
Published in Transactions on Machine Learning Research (09/2024)

Preconditioned Neural Posterior Estimation for Likelihood-
free Inference

Xiaoyu Wang x311.wang@hdr.qut.edu.au
School of Mathematical Sciences
Centre for Data Science
Queensland University of Technology

Ryan P. Kelly r21.kelly@hdr.qut.edu.au
School of Mathematical Sciences
Centre for Data Science
Queensland University of Technology

David J. Warne david.warne@qut.edu.au
School of Mathematical Sciences
Centre for Data Science
Queensland University of Technology

Christopher Drovandi c.drovandi@qut.edu.au
School of Mathematical Sciences
Centre for Data Science
Queensland University of Technology

Reviewed on OpenReview: https: // openreview. net/ forum? id= vgIBAOkIhY

Abstract

Simulation-based inference (SBI) methods enable the estimation of posterior distributions
when the likelihood function is intractable, but where model simulation is feasible. Popular
neural approaches to SBI are neural posterior estimation (NPE) and its sequential version
(SNPE). These methods can outperform statistical SBI approaches such as approximate
Bayesian computation (ABC), particularly for relatively small numbers of model simulations.
However, we show in this paper that the NPE methods are not guaranteed to be highly
accurate, even on problems with low dimension. In such settings the posterior cannot be
accurately trained over the prior predictive space, and even the sequential extension remains
sub-optimal. To overcome this, we propose preconditioned NPE (PNPE) and its sequential
version (PSNPE), which uses a short run of ABC to effectively eliminate regions of parameter
space that produce large discrepancies between simulations and data and allow the posterior
emulator to be more accurately trained. We present comprehensive empirical evidence that
this melding of neural and statistical SBI methods improves performance over a range of
examples including a motivating example involving a complex agent-based model applied to
real tumour growth data.

1 Introduction

Computational models, frequently termed as simulators, are typically governed by stochastic processes.
When provided with a set of parameter values, these simulators output synthetic data that inherently capture
the stochastic nature of the simulated phenomena. However, a substantial challenge arises in performing
posterior inference for the parameters of these simulators, as the corresponding likelihood function is often
intractable. An example is agent-based modelling of tumour growth (e.g. Jenner et al. (2020); Aylett-
Bullock et al. (2021); Warne et al. (2022)), where cell proliferation, movement and invasion are governed by

1

https://openreview.net/forum?id=vgIBAOkIhY

Published in Transactions on Machine Learning Research (09/2024)

probabilistic rules, which depend on key biological parameters. Consequently, standard statistical inference
methods that rely on a closed-form expression for the likelihood function are inapplicable in this scenario.

To address this issue, simulation-based inference (SBI) methods have been developed, which approximate
the posterior based only on simulations from the model. The most thoroughly examined SBI method in
the statistical literature is approximate Bayesian computation (ABC) (Sisson et al., 2018). Advancements
in deep neural networks have led to the emergence of neural SBI methods (Cranmer et al., 2020). Their
widespread application spans various fields, including biology (Wehenkel et al., 2023), neuroscience (Fengler
et al., 2021; West et al., 2021), and astronomy (Mishra-Sharma, 2022; Dax et al., 2021).

Statistical SBI methods, such as ABC methods, are well-developed and boast strong theoretical guarantees
of convergence to the true posterior (Beaumont et al., 2009; Blum, 2010; Biau et al., 2015; Lintusaari et al.,
2017; Sisson et al., 2018; Beaumont, 2019). ABC approaches compare observed to simulated data using a
discrepancy function and prefer parameter values that generate discrepancies below a pre-defined threshold,
ϵ. However, often a small value of ϵ is required to obtain accurate posterior approximations, which can
significantly increase the number of model simulations required, and hence the computational cost (Csilléry
et al., 2010; Turner & Van Zandt, 2012). Advanced ABC samplers such as adaptive sequential Monte Carlo
ABC (SMC ABC, e.g. Sisson et al. (2007); Drovandi & Pettitt (2011)) have been developed to mitigate this
issue. However, the efficiency of ABC methods may decrease as ϵ becomes smaller, requiring a significantly
larger number of simulated datasets. Enhancing the efficiency of ABC algorithms remains an active area of
research (Lintusaari et al., 2017; Sisson et al., 2018).

With the rapid advances in machine learning methods, more efficient approaches based on neural networks
have been developed (Papamakarios et al., 2017; 2021). A popular approach is neural posterior estimation
(NPE) and its sequential version, the sequential NPE (SNPE) (Papamakarios & Murray, 2016; Lueckmann
et al., 2017; Greenberg et al., 2019). These methods use a set of training pairs of parameter values and
simulated datasets to fit a neural conditional density estimator (NCDE), such as a conditional normalizing
flow (Rezende & Mohamed, 2015; Winkler et al., 2019; Durkan et al., 2019; Dolatabadi et al., 2020), to
approximate the posterior. NPE uses parameter values drawn from the prior, whilst SNPE uses parameter
values drawn from previous NPE approximations for a given number of rounds. The idea of the sequential
approach is that a more accurate emulator of the posterior can be achieved when more (parameter value,
simulated data) training pairs are generated in higher density regions of the posterior. Lueckmann et al.
(2021) have shown that NPE can outperform ABC, particularly for a relatively small number of model
simulations.

However, in real-world problems, there may be little known about the parameters a priori, so that a vague
prior may be employed. For example, a uniform distribution with a wide constraint range may be used as
a prior distribution. For some problems in this setting we find that it is difficult to construct an accurate
NCDE across a wide parameter space, which leads to NPE producing an inaccurate posterior approximation.
We find that even SNPE may not be able to recover from such an initially deficient approximation, even
with a relatively large number of rounds, and hence model simulations. One way to mitigate this kind of
unstable NCDE training is to clip the extreme simulated datasets (Shih et al., 2023; de Santi et al., 2023).
However, this approach is ad-hoc and it is not clear how much clipping is required for a given problem and
may require extensive experimentation, and each level of clipping requires refitting of the NCDE.

This paper contains three key contributions. Firstly, we explore several examples where NPE methods fail to
produce highly accurate posterior approximations, even in relatively low dimensional problems. Our second
contribution is the development of preconditioned NPE (PNPE), and its sequential extension (PSNPE),
which combines the strengths of statistical and ML approaches to SBI. The preconditioning step involves
applying an ABC algorithm for efficiently discarding parts of the parameter space that lead to large discrep-
ancies, which then subsequently permits NPE methods to perform well. In a sense, our preconditioning step
acts as a principled clipping method. Our third contribution shows via an extensive empirical study that
our preconditioned NPE approaches outperform NPE approaches when the latter performs sub-optimally,
and is competitive when it performs well. Our motivating example involves a complex agent-based model
applied to real tumour growth data.

2

Published in Transactions on Machine Learning Research (09/2024)

2 Simulation-based Inference

Consider a simulator that takes parameters θ ∈ Rd where d is the number of parameters and generates a
simulated dataset x ∈ RD where D is the dimension of the data, but its density p(x|θ) is intractable. The
objective of SBI is to accurately estimate the posterior density of θ conditional on the observed dataset
xo ∈ RD based only on simulating data from the model and not requiring evaluation of the intractable
likelihood, p(xo|θ). Two popular SBI methods are ABC and NPE, which are summarized below.

2.1 Approximate Bayesian computation

Statistical SBI (Sisson et al., 2018), such as the ABC rejection algorithm, is based on Monte Carlo rejection
sampling. That is, it keeps only the parameter values simulated from the prior that generate simulated data
x such that ρ(x, xo) < ϵ, where ρ(x, xo) is a user-defined discrepancy function between the simulated and
observed data, and ϵ is a user-defined threshold often referred to as the ABC tolerance.

SMC ABC algorithms (e.g. Sisson et al. (2007); Drovandi & Pettitt (2011)) aim to be more efficient by
sampling a sequence of ABC posteriors with decreasing ϵ’s, updating the importance distribution at each
iteration. More specifically, SMC ABC algorithms define a sequence of non-increasing ABC thresholds
ϵ1 ≥ ϵ2 ≥ · · · ≥ ϵT , such that

pϵt
(θ|xo) ∝ p(θ)

∫
RD

I
(
ρ(xo, x) < ϵt

)
p(x|θ)dx, for t = 1, . . . , T. (1)

Here, ϵT = ϵ represents the target ABC posterior.

In many real-world applications, x, xo ∈ RD are considered high-dimensional data, necessitating a mapping
to a lower-dimensional space for computational efficiency. This is typically done using summary statistics
S(·). If summary statistics are required, we use S(x) and S(xo) instead of the full datasets x and xo. The
choice of appropriate summary statistics is a subject of ongoing research and is discussed extensively in the
literature (see Sisson et al. (2018)).

However, even sophisticated ABC algorithms can require a significant number of model simulations to achieve
a suitably small value of ϵ (Biau et al., 2015; Csilléry et al., 2010; Beaumont et al., 2009; Blum, 2010).

2.2 Neural posterior estimation

NPE uses N training pairs of simulator parameter values and simulated datasets, {θi, xi}Ni=1, to estimate the
posterior distribution p(θ|x) (Papamakarios & Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019).
Once the NPE is trained on the simulated datasets, the posterior distribution p(θ|xo) can be computed by
inputting the observed dataset xo.

A conditional neural density estimator qF (x,ψ)(θ), utilizing a neural network F and its adjustable network
weights ψ, is often used as an NPE. In order to train qF (x,ψ)(θ), the following loss is minimized:

ψ∗ = arg min
ψ

−
N∑
i=1

logqF (xi,ψ)(θi), (2)

over network weights ψ. For a sufficiently expressive qF , qF (x,ψ)(θ)→ p(θ|x), as N →∞.

SNPE aims to improve the accuracy of the approximate posterior for a particular observed dataset xo
iteratively by sampling parameter values from a previous NPE approximation for a given number of rounds.
The current NPE approximation is treated as a proposal distribution p̃(θ) for the next round. However,
training qF using parameter values drawn from p̃(θ) will not converge to the true posterior distribution, but
rather to

p̃(θ|xo) ∝ p(θ|xo)
p̃(θ)
p(θ) . (3)

Many approaches have been developed to overcome this limitation, such as Papamakarios & Murray (2016);
Lueckmann et al. (2017); Greenberg et al. (2019). Among all these approaches, we use the automatic

3

Published in Transactions on Machine Learning Research (09/2024)

posterior transformation (APT, also known as SNPE-C), as proposed by Greenberg et al. (2019), which has
been reported to significantly outperform the others (Lueckmann et al., 2021). For simplicity, we refer to
our specific implementation as SNPE hereafter, but we note that other implementations of SNPE can be
used with our method.

The general leakage problem can occur when the proposal distribution assigns non-zero probability density
outside the support of the prior distribution (Deistler et al., 2022a). In other words, the loss function of
SNPE-C (Greenberg et al., 2019) does not force the NCDE to place density within the prior support, causing
a mismatch between the posterior and prior support. This can result in extreme values for the proposals,
such as generating proposals outside prior bounds, or generating a relatively large number proposals near
prior bounds when a suitable transformation is applied. Another possible "leakage" might occur because
the neural networks ignore some extreme or invalid data to stabilize the training, leading to unexplored
areas of parameter space. This general leakage problem can result in poor performance of SNPE. This is
an especially serious problem in situations where leakage is more likely to occur, such as when the training
dataset itself contains extreme values of the summary statistics. The truncated SNPE (TSNPE) method
(Deistler et al., 2022a) aims to overcome the leakage problem by using a truncated proposal distribution and
rejecting proposals if they fall outside of certain quantiles of the prior.

2.2.1 Illustrative Example

We consider a sparse vector autoregressive (SVAR) model that has been considered previously in the SBI
literature (Thomas et al., 2020; Drovandi et al., 2023). The SVAR model is given by:

yt = Xyt−1 + ξt, (4)

where yt ∈ Rk represents the k-dimensional observation of the time series at time t, X ∈ Rk×k is the
transition matrix, and ξt ∼ N (0, σ2I) is a k-dimensional noise vector with σ2 being the noise parameter.
The model considers a sparse transition matrix X where the only off-diagonal entries that are non-zero
must satisfy the following conditions: if variable i is coupled with variable j, then Xi,j ̸= 0 and Xj,i ̸= 0
(note that Xi,j is not necessarily equal to Xj,i) and each variable is coupled to only one other variable.
Under this condition, each column will only have one element that is non-zero, and this will also be an
off-diagonal element of the matrix. To ensure the stability of the SVAR, the diagonal elements of X are
set to -0.1. The parameter space of SVAR can easily scale to higher dimensions by increasing k. In this
study, the model parameters θ ∈ Rk+1 are the non-zero off-diagonal entries of X and its variance and we
consider k = 6, which leads to 7 parameters. This choice is based on the assumption that if SNPE does
not produce highly accurate approximations in this low-dimensional case, it is unlikely to be accurate in
a higher-dimensional parameter space. We generate an observed dataset of length T = 1000 using the
true parameter value θ = (0.579,−0.143, 0.836, 0.745,−0.660,−0.254, 0.1). We use summary statistics to
reduce the dimension of the data. Following Thomas et al. (2020); Drovandi et al. (2023), we use the lag
1 autocovariance 1

T

∑T
t=2 y

i
ty
j
t−1 as the summary statistics, where yit is the tth observation of the ith time

series. We use the sample standard deviation of the k time series to inform σ. Thus there is a single summary
statistic that is intended to be informative about each parameter.

We employ a uniform distribution as the prior, constrained between -1 and 1 for the k parameters and
between 0 and 1 for σ. We denote the generated dataset as x ∈ RT×(k+1) and its corresponding summary as
S(x) ∈ R(k+1). We find that extreme values of the summary statistics can be produced by parameter values
away from the true parameter value. To stabilize the training, we clip simulated datasets with summary
statistic outliers (any simulated values greater than 10, around 3% of training datasets). This leads to some
regions of the parameter space being unexplored and results in leakage after several rounds of SNPE training.
Note that some experimentation was required to obtain a clipping value that led to reasonable results for
SNPE.

For illustrative purposes, we run three rounds of SNPE to avoid the leakage problem that occur several
rounds after and compare the results with exact posterior samples as the likelihood is easily computable
in this example since it is Gaussian. Thus in this case the reference distribution is estimated from exact
posterior samples. Ideally, we would expect performance to improve when increasing the number of SNPE

4

Published in Transactions on Machine Learning Research (09/2024)

rounds. However, as shown in Figures 1 and 2, even with datasets clipped for every round, SNPE does not
improve the accuracy of the estimates as the number of rounds increases.

Figure 1: Comparison of marginal posterior distributions between reference distribution (orange), NPE
(dashed pink) and SNPE (red), with grey solid lines representing the true values. The SNPE results are
based on three rounds.

Figure 2: Comparison of posterior predictive distribution of the summary statistics of observation datasets
between reference distribution (orange), NPE (dashed pink) and SNPE (red), with grey solid lines repre-
senting the true values. The SNPE results are based on three rounds.

5

Published in Transactions on Machine Learning Research (09/2024)

3 Method

We find that NPE can perform sub-optimally when the prior predictive distribution of the data is complex
and has significant variability. When this occurs, the NCDE may not be sufficiently accurate, especially in
regions of high posterior support. The sequential version of NPE was originally designed to overcome this
issue, however if the initial NPE approximation is not substantially better than the prior, then subsequent
rounds of SNPE may suffer from the same issue.

Other approaches to overcome this issue may be to increase the training sample size or to try different
configurations of the neural network, but both of these may increase the computational cost substantially
and may not address the issue. Instead, we propose the preconditioned NPE (PNPE) method, and its
sequential extension below, in order to make NPE methods more reliable.

3.1 Preconditioned NPE

For a vague prior distribution p(θ), parameter values drawn from it might be very far from the true posterior.
We suggest using a short run of ABC to refine those parameter values so that they are closer to the true
posterior p(θ|xo), i.e.,

pϵ(θ|xo) ∝ p(θ)
∫
RD

p(x|θ)I(ρ(xo, x) < ϵ)dx, (5)

where I(·) is the indicator function and ϵ can be chosen considerably larger than what might typically be
used in an ABC algorithm. Then we fit a density estimator to those parameter samples. The key idea
is to use an efficient ABC algorithm to quickly discard poor regions of the parameter space that generate
unusual datasets relative to the observed data, which provides better quality training datasets for NPE. We
note that any ABC algorithm could be employed here, but we use the SMC ABC algorithm of Drovandi &
Pettitt (2011) in this paper (see Appendix A for a full description of this method). The SMC ABC algorithm
generates n samples from a sequence of ABC posteriors based on decreasing ABC thresholds, ϵ1 > · · · > ϵT ,
where ϵT = ϵ is the target ABC threshold. The sequence of tolerances is determined adaptively, by, at
each iteration of SMC, discarding a proportion of the samples, a · n, with the highest discrepancy, where
a is a tuning parameter. Then, the population of samples is rejuvenated through a resampling and move
step. During the move step, a Markov chain Monte Carlo (MCMC) ABC kernel is employed to maintain
the distribution of particles based on the current value of the tolerance. The number of MCMC steps Rt
to apply to each particle is determined adaptively based on the overall MCMC acceptance rate, that is
Rt =

⌈
log(c)

log(1−pacc
t)

⌉
, where pacc

t is the estimated MCMC acceptance probability at the SMC iteration t and c

is a tuning parameter of the algorithm that can be interpreted as the probability that a particle is not moved
in the Rt MCMC iterations. A natural stopping rule for the algorithm is when the MCMC acceptance rate
becomes intolerably small.

Based on n parameter samples from the ABC posterior, we fit an unconditional normalizing flow qG (note
that other density estimators could be used). Then we can use qG as the initial importance distribution for
the (S)NPE process. We call this melding of ABC and (S)NPE as the preconditioned (S)NPE method. The
method is summarized in Algorithm 1.

Algorithm 1 Precondition SNPE
1: Choose preconditioning ABC algorithm and SNPE implementation
2: Obtain {θ∗

i }
n
i=1 from the preconditioning ABC algorithm

3: Set ϕ∗ ← arg min
ϕ

n∑
i=1
−logqG(ϕ)(θ∗

i)

4: Perform SNPE using initial importance distribution qG(ϕ∗)(θ)

If we obtain a well-trained unconditional normalizing flow, this unconditional normalizing flow can act as the
initial importance distribution, i.e., p̃(θ) in Equation 3, and to draw samples for training the NPE. Following
Papamakarios & Murray (2016), it is noted that given an expressive enough conditional normalizing flow,

6

Published in Transactions on Machine Learning Research (09/2024)

NPE converges to the true posterior p(θ|xo) as N → ∞, with an appropriate importance re-weight if
p̃(θ) ̸= p(θ).

Choosing a suitable value of ϵ for our method requires some thought. A smaller value of ϵ will focus in on more
promising regions of the parameter space, but will increase the computational time of the preconditioning
step. A larger value of ϵ will lead to a fast preconditioning step, but may not eliminate enough of the poor
parts of the space to improve the training of the NCDE. In this paper we use an MCMC acceptance rate of
10% (unless otherwise specified) as the stopping criteria for the SMC ABC algorithm in the preconditioning
step. For our examples we find that this choice is effective at balancing the aforementioned objectives. We
note that other choices are possible.

Furthermore, once these poor simulations have been removed, we find NPE to be more effective than ABC,
since ABC requires an exponentially increasing number of simulations to drive ϵ to 0. To avoid the scaling
problem of ABC, the preconditioning step only takes a short run of ABC, and thus we are not interested in
driving ϵ to 0.

3.2 Computational cost

We now consider computational cost for P(S)NPE and compare it with SNPE. The preconditioning step can
be considered as the initial round of NPE where the total number of simulated datasets generated during
SMC ABC is denoted as nABC. Hence, it is worth noting that P(S)NPE, like SNPE, is not amortized since
it requires running an ABC algorithm for each observation datasets x0.

Furthermore, for complex real-world problems, the simulation time may depend on the parameter values,
and parameter values with very low posterior support can produce substantially longer simulation times.
For such problems, it is important from a computational perspective to quickly eliminate such regions from
the parameter space, as is the motivation of the preconditioning ABC algorithm. Thus, for problems where
SNPE does not perform well, we find PSNPE to be substantially more computationally efficient in terms of
compute time.

We perform an analysis of the trade-off between computational cost and estimation accuracy by using differ-
ent choices for the % of stopping rule for the preconditioning step in the SVAR example. For reproducibility,
we use 20 different random seed values for each choice of the stopping rule. We compute and record the
average values we choose for the % and its corresponding total number of simulations in Table 1.

MCMC acceptance rate 15% 12% 10% 8% 5%
Simulations in ABC 15603 33585 62402 100398 244667

Table 1: Computational cost for preconditioning step: The first row of the table refers to the %
stopping rule we selected to obtain samples from ABC, while the second row indicates the average of total
number of simulations ABC used for the corresponding %.

To investigate the performance of this trade-off, we use maximum mean discrepancy (MMD) as a metric to
compare the approximate distribution from ABC with the reference distribution. We also run NPE with
the same number of simulations as ABC and compute its MMD. In Figure 3, we plot the total number
of simulations versus MMD for ABC, NPE and PNPE. The solid lines represent the average MMD values
based on 20 MMD values from 20 different seed values. The number of simulations for PNPE includes an
additional 10k simulations generated after the corresponding preconditioning step. It is surprising that with
an increasing number of simulations, the accuracy of NPE can vary significantly. For some random seed
values, the accuracy of NPE even decreases when using more than approximately 70,000 model simulations.
Compared with ABC and PNPE, which have narrow uncertainty intervals, the accuracy of NPE seems to
highly depend on the random seed value.

We record that 3−5% of training datasets are clipped before training NPE, which means around 2,100-3,500
simulated datasets were ignored, and the corresponding parameter space is not explored well. This might
indicate the reason why the accuracy of NPE might reduce under a large number of simulations for some

7

Published in Transactions on Machine Learning Research (09/2024)

Figure 3: Computational cost versus MMD for ABC, NPE and PNPE for SVAR example:
Comparison of MMD values for ABC (blue), NPE (red) and PNPE (green) with corresponding color bands
indicating the 95% uncertainty interval. The x-axis shows an increasing number of simulations required for
each algorithm.

random seed values. It is evident that an increasing number of simulations can cause a decrease in MMD
values for both ABC and PNPE. However, when a large number of simulations are used in the preconditioning
step, the following NPE step does not provide a large improvement in accuracy. The small improvement in
accuracy may not be worth the cost incurred by the large number of model simulations. Having a percentage
too large will stop the ABC too early, and we will lose the benefit of the preconditioned step. Having a
percentage too small will result in ABC running too long and using too many model simulations.

3.3 Illustrative Example Revisited

We apply PNPE to the illustrative example shown in Section 2.2.1. For the preconditioning step, we use
the adaptive SMC ABC algorithm proposed by Drovandi & Pettitt (2011), with tuning parameters n = 1k,
a = 0.5, and c = 0.01. We employ an unconditional normalizing flow as the unconditional density estimator.
For this, we use the state-of-the-art neural spline flow implemented in the Pyro package.

In order to make a fair comparison between P(S)NPE and SNPE, we use the same number of simulations
as in the SMC ABC algorithm, denoted nABC, to train the initial round of NPE. We run the SMC ABC
algorithm ten times to obtain the average number of simulations it requires, which is nABC = 54k. For
illustrative purposes, we only run two rounds of SNPE and compare it with PNPE.

The estimated marginal posterior plots are displayed in Figure 4, where the black solid lines represent the
true parameter values. It is evident that our PNPE method (in a single round) produces a substantially
sharper approximation of the posterior compared to that of SNPE.

8

Published in Transactions on Machine Learning Research (09/2024)

Figure 4: Performance on SVAR model. Comparison of marginal posterior distributions between refer-
ence distribution (orange), SNPE (red), preconditioning step (blue dash) and PNPE (green solid), with grey
solid lines representing the true values.

It is evident that even a short run of the ABC algorithm gives a reasonable posterior approximation to train
an unconditional normalizing flow as the unconditional density estimator, which then generates samples for
NPE training. Figures 4 and 5 show that the improved parameter posteriors leads to more accurate posterior
predictive distributions of the summaries compared to SNPE. This indicates that with a good starting point,
NPE can further improve accuracy.

In Appendix C.1, we show the results for 10 different datasets, each with 10 different random seeds for
reproducibility purposes. We use the same stopping rule for the preconditioning step across all datasets. It
is evident that the performance between ABC and NPE is close under the same number of simulations. In
some cases, NPE performs better than ABC as it has sufficient data to learn while not too much parameter
space is ignored. However, PNPE performs better than SNPE as the leakage problem occurs. We also
compare NPE and PNPE with the same number of simulations and find that the performance of PNPE is
still better than NPE.

4 Further Experiments

We present five benchmarking tasks (two from Lueckmann et al. (2021) and three from the SBI literature)
and two additional examples, including our motivating example, where SNPE, perhaps surprisingly, does
not produce highly accurate posterior distributions. To fairly compare our method with vanilla SNPE and
potentially TSNPE (if the leakage issue is encountered), we run the ABC algorithm 10 times and compute
the average total number of simulations that the ABC algorithm requires. We then use this same number of

9

Published in Transactions on Machine Learning Research (09/2024)

Figure 5: Performance on SVAR model. Comparison of posterior predictive distributions of the summary
statistics of observation datasets between reference distribution (orange), SNPE (red), preconditioning step
(blue dash) and PNPE (green solid), with grey solid lines representing the true values.

simulations for the initial NPE in both SNPE and TSNPE. For all experiments, we utilize the adaptive SMC
ABC algorithm proposed by Drovandi & Pettitt (2011) for the preconditioning part with tuning parameters
n = 1k, a = 0.5, c = 0.01, and use an unconditional normalizing flows as the unconditional density estimator.
For SNPE, we use 10k samples for each round of training.

We find that even with a single round of PNPE, there can be a significant improvement in performance. The
code to reproduce the results has been included as supplementary material.

4.1 Benchmarking example

We compare PSNPE and SNPE across five popular benchmarking simulators (see Appendix B.1 for a detailed
description). We use the sbibm package (Lueckmann et al., 2021) for the two-moon and SLCP simulators,
and the ELFI package (Lintusaari et al., 2018) for the other benchmark simulators. Since the ground-truth
posteriors are available, we can use specific performance metrics for comparison. We use a classifier two-
sample test (C2ST), where a score of 0.5 indicates that the approximate posterior is indistinguishable from
the true posterior, and a score of 1 signifies that the classifier can completely separate the approximate
posterior from the true posterior. Additionally, we use the maximum mean discrepancy (MMD) between
ground truth posterior and approximate posterior to quantify performance. We refrain from using the
negative log probability of true parameters as a performance metric because our method is not amortized.
It is evident from Table 2 that SNPE and PSNPE achieve similar results, except for the g-and-k example,
the results of which we describe in more detail next.

10

Published in Transactions on Machine Learning Research (09/2024)

Model C2ST MMD
Two moon 0.527\0.528 0.00067\0.0007
SLCP 0.664\0.691 0.00065\0.001
MA(2) 0.887 \0.856 0.104 \0.0966
g-and-k 0.975 \0.727 0.553 \0.311
Toad example 0.899 \0.887 0.120 \0.111

Table 2: Performance on popular benchmarking simulators. Classification accuracy (CS2T) and
maximum mean discrepancy (MMD) computed for SNPE\PSNPE with same number of simulation for ABC
and NPE followed by 2 rounds SNPE, each round with N = 10k simulations. The bold indicates a better
performance metric value.

For the benchmark examples in Table 2 where the performance of SNPE and PSNPE are similar, the
initial training dataset is not extreme and the NCDE fits reasonably well. In more realistic examples, the
prior predictive distribution of the summaries may be much more complex and contain extreme values. In
simple examples, we can create more complex prior predictive distributions by widening the prior. Here we
reconsider the g-and-k benchmark example but widen the prior distribution.

We describe the details of the g-and-k model and its prior distribution in Appendix B.1. We use full datasets
instead summary statistics for both PNPE and SNPE. For visualization purposes, we plot the marginal
approximate posterior distribution for each method of the estimated results. It is evident that ABC performs
better than NPE under the same number of simulations (Figure 6a), where the ABC posterior is able to
concentrate on the true value of B and k. As shown in Figure 6b, PNPE performs better than SNPE.

(a)

(b)

Figure 6: Performance on G-and-K example: (a) Comparison of marginal posterior distributions be-
tween the ABC preconditioning step (red) and NPE (blue), with black dashed lines representing the true
values; (b) Comparison of marginal posterior distributions between PNPE (green) and SNPE (red), with
black dashed lines representing the true values. The result of SNPE uses 2 rounds with same number of
simulation as the ABC preconditioning step.

11

Published in Transactions on Machine Learning Research (09/2024)

4.2 High-dimensional SVAR model

To investigate how our method scales to higher dimensional problems, we take the illustrative SVAR example
from before and consider k = 20, which leads to 21 parameters. We detail the experimental settings in Section
B.2. To ensure a fair comparison, we run the SMC ABC algorithm ten times using a 10% acceptance rate
as the stopping criterion and calculate the average number of simulations it takes. We then use the same
number of simulations, approximately nABC ≈ 45k, to train the initial NPE. Hence, the total number of
simulations for both PNPE and SNPE is the same (55k in total). To stabilize the training, we apply the
same clipping technique used in the previous low-dimensional case, which results in approximately 11% of
the training samples being removed in the initial round of NPE and about 1% to 2% in the second rounds.
Starting from the third round, SNPE is unable to sample any parameter values from the neural networks
due to a severe leakage issue (Deistler et al., 2022a).

The estimated marginal posterior plots are displayed in Figure 7, where the black solid lines represent the
true parameter values. It is evident that as the number of parameter dimensions increases, training the
unconditional normalizing flows becomes more challenging. With well-trained unconditional normalizing
flows, PNPE outperforms SNPE in high-dimensional cases (in this example, except for parameter θ3.).

-1 0 1

1

0

5

10

Reference

SNPE

PNPE

True

-1 -0.5 0

2

0

5

0.5 1

3

0

5

10

-0.4-0.2 0

4

0

5

10

-0.4 0 0.4

5

0

5

10

0 1

6

0

5

0 0.5 1

7

0

5

10

0.5 1

8

0

5

10

-1 -0.5 0

9

0

5

-0.4 0 0.4

10

0

5

10

-1 0 1

11

0

5

10

0 0.5 1

12

0

5

10

-1 -0.5

13

0

5

10

-1 -0.5

14

0

5

10

-1 -0.5 0

15

0

5

10

-1 -0.5

16

0

5

-1 -0.5 0

17

0

5

-0.4 0

18

0

5

10

0 1

19

0

5

10

0 0.5 1

20

0

5

10

0.09 0.1 0.11
0

500

Figure 7: Performance on SVAR model with 21 parameters. Comparison of marginal posterior
distributions between reference distribution (orange), SNPE (red) and PNPE (green), with grey solid lines
representing the true values. The result of SNPE uses 2 rounds.

12

Published in Transactions on Machine Learning Research (09/2024)

Figure 8: Performance on SVAR model with 21 parameters. Comparison of posterior predictive
distributions of the summary statistics of observation datasets between reference distribution (orange), SNPE
(red) and PNPE (green), with grey solid lines representing the true values. The result of SNPE uses 2 rounds.

4.3 Biphasic Voronoi cell-based model

Finally, we consider a challenging real-world problem in cancer biology: calibrating the biphasic Voronoi
cell-based model (BVCBM) (Wang et al., 2024) that models tumor growth. The model uses a parameter τ
to divide the tumor into two growth phases. Here, the term ‘growth phase’ refers to the different growth
patterns of the tumor. There are four parameters that govern tumor growth during each phase, namely
(p0, ppsc, dmax, gage), where p0 and ppsc are the probability of cell proliferation and invasion, respectively,
dmax is the maximum distance between cell and nutrient, and gage is the time taken for a cell to be able
to divide. Thus there are nine parameters in total, four parameters each of two phases, and the parameter
τ at which the growth phase changes. In this paper, we calibrate to two real-world pancreatic cancer
datasets Wade (2019), which describe tumor growth as time series data. The datasets span 26 and 32 days,
respectively, with measurements taken each day. While the ground truth posteriors are unknown for those
datasets, we compute posterior predictive distributions to assess if SNPE and PNPE can effectively calibrate
the model to the data.

We employ vague prior distributions for all parameters. Specifically, we use a Uniform distribution con-
strained between 1 and 24 hours × the number of days for gage during both growth phases. Additionally,
we use a Uniform distribution constrained between 2 and the number of days minus 1 for τ . The prior
distributions for the remaining parameters are detailed in Appendix B.3.

13

Published in Transactions on Machine Learning Research (09/2024)

As reported by Wang et al. (2024), CPU times for model simulation range from 1.76 to 137.27 seconds per
simulation when using samples from the prior distribution. This implies that 10k simulations for the first
round of SNPE take approximately 2 hours. Consequently, the initial stages of SNPE are computationally
expensive. In contrast, the ABC preconditioning step takes around 10-15 minutes. This is due to the fact
that the longer simulation times tend to also lead to large discrepancies with the observed data, and such
samples are quickly rejected by ABC. For the ABC part, around 18k and 16k simulations are used for the
26-day and 32-day pancreatic cancer datasets, respectively.

We observed a leakage problem occurring in rounds 8 and 5 for the 26-day and 32-day datasets, respectively.
Hence, we perform 10 rounds of TSNPE for all three datasets. At round 10, the acceptance rate of SNPE for
the 26-day measurement dataset is above 50%, leading us to utilize rejection sampling for sample generation.
While a 50% acceptance rate for rejection sampling is acceptable, it is less efficient compared to direct
simulation from the trained conditional normalizing flows in the previous round. Hence, we employ TSNPE
for this dataset. For the 32-day measurement dataset, only 0.000% of samples are accepted at round 8,
making it computationally expensive. Consequently, we use TSNPE for this dataset.

To estimate the posterior predictive distributions, we sample 1k parameter values from (T)SNPE and PNPE,
using them to simulate datasets. We then plot these data in the form of credible intervals. As a baseline,
we show the prior predictive distributions in Appendix C.2. The top and bottom rows of Figure 9 displays
the posterior predictive distribution for the 26-day and 32-day datasets, respectively (the same plots but
on the log scale are shown in Appendix C.2). It is evident that both SNPE and TSNPE provide biased
estimations, as the posterior predictive does not capture the observed data well. The posterior predictive
distribution for the preconditioning step (middle column) shows that the ABC step can capture the data
reasonably well since the observed data lie within the 90% posterior predictive interval. Our method (third
column) provides a better fit, as the variance of the posterior predictive distribution is tighter than that of
the preconditioning step and still captures the observed data. This demonstrates that even one round of
PNPE can perform more accurate estimations based on our results.

5 Discussion

We present a neural SBI method that is both simple and easy to deploy, designed to enhance the accuracy of
SNPE methods. Our method, termed preconditioned neural posterior estimation (PNPE) and its sequential
version, PSNPE, employs an ABC algorithm for the initial step. This algorithm is used to efficiently filter
out poor regions of the parameter space. Additionally, we use the ABC posterior samples to train an
unconditional density estimator qG, enabling qG to serve as the initial proposal distribution for SNPE. The
core concept is that an improved starting point can significantly enhance the accuracy of SNPE estimations.
Indeed, we obtained very good results with PNPE. Lueckmann et al. (2017); Deistler et al. (2022b) have
proposed similar ideas to improve accuracy of SNPE. They train a classifier to predict samples that fall into
rejection criterion based on a certain distance metric. However, such a classifier can falsely reject samples.
Our method can avoid this problem and hence is more principled compared to their method.

We showcase several examples where either SNPE failed to perform inference effectively, such as in the
SVAR case, or produced biased results, as observed in the BVCBM. For the SVAR example, SNPE methods
struggle due to the impact of low-quality samples from certain parameter space regions, adversely affecting
the training process. The ABC method can efficiently eliminate these bad samples, thereby enhancing the
training. For cases where SNPE results in biased estimations, our methods were effective at accurately
fitting observed data (real data for BVCBM example). This is substantiated by our empirical results for the
posterior predictive distribution discussed in the experimental section.

Although our method demonstrates the capability to enhance estimation accuracy, it does have some limi-
tations. Firstly, our method requires model simulations in the ABC preconditioning step, which may lead
to greater computational demands in situations where SNPE methods perform well. However, by perform-
ing the preconditioning step, significantly fewer model simulations may be required in the SNPE part to
achieve high accuracy. In this paper we used SMC ABC for the preconditioning step, but we note that
other ABC algorithms or SBI methods could be used. We do not recycle the simulations performed in the
ABC preconditioning step for the SNPE phase, but it could be possible to modify our method to exploit

14

Published in Transactions on Machine Learning Research (09/2024)

Figure 9: Posterior predictive distributions for two pancreatic cancer datasets. 90% Posterior
predictive interval plots for SNPE (a), preconditioning step (b) and PNPE (c) for the 26-day dataset; 90%
Posterior predictive interval plots for SNPE (d), preconditioning step (e) and PNPE (f) for the 32-day
dataset.

these model simulations. Here we used the acceptance rate as the stopping criterion for the preconditioning
step, but another option could be to check after each iteration of SMC ABC and stop the preconditioning
if a suitable NCDE is found. Secondly, the choice of an unconditional density estimator necessitates careful
consideration. In scenarios involving low-dimensional parameter spaces, a kernel density estimator might be
a preferable option compared to unconditional normalizing flows.

It is important to note that the preconditioning step of our method requires manual selection of the summary
statistics or discrepancy function. However, this choice is not as critical as in a typical ABC application,
since we aim to remove poor parts of the parameter space rather than achieve a highly accurate posterior
approximation. If it is difficult to manually select summary statistics, the ABC preconditioning step could
use discrepancy functions that do not rely on summary statistics such as Wasserstein ABC (Bernton et al.,
2019) and K2-ABC (Park et al., 2016), followed by an NPE method that incorporates a summary network
(Jiang et al., 2017). This approach would have the benefit that the training of the summary network will
not be adversely affected by extreme simulated data. In this paper we used the same summary statistics as
in the preconditioning step for the subsequent rounds of NPE. However, we note it would be possible to use
different summaries after the preconditioning step, and possibly use automated summary statistic selection
methods (Fearnhead & Prangle, 2012; Chen et al., 2023).

In this paper we considered the well-specified scenario, where the model is either known to be correct or can
provide a good fit to the data with a suitable choice of parameter values. Standard neural SBI methods are
known to potentially perform poorly under model misspecification Bon et al. (2023); Cannon et al. (2022);
Schmitt et al. (2023). Our preconditioning method may be useful in the misspecified scenario, since ABC

15

Published in Transactions on Machine Learning Research (09/2024)

are known to perform reasonably well under model misspecification. That is, ABC still converges onto the
pseudo-true parameter value Frazier et al. (2020). The preconditioning step could be followed by a robust
neural SBI method such as Kelly et al. (2024); Huang et al. (2024); Gloeckler et al. (2023); Ward et al.
(2022). We plan to explore this in future research.

Overall, PNPE employs a preconditioning step to focus on important parts of the parameter space, thereby
creating a good starting point for training SNPE and enhancing estimation accuracy. We have empirically
demonstrated that PNPE is capable of producing more accurate estimations in complex real-world problems.

Acknowledgement

We thank the computational resources provided by QUT’s High Performance Computing and Research
Support Group (HPC). Xiaoyu Wang, Ryan P. Kelly and Christopher Drovandi were supported by an
Australian Research Council Future Fellowship (FT210100260).

References
Joseph Aylett-Bullock, Carolina Cuesta-Lazaro, Arnau Quera-Bofarull, Miguel Icaza-Lizaola, Aidan

Sedgewick, Henry Truong, Aoife Curran, Edward Elliott, Tristan Caulfield, Kevin Fong, et al. June:
open-source individual-based epidemiology simulation. Royal Society Open Science, 8(7):210506, 2021.

Mark A Beaumont. Approximate Bayesian computation. Annual Review of Statistics and Its Application,
6:379–403, 2019.

Mark A Beaumont, Jean-Marie Cornuet, Jean-Michel Marin, and Christian P Robert. Adaptive approximate
Bayesian computation. Biometrika, 96(4):983–990, 2009.

Espen Bernton, Pierre E Jacob, Mathieu Gerber, and Christian P Robert. Approximate Bayesian computa-
tion with the wasserstein distance. Journal of the Royal Statistical Society Series B: Statistical Methodology,
81(2):235–269, 2019.

Gérard Biau, Frédéric Cérou, and Arnaud Guyader. New insights into approximate Bayesian computation.
In Annales de l’IHP Probabilités et Statistiques, volume 51, pp. 376–403, 2015.

Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos,
Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman. Pyro: Deep universal probabilistic
programming. The Journal of Machine Learning Research, 20(1):973–978, 2019.

Michael GB Blum. Approximate Bayesian computation: a nonparametric perspective. Journal of the
American Statistical Association, 105(491):1178–1187, 2010.

Joshua J Bon, Adam Bretherton, Katie Buchhorn, Susanna Cramb, Christopher Drovandi, Conor Hassan,
Adrianne L Jenner, Helen J Mayfield, James M McGree, Kerrie Mengersen, et al. Being Bayesian in the
2020s: opportunities and challenges in the practice of modern applied Bayesian statistics. Philosophical
Transactions of the Royal Society A, 381(2247):20220156, 2023.

Patrick Cannon, Daniel Ward, and Sebastian M Schmon. Investigating the impact of model misspecification
in neural simulation-based inference. arXiv preprint arXiv:2209.01845, 2022.

Yanzhi Chen, Michael U Gutmann, and Adrian Weller. Is learning summary statistics necessary for
likelihood-free inference? In International Conference on Machine Learning, pp. 4529–4544. PMLR,
2023.

Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference. Proceedings
of the National Academy of Sciences, 117(48):30055–30062, 2020.

Katalin Csilléry, Michael GB Blum, Oscar E Gaggiotti, and Olivier François. Approximate Bayesian com-
putation (ABC) in practice. Trends in Ecology & Evolution, 25(7):410–418, 2010.

16

Published in Transactions on Machine Learning Research (09/2024)

Maximilian Dax, Stephen R Green, Jonathan Gair, Jakob H Macke, Alessandra Buonanno, and Bernhard
Schölkopf. Real-time gravitational wave science with neural posterior estimation. Physical Review Letters,
127(24):241103, 2021.

Natalí SM de Santi, Francisco Villaescusa-Navarro, L Raul Abramo, Helen Shao, Lucia A Perez, Tiago
Castro, Yueying Ni, Christopher C Lovell, Elena Hernandez-Martinez, Federico Marinacci, et al. Field-
level simulation-based inference with Galaxy catalogs: the impact of systematic effects. arXiv preprint
arXiv:2310.15234, 2023.

Michael Deistler, Pedro J Goncalves, and Jakob H Macke. Truncated proposals for scalable and hassle-free
simulation-based inference. Advances in Neural Information Processing Systems, 35:23135–23149, 2022a.

Michael Deistler, Jakob H Macke, and Pedro J Gonçalves. Energy-efficient network activity from disparate
circuit parameters. Proceedings of the National Academy of Sciences, 119(44):e2207632119, 2022b.

Hadi Mohaghegh Dolatabadi, Sarah Erfani, and Christopher Leckie. Invertible generative modeling using
linear rational splines. In International Conference on Artificial Intelligence and Statistics, pp. 4236–4246.
PMLR, 2020.

Christopher Drovandi and David T Frazier. A comparison of likelihood-free methods with and without
summary statistics. Statistics and Computing, 32(3):42, 2022.

Christopher Drovandi, David J Nott, and David T Frazier. Improving the accuracy of marginal approxima-
tions in likelihood-free inference via localisation. Journal of Computational and Graphical Statistics, pp.
1–19, 2023.

Christopher C Drovandi and Anthony N Pettitt. Estimation of parameters for macroparasite population
evolution using approximate Bayesian computation. Biometrics, 67(1):225–233, 2011.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. Advances in
Neural Information Processing Systems, 32, 2019.

Paul Fearnhead and Dennis Prangle. Constructing summary statistics for approximate Bayesian computa-
tion: semi-automatic approximate Bayesian computation. Journal of the Royal Statistical Society Series
B: Statistical Methodology, 74(3):419–474, 2012.

Alexander Fengler, Lakshmi N Govindarajan, Tony Chen, and Michael J Frank. Likelihood approximation
networks (LANs) for fast inference of simulation models in cognitive neuroscience. Elife, 10:e65074, 2021.

David T Frazier, Christian P Robert, and Judith Rousseau. Model misspecification in approximate Bayesian
computation: consequences and diagnostics. Journal of the Royal Statistical Society Series B: Statistical
Methodology, 82(2):421–444, 2020.

David T Frazier, Christopher Drovandi, and David J Nott. Better Together: pooling information in
likelihood-free inference. arXiv preprint arXiv:2212.02658, 2022a.

David T Frazier, David J Nott, Christopher Drovandi, and Robert Kohn. Bayesian inference using synthetic
likelihood: asymptotics and adjustments. Journal of the American Statistical Association, pp. 1–12, 2022b.

Manuel Gloeckler, Michael Deistler, and Jakob H Macke. Adversarial robustness of amortized Bayesian
inference. pp. 11493–11524, 2023.

David Greenberg, Marcel Nonnenmacher, and Jakob Macke. Automatic posterior transformation for
likelihood-free inference. In International Conference on Machine Learning, pp. 2404–2414. PMLR, 2019.

Daolang Huang, Ayush Bharti, Amauri Souza, Luigi Acerbi, and Samuel Kaski. Learning robust statistics
for simulation-based inference under model misspecification. Advances in Neural Information Processing
Systems, 36, 2024.

17

Published in Transactions on Machine Learning Research (09/2024)

Adrianne L Jenner, Federico Frascoli, Adelle CF Coster, and Peter S Kim. Enhancing oncolytic virotherapy:
Observations from a Voronoi Cell-Based model. Journal of Theoretical Biology, 485:110052, 2020.

Bai Jiang, Tung-yu Wu, Charles Zheng, and Wing H Wong. Learning summary statistic for approximate
Bayesian computation via deep neural network. Statistica Sinica, pp. 1595–1618, 2017.

Ryan P Kelly, David J Nott, David Tyler Frazier, David J Warne, and Christopher Drovandi.
Misspecification-robust sequential neural likelihood for simulation-based inference. Transactions on Ma-
chine Learning Research, 2024.

Pyung-Hwan Kim, Joo-Hyuk Sohn, Joung-Woo Choi, Yukyung Jung, Sung Wan Kim, Seungjoo Haam, and
Chae-Ok Yun. Active targeting and safety profile of PEG-modified adenovirus conjugated with herceptin.
Biomaterials, 32(9):2314–2326, 2011.

Jarno Lintusaari, Michael U Gutmann, Ritabrata Dutta, Samuel Kaski, and Jukka Corander. Fundamentals
and recent developments in approximate Bayesian computation. Systematic Biology, 66(1):e66–e82, 2017.

Jarno Lintusaari, Henri Vuollekoski, Antti Kangasrääsiö, Kusti Skytén, Marko Järvenpää, Pekka Marttinen,
Michael U Gutmann, Aki Vehtari, Jukka Corander, and Samuel Kaski. ELFI: Engine for likelihood-free
inference. Journal of Machine Learning Research, 19(16):1–7, 2018.

Jan-Matthis Lueckmann, Pedro J Goncalves, Giacomo Bassetto, Kaan Öcal, Marcel Nonnenmacher, and
Jakob H Macke. Flexible statistical inference for mechanistic models of neural dynamics. Advances in
Neural Information Processing Systems, 30, 2017.

Jan-Matthis Lueckmann, Jan Boelts, David Greenberg, Pedro Goncalves, and Jakob Macke. Benchmarking
simulation-based inference. In International Conference on Artificial Intelligence and Statistics, pp. 343–
351. PMLR, 2021.

Philippe Marchand, Morgan Boenke, and David M Green. A stochastic movement model reproduces patterns
of site fidelity and long-distance dispersal in a population of fowler’s toads (anaxyrus fowleri). Ecological
Modelling, 360:63–69, 2017.

Frank A Meineke, Christopher S Potten, and Markus Loeffler. Cell migration and organization in the
intestinal crypt using a lattice-free model. Cell Proliferation, 34(4):253–266, 2001.

Siddharth Mishra-Sharma. Inferring dark matter substructure with astrometric lensing beyond the power
spectrum. Machine Learning: Science and Technology, 3(1):01LT03, 2022.

George Papamakarios and Iain Murray. Fast ε-free inference of simulation models with Bayesian conditional
density estimation. Advances in Neural Information Processing Systems, 29, 2016.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density estimation.
Advances in Neural Information Processing Systems, 30, 2017.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshmi-
narayanan. Normalizing flows for probabilistic modeling and inference. The Journal of Machine Learning
Research, 22(1):2617–2680, 2021.

Mijung Park, Wittawat Jitkrittum, and Dino Sejdinovic. K2-ABC: Approximate Bayesian computation with
kernel embeddings. In Artificial intelligence and statistics, pp. 398–407. PMLR, 2016.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning
in Python. the Journal of Machine Learning Research, 12:2825–2830, 2011.

Leah F Price, Christopher C Drovandi, Anthony Lee, and David J Nott. Bayesian synthetic likelihood.
Journal of Computational and Graphical Statistics, 27(1):1–11, 2018.

18

Published in Transactions on Machine Learning Research (09/2024)

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In International Con-
ference on Machine Learning, pp. 1530–1538. PMLR, 2015.

Marvin Schmitt, Paul-Christian Bürkner, Ullrich Köthe, and Stefan T Radev. Detecting model misspecifi-
cation in amortized Bayesian inference with neural networks. pp. 541–557, 2023.

David Shih, Marat Freytsis, Stephen R Taylor, Jeff A Dror, and Nolan Smyth. Fast parameter inference on
pulsar timing arrays with normalizing flows. arXiv preprint arXiv:2310.12209, 2023.

Scott A Sisson, Yanan Fan, and Mark M Tanaka. Sequential Monte Carlo without likelihoods. Proceedings
of the National Academy of Sciences, 104(6):1760–1765, 2007.

Scott A Sisson, Yanan Fan, and Mark Beaumont. Handbook of approximate Bayesian computation. CRC
Press, 2018.

Alvaro Tejero-Cantero, Jan Boelts, Michael Deistler, Jan-Matthis Lueckmann, Conor Durkan, Pedro J
Gonçalves, David S Greenberg, and Jakob H Macke. SBI: A toolkit for simulation-based inference. Journal
of Open Source Software, 5(52):2505, 2020.

Owen Thomas, Henri Pesonen, Raquel Sá-Leão, Hermínia de Lencastre, Samuel Kaski, and Jukka Corander.
Split-BOLFI for for misspecification-robust likelihood free inference in high dimensions. arXiv preprint
arXiv:2002.09377, 2020.

Brandon M Turner and Trisha Van Zandt. A tutorial on approximate Bayesian computation. Journal of
Mathematical Psychology, 56(2):69–85, 2012.

Samantha Jane Wade. Fabrication and preclinical assessment of drug eluting wet spun fibres for pancreatic
cancer treatment. 2019.

Xiaoyu Wang, Adrianne L Jenner, Robert Salomone, David J Warne, and Christopher Drovandi. Cali-
bration of agent based models for monophasic and biphasic tumour growth using approximate Bayesian
computation. Journal of Mathematical Biology, 88(3):28, 2024.

Daniel Ward, Patrick Cannon, Mark Beaumont, Matteo Fasiolo, and Sebastian Schmon. Robust neural
posterior estimation and statistical model criticism. Advances in Neural Information Processing Systems,
35:33845–33859, 2022.

David J Warne, Ruth E Baker, and Matthew J Simpson. Rapid Bayesian inference for expensive stochastic
models. Journal of Computational and Graphical Statistics, 31(2):512–528, 2022.

Antoine Wehenkel, Jens Behrmann, Andrew C Miller, Guillermo Sapiro, Ozan Sener, Marco Cuturi,
and Jörn-Henrik Jacobsen. Simulation-based inference for cardiovascular models. arXiv preprint
arXiv:2307.13918, 2023.

Timothy O West, Luc Berthouze, Simon F Farmer, Hayriye Cagnan, and Vladimir Litvak. Inference of brain
networks with approximate Bayesian computation–assessing face validity with an example application in
Parkinsonism. Neuroimage, 236:118020, 2021.

Christina Winkler, Daniel Worrall, Emiel Hoogeboom, and Max Welling. Learning likelihoods with condi-
tional normalizing flows. arXiv preprint arXiv:1912.00042, 2019.

19

Published in Transactions on Machine Learning Research (09/2024)

A Further background for SMC ABC

We provide a detailed description of the adaptive SMC ABC algorithm we used in this paper and provide
pseudocode in Algorithm 2 for reference. This algorithm starts by drawing N independent samples from
the prior distribution p(θ), represented as {θi}Ni=1. For each sample θi (known as a particle), the algorithm
simulates a dataset xi from the stochastic model and calculates the corresponding discrepancy ρi = ρ(xi, xo),
resulting in the pair set {θi, ρi}Ni=1. These pairs are then arranged in order of increasing discrepancy such
that ρ1 < ρ2 < · · · < ρN . The first tolerance threshold, ϵ1, is set as the largest discrepancy, ρN . To move
through the target distributions, the algorithm adjusts the tolerance dynamically. The next tolerance, ϵt,
is set as ρN−Na , where Na = ⌊Na⌋, and a is a tuning parameter. Essentially, in each step, the algorithm
discards the top a× 100% of particles with the highest discrepancies. After discarding these particles, only
N −Na particles remain. To replenish the set back to N particles, the algorithm resamples Na times from
the ‘alive’ particles, copying both the parameter and discrepancy values. This process, however, leads to
duplicates in the particle set. To add variety to the set, the algorithm applies an MCMC ABC kernel to each
resampled particle. The parameters for the MCMC proposal distribution qt(·|·) are derived from the current
particle set. For instance, if using a multivariate normal random walk proposal, its covariance Σt is based
on the particle set’s sample covariance. The acceptance of a proposed parameter (assuming a symmetric
proposal) and simulated data is determined by the equation:

pt = min
(

1, p(θ̃)
p(θ) I(ρ(xo, x̃) < ϵt)

)
, (6)

where θ̃ ∼ q(·|θ) and x̃ ∼ p(·|θ̃) are proposed parameter values and dataset, respectively. However, proposals
may be rejected, leaving some particles unchanged. To address this, the algorithm performs Rt iterations of
the MCMC kernel on each particle, where Rt =

⌈
log(c)

log(1−pacc
t)

⌉
, where c is a tuning parameter of the algorithm

that can be interpreted as the probability that a particle is not moved in the Rt iterations. The acceptance
probability pacc

t is estimated from trial MCMC ABC iterations and used to compute Rt for the next set of
MCMC ABC iterations. For this adaptive SMC ABC algorithm, two stopping rules can be used. The first
stopping rule halts the ABC algorithm when the maximum discrepancy is below a set tolerance, ϵT . The
second stopping rule terminates the algorithm when the MCMC acceptance probability pacc

t falls below a
predefined threshold pacc. Here we choose the second rule, and since we only require a short run of ABC,
we set pacc to be higher than what is typically used in an ABC analysis.

20

Published in Transactions on Machine Learning Research (09/2024)

Algorithm 2 Adaptive SMC ABC
Input: The observed data xo, the stochastic model p(x|θ), distance function ρ(·, ·), prior distribution
p(θ), number of particles N , tuning parameters a and c for adaptive selection of discrepancy thresholds
and selecting the number of MCMC iterations in the move steps, target tolerance ϵT , initial number of
trial MCMC iterations Sinit, minimum acceptable MCMC acceptance rate pmin
for i = 1, . . . , N do

Simulate xi ∼ p(x|θi) where θi ∼ p(θ)
Compute ρi = ρ(xo, xi)

end for
Sort {θi}Ni=1 by {ρi}Ni=1 such that ρ1 ≤ ρ2 ≤ · · · ≤ ρN
Set Na = ⌊aN⌋, t = 2, ϵt = ρN−Na

, ϵ1 = ρN , St = Sinit, p̃acc
t = 1

while ϵt−1 > ϵT or p̃acc
t > pmin do

Compute Σ as the sample covariance matrix of {θi}N−Na
i=1

Generate {θi}Ni=N−Na+1 by resampling from {θi}N−Na
i=1 with replacement

for i = N −Na + 1, . . . , N do
for j = 1, . . . , St do

Simulate x̃ ∼ p(x|θ̃) based on proposal θ̃ ∼ N (θi,Σ)
Compute ρ̃ = ρ(xo, x̃)
Compute pi,jt = min

(
1, p(θ̃)

p(θ) I(ρ̃ < ϵt)
)
.

With probability pi,jt , set θi = θ̃ and ρi = ρ̃; otherwise, retain the current values of θi and ρi
end for

end for
p̃t =

∑N
i=N−Na+1

∑St

j=1 p
i,j
t /

(
St(N −Na)

)
Rt = ⌈log(c)/

(
1 + log(1− p̃t)

)
⌉

for i = N −Na + 1, . . . , N do
for j = Rt − St, . . . , Rt do

Simulate x̃ ∼ p(x|θ̃) based on proposal θ̃ ∼ N (θi,Σ)
Compute ρ̃ = ρ(xo, x̃)
Compute pi,jt = min

(
1, p(θ̃)

p(θ) I(ρ̃ < ϵt)
)
.

With probability pi,jt , set θi = θ̃ and ρi = ρ̃; otherwise, retain the current values of θi and ρi
end for

end for
p̃acc
t =

∑N
i=N−Na+1

∑Rt

j=1 p
i,j
t /

(
Rt(N −Na)

)
St+1 = ⌈Rt/2⌉
Sort {θi}Ni=1 by {ρi}Ni=1 such that ρ1 ≤ ρ2 ≤ · · · ≤ ρN
Set ϵt+1 = ρN−Na

, ϵt = ρN
t = t+ 1

end while
return Samples {θi}Ni=1 from ABC posterior

21

Published in Transactions on Machine Learning Research (09/2024)

B Experimental Details

We use the adaptive SMC ABC algorithm Drovandi & Pettitt (2011) in the preconditioning step for all
experiments. We set the tuning parameters as a = 0.5, c = 0.01 and use 1k particles for the algorithm.
As the stopping rule, we set the target MCMC acceptance rate at 10%, unless otherwise specified. For
the unconditional density estimator, we employ unconditional normalizing flows using the Pyro package
Bingham et al. (2019), with a spline coupling layer using the transformation:

Y1:d = gθ̃(X1:d) (7)
Y(d+1):D = hϕ(X(d+1):D;X1:d) (8)

where X are the inputs, Y are the outputs, e.g., X1:d represents the first d elements of the inputs, gθ̃
is either the identity function or an elementwise rational monotonic spline with parameters θ̃, and hϕ,
where ϕ is element-wise bijection parameter, is a conditional elementwise spline, conditioning on the first d
elements. Regarding the neural networks, we use four fully-connected layers and set the count bins to 16.
Furthermore, if the dimensions of the parameter space are less than three, indicating a low-dimensional case,
we also consider kernel density estimation with a Gaussian kernel as the unconditional density estimator,
as implemented in the Scikit-learn package Pedregosa et al. (2011). For APT and TSNPE, we use the
implementation of the sbi package Tejero-Cantero et al. (2020) with default settings.

For SNPE and TSNPE, we use conditional neural spline flows Durkan et al. (2019). We use five coupling
layers, with each coupling layer using a multilayer perceptron of two layers with 50 hidden units. The flow is
trained using the Adam optimizer with a learning rate of 5× 10−4 and a batch size of 256. Flow training is
stopped when either the validation loss, calculated on 10% of the samples, has not improved over 50 epochs
or when the limit of 500 epochs is reached.

B.1 Benchmarking examples

A number of popular benchmarking models in the SBI literature exist where the ground truth posteriors are
available. For the two-moon model and the SLCP model, we follow the model specifications in Lueckmann
et al. (2021). For the rest of the models, we refer to Lintusaari et al. (2018). After the preconditioning step,
we generate 10k simulations from the unconditional normalizing flows and pair them with their simulated
data to process SNPE.

B.1.1 Two moons model

The two moons model exhibits both global (bimodality) and local (crescent shape) structures in the posterior.
For the preconditioning step, the total number of model simulations is around 30k. Since θ is low-dimensional
in this model, we use KDE as the unconditional density estimator and achieve results similar to those obtained
with unconditional normalizing flows.

Simulator x|θ =
[
r cos(α) + 0.25

r sin(α)

]
+

[
−|θ1 + θ2|/

√
2

−(θ1 − θ2)/
√

2

]
, where α ∼ U(−π/2, π/2), r ∼ N (0.1, 0.012)

Prior θ = (θ1, θ2), θi ∼ U(−1, 1) for i = 1, 2
Dimensionality θ ∈ R2,x ∈ R2

References Greenberg et al. (2019)

B.1.2 SLCP with Distractors model

The SLCP model is designed to have a simple likelihood and a complex posterior, with uninformative dimen-
sions (distractors) added to the observations. The preconditioning step uses around 35k model simulations.

22

Published in Transactions on Machine Learning Research (09/2024)

Simulator x = (x1, . . . ,x100), x = p(y),
where p re-orders the dimensions of y with a fixed random permutation;

y[1:8] ∼ N (mθ,Sθ), y[9:100] ∼
1
20

20∑
i=1

t2(µi,Σi),

where mθ =
[
θ1
θ2

]
, Sθ =

[
s2

1 ρs1s2
ρs1s2 s2

2

]
, s1 = θ2

3, s2 = θ2
4, ρ = tanh(θ5),

µi ∼ N (0, 152I), t2 is student t-distribution with degree of freedom 2,
Σij,k ∼ N (0, 9), for j > k, Σij,j = 3ea where a ∼ N (0, 1), Σij,k = 0 otherwise

Prior θ = (θ1, θ2, θ3, θ4, θ5), θi ∼ U(−3, 3) for i = 1, . . . , 5
Dimensionality θ ∈ R5,x ∈ R100

References Greenberg et al. (2019)

B.1.3 MA(2) model

The moving average model of order 2 (MA(2)) is a univariate time series model often used as a toy example
in the ABC literature. We assign the true parameter values as θ = (0.6, 0.2) and simulate x0 ∈ R100. In
this model, xo and x are high-dimensional, so we use the first two lags of the autocovariance function and
the variance (lag 0) as the summary statistics. The preconditioning step required 18k simulations, as the
target MCMC acceptance rate is set at 12%. Given that the dimension of the parameter space is relatively
low, we employ KDE as an additional unconditional density estimator, utilizing a Gaussian kernel with a
bandwidth selected by Silverman method. This method achieves results similar to those obtained using an
unconditional normalizing flow.

Simulator x = (x1, . . . , x100), xt = et + θ1et−1 + θ2et−2, where et ∼ N (0, 1)
Prior θ = (θ1, θ2), θi ∼ U(−1, 1) for i = 1, 2
Dimensionality θ ∈ R2, x ∈ R100

Summary Statistics Sample autocovariances Sj(x) = 1
T

T∑
t=1+j

xtxt−j , for j = 0, 1, 2

References Marin et al. (2012)

B.1.4 Univariate g-and-k model

The univariate g-and-k model is a popular benchmark in the statistical SBI literature. The four param-
eters θ = (A,B, g, k) control the location, scale, skewness, and kurtosis, respectively. We assign the true
parameter values as θ = (3, 1, 2, 0.5) and use them to simulate xo ∈ R50 independent observations. For
the preconditioning step, we take the set of octiles as summary statistics as they are a robust measure of
skewness and kurtosis (Drovandi & Pettitt, 2011). Setting the target MCMC acceptance rate to 20% results
in 18k model simulations for the preconditioning step. Here we used a larger acceptance rate to ensure that
the preconditioning step does not use too many model simulations.

Simulator x = (x1, . . . , x50), where xi = a+ b(1 + c · tanh[z/2](1 + z2)kz, z ∼ N(0, 1) and c = 0.8
Prior θ = (a, b, g, k) and each parameter has an U(0, 10) prior
Dimensionality θ ∈ R4, x ∈ R50

References Allingham et al. (2009); Drovandi & Pettitt (2011b)

23

Published in Transactions on Machine Learning Research (09/2024)

B.1.5 Toad model

The toad movement model proposed in (Marchand et al., 2017) is an individual-based model for simulating
the dispersal of Fowler’s toads (Anaxyrus fowleri). It has been considered as a test example several times in
the SBI literature (e.g. Frazier et al. (2022a;b); Drovandi & Frazier (2022)).

This model captures two known behaviours of amphibians: the tendency to return to previously visited loca-
tions and a small chance of long-distance movement. Dispersal distance is modeled with a Lévy alpha-stable
distribution characterized by a stability factor α and scale factor γ. The Lévy alpha-stable is symmetrically
centred around zero but has heavy tails, allowing the simulation of both frequent short-distance and rare
long-distance movements. Toads are modeled to remain at their refuge site during the day and move to
forage independently at night. After foraging, the toad may either remain at their current location or return
to a previously visited refuge site. We follow “model 1” in Marchand et al. (2017), where each former refuge
site has equal probability of being returned to. The probability of a toad returning to a former refuge site
is a constant probability, denoted as p0. Hence, there are three parameters to infer, that is θ = (α, γ, p0).

The simulated data generates an observation matrix (representing Euclidean distance in metres from the
origin) of 66 toads across 63 days. We assign the true parameter values as θ = (1.7, 35.0, 0.6) and use them
to simulate xo ∈ R63×66. Since the data can be considered as high-dimensional, to summarise the data we
first construct four sets of displacement vectors with time lags of 1, 2, 4 and 8 days. For each set, we take
the log difference between the 0, 0.1, . . . , 1 quantiles, the number of absolute displacements less than 10m,
and the median of the absolute displacements greater than 10m, resulting in a total of 48 summary statistics
(12 for each time lag).

Prior α ∼ U(0, 1), γ ∼ U(0, 100), p0 ∼ U(0, 0.9)
Dimensionality θ ∈ R3, x ∈ R63×66, S(x) ∈ R48

References Marchand et al. (2017)

B.2 High-dimensional SVAR model

We consider our illustrative example in a high-dimensional setting with k = 20, which leads to 21 parameters
that need to be estimated. We set the true parameter values as follows:

θ = (−0.2764,−0.7765, 0.8231,−0.1972,−0.2254, 0.6334, 0.4495,
0.4465,−0.8961, 0.0647,−0.1791, 0.0795,−0.5464,−0.9354,
− 0.4639,−0.7851,−0.6833,−0.1408, 0.7032, 0.8321, 0.1000),

and use these values to simulate the observation dataset. We employ the same summary statistics as in the
low-dimensional example and use a uniform distribution as the prior, constrained between -1 and 1 for the
k parameters and between 0 and 1 for σ.

Since the BSL method is the gold standard for this example, we use the standard BSL method proposed by
Price et al. (2018), with the total number of simulations set to 20 million.

B.3 BVCBM

The BVCBM simulation begins by initializing a square domain with cells arranged in a hexagonal lattice.
The cell at the center of the domain is identified as a cancer cell, while the others are designated as healthy
cells. The simulation proceeds until the tumor reaches a volume of 100mm2, in accordance with experimental
measurements (Wade, 2019; Kim et al., 2011). When this volume is attained, the distribution of healthy
and cancerous cells within the lattice is recorded. This configuration then serves as the starting point to

24

Published in Transactions on Machine Learning Research (09/2024)

simulate tumor growth over the desired number of days. The model progresses by determining whether a
cancer cell proliferates at each timestep, as described by the equation:

pd = p0

(
1− d

dmax

)
, (9)

where pd is the probability of cell division, p0 is the initial division rate, d is the current cell density, and
dmax is the maximum density. For cancer cells that do not proliferate, the model assesses their potential to
transition into invasive cells, governed by the probability ppsc. Subsequently, the positions of all cells, both
healthy and cancerous, are updated using Hooke’s law:

ri(t+ ∆t) = ri(t) + 1
µ

Fi(t)∆t = ri(t) + λ
∑
∀j

ri,j(t)
∥ri,j(t)∥

(si,j(t)− ∥ri,j(t)∥). (10)

Here, ri(t+ ∆t) denotes the updated position of cell i, µ is the cell motility coefficient, Fi(t) is the force on
cell i, λ is a mechanical interaction coefficient, ri,j(t) is the vector between cells i and j, and si,j(t) is the
natural length of the spring connecting the two cells. The parameters for the mechanical interactions, such
as λ and µ, are sourced from prior studies in the literature Meineke et al. (2001). See Jenner et al. (2020);
Wang et al. (2024) for more detailed model simulation.

Four parameters θ = (p0, ppsc, dmax, gage) control the tumor growth during a single phase, which is a period
when the tumor grows based on fixed values for these four parameters. For the biphasic model, an additional
parameter τ is introduced, representing the time at which the tumor growth pattern changes, that is, the
values for θ change. Therefore, for BVCBM, we need to estimate nine parameters for two pancreatic cancer
datasets, denoted as θ1 = (p1

0, p
1
psc, d

1
max, g

1
age), θ2 = (p2

0, p
2
psc, d

2
max, g

2
age), and τ , so that θ = (θ1, θ2, τ).

The parameter ppsc, which is the probability of tumor cell invasion into healthy cells, significantly affects
the simulation time. The value of ppsc should be around 10−5, indicating that an increase in probability
will require more cells to be simulated. Moreover, a smaller value of ppsc results in simulation time. For
PNPE, the total simulation time for 15k simulations (26-day dataset) and 17k simulations (32-day dataset)
for the preconditioning step is approximately 13 and 15 minutes, respectively, whereas SNPE requires around
1 hour for the first round (i.e. based on samples from the prior) of 10k simulations. This is because the
preconditioning step is effective at quickly eliminating values of ppsc that lead to longer model simulation
times.

25

Published in Transactions on Machine Learning Research (09/2024)

C Further experimental results

C.1 SVAR

We generate 10 different datasets for the SVAR model in 6 dimensions based on predefined parameter values
shown in Table 3. Then, we run SNPE and PNPE with 10 different random seed values for each dataset
to investigate reproducibility. For preconditioning, we use a 10% stopping rule and train unconditional
normalizing flows based on ABC posterior samples for different random seed values for each dataset. To
quantify the results, we use MMD as the metric. For each dataset, we compute the MMD values between
the approximate distribution and the reference distribution, allowing us to use one value to summarize the
fit. By computing the MMD for the approximate posterior based on each set of random seed values, we
produce a boxplot corresponding to each method.

Dataset θ1 θ2 θ3 θ4 θ5 θ6
1 0.9749 -0.2564 0.4230 0.8749 0.6453 -0.1772
2 0.2777 -0.2932 0.5483 -0.4679 0.1549 -0.6365
3 0.3193 -0.2509 0.7801 0.5103 -0.4358 0.0317
4 -0.9295 -0.3267 0.2930 -0.9326 -0.6113 -0.5015
5 0.5146 0.2805 -0.6695 0.7410 -0.4518 -0.4366
6 0.6401 -0.6037 0.3730 -0.6739 -0.7237 -0.5494
7 -0.9378 -0.6438 -0.8434 -0.9219 -0.4032 0.5577
8 -0.2663 0.9098 0.7383 0.1438 -0.0968 0.7992
9 0.9185 -0.1454 0.5147 -0.2921 0.0595 0.7227
10 -0.4766 0.7152 0.9845 -0.7105 -0.2426 -0.4923

Table 3: True values to generate observational datasets: Each row refers to the true parameters that
we used to generate the observation datasets xo with the additional parameter σ set to a constant value of
0.1.

26

Published in Transactions on Machine Learning Research (09/2024)

Figure 10: Performance for SVAR with 10 different datasets: The box-plots refer to the MMD
values computed from approximate posterior for each algorithm with 10 different random seed values.

27

Published in Transactions on Machine Learning Research (09/2024)

C.2 BVCBM

In this section, we present prior predictive distributions of tumour volumes in (a) and (b) for two pancreatic
datasets (in (c) and (d) we show the same plots but on the log scale). We also show the posterior predictive
distributions on the log scale obtained with different methods in Figure 12. Then we present the bivariate
posterior density and marginal posterior density plots for the BVCBM as additional results. It is evident
from Figures 13 and 14 that PNPE provides more precise estimation than SNPE for both pancreatic cancer
datasets.

Figure 11: Prior predictive distribution for BVCBM. We sample 10k parameter values from prior
distribution and plot the prior predictive distribution for two pancreatic datasets. In (a) and (b), the plots
are in regular scale, and in (c) and (d), the plots are in log scale.

28

Published in Transactions on Machine Learning Research (09/2024)

Figure 12: Posterior predictive distributions for two pancreatic cancer datasets in log scale.
90% Posterior predictive interval plots for SNPE (a), preconditioning step (b) and PNPE (c) for the 26-day
dataset; 90% Posterior predictive interval plots for SNPE (d), preconditioning step (e) and PNPE (f) for
the 32-day dataset.

29

Published in Transactions on Machine Learning Research (09/2024)

Figure 13: Bivariate density plots for the pancreatic dataset with 26-day measurements for (a) SNPE and
(b) PNPE. The diagonal entries represent the marginal posterior densities for (p1

psc, g
1
age, τ, p

2
psc, g

2
age).

30

Published in Transactions on Machine Learning Research (09/2024)

Figure 14: Bivariate density plots for the pancreatic dataset with 32-day measurements for (a) SNPE and
(b) PNPE. The diagonal entries represent the marginal posterior densities for (p1

psc, g
1
age, τ, p

2
psc, g

2
age).

31

	Introduction
	Simulation-based Inference
	Approximate Bayesian computation
	Neural posterior estimation
	Illustrative Example

	Method
	Preconditioned NPE
	Computational cost
	Illustrative Example Revisited

	Further Experiments
	Benchmarking example
	High-dimensional SVAR model
	Biphasic Voronoi cell-based model

	Discussion
	Further background for SMC ABC
	Experimental Details
	Benchmarking examples
	Two moons model
	SLCP with Distractors model
	MA(2) model
	Univariate g-and-k model
	Toad model

	High-dimensional SVAR model
	BVCBM

	Further experimental results
	SVAR
	BVCBM

