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ABSTRACT

We present differentially private (DP) algorithms for bilevel optimization, a prob-
lem class that received significant attention lately in various machine learning ap-
plications. These are the first DP algorithms for this task that are able to provide
any desired privacy, while also avoiding Hessian computations which are pro-
hibitive in large-scale settings. Under the well-studied setting in which the upper-
level is not necessarily convex and the lower-level problem is strongly-convex,
our proposed gradient-based (ϵ, δ)-DP algorithm returns a point with hypergra-
dient norm at most Õ

(
(
√

dup/ϵn)
1/2 + (

√
dlow/ϵn)

1/3
)

where n is the dataset
size, and dup/dlow are the upper/lower level dimensions. Our analysis covers con-
strained and unconstrained problems alike, accounts for mini-batch gradients, and
applies to both empirical and population losses.

1 INTRODUCTION

Bilevel optimization is a fundamental framework for solving optimization objectives of hierarchi-
cal structure, in which constraints are defined themselves by an auxiliary optimization problem.
Formally, it is defined as

minimizex∈X F (x) := f(x,y∗(x)) (BO)
subject to y∗(x) ∈ argmin

y
g(x,y) ,

where F : Rdx → R is referred to as the hyperobjective, f : Rdx × Rdy → R as the upper-
level (or outer) objective, and g : Rdx × Rdy → R as the lower-level (or inner) objective. While
bilevel optimization is well studied for over half a century (Bracken & McGill, 1973), it has recently
received significant attention due to its diverse applications in machine learning (ML). These include
hyperparameter tuning (Bengio, 2000; Maclaurin et al., 2015; Franceschi et al., 2017; 2018; Lorraine
et al., 2020), meta-learning (Andrychowicz et al., 2016; Bertinetto et al., 2018; Rajeswaran et al.,
2019; Ji et al., 2020), neural architecture search (Liu et al., 2018), invariant learning (Arjovsky et al.,
2019; Jiang & Veitch, 2022), and data reweighting (Grangier et al., 2023; Fan et al., 2024; Pan et al.,
2024). In these applications, both the upper and lower level objectives in (BO) typically represent
some loss over data, and are given by empirical risk minimization (ERM) problems with respect to
some dataset S = {ξ1, . . . , ξn} ∈ Ξn :1

f(x,y) := fS(x,y) =
1

n

n∑
i=1

f(x,y, ξi) , g(x,y) := gS(x,y) =
1

n

n∑
i=1

g(x,y, ξi) , (ERM)

often serving as empirical proxies of the stochastic (population) objectives with respect to a distri-
bution P supported on Ξ :

f(x,y) := fP(x,y) = Eξ∼P [f(x,y; ξ)] , g(x,y) := gP(x,y) = Eξ∼P [g(x,y; ξ)] . (Pop)

In this work, we study bilvel optimization under differential privacy (DP) (Dwork et al., 2006). As
ML models are deployed in an ever-growing number of applications, protecting the privacy of the

1It is possible for the datasets with respect to f and g to be distinct (e.g., validation and training data),
perhaps of different sizes. We will assume without loss of generality that S is the entire dataset, and thus n
is the total number of samples. Concretely, letting f(·; ξi) = 0 or g(·; ξi) = 0 for certain indices in order to
exclude corresponding data points from either objective, will not affect our results.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

data on which they are trained is a major concern, and DP has become the gold-standard for privacy
preserving ML (Abadi et al., 2016). Accordingly, DP optimization is extensively studied, with
a vast literature focusing both on empirical and stochastic objectives under various assumptions
(Chaudhuri et al., 2011; Kifer et al., 2012; Bassily et al., 2014; Wang et al., 2017; Bassily et al.,
2019; Wang et al., 2019; Feldman et al., 2020; Tran & Cutkosky, 2022; Gopi et al., 2022; Arora
et al., 2023; Carmon et al., 2023; Ganesh et al., 2024; Lowy et al., 2024).

Nonetheless, to the best of our knowledge, no first-order algorithm (i.e., which uses only gradient
queries) that solves bilevel optimization problems under DP, is known to date. This is no coin-
cidence: until recently, no first-order methods with finite time guarantees were known even for
non-private bilevel problems. This follows the fact (Ghadimi & Wang, 2018, Lemma 2.1) that under
mild regularity assumptions, the so-called hypergradient takes the form:

∇F (x) = ∇xf(x,y
∗(x))−∇2

xyg(x,y
∗(x))[∇2

yyg(x,y
∗(x))]−1∇yf(x,y

∗(x)) . (1)

Consequently, directly applying a “gradient” method to F requires inverting Hessians of the lower
level problem at each time step, thus limiting applicability in contemporary high-dimensional ap-
plications. Following various approaches to tackle this challenge (see Section 1.2), recent break-
throughs were finally able to provide fully first-order methods for bilevel optimization with non-
asymptotic guarantees (Liu et al., 2022; Kwon et al., 2023; Yang et al., 2023; Chen et al., 2024).
These recent algorithmic advancements show promising empirical results in large scale applica-
tions, even up to the LLM scale of ∼109 parameters (Pan et al., 2024). We therefore make use of
these techniques for the sake of private optimization. As we will see, our privacy analysis requires
overcoming some subtle challenges due to privacy leaking between the inner and outer problems,
since ∇F (x) itself depends on y∗(x) (seen in Eq. (1)).

The only prior method we are aware of for DP bilevel optimization was recently proposed by Chen
& Wang (2024), which falls short in two main aspects. First, their algorithm only provides some
privacy guarantee which cannot be controlled by the user. Moreover, it requires inverting local
Hessians at each step, which significantly limits scalability; see Section 1.2 for further discussion.

1.1 OUR CONTRIBUTIONS

We present DP algorithms that solve bilevel optimization problems whenever the the upper level is
smooth but not necessarily convex, and the lower level problem is smooth and strongly-convex. To
the best of our knowledge, these are the first algorithms to do so using only first-order (i.e. gradient)
queries of the upper- and lower-level objectives, and that can ensure any desired privacy ϵ, δ > 0.
Our contributions can be summarized as follows:

• Bilevel ERM Algorithm (Theorem 3.1): We present a (ϵ, δ)-DP first-order algorithm for the
bilevel ERM problem (BO/ERM) that outputs with high probability a point with hypergradient
norm bounded by

∥∇FS(x)∥ = Õ

(√
dx
ϵn

)1/2

+

(√
dy

ϵn

)1/3
 .

Our algorithm also adapts to the case where X ⊊ Rdx is a non-trivial constraint set, which is
common in certain applications.2 In the constrained setting, we obtain the same guarantee as
above in terms of the projected hypergradient (see Section 2 for details).

• Mini-batch Bilevel ERM Algorithm (Theorem 4.1): Aiming for a more practical algorithm,
we design a variant of our previous algorithm that relies on mini-batch gradients. For the bilevel
ERM problem (BO/ERM), given any batch sizes bin, bout ∈ {1, . . . , n} for sampling gradients
of the inner/outer problems respectively, our algorithm ensures (ϵ, δ)-DP and outputs with high
probability a point with hypergradient norm bounded by

∥∇FS(x)∥ = Õ

(√
dx
ϵn

)1/2

+

(√
dy

ϵn

)1/3

+
1

bout

 . (2)

2For instance, in data reweighting X is the probability simplex; in hyperparameter tuning it is the hyperpa-
rameter space, which is typically constrained.
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Notably, Eq. (2) is independent of the inner-batch size, yet depends on the outer-batch size, which
coincides with known results for “single”-level constrained nonconvex optimization (Ghadimi
et al., 2016) (see Remark 4.2 for further discussion). Our mini-batch algorithm is also applicable
in the constrained setting X ⊊ Rdx with the same guarantee in terms of projected hypergradient.

• Population loss guarantees (Theorem 5.1): We further provide guarantees for stochastic ob-
jectives. In particular, we show that for the population bilevel problem (BO/Pop), our (ϵ, δ)-DP
algorithm outputs with high probability a point with hypergradient norm bounded by

∥∇FP(x)∥ = Õ

(√
dx
ϵn

)1/2

+

(
dx
n

)1/2

+

(√
dy

ϵn

)1/3
 ,

with an additional additive 1/bout factor in the mini-batch setting.

1.2 RELATED WORK

Bilevel optimization was introduced by Bracken & McGill (1973), and grew into a vast body of
work, with classical results focusing on asymptotic guarantees for specific problem structures (Anan-
dalingam & White, 1990; Ishizuka & Aiyoshi, 1992; White & Anandalingam, 1993; Vicente et al.,
1994; Zhu, 1995; Ye & Zhu, 1997). There exist multiple surveys and books covering various ap-
proaches for these problems (Vicente & Calamai, 1994; Dempe, 2002; Colson et al., 2007; Bard,
2013; Sinha et al., 2017).

Ghadimi & Wang (2018) observed Eq. (1) under strong-convexity of the inner problem using the
implicit function theorem, therefore asserting that the hypergradient can be computed via inverse
Hessians, which requires solving a linear system at each point. Many follow up works built upon this
second-order approach with additional techniques such as variance reduction, momentum, Hessian
sketches, projection-free updates, or incorporating external constraints (Amini & Yousefian, 2019;
Yang et al., 2021; Khanduri et al., 2021; Guo et al., 2021; Ji et al., 2021; Chen et al., 2021; Akhtar
et al., 2022; Chen et al., 2022; Tsaknakis et al., 2022; Hong et al., 2023; Jiang et al., 2023; Abolfazli
et al., 2023; Merchav & Sabach, 2023; Xu & Zhu, 2023; Cao et al., 2024; Dagréou et al., 2024).

Only recently, the groundbreaking result of Liu et al. (2022) proved finite-time convergence guar-
antees for a fully first-order method which is based on a penalty approach. This result was soon
extended to stochastic objectives (Kwon et al., 2023), with the convergence rate later improved by
(Yang et al., 2023; Chen et al., 2024), and also extended to constrained bilevel problems (Yao et al.,
2024; Kornowski et al., 2024). The first-order penalty paradigm also shows promise for some bilevel
problems in which the inner problem is not strongly-convex (Shen & Chen, 2023; Kwon et al., 2024;
Lu & Mei, 2024), which is generally a highly challenging setting (Chen et al., 2024; Bolte et al.,
2024). Moreover, Pan et al. (2024) provided an efficient implementation of this paradigm, showing
its effectiveness for large scale applications.

As to DP optimization, there is an extensive literature on optimization problems, both for ERM and
for stochastic losses, which are either convex (Chaudhuri et al., 2011; Kifer et al., 2012; Bassily
et al., 2014; Wang et al., 2017; Bassily et al., 2019; Feldman et al., 2020; Gopi et al., 2022; Carmon
et al., 2023) or smooth and nonconvex (Wang et al., 2019; Tran & Cutkosky, 2022; Arora et al.,
2023; Ganesh et al., 2024; Lowy et al., 2024).

To the best of our knowledge, the only existing result for DP bilevel optimization is the very recent
result of Chen & Wang (2024), which differs than ours in several aspect. Their proposed algorithm
is second-order, requiring evaluating Hessians, and solving corresponding linear systems at each
time step, which we avoid altogether. Moreover, Chen & Wang (2024) study the local DP model
(Kasiviswanathan et al., 2011), in which each user (i.e. ξi) does not reveal its individual information.
Due to this more challenging setting, they can only derive guarantees for some finite privacy budget
ϵ < ∞, even as the dataset size grows n → ∞. We study the common central DP model, in which a
trusted curator acts on the collected data and releases a private solution, and thus are able to provide
any desired privacy and accuracy guarantees with sufficiently many samples. Our work is the first
to study bilevel optimization in this well-studied DP setting. We also note that Fioretto et al. (2021)
studied the related problem of DP in Stackelberg games, which are certain bilevel programs which
arise in game theory, aiming at designing coordination mechanisms that maintain the individual
agents’ privacy.
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2 PRELIMINARIES

Notation and terminology. We let bold-face letters (e.g. x) denote vectors, and denote by 0 the
zero vector (whenever the dimension is clear from context) and by Id ∈ Rd×d the identity matrix.
[n] := {1, 2, . . . , n}. ⟨ · , · ⟩ denotes the standard Euclidean dot product, and ∥ · ∥ denotes either
its induced norm for vectors or operator norm for matrices, and ∥f∥∞ = supx∈X |f(x)| denotes
the sup-norm. We denote by ProjB(z,R) the projection onto the closed ball around z of radius R.
N (µ,Σ) denotes a normal (i.e., Gaussian) random variable with mean µ and covariance Σ. We use
standard big-O notation, with O(·) hiding absolute constants (independent of problem parameters),
Õ(·) also hiding poly-logarithmic terms. We denote f ≲ g if f = O(g), and f ≍ g if f ≲ g and
g ≲ f . A function f : X ⊆ Rd1 → Rd2 is L0-Lipschitz if for all x,y ∈ X : ∥f(x)− f(y)∥ ≤
L0 ∥x− y∥; L1-smooth if ∇f exists and is L1-Lipschitz; and L2 Hessian-smooth if ∇2f exists and
is L2-Lipschitz (with respect to the operator norm). A twice-differentiable function f is µ-strongly-
convex if ∇2f ⪰ µI , denoting by “⪰” the standard PSD (“Loewner”) order on matrices.

Differential privacy. Two datasets S, S′ ∈ Ξn are said to be neighboring, denoted by S ∼ S′, if
they differ by only one data point. A randomized algorithm A : Ξn → R is called (ϵ, δ) differen-
tially private (or (ϵ, δ)-DP) for ϵ, δ > 0 if for any two neighboring datasets S ∼ S′ and measurable
E ⊆ R in the algorithm’s range, it holds that Pr[A(S) ∈ E] ≤ eϵ Pr[A(S′) ∈ E] + δ (Dwork
et al., 2006). The basic composition property of DP states that the (possibly adaptive) composition
of (ϵ0, δ0)-DP- and (ϵ1, δ1)-DP mechanisms, is (ϵ0 + ϵ1, δ0 + δ1)-DP. We next recall some well
known DP basics: advanced composition, the Gaussian mechanism, and privacy amplification by
subsampling.
Lemma 2.1 (Advanced composition, Dwork et al., 2010). For ϵ0 < 1, a T -fold (possibly adaptive)
composition of (ϵ0, δ0)-DP mechanisms is (ϵ, δ)-DP for ϵ =

√
2T log(1/δ0)ϵ0 + 2Tϵ20, δ = (T +

1)δ0.
Lemma 2.2 (Gaussian mechanism). Given a function h : Ξb → Rd, the Gaussian mechanism
M(h) : Ξb → Rd defined as M(h)(S) := h(S)+N (0, σ2Id) is (ϵ, δ)-DP for ϵ, δ ∈ (0, 1), as long
as σ2 ≥ 2 log(5/4δ)(Sh)

2

ϵ2 , where Sh := supS∼S′ ∥h(S)− h(S′)∥ is the L2-sensitivity of h.

Lemma 2.3 (Privacy amplification, Balle et al., 2018). Suppose M : Ξb → R is (ϵ0, δ0)-DP. Then
given n ≥ b, the mechanism M′ : Ξn → R, M′(S) := M(B) where B ∼ Unif(Ξ)b, is (ϵ, δ)-DP
for ϵ = log(1 + (1− (1− 1/n)b)(eϵ0 − 1)), δ = δ0.

We remark that advanced composition will be used when ϵ0 ≲
√
log(1/δ0)/T , thus the accumulated

privacy scales as ϵ ≍
√
Tϵ0. Similarly, privacy amplification will be used when ϵ0 ≤ 1, under

which the privacy after subsampling scales as ϵ ≍ bϵ0
n (since eϵ0 − 1 ≍ ϵ0, (1 − 1/n)b ≍ b

n and
log(1 + b

nϵ0) ≍
b
nϵ0).

Gradient mapping. Given a point x ∈ Rd, and some v ∈ Rd, η > 0, we denote

Gv,η(x) :=
1

η
(x− Pv,η(x)) , Pv,η(x) := arg min

u∈X

[
⟨v,u⟩+ 1

2η
∥u− x∥2

]
.

In particular, given an L-smooth function F : Rd → R and η ≤ 1
2L , we denote the projected

gradient (also known as reduced gradient) and the gradient (or prox) mapping, respectively, as

GF,η(x) :=
1

η
(x− P∇F,η(x)) , P∇F,η(x) := arg min

u∈X

[
⟨∇F (x),u⟩+ 1

2η
∥u− x∥2

]
.

The projected gradient GF,η(x) generalizes the gradient to the possibly constrained setting: for
points x ∈ X sufficiently far from the boundary of X , GF,η(x) = ∇F (x), namely it simply reduces
to the gradient. See the textbooks (Nesterov, 2013; Lan, 2020) for additional details. We will recall
a useful fact, which asserts that the mapping Gv,η(x) is non-expansive with respect to v :

Lemma 2.4. For any x,v,w ∈ Rd, η > 0 : ∥Gv,η(x)− Gw,η(x)∥ ≤ ∥v − u∥.

Lemma 2.4 is important in our analysis, since as we will argue later (in Section 3.1), gradient es-
timates must be inexact in the bilevel setting to satisfy privacy, and Lemma 2.4 will allows us to
control the error due to this inexactness. Although this result is known (cf. Ghadimi et al. 2016), we
reprove it in Appendix C for completeness.
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2.1 SETTING

We impose the following assumptions, all of which are standard in the bilevel optimization literature.

Assumption 2.5. For (BO) with either (ERM) or (Pop), we assume the following hold:

i. X ⊆ Rdx is a closed convex set.

ii. F (x0)− infx∈X F (x) ≤ ∆F for some initial point x0 ∈ X .

iii. f is twice differentiable, and Lf
1 -smooth.

iv. For all ξ ∈ Ξ : f(·, · ; ξ) is Lf
0 -Lipschitz (hence, so is f ).

v. g is Lg
2-Hessian-smooth, and for all x ∈ X : g(x, ·) is µg-strongly-convex.

vi. For all ξ ∈ Ξ : g(·, · ; ξ) is Lg
1-smooth (hence, so is g).

As mentioned, these assumptions are standard in the study of bilevel optimization problems and are
shared by nearly all of the previous works we discussed. In particular, the strong convexity of g(x, ·)
ensures that y∗(x) is uniquely defined, which is generally required in establishing the regularity of
the hyporobjective. Indeed, it is known that dropping this assumption, can, in general, lead to patho-
logical behaviors not amenable for algorithmic guarantees (cf. Chen et al. 2024; Bolte et al. 2024
and discussions therein). For the purpose of differential privacy though, the strong convexity of
g(x, ·) raises a subtle issue. As the standard assumption in the DP optimization literature is that the
component functions are Lipschitz, which allows privatization of gradients using sensitivity argu-
ments, strongly-convex objectives cannot be Lipschitz over the entire Euclidean space.3 Therefore,
strongly-convex objectives are regularly analyzed in the DP setting under the additional assumption
that the domain of interest is bounded. For bilevel problems, the domain of interest for y is the lower
level solution set, thus we impose the following assumption.

Assumption 2.6. There exists a compact set Y ⊂ Rdy with {y∗(x) : x ∈ X} ⊆ Y , such that for all
x ∈ X , ξ ∈ Ξ : g(x, · ; ξ) is Lg

0-Lipschitz over Y .

Remark 2.7. Note that diam(Y) ≤ 2Lg
0/µg . Indeed, fixing some x ∈ X , since g(x, · ; ξ) is Lg

0-
Lipschitz over Y for all ξ ∈ Ξ, then so is g(x, ·). Moreover, by µg-strong-convexity, we get that for
all y ∈ Y : µg ∥y − y∗(x)∥ ≤ ∥∇yg(x,y)∥ ≤ Lg

0. Hence Y ⊆ B(y∗(x), Lg
0/µg), which is of

diameter 2Lg
0/µg .

Following Assumptions 2.5 and 2.6, we denote ℓ := max{Lf
0 , L

f
1 , L

g
0, L

g
1, L

g
2}, κ := ℓ/µg .

3 ALGORITHM FOR BILEVEL ERM

In this section, we consider the ERM bilevel problem, namely (BO) with (ERM), for which we
denote the hyperobjective by FS . Our algorithm is presented in Algorithm 1. We prove the following
result:

Theorem 3.1. Assume 2.5 and 2.6 hold, and that α ≤ ℓκ3 min{ 1
2κ ,

Lg
0

Lf
0

,
Lg

1

Lf
1

, ∆F

ℓκ }. Then there is

an assignment of parameters λ ≍ ℓκ3α−1, σ2 ≍ ℓ2κ2T log(T/δ)ϵ−2n−2, η ≍ ℓ−1κ−3, T ≍
∆F ℓκ

3α−2, such that running Algorithm 1 satisfies (ϵ, δ)-DP, and returns xout such that with prob-
ability at least 1− γ :

∥GFS ,η(xout)∥ ≤ α = Õ

K1

(√
dx
ϵn

)1/2

+K2

(√
dy

ϵn

)1/3
 ,

where K1 = O(∆
1/4
F ℓ3/4κ5/4), K2 = O(∆

1/6
F ℓ1/2κ11/6).

Remark 3.2. Recall that when X = Rdx , then GFS ,η(xout) = ∇FS(xout).

3If g(x, · ; ξ) were Lipschitz over Rdy for all ξ ∈ Ξ, then so would g(x, ·), contradicting strong convexity.
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Algorithm 1 DP Bilevel
1: Input: Initialization (x0,y0) ∈ X×Y , privacy budget (ϵ, δ), penalty λ > 0, noise level σ2 > 0,

step size η > 0, iteration budget T ∈ N.
2: for t = 0, . . . , T − 1 do
3: Apply ( ϵ√

18T
, δ
3T )-DP-Loc-GD (Algorithm 2) to solve ▷ Strongly-convex problems

ỹt ≈ argmin
y

g(xt,y)

ỹλ
t ≈ argmin

y
[f(xt,y) + λ · g(xt,y)]

4: g̃t = ∇xf(xt, ỹ
λ
t ) + λ

(
∇xg(xt, ỹ

λ
t )−∇xg(xt, ỹt)

)
+ νt, where νt ∼ N (0, σ2Idx

)

5: xt+1 = argminu∈X

{
⟨g̃t,u⟩+ 1

2η ∥u− xt∥2
}

▷ If X = Rdx , then xt+1 = xt − ηg̃t

6: end for
7: tout = argmint∈{0,...,T−1} ∥xt+1 − xt∥.
8: Output: xtout .

Algorithm 2 DP-Loc-GD
1: Input: Objective h : Rdy → R, initialization y0 ∈ Y , privacy budget (ϵ′, δ′), number of

rounds M ∈ N, noise level σ2
GD > 0, step sizes (ηt)

T−1
t=0 , iteration budget TGD ∈ N, radii

(Rm)M−1
m=0 > 0.

2: y0
0 = y0

3: for m = 0, . . . ,M − 1 do
4: for t = 0, . . . , TGD − 1 do
5: ym

t+1 = ProjB(ym
0 ,Rm) [y

m
t − ηt (∇h(ym

t ) + νt)], where νmt ∼ N (0, σ2
GDIdy )

6: end for
7: ym+1

0 = 1
T

∑T−1
t=0 ym

t
8: end for
9: Output: yout = yM

0 .

3.1 ANALYSIS OVERVIEW

In this section, we will go over the main ideas that appear in the proof of Theorem 3.1, all which are
provided in full detail in Appendix A. We start by introducing some useful notation: Given λ > 0,
we denote the penalty function

Lλ(x,y) := f(x,y) + λ [g(x,y)− g(x,y∗(x))] ,

and further denote

L∗
λ(x) := Lλ(x,y

λ(x)) , yλ(x) := argmin
y

Lλ(x,y) .

The starting point of our analysis is the following result, underlying the previously discussed recent
advancements in (non-private) first-order bilevel optimization:

Lemma 3.3 (Kwon et al. 2023; 2024; Chen et al. 2024). For λ ≥ 2Lf
1/µg , the following hold:

a. ∥L∗
λ − F∥∞ = O(ℓκ/λ).

b. ∥∇L∗
λ −∇F∥∞ = O(ℓκ3/λ).

c. L∗
λ is O(ℓκ3)-smooth (independently of λ).

In other words, the lemma shows that for sufficiently large penalty λ, L∗
λ is a smooth approximation

of the hyperobjective F , and that it suffices to minimize the gradient norm of L∗
λ in order to get a

hypergradient guarantee in terms of ∇F . Moreover, note that ∇L∗
λ can be computed entirely in a

6
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first-order fashion, since by construction L∗
λ(x) = argminy Lλ(x,y), and therefore it holds that

∇L∗
λ(x) = ∇xL∗

λ(x,y
λ(x)) +∇xy

λ(x)⊤∇yLλ(x,y
λ(x))︸ ︷︷ ︸

=0

= ∇xf(x,y
λ(x)) + λ

(
∇xg(x,y

λ(x))−∇xg(x,y
∗(x))

)
. (3)

This observation raises a subtle privacy issue: Since y∗(x),yλ(x) are required in order to com-
pute the gradient ∇L∗

λ(x), and are defined as the minimizers of g(x, ·),Lλ(x, ·) which are data-
dependent, we cannot simply compute them up to arbitraily small accuracy under the DP constraint.
In other words, even deciding where to invoke the gradient oracles, can already leak user informa-
tion, hence breaking privacy before the gradients are even computed. We therefore must resort to
approximating them using an auxiliary private method, for which we use DP-Loc(alized)-GD (Al-
gorithm 2).4 We then crucially rely on the fact that g(x, ·) Lλ(x, ·) are both strongly-convex, which
implies that optimizing them produces ỹt, ỹ

λ
t such that the distances to the minimizers, namely

∥ỹt − y∗(xt)∥ ,
∥∥ỹλ

t − yλ(xt)
∥∥, are small. The distance bound is key, as Eq. (3) allows using the

smoothness of f, g to translate the distance bounds into an inexact (i.e. biased) gradient oracle
for ∇L∗

λ(xt), computed at the private points ỹt, ỹ
λ
t . Using this analysis we obtain the following

guarantee:

Lemma 3.4. If λ ≥ max{ 2Lg
1

µg
,
Lf

0

Lg
0
,
Lf

1

Lg
1
}, then there is β = Õ

(
λℓκ

√
dyT

ϵn

)
such that with probabil-

ity at least 1− γ, for all t ∈ {0, . . . , T − 1} :∥∥∇L∗
λ(xt)−

[
∇xf(xt, ỹ

λ
t ) + λ

(
∇xg(xt, ỹ

λ
t )−∇xg(xt, ỹt)

)]∥∥ ≤ β .

Having constructed an inexact gradient oracle, we can privatize its response using the standard Gaus-
sian mechanism. Recalling that the noise variance required to ensure privacy is tied to the component
Lipschitz constants, we note that L∗

λ(x) decomposes as the finite-sum L∗
λ(x) = 1

n

∑n
i=1 L∗

λ,i(x),
where

L∗
λ,i(x) := f(x,yλ(x); ξi) + λ

[
g(x,yλ(x); ξi)− g(x,y∗(x); ξi)

]
.

At first glance, a naive application of the chain rule and the triangle inequality would bound the
Lipschitz constant of L∗

λ,i by approximately Lip(y∗)(Lf
0 + λLg

0) ≲ λLip(y∗)Lg
0, where Lip(y∗)

is the Lipschitz constant of y∗(x) : Rdx → Rdy . Unfortunately, this bound grows with the penalty
parameter λ, which will eventually be set large, and in particular, will grow with the dataset size
n. We therefore derive the following lemma, showing that applying a more nuanced analysis allows
obtaining a significantly tighter Lipschitz bound, independent of λ :

Lemma 3.5. L∗
λ,i is O(ℓκ)-Lipschitz.

Finally, having constructed a private inexact stochastic oracle response for the smooth approximation
L∗
λ, we analyze an outer loop (Line 5 of Algorithm 1), showing that is provably robust to inexact

and noisy gradients. We then employ a stopping criteria which makes use of the already-privatized
iterates, thus avoiding the need of additional noise in choosing the smallest gradient. In particular,
we show that the corresponding process gets to a point with small (projected-)gradient norm, as
stated below:
Proposition 3.6. Suppose h : Rd → R is L-smooth, that ∥∇̃h(·) −∇h(·)∥ ≤ β, and consider the
following update rule with η = 1

2L :

xt+1 = arg min
u∈X

{〈
∇̃h(xt) + νt,u

〉
+

1

2η
∥xt − u∥2

}
, νt ∼ N (0, σ2I) ,

with the output rule xout := xtout , tout := argmint∈{0,...,T−1} ∥xt+1 − xt∥. If α > 0 is such
that α ≥ Cmax{β, σ

√
d log(T/γ)} for a sufficiently large absolute constant C > 0, then with

probability at least 1− γ : ∥Gh,η(xout)∥ ≤ α for T = O
(

L(h(x0)−inf h)
α2

)
.

Overall, applying Proposition 3.6 to h = L∗
λ, we see that the (projected-)gradient norm can be as

small as max{β, σ
√
dx}, up to logarithmic terms. Accounting for the smallest possible inexactness

β and noise addition σ that ensure the the inner and outer loops, respectively, are both sufficiently
private, we conclude the proof of Theorem 3.1; the full details appear in Appendix A.

4We can replace the inner solver by any DP method that guarantees with high probability the optimal rate
for strongly-convex objectives, as we further discuss in Appendix B.
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4 MINI-BATCH ALGORITHM FOR BILEVEL ERM

Algorithm 3 Mini-batch DP Bilevel
1: Input: Initialization (x0,y0) ∈ X×Y , privacy budget (ϵ, δ), penalty λ > 0, noise level σ2 > 0,

step size η > 0, iteration budget T ∈ N, batch sizes bin, bout ∈ N.
2: for t = 0, . . . , T − 1 do
3: Apply ( ϵ√

18T
, δ
3T )-DP-Loc-SGD (Algorithm 4) to solve ▷ Strongly-convex problems

ỹt ≈ argmin
y

g(xt,y)

ỹλ
t ≈ argmin

y
[f(xt,y) + λ · g(xt,y)]

4: g̃t = ∇xf(xt, ỹ
λ
t ;Bt) + λ

(
∇xg(xt, ỹ

λ
t ;Bt)−∇xg(xt, ỹt;Bt)

)
+ νt, Bt ∼ Sbout , νt ∼

N (0, σ2Idx)

5: xt+1 = argminu∈X

{
⟨g̃t,u⟩+ 1

2η ∥u− xt∥2
}

▷ If X = Rdx , then xt+1 = xt − ηg̃t

6: end for
7: tout = argmint∈{0,...,T−1} ∥xt+1 − xt∥.
8: Output: xtout .

Algorithm 4 DP-Loc-SGD
1: Input: Objective h : Rdy × Ξ → R, initialization y0 ∈ Y , privacy budget (ϵ′, δ′), batch size

bin ∈ N, number of rounds M ∈ N, noise level σ2
SGD > 0, step sizes (ηt)T−1

t=0 , iteration budget
TSGD ∈ N, radii (Rm)M−1

m=0 > 0.
2: y0

0 = y0

3: for m = 0, . . . ,M − 1 do
4: for t = 0, . . . , TSGD − 1 do
5: ym

t+1 = ProjB(ym
0 ,Rm) [y

m
t − ηt (∇h(ym

t ;Bt) + νt)] , Bm
t ∼ Sbin , νmt ∼

N (0, σ2
SGDIdy

)
6: end for
7: ym+1

0 = 1
T

∑T−1
t=0 ym

t
8: end for
9: Output: yout = yM

0 .

In this section, we consider once again the ERM bilevel problem, (BO) with (ERM), and provide
Algorithm 3, which is a mini-batch variant of the ERM algorithm discussed in the previous section.
Given a mini-batch B ⊆ S = {ξ1, . . . , ξn} and a function h : Rd × Ξ → R, we let ∇h(z;B) =
1

|B|
∑

ξi∈B ∇h(z; ξi) denote the mini-batch gradient. We prove the following result:

Theorem 4.1. Assume 2.5 and 2.6 hold, and that α ≤ ℓκ3 min{ 1
2κ ,

Lg
0

Lf
0

,
Lg

1

Lf
1

, ∆F

ℓκ }. Then running

Algorithm 3 with assigned parameters as in Theorem 3.1 and any batch sizes bin, bout ∈ [n], satisfies
(ϵ, δ)-DP and returns xout such that with probability at least 1− γ :

∥GFS ,η(xout)∥ ≤ α = Õ

K1

(√
dx
ϵn

)1/2

+K2

(√
dy

ϵn

)1/3

+K3 ·
1

bout

 ,

where K1 = O(∆
1/4
F ℓ3/4κ5/4), K2 = O(∆

1/6
F ℓ1/2κ11/6), K3 = O(ℓκ).

Remark 4.2 (Outer batch size dependence). Algorithm 3 ensures privacy for any batch sizes,
yet notably, the guaranteed gradient norm bound does not go to zero (as n → ∞) for con-
stant outer-batch size. The same phenomenon also holds for for “single”-level constrained non-
convex optimization, as noted by Ghadimi et al. (2016) (specifically, see Corollary 4 and re-
lated discussion). Accordingly, the inner-batch size bin can be set whatsoever, while setting
bout = O(max{(ϵn/

√
dx)

1/2, (ϵn/
√
dy)

1/3}) ≪ n recovers the full-batch rate. More generally,
from a worst-case perspective, one should set bout = ωn(1) to grow with the sample (resulting in

8
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limn→∞ ∥G(xout)∥ = 0). It is interesting to note that the additional 1/bout term shows up in the
analysis only as an upper bound on the sub-Gaussian norm of the mini-batch gradient estimator.
Thus, in applications for which some (possibly constant) batch size results in reasonably accurate
gradients, the result above should hold with the outer mini-batch gradient’s standard deviation re-
placing 1/bout, which is to be expected anyhow for high probability guarantees.

The difference between Algorithm 3 and Algorithm 1, is that both the inner and outer loops sample
mini-batch gradients. The inner loop guarantee is the same regardless of the inner-batch size bin,
since for strongly-convex objectives it is possible to prove the same convergence rate guarantee
for DP optimization in any case (as further discussed in Appendix B). As to the outer loop (Line
5), we apply standard concentration bounds to argue about the quality of the gradient estimates —
hence the additive 1/bout factor — and rely on our analysis of the outer loop with inexact gradients
(which are now even less exact due to sampling stochasticity). We remark that compared to the
classic analysis of Ghadimi et al. (2016) for constrained nonconvex optimization, we derive high
probability bounds without requiring several re-runs of the algorithm. We further remark that we
analyze mini-batch sampling with replacement for simplicity, though the same guarantees (up to
constants) can be derived for sampling at each time step without replacement, at the cost of a more
involved analysis.

5 GENERALIZING FROM ERM TO POPULATION LOSS

In this section, we move to consider stochastic (population) objectives, the problem (BO) with (Pop).
We denote the population hyperobjective by FP , and as before FS denotes the empirical objective,
where S ∼ Pn. We prove the following result:
Theorem 5.1. Under Assumptions 2.5 and 2.6, if the preconditions of Theorem 3.1 hold, then Algo-
rithm 1 is (ϵ, δ)-DP, and returns xout such that with probability at least 1− γ :

∥GFP ,η(xout)∥ ≤ α = Õ

K1

(√
dx
ϵn

)1/2

+K2

(√
dy

ϵn

)1/3

+K3

(
dx
n

)1/2
 ,

where K1 = O(∆
1/4
F ℓ1/4κ5/4), K2 = O(∆

1/6
F ℓ1/2κ11/6), K3 = O(ℓκ). Similarly, if the precon-

ditions of Theorem 4.1 hold, then for any batch sizes bin, bout ∈ [n], Algorithm 3 is (ϵ, δ)-DP, and
returns xout such that with probability at least 1− γ :

∥GFP ,η(xout)∥ ≤ α = Õ

K1

(√
dx
ϵn

)1/2

+K2

(√
dy

ϵn

)1/3

+K3 ·
1

bout
+K3

(
dx
n

)1/2
 .

The proof of Theorem 5.1 relies on arguing that the hyperobjective is Lipschitz, and applying a
uniform convergence bound for bounded gradients, which further implies uniform convergence of
projected gradients by Lemma 2.4.

6 DISCUSSION

In this paper, we studied differentially-private bilevel optimization, and proposed the first algorithms
to solve this problem that enable any desired privacy guarantee, while also requiring only gradient
queries. Our provided guarantees hold both for constrained and unconstrained settings, cover em-
pirical and population losses alike, and account for mini-batched gradients.

Our work leaves open several directions for future research. First, it is likely that the rate derived
in this work can be improved. Specifically, for “single”-level DP nonconvex optimization, Arora
et al. (2023) showed that incorporating variance reduction leads to gradient bounds that decay faster
with the sample size. Applying this for DP bilevel optimization as the outer loop would require,
according to our analysis, to evaluate the cost of inexact gradients in variance-reduced methods,
which we leave for future work.

Another open direction is understanding whether mini-batch algorithms can avoid the additive
1/bout factor in the unconstrained case X = Rdx . As previously discussed, for constrained prob-
lems, even single-level nonconvex algorithms suffer from this batch dependence (Ghadimi et al.,

9
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2016). Nonetheless, for unconstrained problems, Ghadimi & Lan (2013) showed that setting a
smaller stepsize, roughly on the order of α2/σ2, converges to a point with gradient bounded by α
after O(α−4) steps, even for bout = 1. Applying this to DP bilevel unconstrained optimization,
would require analyzing SGD under biased gradients, and accounting for the larger privacy loss due
to the slower convergence rate (compared to O(α−2) in our case), both of which seem feasible.

Lastly, an important direction is of course empirical validation of our proposed methods. At a high
level, our methods are privatized variants of the first-order penalty approach for bilevel optimization,
which has been substantially scaled up following initial theoretically-focused works, confirming this
paradigm as highly effective in some large scale non-private applications (Pan et al., 2024). While
our analysis provides conservative (worst-case) estimates for the convergence rate under privatiza-
tion of both the upper and lower level problems, it would be interesting to explore the actual cost of
privatization seen in practice for these problems. As this work is a theoretically focused, we leave
this for future research.
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Mathieu Dagréou, Thomas Moreau, Samuel Vaiter, and Pierre Ablin. A lower bound and a near-
optimal algorithm for bilevel empirical risk minimization. In International Conference on Artifi-
cial Intelligence and Statistics, pp. 82–90. PMLR, 2024.

Stephan Dempe. Foundations of bilevel programming. Springer Science & Business Media, 2002.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Third Theory of Cryptography Conference, pp. 265–284. Springer,
2006.

Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and differential privacy. In 2010
IEEE 51st annual symposium on foundations of computer science, pp. 51–60. IEEE, 2010.

Simin Fan, Matteo Pagliardini, and Martin Jaggi. Doge: Domain reweighting with generalization
estimation. In Forty-first International Conference on Machine Learning, 2024.

Vitaly Feldman, Tomer Koren, and Kunal Talwar. Private stochastic convex optimization: optimal
rates in linear time. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, pp. 439–449, 2020.

Ferdinando Fioretto, Lesia Mitridati, and Pascal Van Hentenryck. Differential privacy for stackel-
berg games. In Proceedings of the Twenty-Ninth International Conference on International Joint
Conferences on Artificial Intelligence, pp. 3480–3486, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. In International Conference on Machine Learning,
pp. 1165–1173. PMLR, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In International conference on
machine learning, pp. 1568–1577. PMLR, 2018.

Arun Ganesh, Daogao Liu, Sewoong Oh, and Abhradeep Guha Thakurta. Private (stochastic) non-
convex optimization revisited: Second-order stationary points and excess risks. Advances in
Neural Information Processing Systems, 36, 2024.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochas-
tic programming. SIAM journal on optimization, 23(4):2341–2368, 2013.

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv preprint
arXiv:1802.02246, 2018.

Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic approximation meth-
ods for nonconvex stochastic composite optimization. Mathematical Programming, 155(1):267–
305, 2016.

Sivakanth Gopi, Yin Tat Lee, and Daogao Liu. Private convex optimization via exponential mecha-
nism. In Conference on Learning Theory, pp. 1948–1989. PMLR, 2022.

David Grangier, Pierre Ablin, and Awni Hannun. Bilevel optimization to learn training distributions
for language modeling under domain shift. In NeurIPS 2023 Workshop on Distribution Shifts:
New Frontiers with Foundation Models, 2023.

Zhishuai Guo, Quanqi Hu, Lijun Zhang, and Tianbao Yang. Randomized stochastic variance-
reduced methods for multi-task stochastic bilevel optimization. arXiv preprint arXiv:2105.02266,
2021.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic algorithm
framework for bilevel optimization: Complexity analysis and application to actor-critic. SIAM
Journal on Optimization, 33(1):147–180, 2023.

Yo Ishizuka and Eitaro Aiyoshi. Double penalty method for bilevel optimization problems. Annals
of Operations Research, 34(1):73–88, 1992.

Kaiyi Ji, Jason D Lee, Yingbin Liang, and H Vincent Poor. Convergence of meta-learning with task-
specific adaptation over partial parameters. Advances in Neural Information Processing Systems,
33:11490–11500, 2020.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced
design. In International conference on machine learning, pp. 4882–4892. PMLR, 2021.

Ruichen Jiang, Nazanin Abolfazli, Aryan Mokhtari, and Erfan Yazdandoost Hamedani. A condi-
tional gradient-based method for simple bilevel optimization with convex lower-level problem.
In International Conference on Artificial Intelligence and Statistics, pp. 10305–10323. PMLR,
2023.

Yibo Jiang and Victor Veitch. Invariant and transportable representations for anti-causal domain
shifts. Advances in Neural Information Processing Systems, 35:20782–20794, 2022.

Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. A short
note on concentration inequalities for random vectors with subgaussian norm. arXiv preprint
arXiv:1902.03736, 2019.

Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam
Smith. What can we learn privately? SIAM Journal on Computing, 40(3):793–826, 2011.

Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang.
A near-optimal algorithm for stochastic bilevel optimization via double-momentum. Advances in
neural information processing systems, 34:30271–30283, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Daniel Kifer, Adam Smith, and Abhradeep Thakurta. Private convex empirical risk minimization
and high-dimensional regression. In Conference on Learning Theory, pp. 25–1. JMLR Workshop
and Conference Proceedings, 2012.

Guy Kornowski, Swati Padmanabhan, Kai Wang, Zhe Zhang, and Suvrit Sra. First-order methods
for linearly constrained bilevel optimization. arXiv preprint arXiv:2406.12771, 2024.

Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D Nowak. A fully first-order method
for stochastic bilevel optimization. In International Conference on Machine Learning, pp. 18083–
18113. PMLR, 2023.

Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D Nowak. On penalty methods for
nonconvex bilevel optimization and first-order stochastic approximation. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.

Guanghui Lan. First-order and stochastic optimization methods for machine learning, volume 1.
Springer, 2020.

Bo Liu, Mao Ye, Stephen Wright, Peter Stone, and Qiang Liu. Bome! bilevel optimization made
easy: A simple first-order approach. Advances in neural information processing systems, 35:
17248–17262, 2022.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by
implicit differentiation. In International conference on artificial intelligence and statistics, pp.
1540–1552. PMLR, 2020.

Andrew Lowy, Jonathan Ullman, and Stephen Wright. How to make the gradients small privately:
Improved rates for differentially private non-convex optimization. In Forty-first International
Conference on Machine Learning, 2024.

Zhaosong Lu and Sanyou Mei. First-order penalty methods for bilevel optimization. SIAM Journal
on Optimization, 34(2):1937–1969, 2024.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In International conference on machine learning, pp. 2113–2122.
PMLR, 2015.

Song Mei, Yu Bai, and Andrea Montanari. The landscape of empirical risk for nonconvex losses.
The Annals of Statistics, 46(6A):2747–2774, 2018.

Roey Merchav and Shoham Sabach. Convex bi-level optimization problems with nonsmooth outer
objective function. SIAM Journal on Optimization, 33(4):3114–3142, 2023.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

Rui Pan, Jipeng Zhang, Xingyuan Pan, Renjie Pi, Xiaoyu Wang, and Tong Zhang. Scalebio: Scalable
bilevel optimization for llm data reweighting. arXiv preprint arXiv:2406.19976, 2024.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with im-
plicit gradients. Advances in neural information processing systems, 32, 2019.

Ohad Shamir. A variant of azuma’s inequality for martingales with subgaussian tails. arXiv preprint
arXiv:1110.2392, 2011.

Han Shen and Tianyi Chen. On penalty-based bilevel gradient descent method. In International
Conference on Machine Learning, pp. 30992–31015. PMLR, 2023.

Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. A review on bilevel optimization: From classical
to evolutionary approaches and applications. IEEE transactions on evolutionary computation, 22
(2):276–295, 2017.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hoang Tran and Ashok Cutkosky. Momentum aggregation for private non-convex erm. Advances
in Neural Information Processing Systems, 35:10996–11008, 2022.

Ioannis Tsaknakis, Prashant Khanduri, and Mingyi Hong. An implicit gradient-type method for
linearly constrained bilevel problems. In ICASSP 2022-2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 5438–5442. IEEE, 2022.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.
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A PROOFS

Throughout the proof section, we abbreviate fi(·) = f(· ; ξi), gi(·) = g(· ; ξi), F = FS .

A.1 PROOF OF LEMMA 3.4

Note that the two sub-problems solved by Line 3 of Algorithm 1 are strongly-convex and admit Lip-
schitz components over Y; g(x, ·) by assumption, and f + λg by combining this with the smooth-
ness/Lipschitzness of f , as follows:

Lemma A.1. If λ ≥ max{ 2Lg
1

µg
,
Lf

0

Lg
0
} then for all x ∈ X : f(x, ·)+λg(x, ·) is λµg

2 strongly-convex,
and moreover for all i ∈ [n] : fi(x, ·) + λgi(x, ·) is 2λLg

0-Lipschitz.

We therefore invoke the following guarantee, which provides the optimal result for strongly-convex
DP ERM via DP-Loc-GD (Algorithm 2).

Theorem A.2. Suppose that h : Rdy → R is a µ-strongly-convex function of the form h(y) =
1
n

∑n
i=1 h(y, ξi) where h(·, ξi) is L-Lipschitz for all i ∈ [n]. Suppose argminh =: y∗ ∈ B(y0, R0)

and that n ≥ LR
2/ log(dy)

0

µϵ′ . Then there is an assignment of parameters M = log2 log(
µϵ′n
L ) , σ2

GD =

Õ(L2/ϵ′2) , ηt = 1
µ(t+1) , TGD = n2 , Rm = Θ̃

(√
Rm−1L
µϵ′n +

L
√

dy

µϵ′n

)
such that running Algo-

rithm 2 satisfies (ϵ′, δ′)-DP, and outputs yout such that ∥yout − y∗∥ = Õ
(

L
√

dy

µnϵ′

)
with probability

at least 1− γ.

Although the rate in Theorem A.2 appears in prior works such as (Bassily et al., 2014; Feldman
et al., 2020), it is typically manifested through a bound in expectation (and in terms of function
value) as opposed to with high probability, required for our purpose. We therefore, for the sake of
completeness, provide a self-contained proof of Theorem A.2 in Appendix B.

Applied to the functions g(xt, ·) and f(xt, ·) + λg(xt, ·), and invoking Lemma A.1, yields the
following.

Corollary A.3. If λ ≥ max{ 2Lg
1

µg
,
Lf

0

Lg
0
}, then ỹt and ỹλ

t (as appear in Line 3 of Algorithm 1) satisfy
with probability at least 1− γ :

max
{
∥ỹt − y∗(xt)∥ , ∥ỹλ

t − yλ(xt)∥
}
= Õ

(
Lg
0

√
dyT

ϵµgn

)
.

We are now ready to prove the main proposition of this section, which we restate below:

Lemma 3.4. If λ ≥ max{ 2Lg
1

µg
,
Lf

0

Lg
0
,
Lf

1

Lg
1
}, then there is β = Õ

(
λℓκ

√
dyT

ϵn

)
such that with probabil-

ity at least 1− γ, for all t ∈ {0, . . . , T − 1} :∥∥∇L∗
λ(xt)−

[
∇xf(xt, ỹ

λ
t ) + λ

(
∇xg(xt, ỹ

λ
t )−∇xg(xt, ỹt)

)]∥∥ ≤ β .

Proof of Lemma 3.4. As in Eq. (3), we note that by construction L∗
λ(x) = argminy Lλ(x,y),

therefore it holds that

∇L∗
λ(x) = ∇xf(x,y

λ(x)) + λ
(
∇xg(x,y

λ(x))−∇xg(x,y
∗(x))

)
.

Denoting gt = ∇xf(xt, ỹ
λ
t ) + λ

(
∇xg(xt, ỹ

λ
t )−∇xg(xt, ỹt)

)
, by the smoothness of f and g we

see that

∥gt −∇L∗
λ(xt)∥ ≤ Lf

1

∥∥ỹλ
t − yλ(xt)

∥∥+ λLg
1

∥∥ỹλ
t − yλ(xt)

∥∥+ λLg
1 ∥ỹt − y∗(xt)∥ .
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Applying Corollary A.3 and union bounding over T , we can further bound the above as

∥gt −∇L∗
λ(xt)∥ = Õ

(
Lf
1L

g
0

√
dyT

ϵµgn
+

λLg
1L

g
0

√
dyT

ϵµgn
+

λLg
1L

g
0

√
dyT

ϵµgn

)

= Õ

(
λLg

1L
g
0

√
dyT

ϵµgn

)

= Õ

(
λℓκ
√
dyT

ϵn

)
,

where the second bound holds for λ ≥ Lf
1

Lg
1

.

A.2 PROOF OF LEMMA 3.5

We start by providing two lemmas, both of which borrow ideas that appeared in the smoothness
analysis of Chen et al. (2024), and are proved here for completeness.

Lemma A.4. yλ(x) : Rdx → Rdy is
(

4Lg
1

µg

)
-Lipschitz.

Proof of Lemma A.4. Differentiating ∇yLλ(x,y
λ(x)) = 0 with respect the first argument gives

∇2
xyLλ(x,y

λ(x)) +∇yλ(x) · ∇yyLλ(x,y
λ(x)) = 0 ,

hence
∇yλ(x) = −∇2

xyLλ(x,y
λ(x)) ·

[
∇yyLλ(x,y

λ(x))
]−1

.

Noting that ∇2
xyLλ ⪯ 2λLg

1 and ∇2
yyLλ ⪰ λµg/2 everywhere, hence [∇2

yyLλ]
−1 ⪯ 2/λµg we get

that ∥∥∇yλ(x)
∥∥ ≤ 2λLg

1 ·
2

λµg
=

4Lg
1

µg
.

Lemma A.5. For all x ∈ X :
∥∥yλ(x)− y∗(x)

∥∥ ≤ Lf
0

λµg
.

Proof of Lemma A.5. First, note that by definition of yλ(x) it holds that

0 = ∇yLλ(x,y
λ(x)) = ∇yf(x,y

λ(x)) + λ∇yg(x,y
λ(x)) ,

hence
∇yg(x,y

λ(x)) = − 1

λ
· ∇yf(x,y

λ(x)) ,

so in particular by the Lipschitz assumption on f we see that∥∥∇yg(x,y
λ(x))

∥∥ ≤ Lf
0

λ
.

By invoking the µ-strong convexity of g we further get

∥∥yλ(x)− y∗(x)
∥∥ ≤ 1

µ

∥∥∥∥∥∥∇yg(x,y
λ(x))−∇yg(x,y

∗(x))︸ ︷︷ ︸
=0

∥∥∥∥∥∥ ≤ Lf
0

λµ
.

We are now ready to prove the main result of this section, restated below.

Lemma 3.5. L∗
λ,i is O(ℓκ)-Lipschitz.
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Proof of Lemma 3.5. For all x ∈ X it holds that∥∥∇L∗
λ,i(x)

∥∥ =
∥∥∇xfi(x,y

λ(x)) + λ
[
∇xgi(x,y

λ(x))−∇xgi(x,y
∗(x))

]∥∥
≤
∥∥∇xfi(x,y

λ(x))
∥∥+ λ

∥∥∇xgi(x,y
λ(x))−∇xgi(x,y

∗(x))
∥∥ , (4)

thus we will bound each of the summands above.

For the first term, since yλ is 4Lg
1

µg
Lipschitz according to Lemma A.4, and fi is Lf

0 -Lipschitz by
assumption, the chain rule yields the bound∥∥∇xfi(x,y

λ(x))
∥∥ ≤ 4Lg

1L
f
0

µg
≤ 4ℓκ . (5)

As to the second term, since gi is Lg
1-smooth, we use Lemma A.5 and get that

λ
∥∥∇xgi(x,y

λ(x))−∇xgi(x,y
∗(x))

∥∥ ≤ λLg
1

∥∥yλ(x)− y∗(x)
∥∥ ≤ Lg

1L
f
0

µg
≤ ℓκ . (6)

Plugging Eqs. (5) and (6) into Eq. (4) completes the proof.

A.3 PROOF OF PROPOSITION 3.6

As ν0, . . . , νT−1
iid∼ N (0, σ2I), a standard Gaussian norm bound (cf. Vershynin 2018, Theorem

3.1.1) ensures that with probability at least 1 − γ, for all t ∈ {0, 1, . . . , T − 1} : ∥νt∥2 ≲
dσ2 log(T/γ) ≲ α2

64 . We therefore condition the rest of the proof on the highly probable event
under which this uniform norm bound indeed holds. We continue by introducing some notation. We
denote ∇̃t = ∇̃h(xt) + νt, and δt := ∇̃t −∇h(xt). We further denote

x+
t := arg min

u∈X

{
⟨∇h(xt),u⟩+

1

2η
∥xt − u∥2

}
,

Gt :=
1

η
(xt − x+

t ) ,

ρt :=
1

η
(xt − xt+1) .

Note that by construction,

Gt = Gh,η(xt) :=
1

η
(xt − P∇h,η(xt)) , P∇h,η(xt) := arg min

u∈X

[
⟨∇h(xt),u⟩+

1

2η
∥u− xt∥2

]
,

and that Gtout is precisely the quantity we aim to bound. We start by proving some useful lemmas
regarding the quantities defined above.

Lemma A.6. Under the event that ∥νt∥2 ≤ α2

64 for all t, it holds that ∥δt∥ ≤ α
4 .

Proof. By our assumptions on β, ∥νt∥, we get that

∥δt∥ ≤ ∥∇̃h(xt)−∇h(xt)∥+ ∥νt∥ ≤ β +
α

8
≤ α

4
.

Lemma A.7. It holds that ⟨∇̃t, ρt⟩ ≥ ∥ρt∥2.

Proof. By definition, xt+1 = argminu∈X

{
⟨∇̃t,u⟩+ 1

2η ∥xt − u∥2
}

. Hence, by the first-order
optimality criterion, for any u ∈ X :〈

∇̃t +
1

η
(xt+1 − xt),u− xt+1

〉
≥ 0 .

In particular, setting u = xt yields

0 ≤
〈
∇̃t +

1

η
(xt+1 − xt),xt − xt+1

〉
=
〈
∇̃t − ρt, ηρt

〉
= η

(〈
∇̃t, ρt

〉
− ∥ρt∥2

)
,

which proves the claim since η > 0.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

With the lemmas above in hand, we are now ready to prove Proposition 3.6. Note that by construc-
tion, the algorithm returns the index t with minimal ∥ρt∥. Further note that ∥ρt − Gt∥ ≤ ∥δt∥ by
Lemma 2.4, thus

∥Gt∥ ≤ ∥ρt∥+ ∥δt∥ ≤ ∥ρt∥+
α

4
, (7)

where the last inequality is due to Lemma A.6, hence it suffices to bound ∥ρtout∥ (which is the
quantity measured by the stopping criterion). To that end, by smoothness, we have for any t ∈
{0, 1, . . . , T − 2} :

h(xt+1) ≤ h(xt) + ⟨∇h(xt),xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

= h(xt)− η ⟨∇h(xt), ρt⟩+
Lη2

2
∥ρt∥2

= h(xt)− η
〈
∇̃t, ρt

〉
+

Lη2

2
∥ρt∥2 + η ⟨δt, ρt⟩

≤ h(xt)− η ∥ρt∥2 +
Lη2

2
∥ρt∥2 + η ∥δt∥ · ∥ρt∥ ,

where the last inequality followed by applying Lemma A.7 and Cauchy-Schwarz. Rearranging, and
recalling that η = 1

2L , hence 1 < 2− Lη and also 1
η = 2L, we get that

∥ρt∥2−2 ∥δt∥·∥ρt∥ ≤ (2− Lη) ∥ρt∥2−2 ∥δt∥·∥ρt∥ ≤ 2 (h(xt)− h(xt+1))

η
= 4L (h(xt)− h(xt+1)) .

Summing over t ∈ {0, 1 . . . , T − 1}, using the telescoping property of the right hand side, and
dividing by T gives that

1

T

T−1∑
t=0

∥ρt∥ (∥ρt∥ − 2 ∥δt∥) ≤
4L (h(x0)− inf h)

T
. (8)

Note that if for some t ∈ {0, 1, . . . , T − 1} : ∥ρt∥ ≤ 3α
4 then we have proved our desired claim

by Eq. (7) and the fact that ∥ρtout∥ = mint ∥ρt∥ by definition. On the other hand, assuming that
∥ρt∥ > 3α

4 for all t, invoking Lemma A.6, we see that ∥ρt∥ − 2 ∥δt∥ ≥ ∥ρt∥ − α
2 ≥ 1

3 ∥ρt∥, which
implies ∥ρt∥ (∥ρt∥ − 2 ∥δt∥) ≥ 1

3 ∥ρt∥
2. Combining this with Eq. (8) yields

∥ρtout∥
2
= min

t∈{0,1,...,T−1}
∥ρt∥2 ≤ 1

T

T−1∑
t=0

∥ρt∥2 ≤ 12L (h(x0)− inf h)

T
,

and the right side is bounded by 9α2

16 for T = O
(

L(h(x0)−inf h)
α2

)
, finishing the proof by Eq. (7).

A.4 PROOF OF THEOREM 3.1

We start by proving the privacy guarantee. Since L∗
λ,i is O(ℓκ)-Lipschitz by Lemma 3.5, the sen-

sitivity of ∇xf(xt, ỹ
λ
t ) + λ

(
∇xg(xt, ỹ

λ
t )−∇xg(xt, ỹt)

)
is at most O(ℓκ). Hence, by setting

σ2 = C ℓ2κ2 log(T/δ)T
ϵ2n2 for a sufficiently large absolute constant C > 0, g̃t is ( ϵ√

18T
, δ
3(T+1) )-DP.

By basic composition, since each iteration also runs ( ϵ√
18T

, δ
3(T+1) )-DP-Loc-GD twice, we see that

each iteration of the algorithm is (3 · ϵ√
18T

, 3 · δ
3(T+1) ) = ( ϵ√

2T
, δ
(T+1) )-DP. Noting that under our

parameter assignment ϵ√
T

≪ 1, by advanced composition we get that throughout T iterations, the
algorithm is overall (ϵ, δ)-DP as claimed.

We turn to analyze the utility of the algorithm. It holds that

∥GF,η(xtout
)∥ ≤

∥∥GF,η(xtout)− GL∗
λ,η

(x)
∥∥+ ∥∥GL∗

λ,η
(xtout)

∥∥
≤ ∥∇F (xtout)−∇L∗

λ(x)∥+ ∥GL∗
λ,η

(xtout)∥

≲
ℓκ3

λ
+ ∥GL∗

λ,η
(xtout)∥

≤ α

2
+ ∥GL∗

λ,η
(xtout)∥ , (9)
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where the second inequality is due to Lemma 2.4, the third due to Lemma 3.3.b, and the last by our
assignment of λ. It therefore remains to bound ∥GL∗

λ,η
(xtout)∥.

To that end, applying Proposition 3.6 to the function h = L∗
λ, under our assignment of T — which

accounts for the smoothness and initial sub-optimality bounds ensured by Lemma 3.3 — we get that
∥GL∗

λ,η
(xtout)∥ ≤ α

2 , for α as small as

α = Θ
(
max{β, σ

√
dx log(T/γ)}

)
(10)

By Lemma 3.4, it holds that

β = Õ

(
λℓκ
√

dyT

ϵn

)
= Õ

(
ℓ3/2κ11/2∆

1/2
F

√
dy

α2ϵn

)
(11)

and we also have

σ
√
dx log(T/γ) = Õ

(
ℓ3/2κ5/2∆

1/2
F

√
dx

αϵn

)
. (12)

Plugging (11) and (12) back into Eq. (10), and solving for α, completes the proof.

A.5 PROOF OF THEOREM 4.1

Throughout this section, we abbreviate b = bout. We will need the following lemma, which is the
mini-batch analogue of Lemma 3.4 from the full-batch setting.

Lemma A.8. If λ ≥ max{ 2Lg
1

µg
,
Lf

0

Lg
0
,
Lf

1

Lg
1
}, then there is βb = Õ

(
λℓκ

√
dyT

ϵn + ℓκ
b

)
such that with

probability at least 1 − γ/2, gB
t := ∇xf(xt, ỹ

λ
t ;Bt) + λ

(
∇xg(xt, ỹ

λ
t ;Bt)−∇xg(xt, ỹt;Bt)

)
satisfies for all t ∈ {0, . . . , T − 1} : ∥∇L∗

λ(xt)− gB
t ∥ ≤ βb.

Proof of Lemma A.8. It holds that∥∥∇L∗
λ(xt)− gB

t

∥∥ ≤
∥∥∇L∗

λ(xt)− E[gB
t ]
∥∥+ ∥∥gB

t − E[gB
t ]
∥∥ .

To bound the first summand, note that E[gB
t ] = ∇xf(xt, ỹ

λ
t ) + λ

(
∇xg(xt, ỹ

λ
t )−∇xg(xt, ỹt)

)
,

and therefore with probability at least 1− γ/4 :

∥∥∇L∗
λ(xt)− E[gB

t ]
∥∥ = O

(
λLg

1L
g
0

√
dyT

ϵµgn

)
= O

(
λℓκ
√
dyT

ϵn

)
,

following the same proof as Lemma 3.4 in Appendix A.1, by replacing Theorem A.2 by the mini-
batch Theorem B.1 (whose guarantee holds regardless of the inner batch size) .

To bound the second summand, note that ∥∇xf(xt, ỹ
λ
t ; ξ)+λ(∇xg(xt, ỹ

λ
t ; ξ)−∇xg(xt, ỹt; ξ))∥ ≤

M = O(ℓκ) for every ξ ∈ Ξ, by Lemma 3.5. Hence, gB
t is the average of b independent vectors

bounded by M , all with the same mean, and therefore a standard concentration bound (cf. Jin et al.
2019) ensures that ∥gB

t − E[gB
t ]∥ = Õ(M/b) with probability at least 1 − γ/4, which completes

the proof.

We can now prove the main mini-batch result:

Proof of Theorem 4.1. We start by proving the privacy guarantee. Since L∗
λ,i is O(ℓκ)-Lipschitz

by Lemma 3.5, the sensitivity of ∇xf(xt, ỹ
λ
t ;Bt) + λ

(
∇xg(xt, ỹ

λ
t ;Bt)−∇xg(xt, ỹt;Bt)

)
is at

most O(ℓκ). Accordingly, the “unamplified” Gaussian mechanism (Lemma 2.2) ensures (ϵ̃, δ̃)-DP
for ϵ̃ = Θ̃

(
ℓκ
bσ

)
, and hence is amplified (Lemma 2.3) to (ϵ0, δ0)-DP for ϵ0 = Θ̃

(
ℓκ
bσ · b

n

)
= ϵ√

18T
,

the last holding for sufficiently large σ2 = Θ̃
(

ℓ2κ2T
ϵ2n2

)
, and for δ0 = δ

3(T+1) . Therefore, basic

composition shows that each iteration of the algorithm is (3 · ϵ√
18T

, 3 δ
3(T+1) ) = ( ϵ√

2T
, δ
T+1 )-DP.
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Since ϵ/
√
T ≪ 1 under our parameter assignment, advanced composition over the T iterations

yields the (ϵ, δ)-DP guarantee.

We turn to analyze the utility of the algorithm. It holds that
∥GF,η(xtout

)∥ ≤
∥∥GF,η(xtout)− GL∗

λ,η
(x)
∥∥+ ∥∥GL∗

λ,η
(xtout)

∥∥
≤ ∥∇F (xtout)−∇L∗

λ(x)∥+ ∥GL∗
λ,η

(xtout)∥

≲
ℓκ3

λ
+ ∥GL∗

λ,η
(xtout)∥

≤ α

2
+ ∥GL∗

λ,η
(xtout)∥ , (13)

where the second inequality is due to Lemma 2.4, the third due to Lemma 3.3, and the last by our
assignment of λ. It therefore remains to bound ∥GL∗

λ,η
(xtout)∥.

To that end, applying Proposition 3.6 to the function h = L∗
λ, under our assignment of T — which

accounts for the smoothness and initial sub-optimality bounds ensured by Lemma 3.3 — we get that
∥GL∗

λ,η
(xtout

)∥ ≤ α
2 , for α as small as

α = Θ
(
max{βb, σ

√
dx log(T/γ)}

)
(14)

By Lemma A.8, it holds that

βb = Õ

(
λℓκ
√
dyT

ϵn
+

ℓκ

b

)
= Õ

(
ℓ3/2κ11/2∆

1/2
F

√
dy

α2ϵn
+

ℓκ

b

)
, (15)

and we also have

σ
√
dx log(T/γ) = Õ

(
ℓ3/2κ5/2∆

1/2
F

√
dx

αϵn

)
(16)

Plugging (15) and (16) back into Eq. (14), and solving for α, completes the proof.

A.6 PROOF OF THEOREM 5.1

We first need a simple lemma that immediately follows from our assumptions, and Eq. (1):
Lemma A.9. Under Assumptions 2.5 and 2.6, F (· ; ξ) is G-Lipschitz, for G = O(ℓκ).

Accordingly, the main tool that will allow us to obtain generalization guarantees, is the following
uniform convergence result in terms of gradients:
Lemma A.10 (Mei et al., 2018, Theorem 1). Suppose X ⊂ Rd

x is a subset of bounded di-
ameter diam(X ) ≤ D, and that S ∼ Pn. Then with probability at least 1 − γ for all

x ∈ X : ∥∇FP(x)−∇FS(x)∥ = Õ
(
G
√
dx log(D/γ)/n

)
, where G is the Lipschitz constant of

F .5

Proof of Theorem 5.1. With probability at least 1− γ/2 it holds that
∥GFP ,η(xout)∥ ≤ ∥GFS ,η(xout)∥+ ∥GFP ,η(xout)− GFS ,η(xout)∥

≤ ∥GFS ,η(xout)∥+ ∥∇FP(xout)−∇FS(xout)∥

= ∥GFS ,η(xout)∥+ Õ

(
ℓκ

√
dx
n

)
,

where the second inequality is due to Lemma 2.4, and the last is by Lemma A.10 with the Lipschitz
bound of Lemma A.9 and the domain bound ∥xout − x0∥ ≤ D for some sufficiently large D which
is polynomial in all problem parameters (therefore only affecting log terms). The results then follow
from Theorems 3.1 and 4.1.

5Mei et al. (2018) originally stated this for functions whose gradients are sub-Gaussian vectors. By
Lemma A.9, the gradients are G-bounded, hence O(G)-sub-Gaussian.
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B OPTIMAL DP ALGORITHM FOR STRONGLY-CONVEX OBJECTIVES

The goal of this appendix is to provide a self contained analysis of a DP algorithm for strongly-
convex optimization which achieves the optimal convergence rate with a a high probability guaran-
tee. Any such algorithm can be used as the inner loop in our DP bilevel algorithm.

In particular, we analyze localized DP (S)GD. Although it would have been more natural to apply
DP-SGD, this seems (at least according to our analysis) to yield an inferior rate with respect to
the required high probability guarantee.6 Indeed, for DP-(S)GD, previous works (such as Bassily
et al. 2014) typically provide bounds in expectation, and then convert them into high-probability
bounds via a black-box reduction, which applies several runs and selects the best run via the private
noisy-min (i.e. Laplace mechanism). The additional error incurred by this selection is of order 1

n ,
which translates to 1√

n
in terms of distance to the optimum, thus spoiling the fast rate of 1

n otherwise
achieved in expectation for strongly-convex objectives. We therefore resort to localization (Feldman
et al., 2020): by running projected-(S)GD over balls with shrinking radii, applying martingale con-

centration bounds enables us to show that the distance to optimum shrinks as Rm+1 ≲
√

Rm

n + 1
n ,

and thus with negligible overhead we eventually recover the optimal fast rate RM ≲ 1
n with high

probability. Our analysis differs than previous localization analyses, as it does not require adapting
the noise-level and step sizes throughout the rounds.

We prove the following (which easily implies also the full-batch Theorem A.2):

Theorem B.1. Suppose that h : Rdy × Ξ → R is a µ-strongly-convex function of the form
h(y) = 1

n

∑n
i=1 h(y, ξi) where h(·, ξi) is L-Lipschitz for all i ∈ [n]. Suppose argminh =: y∗ ∈

B(y0, R0), and that n ≥ LR

2
log(dy)

0

µϵ′ . Then given any batch size b ∈ {1, . . . , n}, there is an assign-

ment of parameters M = log2 log(
µϵ′n
L ), σ2

SGD = Õ
(

L2

ϵ′2

)
, ηt = 1

µ(t+1) , TSGD = n2, Rm =

Θ̃

(√
Rm−1L
µϵ′n +

L
√

dy

µϵ′n

)
such that running Algorithm 4 satisfies (ϵ, δ)-DP, and outputs yout such

that ∥yout − y∗∥ = Õ
(

L
√

dy

µnϵ

)
with probability at least 1− γ.

Proof of Theorem B.1. We start by proving the privacy guarantee. By the Lipschitz assumption, the
sensitivity of ∇h(·;Bt) is at most 2L

b , thus the “unamplified” Gaussian mechanism (Lemma 2.2)

ensures (ϵ̃, δ̃)-DP with ϵ̃ = Θ̃
(

L
bσ

)
= Θ̃

(
ϵ′

b

)
, and hence is amplified (Lemma 2.3) to (ϵ0, δ0)-DP

for ϵ0 = Θ̃
(

ϵ′

b · b
n

)
= Θ̃

(
ϵ′

n

)
= Θ̃

(
ϵ′√
T

)
. Advanced composition (Lemma 2.1) therefore ensures

that the overall algorithm is (ϵ′, δ′)-DP (note that this uses the fact that M = Õ(1)).

We turn to prove the utility of the algorithm. We first show that for all m :

Pr [y∗ ∈ B(ym
0 , Rm)] ≥ 1− mγ

M
. (17)

We prove this by induction over m. The base case m = 0 follows by the assumption y∗ ∈
B(y0, R0). Denoting emt := ∇h(ym

t ;Bt) − ∇h(ym
t ), using the inductive hypothesis that y∗ ∈

B(ym
0 , Rm) with probability at least 1− mγ

M , under this probably event we get

6Even if we would have sought only expectation bounds with respect to the hyperobjective, the high prob-
ability bound with respect to the inner problem is key to being able to argue about the gradient inexactness
thereafter.
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∥∥ym
t+1 − y∗∥∥2 =

∥∥∥ProjB(ym
0 ,Rm) [y

m
t − ηt(∇h(ym

t ;Bm
t ) + νmt )]− y∗

∥∥∥2
≤ ∥ym

t − ηt(∇h(ym
t ;Bm

t ) + νmt )− y∗∥2

= ∥ym
t − y∗∥2 − 2ηt ⟨ym

t − y∗,∇h(ym
t ;Bm

t ) + νmt ⟩+ η2t ∥∇h(ym
t ;Bm

t ) + νmt ∥2

≤ ∥ym
t − y∗∥2 − 2ηt ⟨ym

t − y∗,∇h(yt) + emt + νmt ⟩+ 2η2t

(
∥νmt ∥2 + ∥∇h(yt)∥2

)
= ∥ym

t − y∗∥2 − 2ηt ⟨ym
t − y∗,∇h(ym

t )⟩

− 2ηt ⟨ym
t − y∗, emt + νmt ⟩+ 2η2t

(
∥νmt ∥2 + ∥∇h(yt)∥2

)
.

Rearranging, and using the strong convexity and Lipschitz assumptions, we see that

h(ym
t )− h(y∗) ≤ ⟨ym

t − y∗,∇h(ym
t )⟩ − µ

2
∥ym

t − y∗∥2

≤
(

1

2ηt
− µ

2

)
∥ym

t − y∗∥2 − 1

2ηt

∥∥ym
t+1 − y∗∥∥2

− ⟨ym
t − y∗, emt + νmt ⟩+ ηt

(
∥νmt ∥2 + L2

)
.

Averaging over t and using ηt =
1

µ(t+1) , which satisfies
(

1
ηt

− 1
ηt−1

− µ
)
≤ 0 and 1

T

∑T
t=0 ηt ≲

log T
µT , by Jensen’s inequality, overall we get with probability at least 1− mγ

M :

h(ym+1
0 )− h(y∗) = h

(
1

T

T−1∑
t=0

ym
t

)
− h(y∗)

≲

∣∣∣∣∣ 1T
T−1∑
t=0

⟨ym
t − y∗, emt + νmt ⟩

∣∣∣∣∣︸ ︷︷ ︸
(I)

+
L2 log T

µT
+

log T

µT

T−1∑
t=0

∥νmt ∥2︸ ︷︷ ︸
(II)

. (18)

We now apply concentration inequalities to bound (I) and (II) with high probability, for which
we will use basic properties of sub-Gaussian distributions (cf. Vershynin 2018, §3.4). To bound
(I), note that for all t : Eemt = Eνmt = 0 and therefore E ⟨ym

t − y∗, emt + νmt ⟩ = 0. Moreover,
emt = 1

b

∑
ξ∈Bm

t
(∇h(xm

t ; ξ)−∇h(ym
t )) is the average of b independent vectors with norm bounded

by at most 2L, while νmt ∼ N (0, σ2
SGDIdy ) = N (0, Õ(L

2

ϵ′2 ) · Idy ), and also ∥ym
t − y∗∥ ≤ Rm by

the inductive hypothesis. By combining all of these observations, we see that ⟨ym
t − y∗, emt + νmt ⟩

is a O(Rm · (Lb + L
ϵ′ )) = O(RmL

ϵ′ )-sub-Gaussian random variable. By Azuma’s inequality for
sub-Gaussians (Shamir, 2011), we get that with probability at least 1− γ

2M :

(I) = Õ

(
RmL
ϵ′ log(γ/M)

√
T

)
= Õ

(
RmL

ϵ′n

)
. (19)

To bound (II), by concentration of the Gaussian norm (cf. Vershynin 2018, Theorem 3.1.1) and the
union bound we can get that with probability at least 1− γ

2M :

(II) = Õ
(
dyσ

2
SGD

)
= Õ

(
dyL

2

ϵ′2

)
. (20)

Plugging Eqs. (19) and (20) into Eq. (18), we overall get that with probability at least 1− mγ
M − 2 ·

γ
2M = 1− (m+1)γ

M :

h(ym+1
0 )− h(y∗) = Õ

(
RmL

ϵ′n
+

dyL
2

µϵ′2n2

)
.

Applying the µ-strong-convexity of h, and sub-additivity of the square root, we get that∥∥ym+1
0 − y∗∥∥ ≤

√
2(h(ym+1

0 )− h(y∗))

µ
= Õ

(√
RmL

µϵ′n
+

L
√
dy

µϵ′n

)
≤ Rm+1 .
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We have therefore proven Eq. (17). In particular for m = M we get that with probability at least
1− γ :

∥yout − y∗∥ ≤ RM , (21)
hence it remains to bound RM . We will prove, once again by induction over m, that

Rm = Õ

(
R

1
2m

0

(
L

µϵ′n

)1− 1
2m

+
L

µϵ′n

m∑
i=1

d
1

2i
y

)
. (22)

The base m = 0 simply follows since the left hand side in Eq. (22) reduces to R0. Denoting
A := L

µϵ′n , by our assignment of Rm+1, the induction hypothesis and sub-additivitiy of the square
root we get:

Rm+1 = Õ
(√

RmA+A
√

dy

)
= Õ

(
A1/2

(
R

1

2m+1

0 A
1
2−

1

2m+1 +A1/2
m∑
i=1

d
1

2i+1
y

)
+Ad1/2y

)

= Õ

(
R

1

2m+1

0 A1− 1

2m+1 +A

m+1∑
i=1

d
1

2i
y

)
,

therefore proving Eq. (22). In particular, for m = M = log2 log(
µϵ′n
L ), which satisfies 1

2M
=

1

log(µϵ′n
L )

= 1
log(1/A) we get

RM = Õ
(
R

1
log(1/A)

0 A1+ 1
log(A) +MAd1/2y

)
= Õ

(
R

1
log(1/A)

0 A+Ad1/2
)

= Õ

(
R

1
log(µϵ′n/L)

0

L

µϵ′n
+

Ld
1/2
y

µϵ′n

)

= Õ

(
L
√
dy

µϵ′n

)
,

where the last follows from our assumption on n. This completes the proof by Eq. (21).

C AUXILIARY LEMMA

Lemma 2.4. For any x,v,w ∈ Rd, η > 0 : ∥Gv,η(x)− Gw,η(x)∥ ≤ ∥v − u∥.

Proof of Lemma 2.4. The proof is due to Ghadimi et al. (2016). By definition,

Pv,η(x) = arg min
u∈X

{
⟨v,u⟩+ 1

2η
∥x− u∥2

}
,

Pw,η(x) = arg min
u∈X

{
⟨w,u⟩+ 1

2η
∥x− u∥2

}
,

hence by first order optimality criteria, for any u ∈ X :〈
v +

1

η
(Pv,η(x)− x),u− Pv,η(x)

〉
≥ 0 ,〈

w +
1

η
(Pw,η(x)− x),u− Pw,η(x)

〉
≥ 0 .

Plugging Pw,η(x) into the first inequality above, and Pv,η(x) into the second, shows that

0 ≤
〈
v +

1

η
(Pv,η(x)− x),Pw,η(x)− Pv,η(x)

〉
,

0 ≤
〈
w +

1

η
(Pw,η(x)− x),Pv,η(x)− Pw,η(x)

〉
=

〈
−w +

1

η
(x− Pw,η(x)),Pw,η(x)− Pv,η(x)

〉
.
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Summing the two inequalities yields

0 ≤
〈
v −w +

1

η
(Pv,η(x)− Pw,η(x)),Pw,η(x)− Pv,η(x)

〉
= ⟨v − u,Pw,η(x)− Pv,η(x)⟩ −

1

η
∥Pw,η(x)− Pv,η(x)∥2

≤ ∥Pw,η(x)− Pv,η(x)∥
(
∥v − u∥ − 1

η
∥Pw,η(x)− Pv,η(x)∥

)
.

Hence,

∥v − u∥ ≥ 1

η
∥Pv,η(x)− Pw,η(x)∥

=

∥∥∥∥1η (Pv,η(x)− x)− 1

η
(Pw,η(x)− x)

∥∥∥∥
= ∥Gv,η(x)− Gw,η(x)∥ .
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