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Abstract

Estimating the set of mathematical equations from observational data for complex1

systems with nonlinear relationships presents a significant challenge, particularly2

when the model specification is not straightforward and the causal graph is not3

known. We propose a comprehensive framework that estimates a Structural Causal4

Model (SCM) from data, requiring no prior information on the underlying causal5

graph. Our framework incorporates MIIC (Multivariate Information-Based Induc-6

tive Causation), a well-established causal discovery algorithm, with Symbolic Re-7

gression (SR). Our results demonstrate that the association of MIIC and Symbolic8

Regression shows at least comparable results in SCM estimation on the studied9

benchmarks with the advantage of providing an interpretable causal model.10

1 Introduction11

To gain a deeper understanding of complex systems, such as those found in industries and healthcare,12

a causally oriented approach can be employed to identify and characterize the causal relationships13

among the components of these systems. These relations can be represented using Structural Causal14

Models (SCMs), which facilitate modeling and counterfactual reasoning, enabling the evaluation of15

the impact of interventions. SCMs have the potential to generate completely synthetic data, which16

can be of critical importance across various fields and in multiple scenarios.17

However, estimating SCMs from data is challenging due to non-linear relationships and collinearity18

among variables. This necessitates robust performance in two tasks: causal discovery, which19

involves representing causal relationships through graphs, and structural causal modeling, which20

mathematically defines these relationships.21

Traditional regression methods often ignore causal directions, predicting upstream features from22

downstream variables that do not influence them. To find reasonable SCMs and minimize this risk,23

we introduce the MIIC-SR framework, combining the MIIC causal discovery algorithm with Genetic24

Programming-Based Symbolic Regression. It estimates both linear and non-linear equations to build25

an effective, interpretable data-driven simulator where each feature is a function of its causal parents.26

2 Material and Methods27

2.1 Causal discovery algorithms28

The causal discovery task consists of inferring graphical networks from observational data and identi-29

fying direct and potentially causal relations between variables. We compared multiple state-of-the-art30

and recent algorithms: DirectLingam [1], ICALiNGAM [2], PC algorithm [3], NotearsNonlinear31

[4], GOLEM [5], GraNDAG [6] and MIIC [7, 8]. In particular, MIIC has proven to be effective32

across diverse data distributions without requiring prior assumptions. It uses a constraint-based,33
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information-theoretic approach to efficiently select conditioning sets, addressing limitations of the34

PC algorithm. MIIC is robust to sampling noise, needs no hyperparameter tuning, and is available as35

an open-source web server or R package.36

2.2 Symbolic Regression37

Symbolic Regression (SR) is a data-driven method for discovering interpretable mathematical expres-38

sions linking input variables to a target output, without assuming predefined functional forms [9].39

Unlike traditional techniques relying on fixed forms (e.g., linear or polynomial), SR uses evolutionary40

algorithms to explore a broad space of models. The most effective SR methods are based on Genetic41

Programming (GP), a metaheuristic inspired by biological evolution that enables efficient convergence42

to optimal solutions [10, 11, 12]. SR estimation via genetic programming was performed using the43

PySR package [13].44

2.3 MIIC-SR method45

We introduce a robust framework that uses MIIC and SR for full structural causal modeling with very46

few, if any, assumptions or particular knowledge of the dataset. The framework pipeline is applied on47

numerical datasets and can be divided into several steps:48

1. Causal discovery: from a given dataset, we reconstruct the causal network using the MIIC49

algorithm, with consistent separating set search enabled [14], which outputs a CPDAG50

(Completed Partially Directed Acycle Graph).51

2. Transform the MIIC reconstructed network to a Directed Acyclic Graph (DAG). MIIC52

reconstructed graph can contain a mixture of directed and non directed edges. For this step,53

we used the pdag2dag algorithm, present in the pcalg R package [15].54

3. Generate data for nodes that do not have parents (generators or exogenous nodes). This step55

is performed by sampling from the observed marginal distribution of generator nodes.56

4. For each remaining child node Xi in the graph, we apply SR to learn the regression function57

fi linking Pa(Xi) and Xi, with Pa(Xi) being the set of predictors (or parents) of the target58

node Xi. To avoid overly convoluted expressions and to enhance the interpretability of our59

model, we introduce a set of structural constraints (see the supplementary section for more60

insights on pipeline complexity and SR parameters).61

2.4 Comparative approach62

To assess the accuracy of MIIC-SR in estimating the SCM, we compared it to other causal discovery63

algorithms paired with SR. We also used classical Generalized Linear Models (GLM) with interaction64

terms as a baseline, allowing interactions between predictors. Our benchmark included seven causal65

discovery algorithms, with only PC and MIIC (the top performers) used alongside SR or GLM.66

The protocol involved: i) generating training data from a specific SCM; ii) learning graphs (causal67

discovery) and regression formulas (SR); iii) generating synthetic data from the estimated SCMs;68

iv) comparing synthetic data to an unseen test set built from the same SCM. We analyzed various69

sample sizes to evaluate their impact on performance. The full pipeline is shown in Figure S1.70

The synthetic data generated through our pipeline is also benchmarked against leading methods for71

synthetic data generation, such as MIIC-SDG [16] and Synthpop [17] along with a random marginal72

feature generation as reference.73

2.4.1 Synthetic data74

We first analyzed a graph with 2 colliders (Figure 1a), highlighting the critical role of causal discovery75

in accurately deriving a valid SCM, as discussed in the Results section.76

For comparison against other methods, we took into account different tasks and models:77

1. We generated a training and test dataset, based on a defined SCM:78

• Symprod Simpson Graph: a graph inspired by CSuite (Figure 2a) with 7 nodes and 779

edges. The SCMs, reported in Table S1 is non-linear.80
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• Steel toughness: This study uses Weibull-distributed data to predict steel toughness81

[18], with parameter dependencies from a Gaussian copula. The dataset includes 1082

variables, detailed in section C.83

2. We analyzed the Fault Detection Dataset in Photovoltaic Farms from Kaggle [19, 20],84

representing a 250-kW Photovoltaic power plant.85

2.4.2 Performances evaluation86

The comparison between the generated synthetic data and the test set is made through the multivariate87

Wasserstein distance. We used the Sinkhorn regularized version [21].88

3 Results89

To show the importance of causal discovery before regression, we built a network (Figure 1a) and ran90

our pipeline. MIIC and PC correctly identified the parent nodes for A and B, allowing SR to retrieve91

the accurate SCM (Figure 1b). In contrast, without causal discovery, SR mistakenly identified X and92

A as parents of B, violating the SCM causal direction.93

A B

X Z K

(a)

Equation Method SCM

MIIC-SR B = 2.5Z + 2.2K
B = 2.5Z + 2.2K PC-SR B = 2.5Z + 2.2K

SR B = 0.322A − 0.713X

MIIC-SR A = 2.21X + 3.11B
A = 2.21X + 3.11B PC-SR A = 2.21X + 3.11B

SR A = 2.21X + 3.11B

X ∼ N (0, 1)
Z ∼ N (0, 1)
K ∼ N (0, 1)

(b)

Figure 1: (a) Network with 2 colliders. (b) Comparison between true SCM (first column) and
estimated SCM (last column) for the compared methods. Small variations of the constants can
sometimes be observed over multiple executions.

We considered the "Symprod Simpson" network (Figure 2a), with a more complex and non-linear94

SCM. Networks reconstructed by MIIC and PC are shown in Figure 2b and 2c, using 10k samples.95

MIIC correctly retrieves all directed edges, while PC fails to capture the causal association X0 → X296

and X1 → X2. For node X1, the PC algorithm mistakenly identifies X3 as a parent (Figure 2c).97

For the PC network, the GLM equation for X1 includes all 3 identified parents, while instead SR98

correctly excludes X3 and derives the correct regression formula (Table S1). Even with the correct99

network (MIIC case), the linear nature of GLM provides only a linear approximation of the right100

formula, whereas SR captures the exact equation. For node X2, the PC algorithm identifies only101

one association with node Z2, proposing an undirected edge (Figure 2c). This allows PC-GLM and102

PC-SR methods to include only Z2 in the estimation of the causal equation (Table S1). In contrast, the103

MIIC algorithm accurately identifies all parent nodes for X2, allowing both MIIC-SR and MIIC-GLM104

models to find the correct mathematical equation, that is this time linear.105

To assess the stability of our method and the impact of sample size, we conducted the Symprod106

benchmark with sizes 100, 200, 500, 1000, 5000 and 10000, each with 10 iterations. Causal discovery107

performances, measured by precision, recall, and F1 scores, are shown in Figure S2, demonstrating108

the reliability of the MIIC algorithm. We evaluated the Mean Squared Error (MSE) for MIIC-SR’s109

regression tasks using known exogenous variables for each endogenous node in the Symprod Simpson110

Graph. Results are shown in Figure S3. While generalized linear models (GLMs) reach a plateau for111

X1 and X3, indicating their struggle with nonlinear associations, symbolic regression (SR) achieves112

an MSE of 0 at n = 5000. MIIC-SR performs comparably or better than PC-SR for X1 and X3113

across most sample sizes. However, for node X2, even with 10,000 samples, PC-SR fails to obtain114

low MSE due to the PC algorithm’s limitations in identifying the predictors of X2.115

Figure 3 reports the multivariate Wasserstein distance between the generated data and the test set. The116

MIIC-SR algorithm (in black) demonstrates performance comparable to Synthpop and MIIC-SDG,117
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Figure 2: Symprod Simpson Graph (a) and the graph identified by MIIC (b) and PC (c) algorithms.

while outperforming PC-SR. Figure S4 also reports the distance with the training set and shows the118

random method performances as a baseline. It can be noticed that Synthpop exhibits low distances119

from the training set but higher distances from the test set, suggesting a tendency to overfit the120

training data. Similar results have been obtained for the steel toughness dataset, Figure S5, while121

the Photovoltaic Faults dataset, Figure S6, shows some limitations of our model. In these datasets,122

methods show similar performances, with PC capable of generating good-quality data. It is important123

to note that Synthpop and MIIC-SDG do not estimate SCMs, thus lacking the capacity to provide124

fully explainable models capable of performing interventions.125
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Figure 3: Multivariate Wasserstein distance of synthetic data from test data.

4 Discussion126

In this paper, we demonstrate that integrating a state-of-the-art causal discovery algorithm with127

symbolic regression enables accurate estimation of SCMs without making prior assumptions about128

data distribution or model structure. Our results emphasize the importance of causal discovery in129

accurately identifying parent nodes, which is essential to understand causal mechanisms and specify130

predictive models correctly. Moreover, our flexible pipeline allows to incorporate domain-expert131

knowledge, when already estimated feature equations or physical-chemical laws are known.132

From a theoretical perspective, some challenges remain. One of them arises from the class of networks133

found by constraint-based causal discovery methods that do not guarantee the output of a completely134

oriented graph (DAG), but rather a combination of directed and undirected edges, representing a135

class of Markov equivalences [22, 23]. For this reason, multiple DAGs could be derived from the136

same graph, possibly impacting the outcome. Moreover, it is crucial to assess the accuracy of the137

estimated SCMs without relying solely on the evaluation of regression errors or distribution distances.138

In this context, a relevant approach would involve computing distances between estimated and true139

mathematical equations using tree representation-based equations [24]. This would provide a better140

understanding of the accuracy and correctness of the estimated SCMs. Lastly, to further evaluate the141

methodology, it would be useful to test it on more complex systems and real-world datasets.142
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5 Supplementary section205

A Algorithmic pipeline206

Figure S1: Pipeline for the execution and evaluation of the different causal learning and regression
methods.

B Symprod Sympson207

B.1 Symprod Sympson equations208

True SCM Method Estimated SCM

X1 = 2 tanh (2X0) +
1√
10
Z1

MIIC-GLM X1 = 1.458X0 + 0.323Z1 + 0.001X0Z1

MIIC-SR X1 = 2 tanh (2X0) +
1√
10
Z1

PC-GLM X1 = 1.146X0 + 0.453X3 + 0.325Z1 + 0.004X0Z1

−0.005Z1X3 − 0.006X0Z1X3 + 0.001
PC-SR X1 = 2 tanh (2X0) +

1√
10
Z1

X2 = 1
2X0X1 +

1√
2
Z2

MIIC-GLM X2 = 1
2X0X1 +

1√
2
Z2

MIIC-SR X2 = 1
2X0X1 +

1√
2
Z2

PC-GLM X2 = 0.709Z2 + 0.729
PC-SR X2 = Z2 + 0.726

X3 = tanh
(
3
2X0

)
+
√

3
10Z3

MIIC-GLM X3 = 0.689X0 +
√

3
10Z3

MIIC-SR X3 = tanh
(
3
2X0

)
+

√
3
10Z3

PC-GLM X3 = 0.689X0 +
√

3
10Z3

PC-SR X3 = tanh
(
3
2X0

)
+

√
3
10Z3

Z1 ∼ t3, Z2 ∼ Laplace(1),
Z3 ∼ N (0, 1), X0 ∼ N (0, 1)

Table S1: Symprod Sympson equations. In general, the algorithm yields approximations that are
remarkably close to the true constants of the problem, although it does not recover the exact values
themselves.

B.2 Causal Discovery Algorithms Performances209

To assess the performance of the causal discovery algorithms, we evaluate their accuracy using210

key metrics: Skeleton Precision (or Positive Predictive Value) Prec = TP/(TP + FP ), Recall211

(or Sensitivity) Rec = TP/(TP + FN), and F -score = (2 × Prec×Rec)/(Prec+Rec), the212

harmonic mean between Prec and Rec. True Positives (TP) refer to correctly identified causal213
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relationships, False Positives (FP) are incorrectly identified relationships, and False Negatives (FN)214

are missed relationships.215
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Figure S2: Evaluation of Precision, Recall, and F-score for MIIC (black line), PC (second best
algorithm, in yellow), DirectLINGAM, GOLEM, GraNDAG, ICALiNGAM and NoterarsNonlinear
algorithms in multiple sample sizes (100, 200, 500, 1000, 5000, and 10000) in the Symprod Simpson
Graph. Median values with first and third quartiles as error bars are reported.

B.3 Predicting endogenous variables from exogenous ones216

In this part we report MSE estimations for endogenous nodes. Estimated formulas for SR and GLM217

are used from the proposed pipeline.218
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Figure S3: Evaluation of MSE in predicting X1, X2, and X3 for the different methods and multiple
sample sizes (100, 200, 500, 1000, 5000, and 10000) in the Symprod Simpson Graph. Median values
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B.4 Distance of synthetic data from training and test data219
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Figure S4: Multivariate Wasserstein distance of synthetic data from training and test data on the
Symprod dataset for sample size 100, 200, 500, 1000 and 5000. Random method corresponds to
generating each feature using uniform marginal distribution over the empirical range of the variable.

C Steel toughness220

The simulation models material toughness as a function of temperature, incorporating parameter221

dependencies through a Gaussian copula.222

• Temperature distribution: simulated from a uniform distribution over [−200, 50] °C.223

• Parameter generation: (α0, α1, λ1, λ3) follow fitted normal distributions based on empiri-224

cal data.225

• Dependency modeling: A Gaussian copula ensures realistic correlations between these226

parameters.227

• Key computations:228

– K0 (baseline toughness) is modeled as a linear function of temperature.229

– Ku (ultimate toughness) follows an exponential temperature-dependent model.230

– failure probabilities are estimated using the Weibull model.231

– The expected toughness Y is computed using the gamma function.232

Table S2 provides an overview of the input parameters (features) and their associated marginal233

distributions, complemented by a histogram to visualize the simulated values.

Features Description Distribution
T Simulated temperature range Uniform distribution : U(−200, 50)
K0 Initial toughness parameter Linear relationship: K0 = α0 + α1 · T
Ku Ultimate toughness parameter Exp. relationship: Ku = λ0 + λ1 · exp(λ3 · T )
m Shape parameter for Weibull failure model Log-normal distribution
α0 Intercept of linear toughness model Normal: N (25, 3)
α1 Slope of linear toughness model Normal: N (0.05, 0.01)
λ1 Parameter for exponential toughness model Normal: N (10, 2)
λ3 Parameter for exponential toughness model Normal: N (0.01, 0.002)
Y Simulated toughness values Derived from K0 and Ku

Table S2: Description of features and their distributions

234
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C.1 Distance of synthetic data from training and test data235

Multivariate Wasserstein distance of synthetic data from training and test data on the steel toughness236

dataset.
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Figure S5: Multivariate Wasserstein distance of synthetic data from training and test data on the steel
toughness dataset for sample size 500, 1000 and 5000.

237

D Photovoltaic faults238

D.1 Distance of synthetic data from training and test data239
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Figure S6: Multivariate Wasserstein distance of synthetic data from training and test data on the
Photovoltaic Faults dataset for sample size 500. The estimation of larger samples sizes is not possible
due to the size of the data. To be able to compare the best performing algorithms, MIIC-GLM and
PC-GLM are not shown in the picture due to very large Wasserstein distance estimation.
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E Pipeline complexity240

The complexity of the SCM estimation lies primarily within the SR phase. The MIIC algorithm241

has already been applied in relatively large real scenarios (100 variables, 10,000 samples) and runs242

efficiently in a few minutes. The complexity of SR estimation is associated with the connectivity of243

the resulting causal network and to the choice of the regression parameters.244

F Implementation Details of PySR245

In the Symbolic Regression experiments, we employed the PySR package with the parameters246

reported in Table S3.247

Certain functions are penalized by assigning them a high complexity score, and we impose nested248

constraints to limit the depth of function compositions. For instance, an expression such as249

exp(tanh(x))sin2(x) is highly unlikely to be selected, while repeated compositions like cos ◦ cos ◦ cos250

or sin ◦ cos ◦ cos are explicitly prohibited. This ultimately leads to more interpretable functions,251

more likely to have physical meaning, while avoiding overly complex expressions. Furthermore, for252

numerical stability, we extend all partially defined functions – such as square root, logarithm, or the253

exponentiation x, y 7→ xy – by zero outside their domain of definition.254

Here, in the extra_sympy_mappings category, s_safe_sqrt, s_safe_log, and s_safe_pow are custom255

SymPy-defined functions for the square root, logarithm, and power operations, respectively. These256

functions extend the domain of their standard counterparts to ensure numerical stability.257

Moreover, to ensure that the magnitudes of the different loss values are comparable and to prevent258

issues with early stopping triggered by the early_stop_condition, we normalize the data prior to259

the regression phases.260
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Parameter Description

random_state 42

niterations 200

populations 15

population_size 100

maxsize 10

binary_operators ["+", "-", "*", "/", "SafePow(x, y) = (x
< zero(x) && y % one(y) != 0) ? zero(x) :
xˆy"]

unary_operators ["sin", "cos", "tan", "sinh", "cosh", "tanh",
"exp", "neg", "inv", "square", "abs",
"floor", "ceil", "round", "SafeLog(x)
= log(x < convert(typeof(x), 1e-10)
? convert(typeof(x), 1e-10) : x)",
"SafeSqrt(x) = x < zero(x) ? zero(x) :
sqrt(x)"]

extra_sympy_mappings {"sin": sin, "cos": cos, "tan": tan,
"sinh": sinh, "cosh": cosh, "tanh":
tanh, "exp": exp, "square": lambda x:
x**2, "abs": abs, "floor": sympy.floor,
"ceil": sympy.ceiling, "round": lambda x:
sympy.Function("round")(x), "inv": lambda
x: 1/x, "neg": lambda x: -x, "SafeSqrt":
s_safe_sqrt, "SafeLog": s_safe_log,
"SafePow": s_safe_pow
}

complexity_of_operators {"+": 1, "-": 1, "*": 1, "/": 1, "neg":
1, "inv": 1, "SafeSqrt": 1.5, "square":
1.5, "abs": 2, "exp": 2, "SafeLog": 2,
"sin": 2, "cos": 2, "tan": 2, "SafePow":
2, "sinh": 2.5, "cosh": 2.5, "tanh":
2.5, "floor": 3, "ceil": 3, "round": 3}

nested_constraints { "sin": {"sin": 1, "cos": 1, "tan":
1}, "cos": {"sin": 1, "cos": 1, "tan":
1}, "tan": {"sin": 1, "cos": 1, "tan":
1}, "sinh": {"sinh": 1, "cosh": 1,
"tanh": 1}, "cosh": {"sinh": 1, "cosh":
1, "tanh": 1}, "tanh": {"sinh": 1,
"cosh": 1, "tanh": 1}, "SafeLog":
{"SafeLog": 1} }

elementwise_loss loss(prediction, target) = (prediction -
target)^2

early_stop_condition stop_if(loss, complexity) = loss < 1e-10 &&
complexity < 10

Table S3: PySR Parameters
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