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ABSTRACT

In Model-Based Reinforcement Learning (MBRL), incorporating causal structures
into dynamics models provides agents with the structured understanding of envi-
ronments, enabling more efficient and effective decisions. Empowerment, as an
intrinsic motivation, enhances the ability of agents to actively control environments
by maximizing mutual information between future states and actions. We posit that
empowerment coupled with the causal understanding of the environment can im-
prove the agent’s controllability over environments, while enhanced empowerment
gain can further facilitate causal reasoning. To this end, we propose the framework
that pioneers the integration of empowerment with causal reasoning, Empowerment
through Causal Learning (ECL), where an agent with the awareness of the causal
dynamics model achieves empowerment-driven exploration and optimizes its causal
structure for task learning. Specifically, we first train a causal dynamics model of
the environment based on collected data. Next, we maximize empowerment under
the causal structure for exploration, simultaneously using data gathered through
exploration to update the causal dynamics model, which could be more controllable
than dynamics models without the causal structure. We also design an intrinsic cu-
riosity reward to mitigate overfitting during downstream task learning. Importantly,
ECL is method-agnostic and can integrate diverse causal discovery methods. We
evaluate ECL combined with 3 causal discovery methods across 6 environments
including both state-based and pixel-based tasks, demonstrating its performance
gain compared to other causal MBRL methods, in terms of causal structure discov-
ery, sample efficiency, and asymptotic performance in policy learning. The project
page is https://sites.google.com/view/ecl-1429/.

1 INTRODUCTION

Model-Based Reinforcement Learning (MBRL) uses predictive dynamics models to enhance decision-
making and planning (Moerland et al., 2023). Recent advances in integrating causal structures into
MBRL have provided a more accurate description of systems, achieve better adaptation (Huang et al.,
2021; 2022; Feng & Magliacane, 2023), generalization (Pitis et al., 2022; Zhang et al., 2020; Wang
et al., 2022c; Richens & Everitt, 2024; Lu et al., 2021), and avoiding spurious correlations (Ding
et al., 2022; 2024; Liu et al., 2024; Mutti et al., 2023a).

However, these methods often passively rely on pre-existing or learned causal structures for policy
learning or generalization. In this work, we aim to enable the agent to actively leverage causal
structures, guiding more efficient exploration of the environment. The agent can then refine its causal
structure through newly acquired data, resulting in improvements in both the causal model and policy.
This could further enhance the agent’s controllability over the environment and its learning efficiency.

We hypothesize that agents equipped with learned causal structures will have better controllability
than those using traditional dynamics models without causal modeling. This is because causal
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Figure 1: (a). An example of a robot manipulation task with three trajectories and three nodes: one
target node (movable) and two noisy nodes (one movable, one unmovable). (b). Underlying causal
structures with a factored MDP. Different nodes represent different dimensional states and actions.

structures inform agents to explore the environment more efficiently by nulling out the irrelevant
system variables. This assumption serves as intrinsic motivation to guide the policy in exploring
higher-quality data, which in turn improves both causal and policy learning. Specifically, we employ
empowerment gain, an information-theoretic framework where agents maximize mutual information
between their actions and future states to improve control (Leibfried et al., 2019; Klyubin et al., 2005;
2008; Bharadhwaj et al., 2022; Eysenbach et al., 2018; Mohamed & Jimenez Rezende, 2015), as
the intrinsic motivation to measure the agent’s controllability. Concurrently, through empowerment,
agents develop a more nuanced comprehension of their actions’ consequences, implicitly discovering
the causal relationships within their environment. Hence, by iteratively improving empowerment
gain with causal structure for exploration, refining causal structure with data gathered through the
exploration, the agent should be able to develop a robust causal model for effective policy learning.

We give a motivating example (Fig.1(a)) in a manipulation task, where the robot aims to move a target
node while avoiding noisy nodes. Three possible trajectories (rows 1-3) are shown with different
levels of control, efficiency, and success. Row 1 (irrelevant states) represents the least effective
trajectory that can not control nodes and find the target, while rows 2 and 3 (controllable states)
demonstrate learned control and efficiency, with high empowerment focusing on movable objects. In
the corresponding causal graphs, represented as a Dynamics Bayesian Network in Fig. 1(b), s1, s2,
s3 denote the states of three objects. For simplicity and clarity, we assume each object is represented
by a single variable. The graph illustrates the causal relationships between these states, actions, and
rewards. Assuming the agent follows the causal structure (Fig.1(b)), it will likely execute actions
similar to rows 2 and 3 since there are causal relationships between actions and states of movable
objects, effectively improving controllability. Through exploration with better control, agents can
facilitate improved causal discovery of the task, leading to high-reward outcomes and resulting in
more efficient task completion like row 3.

To this end, we propose an Empowerment through Causal Learning (ECL) framework that actively
leverages causal structure to maximize empowerment gain, improving controllability and learning
efficiency. ECL consists of three main steps: model learning, model optimization, and policy learning.
In model learning (step 1), we learn the causal dynamics model with a causal mask and a reward
model. We then integrate an empowerment-driven exploration policy with the learned causal structure
to better control the environment (step 2). We alternately update the causal structure with the collected
data through exploration and policy of empowerment maximization. Finally, the optimized causal
dynamics and reward models are used to learn policies for downstream tasks with a curiosity reward
to maintain robustness and prevent overfitting (step 3). Importantly, ECL is method-agnostic, being
able to integrate diverse causal discovery (i.e., score-based and constraint-based) methods. The main
contributions of this work can be summarized as follows:

• To improve controllability and learning efficiency, we propose ECL, a novel method-agnostic
framework that actively leverages causal structures to boost empowerment gain, facilitating efficient
exploration and causal discovery.
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• ECL leverages causal dynamics model to conduct empowerment-based exploration. It also utilizes
controllable data gathered through exploration to optimize causal structure and reward models,
thereby delving deeper into the causal relationships among states, actions, and rewards.

• We evaluate ECL combined with 3 causal discovery methods across 6 environments, encompassing
both In-Distribution (ID) and Out-Of-Distribution (OOD) settings, as well as pixel-based tasks.
Our results demonstrate that ECL outperforms other causal MBRL methods, exhibiting superior
performance in terms of causal discovery accuracy, sample efficiency, and asymptotic performance.

2 PRELIMINARIES

2.1 MDP WITH CAUSAL STRUCTURES

Markov Decision Process In MBRL, the interaction between the agent and the environment
is formalized as a Markov Decision Process (MDP). The standard MDP is defined by the tuple
M = ⟨S,A, T, µ0, r, γ⟩, where S denotes the state space, A represents the action space, T (s′|s, a)
is the transition dynamics model, r(s, a) is the reward function, and µ0 is the distribution of the
initial state s0. The discount factor γ ∈ [0, 1) is also included. The objective of RL is to learn a
policy π : S × A → [0, 1] that maximizes the expected discounted cumulative reward ηM(π) :=
Es0∼µ0,st∼T,at∼π [

∑∞
t=0 γ

tr(st, at)].

Structural Causal Model A Structural Causal Model (SCM) (Pearl, 2009) is defined by a distri-
bution over random variables V = {s1t , · · · , sdt , a1t , · · · , ant , s1t+1, · · · , sdt+1} and a Directed Acyclic
Graph (DAG) G = (V, E) with a conditional distribution P (vi|PA(vi)) for node vi ∈ V . Then the
distribution can be specified as:

p(v1, . . . , v|V|) =

|V|∏
i=1

p(vi|PA(vi)), (1)

where PA(vi) is the set of parents of the node vi in the graph G.

Causal Structures in MDP We model a factored MDP (Guestrin et al., 2003; 2001) with the
underlying SCM between states, actions, and rewards (Fig.1b). In this factored MDP, nodes represent
system variables (different dimensions of the state, action, and reward), while edges denote their
relationships within the MDP. We employ causal discovery methods to learn the structures of G.
We identify the graph structures in G, which can be represented as the causal mask M . Hence, the
dynamics transitions and reward functions in MDP with causal structures are defined as follows:{

sit+1 = f (Ms→s ⊙ st,M
a→s ⊙ at, ϵs,i,t)

rt = R(ϕc(st |M), at)
(2)

where sit+1 represents the next state in dimension i, Ms→s ∈ {0, 1}|s|×|s| and Ma→s ∈ {0, 1}|a|×|s|

are the causal masks indicating the influence of current states and actions on the next state, respectively,
⊙ denotes the element-wise product, and ϵs,i,t represents i.i.d. Gaussian noise. Each entry in the
causal mask M (represented as the adjacency matrix of the causal graph G) indicates the presence
(1) or absence (0) of a causal relationship between elements. The reward rt is a function of the
state abstraction ϕc(· |M) under the learned causal mask M , which filters out the state dimensions
without direct edges to the target state dimension, and the action at. We list the assumptions and
propositions in Appendix C.

2.2 EMPOWERMENT

Empowerment is to quantify the influence an agent has over its environment and the extent to which
this influence can be perceived by the agent (Klyubin et al., 2005; Salge et al., 2014; Jung et al.,
2011). Within our framework, the empowerment is the mutual information between the agent action
at and its subsequent state st+1 under the causal mask M as follows:

E := max
π(·|st)

I(st+1; at |M), (3)

where E is used to represent the channel capacity from the action to state observation. π(·|st) is the
conditional distribution of actions given states.
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Figure 2: The framework overview of ECL. Gold lines: model learning. Blue lines: model optimiza-
tion alternating with empowerment-driven exploration (yellow lines). Green lines: policy learning.

3 EMPOWERMENT THROUGH CAUSAL LEARNING

An illustration of the ECL framework is shown in Fig. 2, comprising three main steps: model learning,
model optimization, and policy learning. In model learning (step 1), we learn causal dynamics model
with the causal mask and reward model. This causal dynamics model is trained using collected
data to identify causal structures (i.e., causal masks M ) , by maximizing the likelihood of observed
trajectories. The reward model is trained based on state abstraction that masks irrelevant state
dimensions with the causal structure. With the learned causal structure, we integrate empowerment-
driven exploration for model optimization (step 2). This process involves learning the empowerment
policy πe that enhances the agent’s controllability by actively leveraging the causal mask. We
alternately update the policy πe for empowerment maximization and generate data with πe to
optimize the causal mask M and reward model Pφr

. Finally, in step 3, the learned causal dynamics
and reward models are used to learn policies for the downstream tasks. In addition to the task reward,
to maintain robustness and prevent overfitting, an intrinsic curiosity reward is incorporated to balance
the causality.

3.1 STEP 1: MODEL LEARNING WITH CAUSAL DISCOVERY

We first learn causal dynamics model with the causal mask and reward model for the empowerment
and downstream task learning. Specifically, a dynamics encoder is trained by maximizing the
likelihood of observed trajectories D. Then, the causal mask is learned based on the dynamics model
and a reward model is trained with the state abstraction under the causal mask and action.

Causal Dynamics Model The causal dynamics model is composed with a dynamics model Pϕc

and a causal mask M . The dynamics model maximizes the likelihood of observed trajectories D as
follows:

Ldyn = E(st,at,st+1)∼D

[
dS∑
i=1

logPϕc
(sit+1|st, at;ϕc)

]
, (4)

where dS is the dimension of the state space, and ϕc denotes the parameters of the dynamics model.
We train the dynamics model as a dense dynamics model that incorporates all state dimensions to
capture the state transitions within the environment, facilitating subsequent causal discovery and
empowerment. Additionally, we assess the performance of the dense model, specifically the baseline
MLP, within the experimental evaluations detailed in Section 5. Next, we use this learned dynamics
model for causal discovery.

Causal Discovery For causal discovery, with the learned dynamics model Pϕc
, we further embed

the causal masks Ms→s and Ma→s into the learning objective. To learn the causal mask, we employ
both conditional independence testing (constraint-based) (Wang et al., 2022c) and mask learning
by sparse regularization (score-based) (Huang et al., 2022). We further maximize the likelihood of
states by updating the dynamics model and learned masks. Thus, the learning objective for the causal
dynamics model is as follows:

Lc−dyn = E(st,at,st+1)∼D

[
dS∑
i=1

logPϕc
(sit+1|Ms→sj ⊙ st,M

a→sj ⊙ at;ϕc) + Lcausal

]
, (5)
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where Lcausal represents the objective term associated with learning the causal structure. LCon
causal =∑dS

j=1

[
log p̂(sjt+1|{at, st \ sit})

]
and LSco

causal = −λM ||M ||1 represent constraint-based and score-
based objectives respectively. λM is regularization coefficient.

Reward Model After obtaining the causal dynamics model, we process states using the causal
mask M to derive state abstractions ϕc(· | M) for the reward model learning, effectively filtering
out irrelevant state dimensions. Simultaneously, the reward model Pφr

maximizes the likelihood of
observed rewards sampled from trajectories D:

Lrew = E(st,at,rt)∼D [logPφr
(rt|ϕc(st |M), at)] . (6)

In this way, ECL leverages causal understanding to enhance both state representation and reward
prediction accuracy. Finally, the overall objective of the model learning with the causal structure is to
maximize L = Ldyn + Lc−dyn + Lrew.

3.2 STEP 2: MODEL OPTIMIZATION WITH EMPOWERMENT-DRIVEN EXPLORATION

In Step 2, we optimize the learning of the causal structure and empowerment. As depicted in Fig. 2,
this procedure alternates between optimizing the empowerment-driven exploration policy πe and
update the causal mask M using data gathered through exploration. Furthermore, to ensure the
stability, we update the reward model to adapt to changes in state abstraction induced by updates to
the causal mask M . Note that the dynamics model Pϕc

learned in Step 1 remains fixed, allowing for
a focused optimization of both the causal structure and the empowerment in an alternating manner.
The causal structure is optimized by the causal mask M through maximizing Lcausal (Eq. 5), while
keeping the parameters of ϕc fixed during this learning step.

Empowerment-driven Exploration To enhance the agent’s control and efficiency given the causal
structure, instead of maximizing I (st+1, at|st) at each step, we consider a baseline that uses the
dense dynamics model Pϕc

without the causal mask M . We then prioritize causal information by
maximizing the difference in empowerment gain between the causal and dense dynamics models.

We first denote the empowerment gain of the causal dynamics model and dense dynamics model
as Eϕc(s|M) = maxa I (st+1; at | st;ϕc,M) and Eϕc(s) = maxa I (st+1; at | st;ϕc), respectively.
Here, Eϕc

(s) corresponds to the dynamics model without considering causal structures.

Then, we have the following learning objective:

max
a∼πe(a|s)

E(s,a,s′)∼D [Eϕc
(s|M)− Eϕc

(s)] . (7)

In practice, we employ the estimated Êϕc(s | M) and Êϕc(s) with the policy πe for computing,
specifically:

Êϕc(st|M) = max
a∼πe(a|s)

Eπe(at|st)pϕc (st+1|st,at,M) [logPϕc(st+1 | st, at;M,ϕc)− logP (st+1|st)] ,

(8)
and:

Êϕc(st) = max
a∼πe(a|s)

Eπe(at|st)pϕc (st+1|st,at) [logPϕc(st+1 | st, at;ϕc)− logP (st+1|st)] , (9)

where P (st+1|st) is the conditional distribution of the current state. Hence, the objective function
Eq. 7 is derived as:

max
a∼πe(a|s)

H(st+1 | st;M)−H(st+1 | st)+Ea∼πe(a|s) [KL (Pϕc
(st+1 | st, at;M)∥Pϕc

(st+1 | st, at))] ,

(10)
whereH(st+1 | st;M) andH(st+1 | st) denote the entropy at time t+ 1 under the causal dynamics
model and dense dynamics model, respectively. For simplicity, we update πe by optimizing the KL
term.

Model Optimization In Step 2, we fix the dynamics model Pϕc
and further fine-tune the causal

mask M and the reward model Pφr
. We adopt an alternating optimization with the policy πe to

optimize the causal mask. Specifically, given M , we first optimize πe. The policy πe is designed to
collect controllable trajectories by maximizing the distance of empowerment between causal and
dense models. These collected trajectories are then used to optimize both the causal structure M and
reward model Pφr .
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3.3 STEP 3: POLICY LEARNING WITH CURIOSITY REWARD

We learn the downstream task policy based on the optimized causal structure. To mitigate potential
overfitting of the causality learned in Steps 1&2, we incorporate a curiosity-based reward as an
intrinsic motivation objective or exploration bonus, in conjunction with a task-specific reward, to
prevent overfitting during task learning:

rcur(s, a) = E(st,at,st+1)∼D

[
KL

(
Penv(st+1|st, at)

∥∥∥Pϕc,M (st+1|st, at;ϕc,M)
)

−KL
(
Penv(st+1|st, at)

∥∥∥Pϕc
(st+1|st, at;ϕc)

)] (11)

where Penv is the ground truth dynamics collected from the environment. By taking account of
rcur, we encourage the agent to explore states that the causal dynamics cannot capture but the dense
dynamics can from the true environment dynamics, thus preventing the policy from being overly
conservative due to model learning with trajectories. Hence, the shaped reward function is:

r(s, a) = rtask(s, a) + λrcur(s, a), (12)

where rtask(s, a) is the task reward, λ is a balancing hyperparameter. In section D.8, we conduct
ablation experiments to thoroughly analyze the impact of different shaped rewards, including curiosity,
causality and original task rewards.

4 PRACTICAL IMPLEMENTATION

We introduce the practical implementation of ECL for casual dynamics learning with empowerment-
driven exploration and task learning. The proposed framework for the entire learning process is
illustrated in Figure 2, comprising three steps and the full pipeline is listed in Algorithm 1.

Step 1: Model Learning Initially, following (Wang et al., 2022c), we use a transition collection
policy πcollect by formulating a reward function that incentivizes selecting transitions that cover more
state-action pairs to expose causal relationships thoroughly. We train the dynamics model Pϕc

by
maximizing the log-likelihood Ldyn, following Eq. 4. Then, we employ the causal discovery approach
for learning causal mask M by maximizing the log-likelihood Lc−dyn followed Eq. 5. Subsequently,
we train the reward model Pφr with the state abstraction ϕc(s |M) by maximizing the likelihood.

Step 2: Model Optimization We execute the empowerment-driven exploration by
maxa∼πe(a|s) Est,at,st+1∼D [Eϕc

(s|M)− Eϕc
(s)] followed Eq. 7 with causal dynamics model and

dense dynamics model for policy πe learning. Furthermore, the learned policy πe is used to sample
transitions for updating casual mask M and reward model. We alternately perform empowerment-
driven exploration for policy learning and causal model optimization.

Step 3: Policy Learning During downstream task learning, we incorporate the causal effects of
different actions as curiosity rewards combined with the task reward, following Eq. 12. We maximize
the discounted cumulative reward to learn the policy by the cross entropy method (CEM) (Rubinstein,
1997). Specifically, The causal model is used to execute dynamic state transitions defined in Eq. 2.
The reward model evaluates these transitions and provides feedback in the form of rewards. The
CEM handles the planning process by leveraging the predictions from the causal and reward models
to optimize the task’s objectives effectively.

5 EXPERIMENTS

We aim to answer the following questions in experimental evaluation: (i) How does the performance of
ECL compare to other causal and dense models across different environments for tasks and dynamics
learning, including pixel-based tasks? (ii) Does ECL improve causal discovery by eliminating more
irrelevant state dimensions interference, thereby enhancing learning efficiency and generalization
towards the empowerment gain? (iii) Whether different causal discovery methods in step 1 and 2,
impact policy performance? What are the effects when combine the step 1 and 2? (iv) What are the
effects of the components and hyperparameters in ECL?

5.1 SETUP

Environments. We select 3 different environments for basic experimental evaluation. Chemical (Ke
et al., 2021): The task is to discover the causal relationship (Chain, Collider & Full) of chemical
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Figure 3: The task learning of episodic reward in three environments of ECL-Con (ECL-C) and
ECL-Sco (ECL-S).
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Figure 4: The learning curves of episodic reward in three different environments and the shadow is
the standard error.

items which proves the learned dynamics and explains the behavior without spurious correlations.
Manipulation (Wang et al., 2022c): The task is to prove dynamics and policy for difficult settings
with spurious correlations and multi-dimension action causal influence. Physical (Ke et al., 2021):
a dense mode Physical environment. Furthermore, we also include 3 pixel-based environments of
Modified Cartpole (Liu et al., 2024), Robedesk (Wang et al., 2022a) and Deep Mind Control
(DMC) (Wang et al., 2022a) for evaluation in latent state environments. For the details of the
environment setup, please refer to Appendix D.2.

Baselines. We compare ECL with 4 causal and 2 standard MBRL methods. CDL (Wang et al.,
2022c): infers causal relationships between the variables for dynamics learning with Conditional Inde-
pendence Test (CIT) of constraint-based causal discovery. REG (Wang et al., 2021): Action-sufficient
state representation based on regularization of score-based causal discovery. GRADER (Ding et al.,
2022): generalizing goal-conditioned RL with CIT by variational causal reasoning. IFactor (Liu
et al., 2024): a causal framework to model four distinct categories of latent state variables within
the RL system for pixel-based environments. GNN (Ke et al., 2021): a graph neural network with
dense dependence for each state variable. Monolithic (Wang et al., 2022c): a Multi-Layer Perceptron
(MLP) network that takes all state variables and actions for prediction. For ECL, we employ both
conditional independence testing (constraint-based (ECL-Con)) used in (Wang et al., 2022c) and
mask learning by sparse regularization (score-based (ECL-Sco)) used in (Huang et al., 2022). We
also combine IFactor (Liu et al., 2024) for pixel-based tasks learning detailed in Appendix D.2.2.

Evaluation Metrics. In tasks learning, we utilize episodic reward and task success as evaluation
criteria for downstream tasks. For causal dynamics learning, we employ five metrics to evaluate the
learned causal graph and assess the mean accuracy for dynamics predictions of future states in both
ID and OOD. For pixel-based tasks, we use average return and visualization results for evaluation1.

5.2 RESULTS

5.2.1 TASK LEARNING

We evaluate each method with the following 7 downstream tasks in the chemical (C), physical (P) and
the manipulation (M) environments. Match (C): match the object colors with goal colors individually.
Push (P): use the heavier object to push the lighter object to the goal position. Reach (M): move the
end-effector to the goal position. Pick (M): pick the movable object to the goal position. Stack (M):
stack the movable object on the top of the unmovable object.

1We conduct each experiment using 4 random seeds.
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As shown in Fig. 3, compared to dense dynamics models GNN and MLP, as well as the causal
approaches CDL and REG, ECL-Con attains the highest reward across 3 environments. Notably,
ECL-Con outperforms other methods in the intricate manipulation tasks. Furthermore, ECL-Sco
surpasses REG, elevating model performance and achieving a reward comparable to CDL. The
proposed curiosity reward encourages exploration and avoids local optimality during the policy
learning process. For full results, please refer to Appendix D.5.

Additionally, Figure 4 depicts the learning curves across three environments. Across these diverse
settings, ECL exhibits elevated sample efficiency compared to CDL and higher reward attainment.
The introduction of curiosity reward bonus enables efficient exploration of strategies, thus averting
the risk of falling into local optima. Overall, our proposed intrinsic-motivated causal empowerment
learning framework demonstrates improved stability and learning efficiency. We also evaluate the
effect of combining steps 1 and 2, as shown in Appendix D.8. For full experimental results in property
analysis and ablation studies, please refer to Appendix D.7 and D.8.
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Figure 5: Success rate in collider and manipulation
environments and the shadow is the standard error.

Sample Efficiency Analysis. After validat-
ing the effectiveness of ECL in reward learning,
we further substantiate the improvements in
sample efficiency of ECL for task execution.
As depicted in Figure 5, we illustrate task suc-
cess in both collider and manipulation reach
tasks. The compared experimental results un-
derscore the efficiency of our approach, demon-
strating enhanced sample efficiency across dif-
ferent environments.

5.2.2 CAUSAL DYNAMICS LEARNING

Causal Graph Learning. To evaluate the efficacy of our proposed method for learning causal
relationships, we first conduct experimental analyses across three chemical environments, employing
five evaluation metrics. We conduct causal learning based on the causal discovery with Con and
Sco respectively. The comparative results using the same causal discovery methods are presented
in Table 1, with each cell containing the comparative results for that method across different sce-
narios. These results demonstrate the superior performance of our approach in causal reasoning,
exhibiting both effectiveness and robustness as evinced by the evaluation metrics of F1 score and
ROC AUC (Wang et al., 2022c). All results exceed 0.90. Notably, our approach exhibits exceptional
learning capabilities in chemical chain and collider environments. Moreover, it significantly enhances
models performance when handling more complex full causal relationships, underscoring its remark-
able capability in grasping intricate causal structures. This proposed causal empowerment framework
facilitates more precise uncovering of causal relationships by actively using the causal structure.

Visualization. Moreover, we visually compare the inferred causal graph with the ground truth graph
in terms of edge accuracy. The results depicted in Figure 6 illustrate the causal graphs of ECL-Sco
compared to REG and GRADER in the collider environment. For nodes exhibiting strong causality,
ECL-Sco achieves fully accurate learning and substantial accuracy enhancements compared to
REG. Concurrently, ECL-Sco elucidates the causality between action and state more effectively.
Furthermore, ECL-Sco mitigates interference from irrelevant causal nodes more proficiently than
GRADER. The causal graph learned in the complex manipulation environment shown in Figure 15,
demonstrates that ECL effectively excludes irrelevant state dimensions to avoid the influence of spuri-
ous correlations. These findings substantiate that the proposed method attains superior performance
compared to other causal discovery methods in causal learning.

Predicting Future States. Given the current state and a sequence of actions, we evaluate the
accuracy of each method’s prediction, for states both ID and OOD. We evaluate each method for one
step prediction on 5K transitions, for both ID and OOD states. To create OOD states, we change
object positions in the chemical environment and marker positions in the manipulation environment
to unseen values, followed (Wang et al., 2022c).

Figure 7 illustrates the prediction results across four environments. In the ID settings, our proposed
methods, based on both Sco and Con, achieve performance on par with GNNs and MLPs, while
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Table 1: Experimental results on causal graph learning in three chemical environments.

Metrics Methods Chain Collider Full

Accuracy ECL/CDL 1.00±0.00/1.00±0.00 1.00±0.00/1.00±0.00 1.00±0.00/0.99±0.00
ECL/REG 0.99±0.00/0.99±0.00 0.99±0.00/0.99±0.00 0.99±0.01/0.98±0.00

Recall ECL/CDL 1.00±0.00/0.99±0.01 1.00±0.00/1.00±0.00 0.97±0.01/0.92±0.02
ECL/REG 1.00±0.00/0.94±0.01 0.99±0.01/0.89±0.09 0.90±0.02/0.79±0.01

Precision ECL/CDL 1.00±0.00/1.00±0.00 1.00±0.00/1.00±0.00 0.96±0.02/ 0.97±0.02
ECL/REG 0.99±0.01/0.99±0.01 0.99±0.01/0.99±0.01 0.97±0.03/0.92±0.05

F1 Score ECL/CDL 1.00±0.00/0.99±0.01 1.00±0.00/1.00±0.00 0.97±0.01/0.94±0.01
ECL/REG 0.99±0.00/0.96±0.01 0.99±0.00/0.94±0.05 0.93±0.02/0.85±0.02

ROC AUC ECL/CDL 1.00±0.00/0.99±0.01 1.00±0.00/1.00±0.00 0.98±0.01/0.96±0.01
ECL/REG 0.99±0.01/0.99±0.01 0.99±0.01/0.93±0.04 0.95±0.01/0.95±0.01

True causal graph ECL-Sco REG GRADER

Figure 6: The causal graph comparison in the chemical collider environment.

significantly elevating performance in the intricate manipulation environment. These findings validate
the efficacy of our proposed approach for causal learning. For the OOD settings, our method attains
comparable performance to the ID setting. These results demonstrate strong generalization and
robustness capabilities compared to GNNs and MLPs. Moreover, it outperforms CDL and REG. The
comprehensive experimental results substantiate the proficiency of our proposed method in accurately
uncovering causal relationships and enhancing generalization abilities. For full results of causal
dynamics learning, please refer to Appendix D.3 and D.4.

5.2.3 PIXEL-BASED TASK LEARNING

In complex pixel-based robodesk task, where video backgrounds serve as distractors, ECL effectively
learns controllable policies for changing background colors to green, as shown in Figure 8. Addition-
ally, ECL surpasses IFactor in terms of average return. These results further validate ECL’s efficacy
in pixel-based tasks and its ability to overcome spurious correlations (video backgrounds). For more
results in pixel-based tasks, please refer to Appendix D.6.

6 RELATED WORK

Causal MBRL MBRL involves training a dynamics model by maximizing the likelihood of
collected transitions, known as the world model (Moerland et al., 2023; Janner et al., 2019; Nguyen
et al., 2021; Zhao et al., 2021). Due to the exclusion of irrelevant factors from the environment
through state abstraction, the application of causal inference in MBRL can effectively improve sample
efficiency and generalization (Ke et al., 2021; Mutti et al., 2023b; Hwang et al., 2023). Wang et al.
(2021) propose a constraint-based causal dynamics learning that explicitly learns causal dependencies
by action-sufficient state representations. GRADER (Ding et al., 2022) executes variational inference
by regarding the causal graph as a latent variable. CDL (Wang et al., 2022c) is a causal dynamics
learning method based on CIT. CDL employs conditional mutual information to compute the causal
relationships between different dimensions of states and actions. For additional related work, please
refer to Appendix B.

Empowerment in RL Empowerment is an intrinsic motivation to improve the controllability over
the environment (Klyubin et al., 2005; Salge et al., 2014). This concept is from the information-
theoretic framework, wherein actions and future states are viewed as channels for information

9



Published as a conference paper at ICLR 2025

ECL-C CDL ECL-S REG GNN MLP0

20

40

60

80

M
ea

n 
A

cc
ur

ac
y

73 72 72 68 73 72
In Distribution

ECL-C CDL ECL-S REG GNN MLP

72 72 71 67 47

28

Out Of Distribution

(a) Chemical (Chain)

ECL-C CDL ECL-S REG GNN MLP0

25

50

75

100

M
ea

n 
A

cc
ur

ac
y

97.6 97 97 94 97 97
In Distribution

ECL-C CDL ECL-S REG GNN MLP

97 97 97 84 65

21

Out Of Distribution

(b) Chemical (Collider)

ECL-C CDL ECL-S REG GNN MLP0

20

40

60

80

M
ea

n 
A

cc
ur

ac
y

78 77 77 73 76 76
In Distribution

ECL-C CDL ECL-S REG GNN MLP

77.5 77 76
54

31 26

Out Of Distribution

(c) Chemical (Full)

ECL-C CDL ECL-S REG GNN MLP50

0

50

100

lo
g-

lik
el

ih
oo

d

86

51 51 51 51 51

In Distribution

ECL-C CDL ECL-S REG GNN MLP

86

51 2 2
4

-295

Out Of Distribution

(d) Manipulation
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transmission. In RL, empowerment is applied to uncover more controllable associations between
states and actions or skills (Mohamed & Jimenez Rezende, 2015; Bharadhwaj et al., 2022; Choi
et al., 2021; Eysenbach et al., 2018). By quantifying the influence of different behaviors on state
transitions, empowerment encourages the agent to explore further to enhance its controllability over
the system (Leibfried et al., 2019; Seitzer et al., 2021). Maximizing empowerment maxπ I can
be used as the learning objective, empowering agents to demonstrate intelligent behavior without
requiring predefined external goals.

7 CONCLUSION

This paper proposes a method-agnostic framework of empowerment through causal structure learning
in MBRL to improve controllability and learning efficiency by iterative policy learning and causal
structure optimization. We maximize empowerment under causal structure to prioritize controllable
information and optimize causal dynamics and reward models to guide downstream task learning.
Extensive experiments across 6 environments included pixel-based tasks substantiate the remarkable
performance of the proposed framework.

Limitation and Future Work ECL implicitly enhances the controllability but does not explicitly
tease apart different behavioral dimensions. In our future work, we plan to extend this framework in
several directions. First, we aim to disentangle behaviors and explore entropy relaxation methods to
enhance empowerment, particularly for real-world robotics tasks (Collaboration et al., 2023). Second,
while the current framework does not account for changing dynamics, we intend to incorporate
insights from recent advancements in local causal discovery (Hwang et al., 2023) and modeling
non-stationary change factors (Huang et al., 2020) to enhance the causal discovery component.
Third, we plan to leverage pre-trained 3D or object-centric visual dynamics models (Shi et al., 2024;
Wang et al., 2023b; Luo et al., 2024; Team et al., 2024) to scale our approach to real-world robotics
applications. These directions will be pursued in future work.
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A DISCUSSIONS AND BROADER IMPACT

A.1 DISCUSSIONS

From the technical perspective, our work explores leveraging causal structure to enhance empower-
ment for efficient policy learning, enabling better control of the environment in MBRL. We propose a
framework that can effectively combine diverse causal discovery methods. This holistic approach not
only refines policy learning but also ensures that the causal model remains adaptable and accurate,
even when faced with novel or shifting environmental conditions. ECL demonstrates improved
learning efficiency and generalization compared to other causal MBRL methods across six differ-
ent RL environments, including pixel-based tasks. Simultaneously, ECL achieves more accurate
causal relationship discovery, overcoming spurious correlation present in the environment. While
ECL demonstrated strengths in the accurate causal discovery and overcoming spurious correlation,
disentangling controllable behavioral dimensions remains a limitation. Our implicit empowerment
approach enhances the policy’s control over the environment but does not explicitly tease apart
different behavioral axes. Explicitly disentangling controllable behavioral dimensions could be an
important future work to further improve behavioral control and empowerment. Additionally, our
current approach involves substantial data collection and model optimization efforts, which can hinder
training efficiency. Moving forward, we aim to further streamline our framework to enable more
efficient policy training and causal structure learning. Enhancing computational performance while
maintaining accuracy will be a key focus area for future iterations of this work. In the empowerment
maximization described by Eq. 10, we currently omit two entropy terms. In our future work, we
plan to explore additional entropy relaxation methods to further optimize this causal empowerment
learning objective.

A.2 BROADER IMPACT

We believe that our work contributes to developing a more interpretable model via causality for
model-based reinforcement learning (MBRL), which could benefit various domains, including
robotics (Ibarz et al., 2021; Lee et al., 2021), healthcare (Yu et al., 2021; Tang et al., 2022), and
scientific discovery (Runge et al., 2019; Nowack et al., 2020; Castro et al., 2020; Liu et al., 2022;
Wang et al., 2023a), particularly in contexts involving causal modeling and decision-making agents.
While RL-based approaches may present potential risks in these domains, we do not identify any
risks uniquely introduced by this work that require specific discussion.

B ADDITIONAL RELATED WORKS

B.1 MODEL-BASED REINFORCEMENT LEARNING

MBRL involves training a dynamics model by maximizing the likelihood of collected transitions,
known as the world model, as well as learning a reward model (Moerland et al., 2023; Janner et al.,
2019; Hao et al., 2023; Cao et al., 2022; Yang & Gao, 2020). Based on learned models, MBRL can
execute downstream task planning (Nguyen et al., 2021; Zhao et al., 2021), data augmentation (Pitis
et al., 2022; Okada & Taniguchi, 2021; Yu et al., 2020), and Q-value estimation (Wang et al., 2022b;
Amos et al., 2021). MBRL can easily leverage prior knowledge of dynamics, making it more effective
at enhancing policy stability and generalization. However, when faced with high-dimensional state
spaces and confounders in complex environments, the dense models learned by MBRL suffer from
spurious correlations and poor generalization (Wang et al., 2022c; Bharadhwaj et al., 2022). To
tackle these issues, causal inference approaches are applied to MBRL for state abstraction, removing
unrelated components (Hwang et al., 2023; Ding et al., 2022; Wang et al., 2024).

B.2 CAUSALITY IN MBRL

Due to the exclusion of irrelevant factors from the environment through causality, the application of
causal inference in MBRL can effectively improve sample efficiency and generalization (Ke et al.,
2021; Mutti et al., 2023b; Liu et al., 2024; Urpı́ et al., 2024). Wang (Wang et al., 2021) proposes a
regularization-based causal dynamics learning method that explicitly learns causal dependencies by
regularizing the number of variables used when predicting each state variable. GRADER (Ding et al.,
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2022) execute variational inference by regarding the causal graph as a latent variable. IFactor (Liu
et al., 2024) is a general framework to model four distinct categories of latent state variables, capturing
various aspects of information. CDL (Wang et al., 2022c) is a causal dynamics learning method based
on conditional independence testing. CDL employs conditional mutual information to compute the
causal relationships between different dimensions of states and actions, thereby explicitly removing
unrelated components. However, it is challenging to strike a balance between explicit causal discovery
and prediction performance, and the learned policy has lower controllability over the system. In
this work, we aim to actively leverage learned causal structures to achieve effective exploration of
the environment through empowerment, thereby learning controllable policies that generate data to
further optimize causal structures.

C NOTATIONS, ASSUMPTIONS AND PROPOSITIONS

C.1 NOTATIONS

Symbol Description Details

sit i-th state at time t –
at action at time t –
rt reward at time t –
Ms→s Causal masks between actions and states Trainable parameters in Eq. 5
Ma→s Causal masks between actions and states Trainable parameters in Eq. 5
f Dynamics function Dynamics function of the MDPs
R Reward function Reward function of the MDPs
I Mutual information –
E Empowerment gain –
ϕc Parameters of dynamics model Trainable parameters in Eq. 4
φr Parameters of reward model Trainable parameters in Eq. 6
πe Parameters of empowerment-driven policy Trainable parameters in Eq. 7
π Parameters of task policy Trainable parameters for task policy

learning

Table 2: Notations used throughout the paper.

C.2 DETAILED OBJECTIVE FUNCTIONS

To better illustrate the trainable parameters in each objective function, we mark the trainable ones in
red as follows.

Ldyn = E(st,at,st+1)∼D

[
dS∑
i=1

logPϕc
(sit+1|st, at;ϕc)

]
(13)

Lc−dyn = E(st,at,st+1)∼D

[
dS∑
i=1

logPϕc(s
i
t+1|Ms→sj ⊙ st,M

a→sj ⊙ at;ϕc) + Lcausal

]
(14)

Lrew = E(st,at,rt)∼D [logPφr (rt|ϕc(st |M), at)] (15)

max
a∼πe(a|s)

E(st,at,st+1)∼D [Eϕc
(s|M)− Eϕc

(s)] . (16)

C.3 ASSUMPTIONS AND PROPOSITIONS

Assumption 1 (d-separation (Pearl, 2009)) d-separation is a graphical criterion used to determine,
from a given causal graph, if a set of variables X is conditionally independent of another set Y, given
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a third set of variables Z. In a directed acyclic graph (DAG) G, a path between nodes n1 and nm is
said to be blocked by a set S if there exists a node nk, for k = 2, · · · ,m− 1, that satisfies one of the
following two conditions:

(i) nk ∈ S, and the path between nk−1 and nk+1 forms (nk−1 → nk → nk+1), (nk−1 ← nk ←
nk+1), or (nk−1 ← nk → nk+1).

(ii) Neither nk nor any of its descendants is in S, and the path between nk−1 and nk+1 forms
(nk−1 → nk ← nk+1).

In a DAG, we say that two nodes na and nb are d-separated by a third node nc if every path between
nodes na and nb is blocked by nc, denoted as na⊥⊥ nb|nc.

Assumption 2 (Global Markov Condition (Spirtes et al., 2001; Pearl, 2009)) The state is fully
observable and the dynamics is Markovian. The distribution p over a set of variables V =
(s1t , · · · , sdt , a1t , · · · , adt , rt)T satisfies the global Markov condition on the graph if for any parti-
tion (S,A,R) in V such that if A d-separates S fromR, then p(S,R|A) = p(S|A) · p(R|A)

Assumption 3 (Faithfulness Assumption (Spirtes et al., 2001; Pearl, 2009)) For a set of variables
V = (s1t , · · · , sdt , a1t , · · · , adt , rt)T , there are no independencies between variables that are not
implied by the Markovian Condition.

Assumption 4 Under the assumptions that the causal graph is Markov and faithful to the observa-
tions, the edge sit → sit+1 exists for all state variables si.

Assumption 5 No simultaneous or backward edges in time.

Theorem 1 Based on above 5 assumptions, we define the conditioning set {at, st \ sit} =

{at, s1t , . . . si−1
t , si+1

t , . . . }. If sit ⊥̸⊥ sjt+1|{at, st \ sit}, then sit → sjt+1. Similarly, if ait ⊥̸⊥
sjt+1|{at \ ait, st}, then ait → sjt+1.

Proposition 1 Under the assumptions that the causal graph is Markov and faithful to the observa-
tions, there exists an edge from ait → sjt+1 if and only if ait ⊥̸⊥ sjt+1|{at \ ait, st}, then ait → sjt+1.

Proof. We first prove that if there exists an edge from ait to sjt+1, then ait ⊥̸⊥ sjt+1|{at \ ait, st}. We
prove it by contradiction. Suppose that ait is independent of sjt+1 given {at \ait, st}. According to the
faithfulness assumption, we can infer this independence from the graph structure. If ait is independent
of sjt+1 given {at \ ait, st}, then there cannot be a directed path from ait to sjt+1 in the graph. Hence,
there is no edge between ait and sjt+1. This contradicts our initial statement about the existence of
this edge.

Now, we prove the converse: if ait ⊥̸⊥ sjt+1|{at \ ait, st}, then there exists an edge from ait to sjt+1.
Again, we use proof by contradiction. Suppose there is no edge between ait and sjt+1 in the graph.
Due to the Markov assumption, the lack of an edge between these variables implies their conditional
independence given {at \ ait, st}. This contradicts our initial statement that ait ⊥̸⊥ sjt+1|{at \ ait, st}.
Therefore, there must exist an edge from ait to sjt+1.

Proposition 2 Under the assumptions that the causal graph is Markov and faithful to the observa-
tions, there exists an edge from sit → sjt+1 if and only if sit ⊥̸⊥ sjt+1|{at, st \ sit}.
The proof of Proposition 2 follows a similar line of reasoning to that of Proposition 1. Consequently,
the two propositions collectively serve as the foundation for deriving Theorem 1.

D DETAILS ON EXPERIMENTAL DESIGN AND RESULTS

D.1 EXPERIMENTAL ENVIRONMENTS

We select three different types environments for basic experimental evaluation, as shown in Figure 9.
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(b) Physical (c) Manipulation

Figure 9: Three basic experimental environments.

Chemical In chemical environment, we aim to discover the causal relationship (Chain, Collider
& Full) of chemical items which will prove the learned dynamics and explain the behavior without
spurious correlations. Meanwhile, in the downstream tasks, we evaluate the proposed methods by
episodic reward and success rate. The reward function is defined as follows:

Match: match the object colors with goal colors individually:

rmatch =

10∑
i=1

1[mi
t = gi] (17)

where 1 is the indicator function, mi
t is the current color of the i-object, and gi is the goal color of

the i-object.

Manipulation In the manipulation environment, we aim to prove the learned dynamics and policy
for difficult settings with spurious correlations and multi-dimension action causal influence. The state
space consists of the robot end-effector (EEF) location (R3), gripper (grp) joint angles (R2), and
locations of objects and markers (6 × R3). The action space includes EEF location displacement (R3)
and the degree to which the gripper is opened ([0, 1]). In each episode, the objects and markers are
reset to randomly sampled poses on the table. The task reward functions of Reach, Pick and Stack
are followed (Wang et al., 2022c).

Physical In addition to the chemical and manipulation environment, we also evaluate our method
in the physical environment. In a 5 × 5 grid-world, there are 5 objects and each of them has a unique
weight. The state space is 10-dimensional, consisting of x, y positions (a categorical variable over
5 possible values) of all objects. At each step, the action selects one object, moves it in one of 4
directions or lets it stay at the same position (a categorical variable over 25 possible actions). During
the movement, only the heavier object can push the lighter object (the object won’t move if it tries
to push an object heavier than itself). Meanwhile, the object cannot move out of the grid-world
nor can it push other lighter objects out of the grid-world. Moreover, the object cannot push two
objects together, even when both of them are lighter than itself (Dense model mode). The task reward
function is defined as follows:

Push: calculate the average distance between the current node and the target location:

rmatch =
1

5

5∑
i=1

dis(oi, ti) (18)

where dis(·) is the distance between two objects position. oi is the position of current node and ti is
the position of target node.

D.1.1 PIXEL-BASED ENVIRONMENTS

Importantly, to evaluate the performance of our proposed ECL framework in latent state environments,
we select three distinct categories of pixel-based environments with distractors for assessment, as
shown in Figure 10. We employ IFactor (Liu et al., 2024) as our baseline method and used its
encoders to process visual inputs. Subsequently, we apply the proposed ECL framework for policy
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learning. The parameter settings for these three environments are kept consistent with the default
configurations of IFactor.

(a) Cartpole (b) Robodesk (c) Cheetah Run (d) Reacher Easy (e) Walker Walk

Figure 10: 3 pixel-based experimental environments with 5 tasks.

Modified Cartpole We select a variant of the original Cartpole environment by incorporating two
distractors (Liu et al., 2024), as shown in Figure 10(a). The first distractor is an uncontrollable
Cartpole located in the upper portion of the image, which is irrelevant to the rewards. The second
distractor is a controllable but reward-irrelevant green light positioned below the reward-relevant
Cartpole in the lower part of the image.

Robodesk We select a variant of Robodesk (Kannan et al., 2021; Wang, 2022), which includes
realistic noise element with a dynamic video background, as shown in Figure 10(b). In this task,
the objective for the agent is to change the hue of a TV screen to green using a button press, while
ignoring the distractions from the video background.

Deep Mind Control We also consider variants of DMC (Wang et al., 2022a; Tassa et al., 2018),
where a dynamic video background is introduced to the original DMC environment as distractor. We
select cheetah Run, reacher Easy and walker Walk three specific tasks for evaluation, as shown in
Figure 10(c, d, e).

D.2 EXPERIMENTAL SETUP

D.2.1 DYNAMICS LEARNING IMPLEMENTATION DETAILS

We present the architectures of the proposed method across all environments in Table 3. For all
activation functions, the Rectified Linear Unit (ReLU) is employed. Additionally, we summarize
the hyperparameters for causal mask learning used in all environments for ECL-Con and ECL-Sco
in Table 4. Regarding the other parameter settings, we adhered to the parameter configurations
established in CDL (Wang et al., 2022c) and ASR (Huang et al., 2022). Moreover, The policy πcollect

is trained with a reward function r = tanh(
∑dS

j=1 log
p(sjt+1|st,at)

p(sjt+1|PAsj )
). This reward function measures

the prediction difference between the dense predictor and the current causal predictor, following the
approach described in CDL (Wang et al., 2022c).

chemical, manipulation, and physical environments, we utilize well-defined feature spaces for states
and actions, which are explicitly designed for causal structure learning. For pixel-based environments
such as DMC, Cartpole, and RoboDesk, ECL operates on latent states extracted by visual encoders.
These encoders are supported by the identifiability theory proposed in IFactor (Liu et al., 2024), which
ensures that these latent states can effectively map to the true states. While establishing identifiability
is not the primary focus of our work, we leverage IFactor’s encoders and include comparisons with
IFactor in our experiments. Importantly, even in these settings, we can learn meaningful causal
graphs.

D.2.2 TASK LEARNING IMPLEMENTATION DETAILS

We list the downstream task learning architectures of the proposed method across all environments
in Table 5. We outline the parameter configurations for the reward predictor, as well as the settings
employed for the cross-entropy method that is applied. For pixel-based task learning, we leverage the
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Table 3: Architecture settings in all environments.

Architecture Environments
Chemical Physical Manipulation

feature dimension 64 128 128
predictive networks [64,32] [128,128] [128,64]

training steps 500K 500K 32M
max step of environment 50 100 250

batch size 64
learing rate 1e-4

max sample time 128
prediction step during training 2

Table 4: Hyperparameters for causal mask learning in all environments.

Method hyperparameters Environments
Chemical Physical Manipulation

ECL-Con

CMI threshold 0.02 0.01 0.002
optimization frequency 10
evaluation frequency 10
evaluation batch size 32

evaluation step 1
prediction reward weight 1.0

ECL-Sco
coefficient 0.002 0.02 0.001

regularization starts after N steps 100K 100K 750K

four distinct categories of latent state variables by IFactor to conduct empowerment maximization
for policy learning. Moreover, we follow the same parameter settings in IFactor, and used the same
video background in all tasks.

Table 5: Hyperparameters for downstream task learning in all environments.

Method hyperparameters Environments
Chemical Physical Manipulation

Reward Predictor

training steps 300K 1.5M 2M
optimizer Adam

learing rate 3e-4
batch size 32

CEM number of candidates 64 128
number of iterations 5 10

number of top candidates 32
action noise 0.03

D.3 RESULTS OF CAUSAL DYNAMICS LEARNING

We compare the performance of causal dynamics learning with score-based method GRADER (Ding
et al., 2022), CDL (Wang et al., 2022c) and constraint-based method REG (Wang et al., 2021)
across different environments. The experimental results, presented in Table 6, reveal that although
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Table 6: Compared results of causal graph learning on three chemical and physical environments.

Metrics Methods Chain Collider Full Physical

Accuracy
ECL-Con 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
ECL-Sco 0.99±0.00 0.99±0.00 0.99±0.01 1.00±0.00
GRADER 0.99±0.00 0.99±0.00 0.99±0.00 -

Recall
ECL-Con 1.00±0.00 1.00±0.00 0.97±0.00 1.00±0.00
ECL-Sco 1.00±0.00 0.99±0.01 0.90±0.02 1.00±0.00
GRADER 0.96±0.03 0.99±0.02 0.96±0.02 -

Precision
ECL-Con 1.00±0.00 1.00±0.00 0.96±0.02 1.00±0.00
ECL-Sco 0.99±0.01 0.99±0.01 0.97±0.03 1.00±0.00
GRADER 0.94±0.04 0.90±0.05 1.00±0.00 -

F1 Score
ECL-Con 1.00±0.00 1.00±0.00 0.97±0.01 1.00±0.00
ECL-Sco 0.99±0.00 0.99±0.00 0.93±0.02 1.00±0.00
GRADER 0.95±0.03 0.94±0.03 0.98±0.01 -

ROC AUC
ECL-Con 1.00±0.00 1.00±0.00 0.98±0.01 1.00±0.00
ECL-Sco 0.99±0.01 0.99±0.01 0.95±0.01 1.00±0.00
GRADER 0.94±0.02 0.99±0.01 0.96±0.01 -

GRADER exhibits superior performance in the chemical full environment, ECL-based methods
overall achieve better results than GRADER across three chemical environments. In the accuracy
assessment metrics, ECL-Con attains 100% precision, and across the chain and collider environments,
all evaluation metrics achieve perfect 100% scores. Furthermore, in the physical environment, our
proposed methods attain 100% performance. The result of rigorous evaluation metrics substantiates
that incorporating ECL has boosted the dynamics model performance. These experimental results
further validate the effectiveness of the proposed ECL approach in both sparse and dense modal
environments.

Furthermore, we analyze the prediction accuracy performance of the causal dynamics constructed
by our proposed method. The multi-step (1-5 steps) prediction experimental results across four
environments are illustrated in Figure 11. ECL-Con and CDL exhibit smaller declines in accuracy
as the prediction steps increase, benefiting from the causal discovery realized based on conditional
mutual information. Compared to REG, ECL-Sco achieves a significant improvement in accuracy
under different settings. Concurrently, we find that the outstanding out-of-distribution experimental
results further corroborate the strong generalization capability of our proposed method. By actively
leveraging the learned causal structure for empowerment-driven exploration, ECL facilitates more
accurate causal discovery. Overall, we can demonstrate that the proposed ECL framework realizes
efficient and robust causal dynamics learning.

D.4 VISUALIZATION ON THE LEARNED CAUSAL GRAPHS

We conduct a detailed comparative analysis by visualizing the learned causal graphs. In each causal
graph, these are dS rows and dS + 1 columns, and the element at the j-th row and i-th column
represents whether the variable sjt+1 depends on the variable sit+1 if j < dS + 1 or at if j = dS + 1,
measured by CMI for score-based methods and Bernoulli success probability for Reg. First, the
causal graph learning scenario in the chemical chain environment is shown in Figure 12. Compared
to CDL and REG, ECL-Con accurately uncovers the causal relationships among crucial elements,
such as all different dimensions between states and actions, outperforming the other two methods.
Moreover, we achieve extensive elimination of causality between irrelevant factors. These results
demonstrate the accuracy of the proposed method in causal inference within the chemical chain
environment.

Furthermore, for the chemical collider environment, the compared causal graphs are depicted in
Figure 13. We can observe that both CDL and ECL-Con achieved optimal discovery of causal
relationships. Moreover, in contrast to the REG method, ECL-Con is not impeded by interference
from irrelevant causal factors. For the chemical full environment, the causal graph is illustrated in
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Figure 11: Multi-step prediction performance for four basic environments. (Left) prediction on in
distribution states. (Right) prediction on OOD states.

Figure 14. Compared to CDL, ECL-Con better excludes interference from irrelevant causal factors.
In comparison with the REG method, ECL-Con attains superior overall performance in discovering
causal relationships. Additionally, ECL-Con reaches optimal learning performance when provided
the true causal graph.

Moreover, for the manipulation environment, the experimental results are presented in Figures 15
and 16. From the results in Figure 6, we can discern that ECL-Con achieves around 90% overall
fitting degree with the true causal graph and accurately learns the causal association between state
and action. Compared to CDL shown in Figure 16, ECL-Con learns more causal associations from
relevant causal components related to the gripper, movable states, and actions. Conversely, in contrast
to REG, ECL-Con better excludes interference from irrelevant causal factors, such as unmovable
and marker states. In summary, the proposed method achieves more accurate and efficient learning
performance in causal dynamics learning. In the subsequent section, we will delve further into
analyzing the enhanced performance of ECL in optimizing causal dynamics and reward models, and
how these optimizations manifest in the learning policies for downstream tasks, including complex
pixel-based tasks.
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Figure 12: Causal graph for the chemical chain environment learned by the ECL, CDL and REG.
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Figure 13: Causal graph for the chemical collider environment learned by the ECL, CDL and REG.
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Figure 14: Causal graph for the chemical full environment learned by the ECL, CDL and REG.
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Figure 15: Causal graph for the manipulation environment learned by the true graph and ECL.
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Figure 16: Causal graph for the manipulation environment learned by CDL and REG.
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Figure 17: The task learning of episodic reward in three environments with ECL-Con (ECL-C),
ECL-Sco (ECL-S) and baselines.
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Figure 18: The task learning of episodic reward in three manipulation and physical environments.

D.5 DOWNSTREAM TASKS LEARNING

As illustrated in Figures 17 and 18, ECL-Con attains the highest reward across three environments
when compared to dense models like GNN and MLP, as well as causal approaches such as CDL and
REG. Notably, ECL-Con outperforms other methods in intricate manipulation tasks. Furthermore,
ECL-Sco surpasses REG, enhancing model performance and achieving a reward comparable to
CDL. The proposed curiosity reward encourages exploration and avoids local optimality during the
policy learning process. Moreover, ECL excels not only in accurately uncovering causal relationships
but also in enabling efficient learning for downstream tasks.

Sample efficiency analysis. We perform comparative analysis of downstream tasks learning across
all environments. As depicted in Figure 19 for experiments in three chemical environments, we
can find that ECL-Con and ECL-Sco achieve outstanding performance in all three environments.
Furthermore, the policy learning exhibits relative stability, reaching a steady state after approximately
400 episodes. Additionally, Figure 20 illustrates the reward learning scenarios in the other four
environments. Within the intricate manipulation environment, ECL-Con facilitates more expeditious
policy learning. Moreover, in the dense physical environment, ECL-Con and ECL-Sco also exhibit
the most expeditious learning efficiency. The experimental results demonstrate that the proposed
methods outperform CDL. Moreover, compared to CDL, ECL enhances sample efficiency, further
corroborating the effectiveness of the proposed intrinsic-motivated empowerment method.
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Figure 19: The task learning curves of episodic reward in three chemical environments and the
shadow is the standard error.

Causal Discovery with FCIT We further conduct causal discovery using the explicit condi-
tional independence test, specifically the Fast Conditional Independence Test (FCIT) employed in
GRADER (Ding et al., 2022), for task learning evaluation. The comparative task learning results
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Figure 20: The task learning curves of episodic reward in four environments and the shadow is the
standard error.
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Figure 21: The task learning of episodic reward in three chemical environments. ECL-S represents
ECL with score-based causal discovery. ECL-C represents ECL with L1-norm regularization of
constrant-based causal discovery. ECL-F represents ECL with FCIT (used in GRADER for causal
discovery).

are presented in Figure 21. These findings demonstrate that ECL-FCIT, achieves improved policy
learning performance than GRADER, further validating the effectiveness of our proposed learning
framework ECL.

D.6 PIXEL-BASED TASKS LEARNING

We evaluate ECL on 5 pixel-input tasks across 3 latent state environments. Figure 22 presents
comparative experimental results and visualized trajectories in the modified cartpole task. Our
findings reveal that ECL achieves superior sample efficiency compared to IFactor. Furthermore, the
visualized results demonstrate ECL’s effectiveness in controlling the target cartpole, successfully
overcoming distractions from both the upper cartpole and the lower green light, which are not
controlled in the IFactor policy.

Moreover, we conduct evaluations on three DMC tasks. The visualized results in Figure 23 confirm
effective control for all three agents. Moreover, as shown in Figure 24, ECL achieves more stable
average return results, corroborating the enhanced controllability provided by our proposed causal
empowerment approach. Finally, we evaluate our method against DreamerV3 (Hafner et al., 2023),
a current state-of-the-art approach, across three DMC tasks under noiseless settings. As shown in
Figure 25, ECL consistently outperforms DreamerV3 in all 3 tasks.
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Figure 22: The results of average return compared with IFactor and visualized trajectories in Modified
Cartpole environment.
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Figure 23: The results of visualization in three pixel-based tasks of DMC environment.
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Figure 24: The results of average return compared with IFactor in three pixel-based tasks of DMC
environment under video background setting.
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Figure 25: The results of average return compared with Dreamer in three pixel-based tasks of DMC
environment under noiseless setting.

D.7 PROPERTY ANALYSIS

Training steps analysis. For property analysis, we set different training steps for causal dynamics
learning of ECL-Con. As depicted in Figure 26, in the chemical chain environment, we observe that
the mean prediction accuracy reaches its peak at 300k training steps. A similar trend is observed in the
collider environment, where the maximum accuracy is achieved at 150k training steps. Although in
the full environment, ECL attains its maximum accuracy at 600k steps, which is higher than the 500k
steps used for training CDL, we notice that at 500k steps, ECL has already achieved performance
comparable to CDL. These results substantiate that our proposed causal action empowerment method
effectively enhances sample efficiency and dynamics performance.
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Figure 26: The mean accuracy of prediction with different training steps in chemical environments.

Hyperparameter analysis. We further analyze the impact of the hyperparameter λ introduced
in the downstream task reward function with CUR. We compare four different threshold settings,
and the experimental results are depicted in Figure 27. From the results, we observe that when the
parameter is set to 1, the policy learning performance is optimal. When the parameter is set to 0,
the introduced curiosity cannot encourage exploratory behavior in the policy. Nonetheless, it still
achieves reward performance comparable to CDL. This finding further corroborates the effectiveness
of our method for dynamics learning. Conversely, when this parameter is set excessively high, it
causes the policy to explore too broadly, subjecting it to increased risks, and thus more easily leading
to policy divergence. Through comparative analysis, we ultimately set this parameter to 1. In our
future work, we will further optimize the improvement scheme for the reward function.

Computation cost. To consider the computation cost, we calculate the computation time for two
chemical tasks of Chain, and Collider. The experimental results shown in Figure 28 demonstrate
that ECL achieves its performance improvements with minimal additional computational burden -
specifically less than 10% increase compared to CDL and REG. These results demonstrate that ECL’s
enhanced performance comes without significant computational cost. All experiments were conducted
on the same computing platform with the same computational resources detailed in Appendix F.
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Figure 27: The episodic reward with different hyperparameter λ in three chemical environments.

ECL-C CDL ECL-S REG0

10

20

30

C
om

pu
ta

tio
n 

Ti
m

e 
(h

) 32
30 30

28

Chemical (Chain)

ECL-C CDL ECL-S REG0

10

20

30

C
om

pu
ta

tio
n 

Ti
m

e 
(h

) 31.5 30 29.6 28

Chemical (Collider)

Figure 28: The computation time in two chemical environments.
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Figure 29: Learning curves of ablation studies in three chemical environments and the shadow is the
standard error. w/ represents with. w/o represents without.
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Figure 30: Learning curves of ablation studies in three DMC tasks and the shadow is the standard
error. w/ represents with.

D.8 ABLATION STUDIES

To further validate the effectiveness of the various components comprising the proposed ECL method,
we designed a series of ablation experiments for verification. First, we implement the method without
the first-stage model learning, simultaneously conducting causal model and task learning (w/ Sim)
to verify the effectiveness of the proposed three-stage optimization framework. Second, we replace
the curiosity reward introduced in the task learning with a causality motivation-driven reward (w/
Cau): rcau = E(st,at,st+1∼D) [KL (Penv||Pϕc,M )−KL (Penv||Pϕc

)] , and a method without reward
shaping (w/o Sha), respectively, to verify the effectiveness of incorporating the curiosity reward.

The results presented in Figure 29 clearly demonstrate the superior performance of the ECL over all
other comparative approaches. ECL achieves the highest reward scores among the evaluated methods.
Moreover, when compared to the method with Sim, ECL not only attains higher cumulative rewards
but also exhibits greater stability in its performance during training. Additionally, ECL significantly
outperforms the methods with Cau and method without Sha, further highlighting the efficacy of our
proposed curiosity-driven exploration strategy in mitigating overfitting issues. By encouraging the
agent to explore novel states and gather diverse experiences, the curiosity mechanism effectively
prevents the policy from becoming overly constrained.

We explore the difference between simply maximizing empowerment under the causal dynamics
model (Eq. 8) versus maximizing the difference between causal and dense model empowerment
(Eq. 10). Comparing ECL with empowerment (w/ Emp) against ECL with distance (w/ Dis) across
three DMC tasks, our results in Figure 30 show that ECL w/ Dis achieves superior performance, and
ECL w/ Emp also demonstrates strong learning capabilities.

Furthermore, we conducted comparative experiments between ECL and ECL without curiosity reward.
The learning curves for episodic reward and success rate, shown in Figure 31, demonstrate that the
curiosity reward plays a crucial role in preventing policy overfitting during the learning process. We
also carried out experiments with different values of λ. The success rate shown in Figure 31 shows
the effectiveness of the curiosity reward.

In summary, ECL facilitates effective and controllable policy learning for agents operating in complex
environments. The curiosity-driven reward enables the agent to acquire a comprehensive understand-
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ing of the environment while simultaneously optimizing for the desired task objectives, resulting in
superior performance and improved sample efficiency.
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Figure 31: Learning curves of ECL with and without curiosity reward in manipulation reach task,
and with different λ settings. The shadow is the standard error. w/ represents with.

E DETAILS ON THE PROPOSED FRAMEWORK

Algorithm 1 lists the full pipeline of ECL below.

F EXPERIMENTAL PLATFORMS AND LICENSES

F.1 PLATFORMS

All experiments of this approach are implemented on 2 Intel(R) Xeon(R) Gold 6444Y and 4 NVIDIA
RTX A6000 GPUs.

F.2 LICENSES

In our code, we have utilized the following libraries, each covered by its respective license agreements:

• PyTorch (BSD 3-Clause ”New” or ”Revised” License)
• Numpy (BSD 3-Clause ”New” or ”Revised” License)
• Tensorflow (Apache License 2.0)
• Robosuite (MIT License)
• CausalMBRL (MIT License)
• OpenAI Gym (MIT License)
• RoboDesk (Apache License 2.0)
• Deep Mind Control (Apache License 2.0)
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Algorithm 1 Empowerment through causal structure learning for model-based RL
Input: policy network πe, πθ, transition collect policy πcollect, epoch length of dynamics model train-
ing, causal empowerment and downstream task policy learning Hdyn, Hemp, and Htask, evaluation
frequency for causal mask learning feval

Step 1: Model Learning

for each environment step t do
Collect transitions {(si, ai, ri, s′i)}

|Denv|
i=1 with πcollect from environment

Add transitions to replay buffer Dcollect

end for
for epoch = 1, · · · , Hdyn do

Sample transitions {(si, ai, s′i)}
|Ddyn|
i=1 from Dcollect

Train dynamics model Pϕc with {(si, ai, s′i)}
|Ddyn|
i=1 followed Eq. 4

if epoch % feval == 0 then
Sample transitions {(si, ai, s′i)}

|Dcau|
i=1 from Dcollect

Learn causal dynamics model with causal mask using different causal discovery
methods followed Eq. 5

end if
Sample transitions {(si, ai, ri, s′i)}

|Drew|
i=1 from Dcollect

Train reward model Pφr with {(si, ai, ri, s′i)}
|Drew|
i=1 and ϕc(· |M) followed Eq. 6

end for

Step 2: Model Optimization

Collect transitions {(si, ai, ri, s′i)}
|Demp|
i=1 with policy πe

for epoch = 1, · · · , Hemp do
Maximize (Eϕc

(st+1 |M)− Eϕc
(st+1)) with transitions sampled from Demp for pol-

icy πe learning
Add transitions sampled with πe to Demp

if epoch % feval == 0 then
Optimize causal mask M and reward model with transitions sampled from Demp

followed Eq. 5 and Eq. 6
end if

end for

Step 3: Policy Learning

for epoch = 1, · · · , Htask do
Collect transitions {(si, ai, ri, s′i)}

|Dtask|
i=1 with πθ

Compute predicted rewards rtask by learned reward predictor
Calculate curiosity reward rcur by Eq. 11
Calculate r ← rtask + λrcur
Optimize policy πθ by the CEM planning

end for
return policy πθ
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