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Abstract—In this paper, we propose a new framework, PHIRL,
leveraging both human demonstrations and a recently introduced
type of human feedback, progress. Progress describes the comple-
tion rate of a task based on the end state of a trajectory and has
been shown to correlate with task success while being consistent
across multiple non-experts. We use progress to annotate a part
of the demonstration dataset. In PHIRL, reward functions are
learned using IRL methods and then shaped to align with the
progress annotations over the annotated demonstrations. Our
method does not intensively rely on humans to stay in the learning
loop to provide feedback during the training and is capable of
mitigating reward hacking and bottleneck issues. We validate
PHIRL using a simulation study and a block lifting task. Our
results show that PHIRL learns better reward functions and is
more robust when the demonstrations are imperfect.

I. INTRODUCTION

Reinforcement Learning (RL) has become one of the most
popular methods for enabling robots to learn new skills
[25, 44]. An essential component for RL agents to perform
well is reward functions. In most cases, reward functions are
often hard-coded by system designers [30]. Inverse Reinforce-
ment Learning (IRL) offers an alternative by inferring the
latent reward function R directly from human demonstrations.
IRL often requires human demonstrations to be optimal, or
the majority of demonstrations are near-optimal [36]. Prior
work indicated that using human feedback along with human
demonstrations can relax the quality constraints for demon-
strations. In this work, we focus on effectively learning robust
reward functions by leveraging human demonstrations and a
novel teaching signal progress.

Providing high-quality to manipulation tasks is known to
be challenging even for experts. Nevertheless, high-quality
human feedback is more accessible since providing feedback
requires less mental effort and skills compared to providing
demonstrations. Most recent work has demonstrated that using
human demonstrations and human feedback jointly can sig-
nificantly improve data efficiency since human feedback and
human demonstration have complementary advantages [30].
Human demonstrations contain dense information, require
more skills to provide, and often have some suboptimality.
Human feedback offers relatively sparse information, but
requires less expertise and tends to be more precise. Thus,
using human feedback as supplementary for reward learning,
or using human demonstrations to boost feedback collection,
can lead to more effective and robust learning.

Despite the improvement in learning by combining human
feedback and human demonstrations is significant, the com-
plementary advantages are not fully utilized in prior work
[30, 20, 6]. The human demonstrations are generally used to
pre-train robots to more efficiently sample human feedback,
and then discarded in the later part of learning. Human
feedback is often used to indicate users’ preferences. However,
if generated trajectories are both good or bad, forcing users
to pick one preferred trajectory would not benefit learning ,
and users are required to stay in the training loop to provide
feedback to newly generated trajectories. Thus, there is a need
for a more effective reward-learning method to further reduce
human efforts in the training loop while learning an accurate
reward function. Our key intuition is that: when humans are
solving a problem, we are not only inferring the answers and
then asking for evaluations but also validating our inferences
on instances with known answers.

We use this insight to develop an efficient reward learning
framework, PHIRL, that learns from both demonstrations
and a recently introduced type of human feedback, progress.
Progress is a signal that describes the degree of task comple-
tion. We use progress to annotate a part of human demon-
stration data. We first use an IRL algorithm to learn a reward
function from all demonstrations, and then shape the learned
reward function to be consistent with the progress. Our method
is: (1) more robust to noisy or even failed demonstrations since
low-quality demonstrations would receive low or negative
progress and thus small or negative rewards; (2) more robust to
reward hacking since reward hacking behaviors are not making
actual progress; (3) more flexible in human participation levels
since the annotations can be collected before learning. We
validate our framework on a simulated robot in Robosuite
with Robomimic datasets. Our results showed that PHIRL is
significantly more effective and robust than the baseline with
low-quality and high-quality demonstrations.

II. BACKGROUND

Interactive machine learning grants robots the ability to
effectively adapt to human needs or learn new skills by
leveraging human knowledge [3]. There are diverse represen-
tations of human knowledge, such as human preference [2],
verbal feedback [28], eye gaze [35], facial expressions [12],
numerical evaluation [23], and human demonstrations [33].
Each representation has its advantages and limitations. One



Fig. 1. The PHIRL framework. Human users first provide demonstrations. Then we randomly sample a subset of demonstrations and ask human users to
annotate the demonstrations with progress. We then alternately use an IRL algorithm to learn a reward function from the demonstrations and align the learned
reward function to be consistent with the information carried by progress annotations. This process will be repeated until the reward learner achieves satisfied
performance. Optionally, the trajectories generated by the robot during learning could be added to the annotated demonstration dataset after being annotated
to further improve learning.

approach to achieve better learning is to use multiple forms
of human knowledge jointly [30]. In this work, we seek to
improve Inverse Reinforcement Learning by integrating human
feedback and human demonstrations.
Learning from Human Feedback Human feedback is a
popular form of human teaching signals for robots to learn
from humans via interactive reinforcement learning or inverse
reinforcement learning [1, 9, 24, 8, 26, 22, 15, 12]. To provide
human feedback, humans first observe robots performing a
task, and then evaluate the performance of the robots im-
plicitly or explicitly [3]. Humans can use feedback to assess
robot behaviors [40] and indicate their preferred policy [2].
In our work, we choose an effective and easy-to-provide
signal progress [43] and reduce the exploration problem by
combining progress with human demonstrations.
Learning from Demonstrations Learning from Demonstra-
tions (LfD) allows robots to learn to perform new tasks by im-
itating humans [38, 26, 29, 4, 31, 10, 36, 41]. LfD approaches
have many advantages, such as reducing the needs for expert
programming [46], data efficiency [32], and guaranteed task
performance[21]. LfD generally solves the learning problem
in two major ways: (1) inferring a policy[16, 11, 18, 19],
and (2) inferring a reward function[34, 17, 42, 13]. Methods
that infer policies, such as DreamerV3 and Diffusion Policy
[16, 11], have higher data efficiency and might be more robust,
while methods that infer reward functions, such as MaxEnt
IRL and AIRL [47, 13], better interpret human’s intentions.
With sufficient and error-free demonstrations, LfD methods
are guaranteed to produce optimal behaviors [37]. Despite
LfD methods have achieved significant improvements in the
past few years in learning from non-perfect demonstrations
[36, 39], the majority of demonstrations still need to be rela-
tively high-quality and consistent. Especially for IRL, learning
an accurate reward function purely from demonstrations is
challenging [30].
Combining LfD and LfHF Recent work indicates that com-
bining human demonstrations and human feedback could im-
prove learning efficiency and overcome the limitation of using
human feedback or demonstrations solely [20, 5, 30, 26, 7].

Specifically, Ibarz et al. [20] proposed to use demonstrations to
pre-train the learning agent, and then used the pre-train agent
to efficiently generate meaningful preference queries, which
significantly improves the sample efficiency for preference
learning. Building on Ibarz et al. [20]’s work, Palan et al. [30]
not only used the demonstrations to improve sample efficiency
but also used the demonstrations to learn an initial reward
model. Although prior work has successfully consolidated
human demonstration with human feedback, humans still need
to stay in the training loop to continuously provide feedback.

Our work differs from prior work by focusing on learning
robust and accurate reward functions and improving data effi-
ciency. The learned reward functions are aligned with human
progress annotations, which makes the learning outcome more
robust to reward hacking and incomplete demonstrations.

III. METHODOLOGY

We aim to learn a robust function effectively from both
human demonstrations and human feedback without requir-
ing humans to be in the learning loop. Previous work has
demonstrated that progress is an informative type of human
feedback and has many advantages when used to annotate
demonstrations, especially when annotators are multiple non-
experts. Our key insights are:

Reward functions are used to drive agents to complete
the task, and progress describes how much of a task has
been completed.

We then develop our novel reward learning framework,
PHIRL, by aligning machine-learned information and human
knowledge on the same demonstration dataset.

A. Progress

To effectively annotate human demonstrations, we use a
novel human feedback form, progress. Progress is a signal
that describes the accumulative degree of task completion,
ranging from fully incomplete to fully complete. Progress can
be collected by asking users to observe a single state or a
trajectory. Previous work [43] has demonstrated that progress
is an informative teaching signal and has many advantages



for reward learning. Progress indicates whether the robot is
acting toward task completion in a scale value and if the task
has been completed. The progress signal we used ranges from
0 to 100, where 100 means the task is perfectly complete
and 0 means there is no progress has been made yet. The
value of progress depends on how far along the task has been
completed at a single state or the end state of a trajectory,
and is relatively independent from state transitions. Moreover,
progress is robust to non-expert demonstrations and more
consistent across non-experts, which allows us to collect both
demonstrations and progress from a broader source. In this
work, we use progress as the reference for reward function
alignment.

B. Reward Learning from Demonstrations

Given a set of human demonstrations D = {d0, ..., dn},
where d = (s0, a0, ..., sn, an), the objective of Inverse Rein-
forcement Learning (IRL) is to find a reward function r(s, a).
To learn robust reward functions efficiently, PHIRL alternately
learns a reward function and shapes it to align with progress. If
we assume that the demonstrations are from an optimal policy
π∗, we can then interpret the IRL problem as a maximum
likelihood problem:

max
θ

Ed∼D[log pθ(d)] (1)

where

pθ(d) ∝ p(s0)

T∏
t=0

p(st+1|st, at)eγtrθ(st,at)

parametrizes the reward function. We choose the Adversarial
Inverse Reinforcement Learning (AIRL) [13] algorithm to
learn the initial reward distribution. AIRL casts the optimiza-
tion of Equation 1 as a GAN [14] optimization problem. The
discriminator uses a particular fθ:

Dθ(s, a, s0) =
exp{fθ(s, a, s0)}

exp{fθ(s, a, s0)}+ π(a|s)
(2)

and π is trained to maximize:

r(d) = log(1−D(d))− logD(d) (3)

, where fθ(s, a, s0) can be interpret as the advantage under
deterministic dynamics:

f∗(s, a, s′) = r∗(s) + γV ∗(s′)︸ ︷︷ ︸
Q(s,a)

−V ∗(s)︸ ︷︷ ︸
V (s)

= A∗(s, a) (4)

We choose AIRL as our reward learning method since it learns
a state-only value function, which aligns with the intuition of
progress. Similar to progress at state s, the learning outcome
of AIRL consists of r(s) and V (s), which are both state-only
functions.

C. Reward Function Shaping

Our goal is to improve the reward functions learned from
human demonstrations using progress. Specifically, we exploit
four key aspects of the information provided by progress
to shape the learned rewards: 1) positive progress indicates
positive rewards 2) larger increase in progress indicates larger
rewards; 3) high current progress indicates high potential; 4)
successful demonstrations should receive more rewards than
incomplete/failed demonstrations.
Positive delta progress, positive rewards. Given a trajec-
tory segment s1

as−→ s2, if the robot’s action sequence is
appropriate, the progress at state s2 should be higher at s1.
Similarly, the learned incremental reward r(s1, s2) should also
be positive. We enforce this relationship via the binary cross-
entropy (BCE) loss:

L(∆p→ r) = BCE (σ (p(s1, s2)) , σ (r(s1, s2))) (5)

where σ denotes the sigmoid function, p(s1, s2) = p(s2) −
p(s1).
More increase in progress, more rewards. Even in optimal
demonstrations, not all steps in a demonstration are equally
important. Some steps, like picking behaviors in a pick-and-
place task, are inherently more important than other steps, and
intuitively should receive a larger reward than other steps. If
a state or a sub-trajectory has a higher delta progress than
another state or sub-trajectory, the learned reward should also
be higher. We enforce this by:

L(∆∆p→ ∆r) = BCE(p(s1, s2)− p(s3, s4),

r(s1, s2)− r(s3, s4)) (6)

Noted, in this condition specifically, s1
as−→ s2, s3

as−→ s4,
and s1, s2, s3, and s4 are from the same demonstration since
different users might scale progress differently.
High progress, high potential. The potential function Φ was
introduced in [27], and describes the distance between the
current state and the goal state (i.e. Φ(s) = −dist(s, sgoal).
The use of potential function will not alter the original
optimal policy, and the agent can reduce the need for random
exploration by getting heuristics from γΦ(s′)−Φ(s). If a state
or a sub-trajectory has higher progress than another state or
sub-trajectory, the learned potential should also be higher. We
captured this by:

L(∆p→ Φ) = BCE(p(s1, s2),Φ(s1, s2)) (7)

Final Status Progress and Total Reward Rankings The
ultimate goal of reward learning is to learn a reward func-
tion that guides the agent to successfully complete the task.
Therefore, any demonstration that completed the task should
receive a higher total reward than any demonstration that did
not complete the task. Previous work has indicated that most
failed demonstrations have a progress that is lower than 90
at the end of the demonstration. In this work, we use 90 to
distinguish between successful and failed demonstrations. We



Fig. 2. Simulation Task Environment. Lift: the arm needs to reach the block,
grasp the block, and lift the block from the table.

capture this condition by:

L(p→ ranking) =
∑

df∈Df

(
R(df )− min

ds∈Ds

(R(ds))

)
(8)

where Ds are all successful demonstrations in the demonstra-
tion set D and Df are all failed or incomplete demonstrations
in D.

D. PHIRL

We showed the general workflow of our learning frame-
work in Algorithm 1. All demonstrations and annotations are
collected before the learning phase. Progress annotations are
used to shape the learned reward function to boost training
and stabilize the learning outcome. The method would benefit
from human-in-the-loop for improving robustness, but human-
in-the-loop teaching is mandatory. The procedure for learning
a reward function will have the following steps, which will be
described later in the section:

Algorithm 1 PHIRL
1: Collect demonstration dataset D
2: Sample a subset of demonstrations Dp from D
3: For trajectory τ ∈ demonstration d and d ∈ Dp, annotate

τ with progress p
4: while not converged do
5: Sample trajectories τD from D and τπ from policy π
6: Train Dθ,ϕ by distinguishing τD and τπ
7: Sample trajectories τDp

from Dp and corresponding
progress labels pτ

8: Update Dθ,ϕ by aligning rθ,ϕ(τDp
) with pτ , where

rθ,ϕ(s, a, s
′) ← log

(
Dθ,ϕ(s, a, s

′)
)
− log

(
1−Dθ,ϕ(s, a, s

′)
)
.

9: Optimizing policy π respect to updated rθ,ϕ
10: Optional: active sampling and querying

• Sample a demonstration dπ from policy π
• Annotate dπ with progress, Dp ∪ dπ

11: Check for Convergence
12: end while

E. Online Updating and Scalability

Optionally, we included an online update process in PHIRL.
While human-in-the-loop teaching is not required for our
method, PHIRL would benefit from adding generated demon-
strations into the annotation dataset, especially if the generated
demonstration has unexpected failures, such as repetitively
picking and releasing the target object or performing a pick
and place task without actually picking the object up. This
will further improve the robustness of the learning outcome,
and align the reward function with actual human intentions.

We choose AIRL over other IRL algorithms because we
believe that AIRL’s training objectives are well-aligned with
progress in multiple aspects, but the learning framework is not
necessarily bonded with AIRL. The key idea of the framework
is shaping the learned rewards to align with the evaluation
information specified by progress. Most types of shaping loss
proposed in this paper do not require the learning algorithm to
be AIRL. We will further demonstrate this with our experiment
results.

IV. EXPERIMENTS AND RESULTS

In this section, we will first talk about simulation experiment
setups, and then discuss the results. To analyze data, we used
Welch’s t-test to indicate significant in our results.

A. Task And Dataset

The simulation environment we used in this paper is Ro-
bosuite. [45]. We selected Lift from Robosuite, where the
robot arm only needs to reach the target block and pick
it up to an arbitrary height. The tasks are shown in ??.
We trained PHIRL on a high-quality dataset and a mixed-
quality dataset from Robomimic [] separately. The high-quality
dataset is the PH dataset, which is provided by one single
proficient operator using the RoboTurk platform. The dataset
consists of 200 successful demonstrations. The mixed-quality
dataset is the MH dataset, which is collected by six operators
using the RoboTurk platform. Each operator provided 50
demonstrations and each operator has varied proficiency. Two
operators were “worse” operators, two were “okay” operators,
and two were “better” operators, resulting in a mixed-quality
dataset. For each dataset, we annotated ten percent of the
demonstrations. Each demonstration was equally divided into
10 sub-trajectories, and each sub-trajectory was annotated with
a progress label. All annotations were done by three robot
experts with limited experience with Robosuite.

B. Results

We used a fixed seed, picked the best AIRL and PHIRL
models in 50 million steps, and ran the agents in the envi-
ronment for 50 rounds over 300 steps. We showed results
for the Lift task in subsection IV-A. The success rates for
agents learned from AIRL and PHIRL are shown on the left.
PHIRL achieved largely more success than AIRL on both
datasets (32 V.S. 5 on ph, and 11 V.S. 0 on mh). PHIRL
also obtained significantly higher average rewards on two
datasets. The average environmental rewards for the agents that



Fig. 3. PHIRL Versus AIRL on Lift Task. In 50 runs, PHIRL achieved more success and higher average rewards with both datasets. The difference is more
significant on the mh dataset, where the demonstration quality is lower than the ph dataset.

learned ph dataset are: 186.42 (PHIRL) and 146.11 (AIRL),
t = 2.63, p < 0.001. The average environmental rewards for
the agents that learned mh dataset are: 146.82 (PHIRL) and
83.93 (AIRL), t = 5.90, p < 0.001.

V. DISCUSSION AND CONCLUSION

We demonstrated that PHIRL learns better reward functions
than AIRL on a lifting task and is more robust when demon-
strations are imperfect, while only requiring to annotate 10%
of collected demonstrations before the learning phase. One
limitation of this work is that we claimed that PHIRL would
benefit from having humans in the loop, but we did not test and
demonstrate the effect of using PHIRL in an online setting.
In our future work, we will conduct a human study with a
real robot over a long-horizon task. We will collect human
feedback and human demonstrations from non-experts and test
PHIRL in both online and offline feedback.

In conclusion, in this work, we proposed PHIRL, an Inverse
Reinforcement Learning method that learns reward functions
by alternately learning a reward function and shaping the
learned reward function with progress. We showed that PHIRL
significantly outperforms AIRL in a block lifting task with
a higher successful rate on both the perfect human and the
mixture human demonstration datasets.
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