates in two phases. In the Learning Phase, it
fine-tunes an open-source LLM M, (the annotation LLM)

Algorithm 1 Learning Phase of ZTab

Require: Set of classes C, Table schema collection .S, Annotation
LLM M,, Description LLM Mg, Schema sampling ratio 7,
Class description size e, row size k

Ensure: Fine-tuned LLM M,

{step 1: class descriptions generation}
1: D < empty list
2: for each class ¢; in C do

d <+ ClassDescriptionGeneration(c;, e, M)

Adddto D

: end for

{Step 2: handling missing classes}
: Cmissing <~ C\ {USiGS Sz}
: Srnunua,l — {{Cl} S Cmissing}
8: S <+ SU Shmanual
{Step 3: fine-tuning}
9: for each epoch do

10: Srand < randomly select r percent of S

11: Prompts, Labels < ()

12: foreach S; = {hi,...,An} in Srena do

AN

N

13: Table;(t1, ..., tn) < TablePopulation(S;, D, k)
14: prompt; <—PromptConstruction(T'able;, C)
15: Add prompt; to Prompts

16: Add label; = (hi, ..., hy) to Labels

17: end for

18: for each batch (Promptsvaich, Labelspach) do
19: Outputs < Mq(Promptssach)

20: Loss < Loss(Outputs, Label Spaecn)

21: M, + UpdateW eights(Ma, Loss)

22: end for

23: end for

24: return M,

using pseudo-tables constructed from table schemas in S
and example values for semantic types in C, called class
descriptions. These class descriptions are generated by an-
other LLM M (the description LLM), pretrained on a broad
corpus. Instead of generating full tables, ZTab uses M only
to produce representative values for each type, addressing
the lack of labeled data. Pseudo-tables are then formed by
populating the schemas in S with these values. This use
of synthetic yet structured pseudo-tables during fine-tuning
enables M, to learn type annotation in tabular contexts and
generalize to unseen tables in a zero-shot setting. In the Pre-
diction Phase, the fine-tuned M, predicts semantic types
for columns in given tables.

Let us detail these phases.

3.1. Learning

The learning phase, described in Algorithm 1, consists of
three main steps described below:

Class description generation: For each semantic type
¢; € C, we query an LLM M, the description LLM, to
generate up to e examples of ¢; serving as its class descrip-
tion. The detail is captured by the function ClassDescrip-
tionGeneration(c;, e, M) explained shortly. These class

Efficient Table Generation for Zero-Shot Column Type Annotation

descriptions, denoted by D, are used to generate fine-tuning
pseudo-tables during the fine-tuning step.

Handling missing classes: This step creates one table
schema for each class in C not contained in any table
schema S; € S and add these schemas to S. The inten-
tion is to ensure that all semantic types/classes in C are
represented in the fine-tuning process.

Fine-tuning: This step fine-tunes the annotation LLM M,
in multiple epochs. During each epoch, it randomly selects
r percent of the table schemas from S, denoted .S,.4,4, and
constructs a pseudo-table T'able; of k rows for each schema
S; in S;-4n4, done by the function TablePopulation(S;, D,
k). It then represents T'able; by creating one prompt for
each column in the table, done by the function PromptCon-
struction(Table;, C'), and stores the prompts in prompt;.
The prompts Prompt and the table headers Labels for the
schemas in S,.,,,4 are used to fine-tune M, (i.e., lines 18-22),
on a batch basis as in (Brown et al., 2020). The fine-tuning
cost is determined by the schema sampling ratio and the
row size k. A small value of k is often sufficient for good
performance of ZTab. More details are given in appendix A.

Below, we explain the bold face functions in Algorithm 1.

ClassDescriptionGeneration(c;, ¢, M;): For the class c;,
the description LLM M is provided with the prompt ”Gen-
erate e real-world examples of the semantic type c; com-
monly found in web tables.”, where e is the class description
size. In response, M, generates up to e instances for the
class ¢;. For example, with ¢; being the class *City’ and
e = 50, M, will generate up to 50 city names to form the
class description for the class City. Note that M, can be
replaced with any knowledge base such as DBpedia or Wiki-
data; we choose an LLM pre-trained on the world corpus
for better generalization of models.

TablePopulation(S;, D, k): This function populates the
table schema S; by randomly selecting k& values from the
corresponding class description in D for each semantic type
in S;. Thanks to the random selection of values from the
class description, for the same schema S; selected in differ-
ent epochs, the table generated for .S; could be very differ-
ent, allowing the fine-tuning to encounter a diverse range of
training examples, which is essential for a better model gen-
eralization. An alternative is to generate tables (one table
at a time) using LLMs directly, but it tends to produce low-
quality tables as discussed in (Berkovitch et al., 2024). Our
fine-tuning benefits from a large number of diverse tables
that are generated efficiently from class descriptions.

PromptConstruction (T'able, C): For a given Table =
(t1,t2,...,1t,) with n columns and k rows and a collection
of semantic types C' = {c1, ca, . .., ¢m }, this function gen-
erates n prompts, one for each column in T'able. Figure 1
shows the prompt generated for a column ¢; € T'able, which

These are values of columns in a table. Each column
starts with Column: followed by the values of that
column. First, look at all the columns to understand the
context of the table.

Column 1: tll., tig,... 71‘/1]@
Column 2: ta1, taz, ..., tog
Column n: t,1,tn2, ..., tnk
Target Column: t;1,ti2, ..., tik

Semantic Type:

Figure 1. The prompt for the target column ¢; in a table with n
columns and k rows.

Algorithm 2 Prediction Phase of ZTab

Require: New Table T' = (t1,t2, ..., tn), set of semantic types/-
classes C, Fine-tuned Model M, from Algorithm 1
Ensure: Predicted Class for Each Column in T’
Prompts <PromptConstruction(T’, C)
for each prompt; corresponding to column ¢; in Prompts
do
3: Output; + M(prompt;)
{label remapping}

DN —

4: h; < arg max cosine_similarity(E'(M,, Output;), E(M,, c;))

c; €
end for
return (hi, ..., hy)

aw

has four parts: (1) Introduction: The general instruction
about the table structure. (2) Table Presentation: The table
data presented column-by-column. (3) :
The instruction for the LLM to annotate the target column.
(4) Target Column: The target column for which the model
is expected to predict the semantic type. While each prompt
focuses on prediction for one target column, the entire table
is presented in each prompt to help infer the target column’s
semantic type in the context of other columns in the table.

3.2. Prediction

Algorithm 2 presents the prediction phase. In this phase, the
fine-tuned model M, produced by Algorithm 1 is applied
to a new table T' without column headers to annotate its
columns using the semantic types in C'. First, PromptCon-
struction (7, C) is used to generate the prompts for the
columns in T'. M, (prompt;) denotes the tokens generated
by M, for prompt;, which may not be a member of C.
label remapping is used to map the generated tokens to the
most similar class in Cp,¢q, i.€., h;, where similarity is mea-
sured based on the embeddings E(M,,-) extracted from
M,. Finally, (hy,--- ,h,) are returned as the predicted
semantic types for the columns (¢1,- - ,t,).

Efficient Table Generation for Zero-Shot Column Type Annotation

Zero-shot Few-shot Supervised Learning
(Ours) Baseline Reference Reference

Dataset ZTab ZTaby,, s | ArcheTypezs GPTeozs GPTupezs Chorous | GPTeops GPTupers | Doduo ArcheTypepr
SOTABch 78.0 72.1 40.1 55.5 64.0 60.3 65.4 68.2 86.3 85.1
SOTABgehs | 76.2 72.1 40.1 55.5 64.0 60.3 65.4 68.2 81.1 83.0
SOTABgpp 78.5 74.2 48.3 59.4 70.0 64.8 67.0 72.4 85.2 83.6
T2D 96.2 93.9 81.6 87.9 89.4 83.4 90.1 92.1 91.1 88.0
Average 82.2 78.1 52.5 64.6 71.8 67.2 72.0 75.2 85.9 84.9

Table 1. Micro-F1 score of different methods.
4. Evaluation Method fall outside the zero-shot setting.

Datasets: We use four datasets: T2D (Chen et al., 2019),
SOTABgch, SOTABh.s, and SOTABgy,, (sot, 2023), summa-
rized in Table 2. For each dataset, the schema collection S
is extracted by including the table header (i.e., the list of
semantic types for columns in the table) of each training
table, with duplicates preserved and C' set to class list of
dataset.

Dataset \ # Class (C') # Training Tables # Test Tables
SOTAB,, 82 44,769 609
SOTABhs 82 10,631 609
SOTAB gy 46 37,631 279
T2D 37 160 109

Table 2. Summary of datasets.

Metric: We evaluate the performance by the micro F1-score
collected on test tables, following previous works (Feuer
et al., 2024; Korini & Bizer, 2023; 2024). All the F1-scores
are multiplied by 100 (e.g., 80% is written as 80).

ZTab: Our main model, ZTab, uses ChatGPT-3.5 as the
description model (M) and Qwen-7B (Bai et al., 2023) as
the annotation model (M,). Qwen-7B is fine-tuned for 20
epochs using LoRA (rank 256), with batch size 1, gradient
accumulation 8, and learning rate 1 x 10>, We set the class
description size to e = 500, row size to k = 3, and schema
sampling rate r to 2.5% for SOTAB datasets and 100% for
T2D. Further analysis is provided in Appendix A.

ZTaby,, s: This variant removes the use of the schema
collection S and relies only on the class descriptions D.
It creates single-column pseudo-tables in Step 2 of Algo-
rithm 1, without leveraging the multi-column structure that
ZTab uses during fine-tuning.

Baselines and References: Zero-shot models, ArcheTypezs
(Feuer et al., 2024), GPT.1.zs, GPTpie-zs (Korini & Bizer,
2023), and Chorous (Kayali et al., 2024), serve as our
baselines, as they share the same zero-shot constraint as
ZTab. In addition, we include few-shot models (GPT.,.gs,
GPTapiers (Korini & Bizer, 2023)) and supervised models
(Doduo (Suhara et al., 2022), ArcheTyperr (Feuer et al.,
2024)) as references to highlight the performance gap be-
tween ZTab and methods that rely on labeled training data.
These reference models are not considered baselines, as they

5. Results

Table 1 details the comparison on individual datasets. ZTab
outperforms the best zero-shot model (GPT ,pjezs) by 10.4%
and outperforms the best few-shot model (GPTy,pje.rs) by
7%. While supervised models slightly outperform ZTab due
to their access to complete user-provided training data, ZTab
operates without depending on any user-provided tabular
training data same as zero-shot models.

Roughly speaking, the improvement of ZTab over zero-shot
baselines increases as the number of classes in the dataset
increases. This highlights a common difficulty of existing
LLM based zero-shot models in dealing with datasets with a
large number of classes where semantically similar classes
can confuse the model. ZTab addresses this ambiguity by
providing a few examples of each class via class descrip-
tions, demonstrating its ability to resolve class overlap and
improve accuracy.

Compared to the zero-shot baselines, ZTab pays in fine-
tuning time: approximately 1 hour for T2D, and approxi-
mately 8, 12, and 18 hours for SOTABp.s, SOTABgyp, and
SOTABg, respectively. This cost is justifiable by the large
performance gain (at least 10.4%) over zero-shot baselines.

ZTab outperforms ZTab,,, s by leveraging both class de-
scriptions and the table schema collection. This allows the
model to utilize the global context of the table during predic-
tion, leading to improved performance across all datasets.

6. Conclusion

We presented ZTab, a novel zero-shot framework for col-
umn type annotation designed to overcome the limitations of
existing zero-shot models. ZTab has the performance close
to fully supervised models but requires no labeled training
data, similar to zero-shot learning. These performances are
achieved by using two LLMs, one LLM is used for generat-
ing pseudo-fine-tuning tables from provided semantic types
and table schemas, and one open-source LLM is fine-tuned
using the pseudo-tables, similar to supervised learning. This
fine-tuning allows the LLM to effectively learn the structure
of tabular data and distinguish between similar classes.

Efficient Table Generation for Zero-Shot Column Type Annotation

References

Sotab dataset, 2023. URL https://
webdatacommons.org/structureddata/
sotab/v2/.

Bai, J., Bai, S., Chu, Y., Cui, Z., Dang, K., Deng, X., Fan,
Y., Ge, W., Han, Y., Huang, F, et al. Qwen technical
report. arXiv preprint arXiv:2309.16609, 2023.

Berkovitch, Y., Koutrika, G., Kraska, T., and Kim, H. J. Gen-
erating tables from the parametric knowledge of language
models. arXiv preprint arXiv:2406.10922, 2024.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.

Advances in neural information processing systems, 33:
1877-1901, 2020.

Chen, J., Jiménez-Ruiz, E., Horrocks, I., and Sutton, C.
Learning semantic annotations for tabular data. In Pro-
ceedings of the 28th International Joint Conference on
Artificial Intelligence, pp. 2088-2094, 2019.

Deng, X., Sun, H., Lees, A., Wu, Y., and Yu, C. Turl: Table
understanding through representation learning. ACM
SIGMOD Record, 51(1):33-40, 2022.

Fernandez, R. C., Abedjan, Z., Koko, F., Yuan, G., Madden,
S., and Stonebraker, M. Aurum: A data discovery system.
In 2018 IEEE 34th International Conference on Data
Engineering (ICDE), pp. 1001-1012. IEEE, 2018a.

Fernandez, R. C., Mansour, E., Qahtan, A. A., Elmagarmid,
A., llyas, 1., Madden, S., Ouzzani, M., Stonebraker, M.,
and Tang, N. Seeping semantics: Linking datasets using
word embeddings for data discovery. In 2018 IEEE 34th
International Conference on Data Engineering (ICDE),
pp- 989-1000. IEEE, 2018b.

Feuer, B., Liu, Y., Hegde, C., and Freire, J. Archetype: A
novel framework for open-source column type annotation
using large language models. Proceedings of the VLDB
Endowment, 17(9):2279 — 2292, 2024.

Hai, R., Koutras, C., Quix, C., and Jarke, M. Data lakes: A
survey of functions and systems. /IEEE Transactions on
Knowledge and Data Engineering, 35(12):12571-12590,
2023.

Hoseinzade, E. and Wang, K. Graph neural network ap-
proach to semantic type detection in tables. In Pacific-
Asia Conference on Knowledge Discovery and Data Min-
ing, pp. 121-133. Springer, 2024.

Hulsebos, M., Hu, K., Bakker, M., Zgraggen, E., Satya-
narayan, A., Kraska, T., Demiralp, C., and Hidalgo, C.

Sherlock: A deep learning approach to semantic data type
detection. In Proceedings of the 25th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data
Mining, pp. 1500-1508, 2019.

Kandel, S., Paepcke, A., Hellerstein, J., and Heer, J. Wran-
gler: Interactive visual specification of data transforma-
tion scripts. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 3363-3372,
2011.

Kayali, M., Lykov, A., Fountalis, I., Vasiloglou, N., Olteanu,
D., and Suciu, D. Chorus: Foundation models for unified
data discovery and exploration. Proceedings of the VLDB
Endowment, 17(8):2104-2114, 2024.

Korini, K. and Bizer, C. Column type annotation using
chatgpt. arXiv preprint arXiv:2306.00745, 2023.

Korini, K. and Bizer, C. Column property annotation using
large language models. Crete, Greece, 2024.

Li, P, He, Y., Yashar, D., Cui, W., Ge, S., Zhang, H., Rifin-
ski Fainman, D., Zhang, D., and Chaudhuri, S. Table-gpt:
Table fine-tuned gpt for diverse table tasks. Proceedings
of the ACM on Management of Data, 2(3):1-28, 2024.

Limaye, G., Sarawagi, S., and Chakrabarti, S. Annotating
and searching web tables using entities, types and rela-
tionships. Proceedings of the VLDB Endowment, 3(1-2):
1338-1347, 2010.

Rahm, E. and Bernstein, P. A. A survey of approaches to
automatic schema matching. the VLDB Journal, 10(4):
334-350, 2001.

Suhara, Y., Li, J., Li, Y., Zhang, D., Demiralp, C., Chen,
C., and Tan, W.-C. Annotating columns with pre-trained
language models. In Proceedings of the 2022 Interna-
tional Conference on Management of Data, pp. 1493—
1503, 2022.

Sui, Y., Zhou, M., Zhou, M., Han, S., and Zhang, D. Table
meets llm: Can large language models understand struc-
tured table data? a benchmark and empirical study. In
Proceedings of the 17th ACM International Conference
on Web Search and Data Mining, pp. 645-654, 2024.

Sun, Y., Xin, H., and Chen, L. Reca: Related tables en-
hanced column semantic type annotation framework. Pro-
ceedings of the VLDB Endowment, 16(6):1319-1331,
2023.

Zhang, D., Suhara, Y., Li, J., Hulsebos, M., Demiralp, C.,
and Tan, W.-C. Sato: Contextual semantic type detection
in tables. arXiv preprint arXiv:1911.06311, 2019.

https://webdatacommons.org/structureddata/sotab/v2/
https://webdatacommons.org/structureddata/sotab/v2/
https://webdatacommons.org/structureddata/sotab/v2/

Efficient Table Generation for Zero-Shot Column Type Annotation

A. Analysis

In this section, we analyze the effect of different components of ZTab, namely, class description size e, schema sampling
rating r, prompt design, base LLM M, Description LLM M, and row size k.

Class Description Size: Table 3 presents the performance of ZTab under varying class description sizes e, i.e., 500 (i.e.,
All), 50, 25, 12, and 6. The best performance is achieved with the full size, as more examples of classes lead to more diverse
pseudo-training tables, which improves the model’s ability to generalize. However, ZTab demonstrates robust performance
even with as few as 6 examples per class, by leveraging the extensive knowledge encoded in LLM’s pre-training on large
textual corpora. For the best performance, we recommend the full class description size e = 500 for more example diversity.

Class Description Size
Dataset | Al 50 25 12 6
SOTABsh 780 769 764 757 5.1
SOTABshs | 76.2 742 743 735 728
SOTAB gy 785 764 762 753 5.1
T2D 96.2 959 954 956 952

Table 3. Micro-F1 score for ZTab with different class description sizes e.

Prompt Design: We explore alternative table presentations and prediction methods of the PromptConstruction function.
The table presentation can be either column-by-column or row-by-row (see Fig 2), and the prediction method can be either
predicting all columns together or predicting one target column at a time. Table 4 compares the performance of ZTab with
these alternative prompt designs.

Table:
| Column 1 | Column 2 | ... | Column n |
(I S T R 2> T I B 7% T
[T2 | to2 | .. | Ip2
It | otog 1 v oo |tk |

Figure 2. Row-by-row presentation of a table with n columns and k& rows.

The best performance is observed with the column-by-column presentation and target column prediction. The column-by-
column presentation allows ZTab to focus on the context of each column individually, which simplifies the learning and leads
to more accurate results because the values within each column present examples of the same semantic type. In contrast, the
row-by-row presentation introduces values of different semantic types on each row, which makes it harder for the row-based
reading to capture the relationships between columns. When predicting all columns together, ZTab’s performance tends
to decrease, particularly when using smaller annotation LLMs like Mistral, because the model may generate an incorrect
number of semantic types for a table (e.g., predicting four or six types for a table with five columns). Furthermore, even if
ZTab detects the correct semantic types, it may not align them correctly with the corresponding columns.

Present Predict | SOTABy, SOTABgp., SOTABay, T2D
col-by-col target 78.0 76.2 78.5 96.2
col-by-col all 74.0 73.5 75.2 94.4
row-by-row target 74.3 74.1 74.3 95.1
row-by-row all 71.5 71.1 72.0 92.4

Table 4. Micro-F1 score for ZTab using different prompt designs.

Annotation Models 1/,: Table 5 compares the performance of ZTab based on various open-source annotation LLMs
M,: Doduo (BERT, 110M parameters), Phi3-mini (3.8B parameters), LLaMA3 (8B parameters), Mistral (7B parameters),
and Qwen (7B parameters). To have full control over the fine-tuning process, we only utilize open-source LLMs as the
annotation models. In general, larger models achieve higher micro-F1 scores. In the absence of user-provided training data

6

Efficient Table Generation for Zero-Shot Column Type Annotation

and when relying on small examples of semantic types (i.e., class descriptions), a powerful annotation LLM helps capture
general knowledge needed for accurate column type annotation in the zero-shot setting. Compared to the zero-shot baselines
in Table 1, which use the closed-source GPT-3.5-Turbo-1106 model (whose parameter count is unpublished), the ZTabs
based on the above open-source and probably smaller models (except for Doduo) are highly competitive due to the effective
fine-tuning using the pseudo-data generated by our approach.

Dataset I Qwen Mistral LLama3 Phi3 Doduo
SOTABh 78.0 75.3 73.1 70.0 51.5
SOTABgch.s 76.2 74.1 71.9 68.7 49.7
SOTABap 78.5 75.2 68.6 70.1 45.3
2D 96.2 93.5 86.4 90.7 74.4

Table 5. Micro-F1 score for ZTab of different base models M.

Schema Sampling Ratio: Table 6 shows the number of schemas and unique schemas of different datasets. Table 7 shows
how ZTab performs with different schema sampling ratios . We consider the three SOTAB datasets that have a large table
schema collection S.

The worst performance occurs at the small sampling ratio of 1% due to too few schemas used in each epoch. Increasing
to 2.5% improves the results but a further increase provides little additional benefit. This is because many schemas in S
are redundant (see Table 6), sampling all of them is unnecessary and the 2.5% sampling ratio captures enough variety of
schemas over the specified number of epochs and provides wide and most likely all class coverage.

Dataset | #Schemas #Unique Schemas

T2D 160 64
SOTAB.h 44,769 4,189
SOTAB 10,631 1,643
SOTAB g, 37,631 1,780

Table 6. Number of total and unique schemas in SOTAB datasets.
Schema sampling ratio
Dataset | 100% 75% 5% 25% 1%
SOTAB, 775 773 769 78.0 74.6
SOTABghs | 764 758 759 76.2 738
SOTAB gy 782 779 773 785 743

Table 7. Micro-F1 score for ZTab using different schema sampling ratios r.

Description Model M;: In all the experiments, ZTab employs ChatGPT-3.5 as the description model M ;. Both open-source
and closed-source LLMs can be used for My, however, stronger LLMs (e.g., GPT-3.5) are preferred to ensure high-quality
and semantically rich class descriptions.

Row Size k: Until now, all experiments for ZTab are based on k£ = 3, i.e., all pseudo-tables have 3 rows. Larger k values
add little benefit in performance but increases computational cost.

