
Why and How LLMs Benefit from Knowledge Introspection in
Commonsense Reasoning

Anonymous ACL submission

Abstract001

Large Language Models (LLMs) can improve002
commonsense reasoning through generating in-003
termediate knowledge. However, the effective-004
ness of this knowledge introspection is not al-005
ways guaranteed. This paper first systemati-006
cally investigates and reveals an introspection007
paradox: while simple introspection tends to008
benefit weaker models, it often degrades the009
performance of stronger ones, particularly on010
simpler tasks. Our deep analysis indicates that011
this paradox arises from a complex interplay012
among model capability, task difficulty and013
the quality of generated knowledge. Further014
interpretability analysis reveals the origins of015
low-quality knowledge generation. To better016
employ introspected knowledge in LLM, this017
paper proposes a training-free Adaptive Intro-018
spection Strategy that operates in two stages019
using only the model’s internal states: Knowl-020
edge Detection, which dynamically identifies021
and discards potentially low-quality knowledge,022
and Knowledge Regeneration, which employs023
attention smoothing to guide the model away024
from harmful failure modes during knowledge025
generation. Extensive experiments on five026
Llama models with different sizes and eight027
commonsense reasoning benchmarks demon-028
strate that our approach effectively mitigates029
the limitations of standard introspection and030
has consistent performance gains across almost031
all settings.032

1 Introduction033

Large Language Models (LLMs) have achieved034

remarkable progress across a wide range of tasks.035

Techniques such as Chain-of-Thought (CoT) (Wei036

et al., 2022; Kojima et al., 2022) and Long037

CoT (OpenAI, 2024; DeepSeek-AI, 2025), which038

prompt the model to generate intermediate reason-039

ing steps before producing a final answer, have040

been proven to be particularly effective in complex041

reasoning tasks such as mathematical problem solv-042

ing and code generation (Qwen, 2025; Liao et al.,043

Reading is a way to 
improve your vocabulary 
and comprehension skills.

James did not receive any 
payment for his work.

(A) literacy

(B) buy food

(C) have no money

August needed  money because he was 
afraid that he'd be kicked out of his 
house. What did he need money to do?
(A) control people (B) pay bills 
(C) hurt people (D) buy food
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(A) literacy (B) knowing how to read 
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needed money for. The answer 
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James knew that he shouldn't have 
been buying beer for minors. He didn't 
even get paid for it. Why was this bad?
(A) lose money (B) fun
(C) have no money (D) broken law
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Figure 1: Unlike Chain-of-Thought (CoT) reasoning
(top), Knowledge Introspection (KI) outputs relevant
knowledge rather than the thinking process before gen-
erating the final answer. This makes KI more suitable
for knowledge-intensive tasks. However, its effective-
ness is not guaranteed, as the quality of the generated
knowledge can significantly impact performance.

2025a). However, recent research suggests that be- 044

yond mathematical or logical domains, CoT offers 045

limited benefits and even impairs performance for 046

knowledge-intensive tasks such as commonsense 047

reasoning (Kambhampati et al., 2024; Liu et al., 048

2024; Zheng et al., 2025). 049

In fact, numerous studies (Xu et al., 2024; Yao 050

et al., 2023; Tang et al., 2023; Liao et al., 2025b) 051

suggest that the failure of such LLMs in knowledge- 052

intensive tasks is primarily due to the improper 053

activation of relevant internal knowledge during 054

inference, rather than a lack of the required knowl- 055

edge. Therefore, inspired by CoT-style prompting, 056

a growing line of work explores knowledge intro- 057

spection (KI, as shown in Figure 1) (Liu et al., 058

2022b,a, 2023; Molfese et al., 2024)—a process in 059

which the model is guided to generate relevant sup- 060

porting knowledge before providing a final answer. 061

Different from previous superficially generating 062

intermediate texts like CoT, introspection focuses 063

on eliciting implicit relevant knowledge, including 064

facts, concepts, etc., for explicit grounding. These 065

approaches aim to bridge the gap between knowl- 066

edge storage and utilization in LLMs, offering a 067
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promising direction for improving LLM reasoning068

in knowledge-intensive tasks such as commonsense069

reasoning.070

Nevertheless, this paper raises important ques-071

tions: Is knowledge introspection truly effective?072

For which models does it help? Under what task073

conditions does it succeed or fail? To explore these074

questions, the paper conducts a preliminary analy-075

sis on commonsense reasoning tasks and reveals an076

introspection paradox. Surprisingly, the analysis077

results show that knowledge introspection does not078

always improve the reasoning performance. In fact,079

it is often beneficial for weaker models, which is080

consistent with the conclusion of prior work (Liu081

et al., 2022b). However, it also degrades the per-082

formance of stronger models, particularly on rela-083

tively simple tasks. This contradicts the intuitive084

assumption that more capable models, equipped085

with richer internal knowledge, should perform bet-086

ter on reasoning tasks (Liu et al., 2023; Berti et al.,087

2025).088

To better understand this counterintuitive phe-089

nomenon, this paper carries out more comprehen-090

sive experiments and analyses to uncover when and091

why knowledge introspection (KI) helps or hurts092

the reasoning performance. Our analysis reveals093

a nuanced interplay among model capability, task094

difficulty, and the quality of generated knowledge,095

and has several important observations. First, as096

model capability increases, the gains from KI di-097

minish, and the risk of performance drops due to098

low-quality knowledge grows. Second, harmful099

knowledge notably increases prediction uncertainty100

for stronger models and leads to performance degra-101

dation. Third, introspection becomes more useful102

on harder tasks, especially when the model cannot103

answer directly. It is because the proportion of help-104

ful knowledge will increase when the task becomes105

difficult or complex. Finally, harmful knowledge106

generation is linked to an over-reliance on localized107

context. Attribution analysis shows higher focus108

and more concentrated attention during such cases,109

shedding light on the roots of these failures.110

To address the problem of the aforementioned in-111

trospection paradox, the paper proposes a training-112

free adaptive knowledge introspection framework113

that dynamically adapts and refines the use of intro-114

spective knowledge according to the characteristics115

of both the task and the model. Specifically, our116

method consists of two stages, both leveraging the117

model’s internal states without requiring additional118

training: (1) Knowledge Detection: Identifies and119

discards low-quality knowledge based on the in- 120

terplay between model capability and task diffi- 121

culty. (2) Knowledge Regeneration: Replaces 122

discarded knowledge through refining the attention 123

distributions. In this way, LLMs are encouraged 124

to integrate broader contextual information for im- 125

proved knowledge generation. The experiments on 126

5 LLMs with different sizes and 8 commonsense 127

reasoning tasks show the consistent improvements 128

and demonstrate the robustness of the proposed 129

adaptive strategy. 130

The main contributions are as follows: 131
• The paper empirically identifies the introspec- 132

tion paradox of LLMs on the commonsense 133

reasoning tasks. Our findings demonstrate 134

that the effectiveness of introspection is not 135

always guaranteed and varies across different 136

scenarios. 137

• The paper systematically analyzes the under- 138

lying reasons. It is attributed to the critical 139

interplay among task difficulty, model capa- 140

bility and the quality of generated knowledge. 141

• The paper proposes an adaptive introspec- 142

tion exploitation strategy, including Knowl- 143

edge Detection and Knowledge Regeneration, 144

which are solely based on model internal 145

states to dynamically modulate the use of in- 146

trospection. 147

2 Related Work 148

LLMs often benefit from relevant knowledge in 149

knowledge-intensive reasoning tasks, whether from 150

external or internal sources. To this end, vari- 151

ous strategies have been proposed for integrating 152

knowledge into LLMs. 153

LLMs Augmented with External Knowledge 154

A significant body of work focused on augment- 155

ing LLMs with structured or unstructured exter- 156

nal knowledge (Kaur et al., 2022; Wang et al., 157

2025). This includes integrating structured knowl- 158

edge graphs like ConceptNet (Speer et al., 2017) 159

and ATOMIC (Sap et al., 2019). In this context, 160

graph neural network (GNN) based methods such 161

as KagNet (Lin et al., 2019), QA-GNN (Yasunaga 162

et al., 2021), and GreaseLM (Zhang et al., 2022) 163

aimed to guide and augment reasoning by utiliz- 164

ing the encoded relations among knowledge units 165

(e.g., entities). Another prominent line of work 166

is retrieval-augmented generation (RAG) (Lewis 167

et al., 2020), which retrieved relevant textual pas- 168

sages or facts to support generation for common- 169

sense reasoning tasks (Yu et al., 2022). Despite 170
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their effectiveness, the performance of such ap-171

proaches depends heavily on the quality and cov-172

erage of external knowledge resources (Ma et al.,173

2019; Mitra et al., 2020; Talmor et al., 2021). More-174

over, they often necessitate extra infrastructure,175

training, or fine-tuning, without directly leveraging176

the extensive internal knowledge embedded within177

LLM parameters. In contrast to these methods that178

depend on external modules, our work investigates179

a complementary approach—one that seeks to har-180

ness the internal knowledge inherently encoded181

in LLMs through pretraining, thereby offering a182

lightweight yet effective alternative.183

LLMs Augmented with Internal Knowledge184

Recognizing that LLMs implicitly store substan-185

tial world knowledge (Davison et al., 2019; Jiang186

et al., 2020), another line of research focused on187

eliciting and leveraging the internal knowledge188

for reasoning tasks (Tang et al., 2023; Liao et al.,189

2025b). Prior efforts have largely focused on190

explicitly supervising LMs to generate common-191

sense knowledge (Bosselut et al., 2019; Zhou et al.,192

2021). These methods relied on curated external193

knowledge sources and structured generation ob-194

jectives. By contrast, later introspective approaches195

sought to activate and refine the model’s inter-196

nal knowledge through self-supervised learning197

and reinforcement mechanisms (Liu et al., 2022a,198

2023). Other lines of work have explored the199

generation of intermediate textual representations200

during inference via prompting strategies. These201

include template-based approaches such as Self-202

Talk (Shwartz et al., 2020), few-shot prompting203

methods like Generated Knowledge Prompting204

(GKP) (Liu et al., 2022b), and techniques lever-205

aging auxiliary pretrained models (Bosselut et al.,206

2021). Alternatively, ZEBRA (Molfese et al., 2024)207

retrieved relevant examples to effectively augment208

the generation of knowledge.209

While promising, existing approaches typically210

lack mechanisms to dynamically validate the gener-211

ated knowledge or control the introspection process.212

In contrast, our work systematically analyzes when213

and why introspection improves or impairs perfor-214

mance. We further propose an adaptive framework215

that can dynamically control this process for off-216

the-shelf LLMs, which is distinguished from exist-217

ing introspection strategies.218

3 Why Introspection Succeeds or Fails219

As mentioned above, knowledge introspection220

(KI) has been widely proposed as a general-221

purpose technique for enhancing LLM reasoning— 222

particularly in commonsense reasoning tasks. How- 223

ever, we still wonder whether it has universal effi- 224

cacy in all scenarios. In this section, we conduct a 225

systematic investigation into the following research 226

issues: (1) quantify the impact of KI across diverse 227

model capabilities and task difficulties, and (2) ana- 228

lyze the underlying mechanisms governing knowl- 229

edge generation. Through carefully controlled ex- 230

periments, the paper challenges the prevailing as- 231

sumption of the universal effectiveness of knowl- 232

edge introspection. And it also reveals that the 233

effectiveness of KI is highly contingent on an intri- 234

cate interplay between model capability and task 235

difficulty. 236

3.1 Introspection Paradox 237

In this subsection, we perform a comprehensive 238

evaluation to verify the effectiveness of knowledge 239

introspection (KI) on different scenarios, includ- 240

ing (1) LLMs of varying capabilities (from 7B to 241

70B parameters), and (2) commonsense reasoning 242

tasks spanning different complexity levels (from 243

fact retrieval to advanced reasoning). 244

3.1.1 Experimental setup 245

We evaluate Llama family models (Touvron et al., 246

2023; Grattafiori et al., 2024) on eight diverse com- 247

monsense reasoning datasets (see details in Ap- 248

pendix A and D). Specifically, two primary prompt- 249

ing conditions are used: 250

• Direct Answer: Standard zero-shot prompting 251

where the model directly outputs the final answer. 252

253• Answer with KI: First generate relevant knowl- 254

edge and then provide the final answer based on 255

the explicit knowledge. 256

3.1.2 Introspection is not always beneficial 257

Table 1 shows the comparison results of Answer 258

with KI and Direct Answer. From the table, we 259

have the following important observations: 260

• Observation 1: Benefit for Weaker Models. 261

Introspection consistently yields substantial per- 262

formance gains for weaker models, exemplified 263

by average improvements of +3.48, +3.50, and 264

+1.79 for Llama-2-7b-Chat, Llama-2-13b-Chat, 265

and Llama-2-70b-Chat respectively across most 266

tasks. 267

• Observation 2: Detriment for Stronger Mod- 268

els. However, the effect is markedly differ- 269

ent for more capable models like Llama-3-70B- 270

Instruct (-2.37) and Llama-3-8B-Instruct (-0.07), 271
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Model ARC.E ARC.C CSQA CSQA2 OBQA PIQA QASC WG Avg. All

Llama-3-70B-Instruct
97.69

92.47 (-5.22)
92.83

89.59 (-3.24)
81.82

79.85 (-1.97)
75.91

76.78 (+0.87)
91.60

84.20 (-7.40)
89.28

86.18 (-3.10)
90.10

82.83 (-7.27)
69.46

77.90 (+8.44)
86.09

83.72 (-2.37)

Llama-3-8B-Instruct
92.09

91.41 (-0.68)
78.58

78.50 (-0.08)
75.02

74.17 (-0.85)
63.64

66.12 (+2.48)
77.00

76.20 (-0.80)
80.47

75.57 (-4.90)
80.13

80.56 (+0.43)
57.85

61.72 (+3.87)
75.60

75.53 (-0.07)

Llama-2-70b-Chat
85.82

89.52 (+3.70)
73.98

76.88 (+2.90)
72.65

74.69 (+2.04)
60.02

63.75 (+3.73)
74.40

74.20 (-0.20)
79.43

78.24 (-1.19)
71.60

73.00 (+1.40)
52.01

53.99 (+1.98)
71.24

73.03 (+1.79)

Llama-2-13b-Chat
79.29

82.28 (+2.99)
61.95

65.96 (+4.10)
63.55

65.77 (+2.22)
56.51

62.81 (+6.30)
59.80

67.60 (+7.80)
77.15

76.22 (-0.93)
60.58

63.82 (+3.24)
52.64

55.09 (+2.45)
63.94

67.44 (+3.50)

Llama-2-7b-Chat
71.42

74.75 (+3.33)
53.58

57.85 (+4.27)
52.25

59.21 (+6.96)
52.03

54.35 (+2.32)
51.40

55.60 (+4.20)
60.66

60.72 (+0.06)
43.41

48.81 (+5.40)
50.83

52.17 (+1.34)
54.45

57.93 (+3.48)

Table 1: Accuracy comparison: Direct Answer vs. Answer with KI. Each cell shows: Direct Answer Score (top
line); Answer with KI Score and Accuracy Change (bottom line). Positive values (green) indicate improvement
with introspection, while negative values (red) indicate performance degradation.

which frequently experience performance degra-272

dation. This phenomenon is particularly pro-273

nounced on simpler tasks such as ARC-Easy,274

ARC-Challenge, and PIQA.275

• Observation 3: Benefit for Harder Tasks. Fi-276

nally, these stronger models can still benefit from277

introspection, particularly on more complex tasks278

(e.g., CSQA2, WG).279

These findings demonstrate that the benefits280

of knowledge introspection are highly context-281

dependent rather than universally applicable. Cru-282

cially, its effectiveness emerges from a nuanced283

interaction between model capability and task284

difficulty—a relationship that demands systematic285

examination. This insight compels us to investigate286

the fundamental mechanisms governing when and287

why introspection succeeds or fails. In the follow-288

ing section, we will conduct a systematic inves-289

tigation through two complementary approaches:290

(1) Quantitative statistical analysis of the success291

and failure of KI, and (2) Interpretability analysis292

of intermediate states, aiming to comprehensively293

uncover the underlying mechanisms.294

3.2 Quantitative Statistical Analysis of the295

Success and Failure of KI296

To deeply understand the introspection paradox297

observed in Section 3.1, we analyze the quality298

of the generated knowledge and verify its subse-299

quent impact on reasoning. In specific, according300

to the factual correctness and the relevance to the301

problem, the generated knowledge is identified as302

Useful and Harmful types (details in Appendix B).303

Formally, let CI and CD be the events of cor-304

rect answers for Answer with KI and Direct An-305

swer, respectively. And KUseful, KHarmful are306

the events of useful and harmful knowledge genera-307

tion, respectively. Two metrics are used to quantify308

the potential influence associated with KUseful,309

KHarmful, respectively:310

• Gain Rate (GR): The proportion of sam- 311

ples where useful knowledge helps correct 312

a direct answering error: GR = P (¬CD ∧ 313

CI |KUseful) 314

• Risk Rate (RR): The proportion of samples 315

where harmful knowledge causes a correct 316

direct answer to become incorrect: RR = 317

P (CD ∧ ¬CI |KHarmful) 318
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Figure 2: Gain Rate and Risk Rate trends across differ-
ent Model Capabilities.
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Figure 3: Percentage of generated useful knowledge
when direct answering fails, with a regression line for
each model.

This analysis aims to reveal the distinct trends 319

in knowledge generation quality relative to model 320

capability. Figure 2 shows that as model capabil- 321

ity increases, GR has a generally downward trend 322

while RR displays an upward trend. Stronger mod- 323

els exhibit reduced gains but increased risks relative 324

to weaker ones. This result aligns with the afore- 325

mentioned Observation 1 and Observation 2 and 326

suggests that stronger models gain less from use- 327

ful knowledge and are more vulnerable to harmful 328

knowledge generated through introspection. 329
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Figure 4: Information Gain across four models on different tasks.

Furthermore, we investigate how task difficulty330

influences the quality of generated knowledge, par-331

ticularly in scenarios where introspection is most332

needed (i.e., when direct answering fails). Specif-333

ically, we measure the percentage of generated334

useful knowledge given that the direct answer is335

incorrect, formally defined as P (KUseful|¬CD).336

Figure 3 shows that this percentage tends to in-337

crease as task difficulty increases across different338

models. Their regression lines exhibit a positive339

slope, respectively. This phenomenon supports Ob-340

servation 3 that when tasks are harder, LLMs are341

more likely to generate useful knowledge through342

introspection. Such a finding is more obvious in343

difficult instances.344

To further quantify the impact on the model’s345

prediction confidence, we measure the Information346

Gain (IG) derived from introspection and offer an-347

other perspective on Observation 1 and Observa-348

tion 2: IG = H(A|Q)−H(A|Q,K). Here, H(·)349

represents Shannon entropy. A, Q and K denote350

the predicted answers, question and knowledge.351

Figure 4 shows that introspection tends to decrease352

uncertainty for weaker models but increase uncer-353

tainty for stronger models, especially when generat-354

ing harmful knowledge. It means that introspection355

often introduces conflicting signals for stronger356

models, rather than providing clear grounding.357

3.3 Interpretability Analysis of the Success358

and Failure of KI359

To understand the mechanisms of knowledge in-360

trospection, particularly the origins of generating361

harmful knowledge, we employ attribution tracing362

(Hao et al., 2021; Dai et al., 2022; Li et al., 2024) to363

quantify the influence of the input question context364

q on the generation of the knowledge k.365

Since the attention module involves interactions366

between different tokens, we compute the attribu-367

tion score matrix for the h-th attention head in layer368

l, i.e. Attr(A(l)
h ), via Riemann approximation of369

the integration. Here, m is the number of approxi-370

mation steps (Sundararajan et al., 2017):371

Attr(A(l)
h ) = A

(l)
h ⊙

∫ 1

α=0

∂F (αA
(l)
h )

∂A
(l)
h

dα

≈ A
(l)
h ⊙

(
1

m

m∑
s=1

∂F ( s
mA

(l)
h )

∂A
(l)
h

) (1) 372

where ⊙ denotes element-wise multiplication and 373

F (·) represents the model’s output. Each element 374

[Attr(A(l)
h )]i,j represents the attribution of the i → 375

j token interaction for head h in layer l. 376

To obtain the total information flow from the 377

question q to the knowledge k within layer l, we 378

aggregate scores across all H heads and relevant 379

token pairs following (Hao et al., 2021; Li et al., 380

2024): 381

Attr(l)(q → k) =
∑

(i,j)∈Cqk

(
H∑

h=1

∣∣∣[Attr(A(l)
h )]i,j

∣∣∣)
(2) 382

where Cqk = {(i, j)|qs ≤ i ≤ qe, ks ≤ j ≤ ke} 383

includes pairs with token i in the question and to- 384

ken j in the knowledge statement. We sum the 385

absolute values across all H attention heads to get 386

the final score. By comparing Attr(l)(q → k) val- 387

ues for useful and harmful knowledge, we assess 388

how question information is leveraged during intro- 389

spection.

Figure 5: Layer-wise attribution scores from question
context to generated knowledge on the CSQA.

390
Figure 5 illustrates the experimental results 391

of Llama-2-7b-Chat and Llama-3-8B-Instruct on 392

CSQA (full results shown in Appendix C.1). 393

Both models exhibit consistently higher attribu- 394

tion scores from the question context to generated 395

knowledge when producing harmful knowledge 396

(red line) compared to the useful one (blue line). 397

This difference is particularly pronounced in the in- 398

termediate layers, which are crucial for the model 399
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Figure 6: Average normalized entropy of attribution
scores for Llama-3-8B-Instruct across different tasks.

Figure 7: Attention attribution heatmaps in intermediate
layer from question context tokens (X-axis) to gener-
ated knowledge tokens (Y-axis) for Llama-2-7b-chat on
CSQA examples. The left column illustrates examples
of useful knowledge generation, and the right column
illustrates harmful ones.

to extract contextual information. This observa-400

tion reveals a failure mode where the generation of401

harmful knowledge might be linked to an intensi-402

fied, yet misguided focus on the context.403

To further investigate this, we analyze the distri-404

bution of the attribution scores matrix. Specifically,405

we calculate the normalized Shannon entropy of406

the attribution matrix (details on the calculation407

and full results in Appendix C.2). Figure 6 shows408

that harmful knowledge exhibits lower normalized409

entropy than useful knowledge. This lower en-410

tropy suggests that the influence is concentrated on411

fewer specific (question token, knowledge token)412

pairs, reflecting a more peaked distribution. We413

also conduct case studies to visualize the attribu-414

tion heatmaps (Figure 7). From the heatmaps of415

harmful knowledge, we observe exceptionally high416

attribution scores concentrated on specific question417

tokens when generating some knowledge tokens.418

It means that the model is overly dependent on lo-419

calized cues from the question context. Conversely,420

the attribution heatmaps for useful knowledge tend421

to display a smoother pattern. It indicates that the422

influence from the question context is more evenly423

distributed across relevant semantic parts.424

4 How to Modulate and Enhance 425

Introspection 426

Based on our analysis in section 3, this paper pro- 427

poses an Adaptive Introspection strategy (Fig- 428

ure 8) to exploit introspected knowledge well. It 429

consists of two stages: knowledge detection and 430

knowledge regeneration, after the original knowl- 431

edge generation.

Informed 
Reasoning

Direct 
Answering

Initial Knowledge

Correctness

Stage 1: Knowledge Detection

Measuring 
Scores

Stage 2: Knowledge Regeneration

Adjusting 
AttentionFiltered Out

Re-evaluating
Regeneration

Relevance

Capability

Making 
Decision

Difficulty Better 
Knowledge

w/ knowledge w/o knowledge

Figure 8: Workflow of the proposed Adaptive Introspec-
tion Strategy. It dynamically filters low-quality initial
knowledge and optionally regenerates knowledge be-
fore providing the final answer.

4324.1 Stage 1: Knowledge Detection 433

Goal: Selectively identify and remove potentially 434

low-quality knowledge before it influences the final 435

answer. 436

Method: We assess each generated knowledge 437

statement along the two dimensions used in our an- 438

notation: Correctness and Relevance. Specifically, 439

we employ the following solution to compute these 440

two metrics (details in Appendix D): 441

• Correctness: We use the prediction entropy 442

of the generated knowledge as a proxy for the 443

model’s confidence. Higher entropy suggests 444

lower confidence, indicating uncertainty or 445

factual incorrectness. 446

• Relevance: We measure the cosine similar- 447

ity between the hidden states of the generated 448

knowledge and the question context for con- 449

textual relevance. 450

We normalize these scores using z-score normal- 451

ization. Knowledge pieces with scores under a 452

dynamic threshold related to model capability and 453

task difficulty are filtered out.1 454

Rationale: This stage leverages our findings in 455

Section 3.2 that stronger models exhibit a higher 456

1In this work, we consider the linear relationships based
on the observations in Section 3.2 and empirically calibrate
the threshold by linearly combining scalar proxy values for
task difficulty and model capability.
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Risk Rate and lower Gain Rate from introspection,457

and are prone to be negatively impacted by low-458

quality knowledge. Meanwhile, introspection is459

more likely to yield useful knowledge on harder460

tasks when direct answering fails. Therefore, we461

aim to control the model’s reliance on generated462

knowledge in different scenarios, from favoring463

direct answering to introspection.464

4.2 Stage 2: Knowledge Regeneration465

Goal: Regenerate higher-quality knowledge alter-466

native when the initially generated knowledge was467

filtered out.468

Method: Inspired by the use of temperature469

to shape a probability distribution (Ackley et al.,470

1985), we apply an analogous concept to the atten-471

tion scores to guide the generation process away472

from failure modes as we discovered in Section 3.3.473

The attention temperature τi for head i is computed474

using the following formula:475

τi = 1 + α

(
1− Hi

Hmax
i

)
(3)476

Here, Hi represents the Shannon entropy of the cur-477

rent attention distribution for head i. This entropy478

value is normalized by the maximum possible en-479

tropy Hmax
i (typically log l for a sequence of length480

l). α is a hyperparameter controlling the intensity481

of the temperature scaling (α ≥ 0). We apply482

this temperature to the original attention scores S483

for head i to obtain the final attention distribution484

Afinal:485
Afinal = Softmax

(
S

τi

)
(4)486

Its quality will also be evaluated using the criteria487

from Stage 1 before final answer generation.488

Rationale: This stage leverages the analysis re-489

sults in Section 3.3 that harmful knowledge gen-490

eration may correlate with overly sharp attention491

distributions. By smoothing these distributions dur-492

ing the regeneration attempt, we encourage the493

model to integrate broader contextual information494

and avoid the pitfalls that led to the initial low-495

quality knowledge generation.496

4.3 Experimental Setup497

To evaluate the effectiveness of our proposed two-498

stage method, we conducted experiments across499

the 8 commonsense reasoning benchmarks and 5500

LLMs described in Section 3.1.1. More imple-501

mentation details are reported in Appendix D. We502

compare against several baselines:503

• Direct Answer: The model answers directly504

without any intermediate knowledge.505

• CoT: Standard zero-shot Chain-of-Thought 506

approach (Kojima et al., 2022) 507

• Supervised Introspection: Approaches in- 508

volve training specialized models to act as in- 509

trospectors, including Rainier-large (Liu et al., 510

2022a), Crystal-3B and Crystal-11B (Liu 511

et al., 2023). 512

• Unsupervised Introspection: The model gen- 513

erates intermediate knowledge itself, includ- 514

ing Self-Talk (Shwartz et al., 2020), GKP (Liu 515

et al., 2022b) and ZEBRA (Molfese et al., 516

2024). 517

4.4 Main Results 518

Table 2 presents the main experimental results. We 519

can get the following conclusions: (1) Vanilla 520

introspection and CoT often exhibit inconsis- 521

tent performance and can degrade accuracy. 522

While beneficial for weaker models, introspection 523

methods frequently fail with stronger models and 524

simpler tasks compared to direct answer. Simi- 525

larly, CoT also displays mixed results, with no- 526

table degradation in specific settings. (2) Our pro- 527

posed strategy effectively overcomes these lim- 528

itations and yields performance improvements 529

across diverse models and tasks. By modulat- 530

ing the introspection process, our two-stage ap- 531

proach achieves positive accuracy gains (indicated 532

by green backgrounds) in almost all evaluated sce- 533

narios. The strategy effectively mitigates the limita- 534

tions of vanilla introspection and demonstrates su- 535

perior performance compared to existing methods. 536

This consistent improvement underscores the effi- 537

cacy of our strategy in reliably leveraging knowl- 538

edge introspection for commonsense reasoning. 539

4.5 Ablation Study and Analysis 540

Contribution of Knowledge Detection. While 541

vanilla introspection frequently degrades the perfor- 542

mance, especially for stronger models and simpler 543

tasks, Adaptive Intro (Stage 1) significantly miti- 544

gates this degradation by identifying and filtering 545

potentially low-quality knowledge. For Llama-3- 546

70B-Instruct, Stage 1 reverses the -2.4 average drop 547

of GKP into a positive average gain of +0.4. While 548

GKP improves weaker models significantly (e.g., 549

Llama-2-7b: +3.5), Stage 1 also provides competi- 550

tive gains (Llama-2-7b: +2.1). This demonstrates 551

that detection is beneficial even when starting from 552

a positive baseline. 553

Contribution of Knowledge Regeneration. As 554

Stage 1 effectively prevents performance drops, 555

7



Table 2: Performance comparison across models and methods (%). ↑ and ↓ indicate the change compared to
the respective model’s Direct Answer baseline. Green background indicates improvement, red background
indicates degradation compared to baseline. For brevity, the Chat and Instruct suffixes for the models are omitted.
Category Method (Model) ARC-E ARC-C CSQA CSQA2 OBQA PIQA QASC WG Avg.

Baseline

Direct Answer (Llama-2-7b) * 71.4 53.6 52.3 52.0 51.4 60.7 43.4 50.8 54.4
Direct Answer (Llama-2-13b) * 79.3 61.9 63.6 56.5 59.8 77.1 60.6 52.6 63.9
Direct Answer (Llama-2-70b) * 85.8 74.0 72.6 60.0 74.4 79.4 71.6 52.0 71.2
Direct Answer (Llama-3-8B) * 92.1 78.6 75.0 63.6 77.0 80.5 80.1 57.9 75.6
Direct Answer (Llama-3-70B) * 97.7 92.8 81.8 75.9 91.6 89.3 90.1 69.5 86.1

CoT

CoT (Llama-2-7b) 65.8 (↓5.6) 48.6 (↓5.0) 53.8 (↑1.5) 48.5 (↓3.5) 49.2 (↓2.2) 53.1 (↓7.6) 44.9 (↑1.5) 45.9 (↓4.9) 51.2 (↓3.2)
CoT (Llama-2-13b) 74.8 (↓4.5) 61.9 (↑0.0) 56.8 (↓6.8) 59.5 (↑3.0) 57.6 (↓2.2) 70.2 (↓6.9) 56.8 (↓3.8) 50.3 (↓2.3) 61.0 (↓2.9)
CoT (Llama-2-70b) 85.1 (↓0.7) 75.9 (↑1.9) 72.6 (↑0.0) 64.7 (↑4.7) 73.6 (↓0.8) 74.3 (↓5.1) 70.4 (↓1.2) 56.4 (↑4.4) 71.6 (↑0.4)
CoT (Llama-3-8B) 92.4 (↑0.3) 81.1 (↑2.5) 75.4 (↑0.4) 64.5 (↑0.9) 76.8 (↓0.2) 79.5 (↓1.0) 79.8 (↓0.3) 58.0 (↑0.1) 75.9 (↑0.3)
CoT (Llama-3-70B) 97.3 (↓0.4) 93.5 (↑0.7) 80.9 (↓0.9) 78.2 (↑2.3) 89.6 (↓2.0) 88.7 (↓0.6) 89.2 (↓0.9) 75.5 (↑6.0) 86.6 (↑0.5)

Supervised
Introspection

Rainier-L (Llama-2-7b) 70.6 (↓0.8) 52.0 (↓1.6) 55.8 (↑3.5) 52.2 (↑0.2) 49.0 (↓2.4) 61.4 (↑0.7) 46.2 (↑2.8) 51.4 (↑0.6) 54.9 (↑0.5)
Rainier-L (Llama-2-13b) 79.4 (↑0.1) 62.2 (↑0.3) 65.4 (↑1.8) 53.8 (↓2.7) 61.0 (↑1.2) 75.0 (↓2.1) 63.3 (↑2.7) 53.9 (↑1.3) 64.2 (↑0.3)
Rainier-L (Llama-2-70b) 82.6 (↓3.2) 68.6 (↓5.4) 66.3 (↓6.3) 53.7 (↓6.3) 66.8 (↓7.6) 74.4 (↓5.0) 66.1 (↓5.5) 52.4 (↑0.4) 66.4 (↓4.8)
Rainier-L (Llama-3-8B) 87.2 (↓4.9) 73.5 (↓5.1) 71.3 (↓3.7) 58.5 (↓5.1) 71.8 (↓5.2) 77.1 (↓3.4) 72.9 (↓7.2) 61.9 (↑4.0) 71.8 (↓3.8)
Rainier-L (Llama-3-70B) 94.1 (↓3.6) 87.8 (↓5.0) 76.9 (↓4.9) 62.0 (↓13.9) 83.8 (↓7.8) 83.4 (↓5.9) 76.7 (↓13.4) 74.0 (↑4.5) 79.8 (↓6.3)

Crystal-3B (Llama-2-7b) 72.2 (↑0.8) 52.9 (↓0.7) 58.2 (↑5.9) 53.0 (↑1.0) 53.0 (↑1.6) 61.3 (↑0.6) 47.7 (↑4.3) 50.7 (↓0.1) 56.1 (↑1.7)
Crystal-3B (Llama-2-13b) 81.0 (↑1.7) 62.4 (↑0.5) 66.0 (↑2.4) 54.1 (↓2.4) 65.4 (↑5.6) 75.4 (↓1.7) 64.1 (↑3.5) 54.1 (↑1.5) 65.3 (↑1.4)
Crystal-3B (Llama-2-70b) 82.3 (↓3.5) 68.1 (↓5.9) 69.7 (↓2.9) 54.9 (↓5.1) 73.6 (↓0.8) 77.3 (↓2.1) 70.1 (↓1.5) 52.2 (↑0.2) 68.5 (↓2.7)
Crystal-3B (Llama-3-8B) 87.5 (↓4.6) 73.6 (↓5.0) 73.9 (↓1.1) 59.0 (↓4.6) 75.8 (↓1.2) 78.2 (↓2.3) 75.2 (↓4.9) 61.5 (↑3.6) 73.1 (↓2.5)
Crystal-3B (Llama-3-70B) 93.3 (↓4.4) 86.9 (↓5.9) 79.0 (↓2.8) 64.9 (↓11.0) 86.6 (↓5.0) 86.0 (↓3.3) 80.2 (↓9.9) 74.7 (↑5.2) 81.4 (↓4.7)

Crystal-11B (Llama-2-7b) 75.2 (↑3.8) 55.8 (↑2.2) 56.7 (↑4.4) 53.4 (↑1.4) 54.8 (↑3.4) 62.7 (↑2.0) 49.2 (↑5.8) 52.2 (↑1.4) 57.5 (↑3.1)
Crystal-11B (Llama-2-13b) 82.7 (↑3.4) 64.2 (↑2.3) 67.0 (↑3.4) 55.8 (↓0.7) 67.4 (↑7.6) 77.4 (↑0.3) 66.4 (↑5.8) 54.8 (↑2.2) 66.9 (↑3.0)
Crystal-11B (Llama-2-70b) 86.1 (↑0.3) 72.6 (↓1.4) 70.5 (↓2.1) 57.0 (↓3.0) 74.2 (↓0.2) 79.9 (↑0.5) 72.4 (↑0.8) 53.0 (↑1.0) 70.7 (↓0.5)
Crystal-11B (Llama-3-8B) 89.6 (↓2.5) 76.5 (↓2.1) 74.1 (↓0.9) 60.8 (↓2.8) 76.4 (↓0.6) 80.1 (↓0.4) 78.9 (↓1.2) 61.0 (↑3.1) 74.7 (↓0.9)
Crystal-11B (Llama-3-70B) 94.9 (↓2.8) 89.2 (↓3.6) 78.6 (↓3.2) 66.2 (↓9.7) 89.0 (↓2.6) 87.4 (↓1.9) 82.3 (↓7.8) 77.5 (↑8.0) 83.1 (↓3.0)

Unsupervised
Introspection

Self-Talk (Llama-2-7b) 63.2 (↓8.2) 48.2 (↓5.4) 51.8 (↓0.5) 51.2 (↓0.8) 41.6 (↓9.8) 59.3 (↓1.4) 40.3 (↓3.1) 50.5 (↓0.3) 50.8 (↓3.6)
Self-Talk (Llama-2-13b) 78.1 (↓1.2) 59.5 (↓2.4) 61.7 (↓1.9) 55.5 (↓1.0) 62.0 (↑2.2) 75.2 (↓1.9) 60.2 (↓0.4) 53.7 (↑1.1) 63.2 (↓0.7)
Self-Talk (Llama-2-70b) 74.9 (↓10.9) 62.8 (↓11.2) 64.3 (↓8.3) 55.4 (↓4.6) 60.4 (↓14.0) 76.0 (↓3.4) 61.8 (↓9.8) 51.7 (↓0.3) 63.4 (↓7.8)
Self-Talk (Llama-3-8B) 89.0 (↓3.1) 75.8 (↓2.8) 70.6 (↓4.4) 63.1 (↓0.5) 71.0 (↓6.0) 77.7 (↓2.8) 75.2 (↓4.9) 59.8 (↑1.9) 72.8 (↓2.8)
Self-Talk (Llama-3-70B) 95.7 (↓2.0) 89.5 (↓3.3) 80.9 (↓0.9) 70.1 (↓5.8) 86.8 (↓4.8) 88.1 (↓1.2) 86.0 (↓4.1) 75.5 (↑6.0) 84.1 (↓2.0)

GKP (Llama-2-7b) * 74.7 (↑3.3) 57.8 (↑4.2) 59.2 (↑6.9) 54.3 (↑2.3) 55.6 (↑4.2) 60.7 (↑0.0) 48.8 (↑5.4) 52.2 (↑1.4) 57.9 (↑3.5)
GKP (Llama-2-13b) * 82.3 (↑3.0) 66.0 (↑4.1) 65.8 (↑2.2) 62.8 (↑6.3) 67.6 (↑7.8) 76.2 (↓0.9) 63.8 (↑3.2) 55.1 (↑2.5) 67.4 (↑3.5)
GKP (Llama-2-70b) * 89.5 (↑3.7) 76.9 (↑2.9) 74.7 (↑2.1) 63.8 (↑3.8) 74.2 (↓0.2) 78.2 (↓1.2) 73.0 (↑1.4) 54.0 (↑2.0) 73.0 (↑1.8)
GKP (Llama-3-8B) * 91.4 (↓0.7) 78.5 (↓0.1) 74.2 (↓0.8) 66.1 (↑2.5) 76.2 (↓0.8) 75.6 (↓4.9) 80.6 (↑0.5) 61.7 (↑3.8) 75.5 (↓0.1)
GKP (Llama-3-70B) * 92.5 (↓5.2) 89.6 (↓3.2) 79.9 (↓1.9) 76.8 (↑0.9) 84.2 (↓7.4) 86.2 (↓3.1) 82.8 (↓7.3) 77.9 (↑8.4) 83.7 (↓2.4)

ZEBRA (k=5) (Llama-2-7b) 75.0 (↑3.6) 55.9 (↑2.3) 60.8 (↑8.5) 54.3 (↑2.3) 53.6 (↑2.2) 66.1 (↑5.4) 46.8 (↑3.4) 52.9 (↑2.1) 58.2 (↑3.8)
ZEBRA (k=5) (Llama-2-13b) 82.8 (↑3.5) 65.8 (↑3.9) 67.4 (↑3.8) 59.8 (↑3.3) 65.2 (↑5.4) 75.7 (↓1.4) 63.5 (↑2.9) 53.0 (↑0.4) 66.7 (↑2.8)
ZEBRA (k=5) (Llama-2-70b) 87.9 (↑2.1) 76.6 (↑2.6) 75.6 (↑3.0) 61.3 (↑1.3) 73.4 (↓1.0) 77.4 (↓2.0) 72.2 (↑0.6) 55.4 (↑3.4) 72.5 (↑1.3)
ZEBRA (k=5) (Llama-3-8B) 92.3 (↑0.2) 78.4 (↓0.2) 77.5 (↑2.5) 62.1 (↓1.5) 74.4 (↓2.6) 76.1 (↓4.4) 77.4 (↓2.7) 60.6 (↑2.7) 74.8 (↓0.8)
ZEBRA (k=5) (Llama-3-70B) 94.1 (↓3.6) 87.7 (↓5.1) 80.8 (↓1.0) 75.1 (↓0.8) 86.6 (↓5.0) 83.2 (↓6.1) 79.6 (↓10.5) 75.9 (↑6.4) 82.9 (↓3.2)

Proposed

Adaptive Intro (Stage 1) (Llama-2-7b) 74.8 (↑3.4) 57.5 (↑3.9) 56.6 (↑4.3) 53.2 (↑1.2) 53.8 (↑2.4) 60.7 (↑0.0) 44.7 (↑1.3) 50.8 (↑0.0) 56.5 (↑2.1)
Adaptive Intro (Stage 1) (Llama-2-13b) 82.2 (↑2.9) 65.3 (↑3.4) 65.7 (↑2.1) 62.9 (↑6.4) 67.8 (↑8.0) 76.1 (↓1.0) 63.3 (↑2.7) 54.9 (↑2.3) 67.3 (↑3.4)
Adaptive Intro (Stage 1) (Llama-2-70b) 88.2 (↑2.4) 74.5 (↑0.5) 73.4 (↑0.8) 62.9 (↑2.9) 76.2 (↑1.8) 78.5 (↓0.9) 73.0 (↑1.4) 53.4 (↑1.4) 72.5 (↑1.3)
Adaptive Intro (Stage 1) (Llama-3-8B) 91.8 (↓0.3) 79.7 (↑1.1) 76.3 (↑1.3) 64.2 (↑0.6) 77.8 (↑0.8) 79.4 (↓1.1) 79.5 (↓0.6) 60.7 (↑2.8) 76.2 (↑0.6)
Adaptive Intro (Stage 1) (Llama-3-70B) 97.9 (↑0.2) 92.7 (↓0.1) 82.4 (↑0.6) 75.6 (↓0.3) 92.4 (↑0.8) 89.3 (↑0.0) 89.8 (↓0.3) 71.6 (↑2.1) 86.5 (↑0.4)

Adaptive Intro (Stage 1+2) (Llama-2-7b) 75.3 (↑3.9) 57.8 (↑4.2) 57.0 (↑4.7) 53.4 (↑1.4) 54.0 (↑2.6) 61.0 (↑0.3) 45.2 (↑1.8) 50.8 (↑0.0) 56.8 (↑2.4)
Adaptive Intro (Stage 1+2) (Llama-2-13b) 82.4 (↑3.1) 67.0 (↑5.1) 66.3 (↑2.7) 63.2 (↑6.7) 69.2 (↑9.4) 76.6 (↓0.5) 63.8 (↑3.2) 55.2 (↑2.6) 67.9 (↑4.0)
Adaptive Intro (Stage 1+2) (Llama-2-70b) 88.6 (↑2.8) 76.5 (↑2.5) 74.3 (↑1.7) 63.2 (↑3.2) 78.4 (↑4.0) 79.5 (↑0.1) 73.3 (↑1.7) 54.5 (↑2.5) 73.5 (↑2.3)
Adaptive Intro (Stage 1+2) (Llama-3-8B) 92.3 (↑0.2) 80.8 (↑2.2) 77.6 (↑2.6) 65.9 (↑2.3) 79.6 (↑2.6) 80.0 (↓0.5) 79.8 (↓0.3) 61.6 (↑3.7) 77.2 (↑1.6)
Adaptive Intro (Stage 1+2) (Llama-3-70B) 97.9 (↑0.2) 93.0 (↑0.2) 82.6 (↑0.8) 75.8 (↓0.1) 92.4 (↑0.8) 89.7 (↑0.4) 89.7 (↓0.4) 71.9 (↑2.4) 86.6 (↑0.5)

Stage 2 aims to provide further enhancement by556

regenerating higher-quality knowledge. Across all557

models, Stage 1+2 achieves higher average accu-558

racy. However, we observe a slight decrease in559

performance for Llama-3-70B-Instruct on QASC560

when moving from Stage 1 (-0.3) to Stage 1+2561

(-0.4). This suggests that while the regeneration562

techniques in Stage 2 prove effective in most cases,563

there are still instances where direct answer re-564

mains a better alternative. We leave a more fine-565

grained study for future work.566

Table 3: Comparison of average scores for original and
regenerated Knowledge. Scores for correctness and
relevance can be 0, 1, or 2.

Type Version Correctness Relevance

Harmful Original 0.3083 0.6293
Regenerated 1.3795 1.2428

Useful Original 1.7002 1.8360
Regenerated 1.6123 1.4969

Validation of Regeneration Quality. To directly567

validate the quality of regenerated knowledge, we568

compare it with the original knowledge using the569

same annotation standard discussed in Appendix B.570

Table 3 shows that while regeneration results in a 571

slight decrease for already useful knowledge, it sig- 572

nificantly improves the correctness and relevance 573

of original harmful knowledge. This aligns with 574

our goal of improving low-quality knowledge and 575

mitigating the interference of harmful information. 576

5775 Conclusion 578

We investigate the effectiveness of knowledge intro- 579

spection for commonsense reasoning in LLMs, un- 580

covering the introspection paradox. Analysis indi- 581

cates that the effectiveness of introspection results 582

from the interplay among model capability, task 583

difficulty, and the quality of generated knowledge. 584

To address this, we proposed a novel, training- 585

free strategy. It optimizes introspection via two 586

stages: Knowledge Detection and Knowledge Re- 587

generation. Extensive experiments across 5 LLMs 588

and 8 benchmarks demonstrate that our method 589

effectively mitigates the performance degradation, 590

achieving robust gains across diverse models and 591

tasks. Our results validate that managing the intro- 592

spection process is crucial for reliably harnessing 593

its potential to enhance LLMs. 594
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Limitations595

While our proposed approach demonstrates promis-596

ing results in mitigating the introspection paradox597

and improving commonsense reasoning, there are598

several aspects that could be improved. Firstly,599

our experiments are confined to the Llama family,600

including Llama-2-Chat and Llama-3-Instruct vari-601

ants across different scales. The impact of differ-602

ent model architectures or alternative post-training603

strategies requires future investigation. Further-604

more, certain hyperparameters in our method rely605

on empirical calibration. Future research could ex-606

plore more theoretically grounded or automated607

methods for setting these parameters. Additionally,608

our reliance on a series of proxy metrics and model609

annotations might not fully capture all subtle rela-610

tionships. Exploring alternative, potentially more611

nuanced metrics is a direction for future work.612
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sense. In International Conference on Learning Rep-930
resentations.931

A Proxy Metrics932

A.1 Task Difficulty933

We use the model’s prediction uncertainty on ques-934

tions from a specific task as a proxy for task dif-935

ficulty. Specifically, we examine the relationship936

between the model’s accuracy on a task and the937

mean entropy of its predictions for questions in938

that task. As shown in Figure 9, higher confidence939

for a given model generally correlates with higher940

accuracy. This suggests that the metric can reflect941

the relative difficulty of tasks. Based on the metric,942

the tasks rank from easiest (ARC-Easy) to hardest943

(WinoGrande).944

A.2 Model Capability945

To quantify model capability, we follow recent946

works (Bhagia et al., 2024; Grattafiori et al., 2024)947

and use the normalized negative log-likelihood948

(NLL) loss on the MMLU benchmark’s test set949

(Hendrycks et al., 2021) as a proxy metric. MMLU950

is a widely recognized benchmark designed to as-951

sess a model’s general knowledge across a broad952

range of subjects, making it a suitable proxy for953

assessing commonsense reasoning tasks. Lower954

NLL on this benchmark indicates stronger capa-955

bility. Figure 10 shows the MMLU NLL for the956

evaluated models. Figure 11 provides a more gran-957

ular view, showing the NLL for each model across958

the specific commonsense reasoning tasks used in959

this paper. In our experiments, we take the negative960

of this NLL value, such that a higher value indi-961

cates a stronger model, aligning with the intuitive962

understanding of capability. Based on the metric,963

the models rank from weakest (Llama-2-7b-Chat)964

to strongest (Llama-3-70B-Instruct).965

B Knowledge Annotation966

For each generated knowledge statement, we em-967

ploy Deepseek-V3 (DeepSeek-AI, 2024) to assign968

a numerical score for both factual correctness and969

relevance according to the criteria provided in the970

prompts below. A knowledge statement was classi-971

fied as Harmful if both correctness and relevance972

scores were less than 2; otherwise, it was classified973

as Useful.974

Correctness

Please evaluate the factual correctness of the
following statement: {knowledge}
Use the following criteria to determine your
response:
*Incorrect: The statement contains factual
inaccuracies or contradictions.
*Uncertain: The statement cannot be clearly
verified as true or false based on the given
information.
*Correct: The statement is factually accurate
and consistent with reliable knowledge.
Your response must be a single number: 0
for Incorrect, 1 for Uncertain and 2 for Cor-
rect. Do not include any additional text in
your answer; only provide the number.

975

Relevance

Please determine if the following knowledge
is helpful for solving the problem:
*Knowledge: {knowledge}
*Question: {question}
*Answer: {answer}
Knowledge is related to the final answer in
the following ways. Use the following crite-
ria to determine your response:
*Helpful: The knowledge can be part of a
non-trivial reasoning chain that supports the
predicted answer or a trivial paraphrase of
the question and the predicted answer.
*Unrelated: Any of the following: The
knowledge is a mere repetition of known in-
formation given in the question; The knowl-
edge is topically related to the question
and/or the choices, but cannot be part of
a reasoning chain to support or refute any of
the choices; The knowledge is unrelated to
the question.
*Contradict: The knowledge can be part of
a reasoning chain that refutes the predicted
answer, or supports a different choice.
Your response must be a single number: 0
for Contradict, 1 for Unrelated and 2 for
Helpful. Do not include any additional text
in your answer; only provide the number.

976
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C Attribution Tracing977

C.1 Attribution Scores Across Layers978

As discussed in Section 3.3, we employ attribution979

tracing to understand the information flow from the980

input question context to the generated knowledge981

statement. Figure 12 provides a comprehensive982

visualization of these attribution scores across dif-983

ferent layers for all models and tasks evaluated in984

this study.985

C.2 Normalized Entropy Calculation986

In this appendix, we provide a detailed description987

of the method used to quantify the distribution of988

attribution scores between the question and the gen-989

erated knowledge, and present the comprehensive990

results across all models and tasks.991

We analyze the attribution matrix A ∈ RK×Q992

obtained from the method described in Sec-993

tion 3.3, where A
(l)
i,j represents the aggregated at-994

tribution score from question token qi to knowl-995

edge token kj for a specific layer l (i.e., A(l)
i,j =996 ∑H

h=1

∣∣∣[Attr(A(l)
h )]i,j

∣∣∣). K and Q are the lengths997

of the knowledge and question sequence, respec-998

tively. We normalize the matrix A(l) by its L1 norm999

to obtain a probability distribution P (l) ∈ RK×Q:1000

P
(l)
i,j =

A
(l)
i,j∑K

m=1

∑Q
n=1A

(l)
m,n

(5)1001

We then compute the normalized Shannon entropy1002

of this distribution as follows:1003

Hnorm(l) =
−
∑K

j=1

∑Q
i=1 P

(l)
j,i logP

(l)
j,i

log(KQ)
(6)1004

During implementation, we focus on the layer1005

that exhibits the maximal difference in attribution1006

scores between useful and harmful knowledge in-1007

stances, as identified by the preliminary analysis1008

presented in C.1.1009

Figure 13 presents the average normalized attri-1010

bution matrix entropy for both useful and harmful1011

knowledge across all evaluated models and tasks.1012

D Implementation Details1013

Tasks and Models We use 8 diverse common-1014

sense reasoning datasets: ARC-Easy and ARC-1015

Challenge (Clark et al., 2018), PIQA (Bisk et al.,1016

2020), OpenBookQA (Mihaylov et al., 2018),1017

QASC (Khot et al., 2020), CSQA (Talmor et al.,1018

2019), CSQA2 (Talmor et al., 2022), and Wino- 1019

Grande (Sakaguchi et al., 2019). These bench- 1020

marks are chosen to represent a range of task dif- 1021

ficulties. We evaluate Llama family models (Tou- 1022

vron et al., 2023; Grattafiori et al., 2024) across 1023

different scales and versions: Llama-2-7b-Chat, 1024

Llama-2-13b-Chat, Llama-2-70b-Chat, Llama-3- 1025

8B-Instruct and Llama-3-70B-Instruct. 1026

Our Method In stage 1, the mean and variance 1027

for z-score normalization are calculated from the 1028

training set of each task. For correctness calcula- 1029

tion, the model generates a knowledge statement 1030

K = (k1, k2, . . . , kLK
) of length LK . For each 1031

token kt ∈ K (for t = 1, . . . , LK), let Pintro be 1032

the introspective prompt and pt = P (·|Pintro, k<t) 1033

be the probability distribution over the vocabulary 1034

V predicted by the model for the t-th token of the 1035

knowledge. The entropy of this distribution is 1036

H(pt) = −
∑
v∈V

pt(v) log2 pt(v) (7) 1037

The correctness metric is defined as the average 1038

entropy over the generated knowledge tokens: 1039

Correctness =
1

LK

LK∑
t=1

H(pt) (8) 1040

For relevance calculation, e(wi) denotes the final 1041

layer hidden state embedding for a token wi. We 1042

obtain aggregated hidden state representations for 1043

the knowledge K and question Q as: 1044

hK = Mean({e(ki)}LK
i=1) (9) 1045

hQ = Mean({e(qj)}
LQ

j=1) (10) 1046

where Mean(·) denotes the mean pooling function. 1047

The relevance metric is the cosine similarity be- 1048

tween these representations: 1049

Relevance =
hK · hQ

∥hK∥∥hQ∥
(11) 1050

In stage 2, the hyperparameter α is set to 1.7. The 1051

layer selected is based on the maximal difference 1052

in attribution scores between useful and harmful 1053

knowledge. Specifically, we use 6 layers for Llama- 1054

2-7b-Chat and Llama-3-8B-Instruct, 7 layers for 1055

Llama-2-13b-Chat, and 8 layers for Llama-2-70b- 1056

Chat and Llama-3-70B-Instruct. 1057
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Prompts For the knowledge generation step, we1058

follow the original settings specified by each base-1059

line. For few-shot knowledge generation, we1060

aligned ZEBRA’s (Molfese et al., 2024) prompt1061

format with GKP’s (Liu et al., 2022b). For the1062

Question Answering step, we employ standardized1063

prompt templates and use greedy decoding for an-1064

swer generation across all models and methods.1065

The prompts are as follows:1066

Direct Answering

System: You are a helpful assistant for ques-
tion answering. You are given a question
and up to 4 options (labeled A, B, C, and D).
Your task is to choose the label correspond-
ing to the best answer for the question.

User: Do you understand the task?

Assistant: Yes, I understand. Please pro-
vide the question and the possible choices.

User:
Question: {question}
Options: {choices}
You must always give an answer and only
pick one answer choice.

Assistant: Among A through D, the answer
is

1067

Knowledge-Utilized Answering

System: You are a helpful assistant for ques-
tion answering. You are given a question,
up to 4 options (labeled A, B, C, and D),
and a list of explanations. Your task is to
choose the label corresponding to the best
answer for the question based on the given
explanations.

User: Do you understand the task?

Assistant: Yes, I understand. Please pro-
vide the question and the possible choices.

User:
Question: {question}
Options: {choices}
Explanations: {knowledge}
You must always give an answer and only
pick one answer choice.

Assistant: Among A through D, the answer
is

1068

Figure 9: Model accuracy versus mean question entropy.
Each point represents a (model, task) pair. Dashed lines
are regression lines for each model. Generally, lower
entropy correlates with higher accuracy.

Figure 10: Normalized Negative Log-Likelihood (NLL)
scores of different models on the MMLU benchmark.
Lower scores indicate stronger overall model capabil-
ity. This metric is used to rank models (from weakest:
Llama-2-7b-chat to strongest: Llama-3-70B-Instruct).

Figure 11: Normalized Negative Log-Likelihood (NLL)
scores of different models across the specific common-
sense reasoning tasks. This heatmap illustrates perfor-
mance variations across tasks for each model, indirectly
reflecting the relative difficulty of these tasks for differ-
ent models.
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Figure 12: Layer-wise attribution scores from the input question context to the generated knowledge across all
evaluated models and tasks.

(a) Llama-2-7b-Chat (b) Llama-2-13b-Chat (c) Llama-2-70b-Chat

(d) Llama-3-8B-Instruct (e) Llama-3-70B-Instruct

Figure 13: Comparison of normalized entropy across models and tasks.
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