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Abstract

Estimating the set of mathematical equations from observational data for complex
systems with nonlinear relationships presents a significant challenge, particularly
when the model specification is not straightforward and the causal graph is not
known. We propose a comprehensive framework that estimates a Structural Causal
Model (SCM) from data, requiring no prior information on the underlying causal
graph. Our framework incorporates MIIC (Multivariate Information-Based Induc-
tive Causation), a well-established causal discovery algorithm, with Symbolic Re-
gression (SR). Our results demonstrate that the association of MIIC and Symbolic
Regression shows at least comparable results in SCM estimation on the studied
benchmarks with the advantage of providing an interpretable causal model.

1 Introduction

To gain a deeper understanding of complex systems, such as those found in industries and healthcare,
a causally oriented approach can be employed to identify and characterize the causal relationships
among the components of these systems. These relations can be represented using Structural Causal
Models (SCMs), which facilitate modeling and counterfactual reasoning, enabling the evaluation of
the impact of interventions. SCMs have the potential to generate completely synthetic data, which
can be of critical importance across various fields and in multiple scenarios.

However, estimating SCMs from data is challenging due to non-linear relationships and collinearity
among variables. This necessitates robust performance in two tasks: causal discovery, which
involves representing causal relationships through graphs, and structural causal modeling, which
mathematically defines these relationships.

Traditional regression methods often ignore causal directions, predicting upstream features from
downstream variables that do not influence them. To find reasonable SCMs and minimize this risk,
we introduce the MIIC-SR framework, combining the MIIC causal discovery algorithm with Genetic
Programming-Based Symbolic Regression. It estimates both linear and non-linear equations to build
an effective, interpretable data-driven simulator where each feature is a function of its causal parents.

2 Material and Methods

2.1 Causal discovery algorithms

The causal discovery task consists of inferring graphical networks from observational data and identi-
fying direct and potentially causal relations between variables. We compared multiple state-of-the-art
and recent algorithms: DirectLingam [1]], [CALINGAM [2f], PC algorithm [3]], NotearsNonlinear
[4], GOLEM [5], GraNDAG [6] and MIIC [7} 8]. In particular, MIIC has proven to be effective
across diverse data distributions without requiring prior assumptions. It uses a constraint-based,
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information-theoretic approach to efficiently select conditioning sets, addressing limitations of the
PC algorithm. MIIC is robust to sampling noise, needs no hyperparameter tuning, and is available as
an open-source web server or R package.

2.2 Symbolic Regression

Symbolic Regression (SR) is a data-driven method for discovering interpretable mathematical expres-
sions linking input variables to a target output, without assuming predefined functional forms [9].
Unlike traditional techniques relying on fixed forms (e.g., linear or polynomial), SR uses evolutionary
algorithms to explore a broad space of models. The most effective SR methods are based on Genetic
Programming (GP), a metaheuristic inspired by biological evolution that enables efficient convergence
to optimal solutions [[10}|11}[12]. SR estimation via genetic programming was performed using the
PySR package [[13].

2.3 MIIC-SR method

We introduce a robust framework that uses MIIC and SR for full structural causal modeling with very
few, if any, assumptions or particular knowledge of the dataset. The framework pipeline is applied on
numerical datasets and can be divided into several steps:

1. Causal discovery: from a given dataset, we reconstruct the causal network using the MIIC
algorithm, with consistent separating set search enabled [[14], which outputs a CPDAG
(Completed Partially Directed Acycle Graph).

2. Transform the MIIC reconstructed network to a Directed Acyclic Graph (DAG). MIIC
reconstructed graph can contain a mixture of directed and non directed edges. For this step,
we used the pdag2dag algorithm, present in the pcalg R package [15].

3. Generate data for nodes that do not have parents (generators or exogenous nodes). This step
is performed by sampling from the observed marginal distribution of generator nodes.

4. For each remaining child node X in the graph, we apply SR to learn the regression function
fi linking Pa(X;) and X;, with Pa(X;) being the set of predictors (or parents) of the target
node X;. To avoid overly convoluted expressions and to enhance the interpretability of our
model, we introduce a set of structural constraints (see the supplementary section for more
insights on pipeline complexity and SR parameters).

2.4 Comparative approach

To assess the accuracy of MIIC-SR in estimating the SCM, we compared it to other causal discovery
algorithms paired with SR. We also used classical Generalized Linear Models (GLM) with interaction
terms as a baseline, allowing interactions between predictors. Our benchmark included seven causal
discovery algorithms, with only PC and MIIC (the top performers) used alongside SR or GLM.
The protocol involved: i) generating training data from a specific SCM; ii) learning graphs (causal
discovery) and regression formulas (SR); iii) generating synthetic data from the estimated SCMs;
iv) comparing synthetic data to an unseen test set built from the same SCM. We analyzed various
sample sizes to evaluate their impact on performance. The full pipeline is shown in Figure
The synthetic data generated through our pipeline is also benchmarked against leading methods for
synthetic data generation, such as MIIC-SDG [16] and Synthpop [17] along with a random marginal
feature generation as reference.

24.1 Synthetic data

We first analyzed a graph with 2 colliders (Figure[Ta)), highlighting the critical role of causal discovery
in accurately deriving a valid SCM, as discussed in the Results section.
For comparison against other methods, we took into account different tasks and models:

1. We generated a training and test dataset, based on a defined SCM:

+ Symprod Simpson Graph: a graph inspired by CSuite (Figure [2a) with 7 nodes and 7
edges. The SCMs, reported in Table [S1|is non-linear.
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 Steel toughness: This study uses Weibull-distributed data to predict steel toughness
[[18]], with parameter dependencies from a Gaussian copula. The dataset includes 10
variables, detailed in section[C]

2. We analyzed the Fault Detection Dataset in Photovoltaic Farms from Kaggle [19, 20],
representing a 250-kW Photovoltaic power plant.

2.4.2 Performances evaluation

The comparison between the generated synthetic data and the test set is made through the multivariate
Wasserstein distance. We used the Sinkhorn regularized version [21]].

3 Results

To show the importance of causal discovery before regression, we built a network (Figure and ran
our pipeline. MIIC and PC correctly identified the parent nodes for A and B, allowing SR to retrieve
the accurate SCM (Figure [Ib). In contrast, without causal discovery, SR mistakenly identified X and
A as parents of B, violating the SCM causal direction.

Equation Method SCM
MIIC-SR B =257Z+22K
@ B =257+ 22K PC-SR B =257 +22K
SR B =0.322A — 0.713X
MIIC-SR A =2.21X 4+ 3.11B
A=221X+3.11B PC-SR A=221X +3.11B
e e SR A =221X +3.11B
X ~ N(0,1)
Z ~ N(0,1)
(2) K ~ N(0,1)
(b)

Figure 1: (a) Network with 2 colliders. (b) Comparison between true SCM (first column) and
estimated SCM (last column) for the compared methods. Small variations of the constants can
sometimes be observed over multiple executions.

We considered the "Symprod Simpson" network (Figure 2a), with a more complex and non-linear
SCM. Networks reconstructed by MIIC and PC are shown in Figure 2bland [2c] using 10k samples.
MIIC correctly retrieves all directed edges, while PC fails to capture the causal association Xy — X5
and X; — X,. For node X7, the PC algorithm mistakenly identifies X3 as a parent (Figure [2c).
For the PC network, the GLM equation for X includes all 3 identified parents, while instead SR
correctly excludes X5 and derives the correct regression formula (Table[ST). Even with the correct
network (MIIC case), the linear nature of GLM provides only a linear approximation of the right
formula, whereas SR captures the exact equation. For node X5, the PC algorithm identifies only
one association with node Z, proposing an undirected edge (Figure[2c). This allows PC-GLM and
PC-SR methods to include only Z5 in the estimation of the causal equation (Table[ST)). In contrast, the
MIIC algorithm accurately identifies all parent nodes for X5, allowing both MIIC-SR and MIIC-GLM
models to find the correct mathematical equation, that is this time linear.

To assess the stability of our method and the impact of sample size, we conducted the Symprod
benchmark with sizes 100, 200, 500, 1000, 5000 and 10000, each with 10 iterations. Causal discovery
performances, measured by precision, recall, and F1 scores, are shown in Figure demonstrating
the reliability of the MIIC algorithm. We evaluated the Mean Squared Error (MSE) for MIIC-SR’s
regression tasks using known exogenous variables for each endogenous node in the Symprod Simpson
Graph. Results are shown in Figure [S3] While generalized linear models (GLMs) reach a plateau for
X, and X3, indicating their struggle with nonlinear associations, symbolic regression (SR) achieves
an MSE of 0 at n = 5000. MIIC-SR performs comparably or better than PC-SR for X; and X3
across most sample sizes. However, for node X5, even with 10,000 samples, PC-SR fails to obtain
low MSE due to the PC algorithm’s limitations in identifying the predictors of Xos.

Figure [3|reports the multivariate Wasserstein distance between the generated data and the test set. The
MIIC-SR algorithm (in black) demonstrates performance comparable to Synthpop and MIIC-SDG,
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Figure 2: Symprod Simpson Graph (a) and the graph identified by MIIC (b) and PC (c) algorithms.

while outperforming PC-SR. Figure|S4]also reports the distance with the training set and shows the
random method performances as a baseline. It can be noticed that Synthpop exhibits low distances
from the training set but higher distances from the test set, suggesting a tendency to overfit the
training data. Similar results have been obtained for the steel toughness dataset, Figure [S5] while
the Photovoltaic Faults dataset, Figure @ shows some limitations of our model. In these datasets,
methods show similar performances, with PC capable of generating good-quality data. It is important
to note that Synthpop and MIIC-SDG do not estimate SCMs, thus lacking the capacity to provide
fully explainable models capable of performing interventions.

Test
)
E 3.0- °
g
% $ $ % . Method
E & . E3 mic-sr
o MIIC-GLM
c & o
8B 1.0- é olle MIIC-SDG
% e 53 E3 Pc-sr
c -
< $ é é PC-GLM
E 5 E Synthpop
)
0
g De o
=03
100 200 500 1000 5000
Sample size

Figure 3: Multivariate Wasserstein distance of synthetic data from test data.

4 Discussion

In this paper, we demonstrate that integrating a state-of-the-art causal discovery algorithm with
symbolic regression enables accurate estimation of SCMs without making prior assumptions about
data distribution or model structure. Our results emphasize the importance of causal discovery in
accurately identifying parent nodes, which is essential to understand causal mechanisms and specify
predictive models correctly. Moreover, our flexible pipeline allows to incorporate domain-expert
knowledge, when already estimated feature equations or physical-chemical laws are known.

From a theoretical perspective, some challenges remain. One of them arises from the class of networks
found by constraint-based causal discovery methods that do not guarantee the output of a completely
oriented graph (DAG), but rather a combination of directed and undirected edges, representing a
class of Markov equivalences [22} [23]]. For this reason, multiple DAGs could be derived from the
same graph, possibly impacting the outcome. Moreover, it is crucial to assess the accuracy of the
estimated SCMs without relying solely on the evaluation of regression errors or distribution distances.
In this context, a relevant approach would involve computing distances between estimated and true
mathematical equations using tree representation-based equations [24]]. This would provide a better
understanding of the accuracy and correctness of the estimated SCMs. Lastly, to further evaluate the
methodology, it would be useful to test it on more complex systems and real-world datasets.
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205 5 Supplementary section

206 A Algorithmic pipeline

MIIC
C
Training GLM
Set
DirectLINGAM —
D Prediction
ata and

Generation ICALINGAM Evaluation

NotearsNonlinear

sCM
Estimation

I'I. 1

GOLEM

Test Set

Figure S1: Pipeline for the execution and evaluation of the different causal learning and regression
methods.
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B.1 Symprod Sympson equations

True SCM Method Estimated SCM

MIIC-GLM  X; = 1.458X( + 0.323Z; + 0.001X, 2,
— 1
Xl — 2tanh (2X0) + 11021 MIIC-SR X1 = 2tanh (2X0) + \/—TOZl
Y X1 =1.146 X, + 0.453X3 + 0.3257; + 0.004X, 2,

PC-GLM 75 0052, X5 — 0.006 X021 X5 + 0.001
PC-SR X1 = 2tanh (2Xo) + =72
MIIC-GLM X, = 1 XX, + %ZQ

Xy = LXo X, + % Z MIIC-SR Xo = $Xo X1 + %ZQ
PC-GLM X, = 0.709Z5 + 0.729
PC-SR Xy = Zy +0.726

MIIC-GLM X3 = 0.689X, + 1/ Z3
X3 =tanh (3X0) + /{543 MIC-SR  X; = tanh (3Xo) + /32

PC-GLM X3 =0.689X0+ /223

PC-SR X3 = tanh (3X,) + \/%23

Zy ~t3, Zy ~ Laplace(1),
Zy ~ N(0,1), Xo ~ N(0, 1)

Table S1: Symprod Sympson equations. In general, the algorithm yields approximations that are
remarkably close to the true constants of the problem, although it does not recover the exact values
themselves.

B.2 Causal Discovery Algorithms Performances

To assess the performance of the causal discovery algorithms, we evaluate their accuracy using
key metrics: Skeleton Precision (or Positive Predictive Value) Prec = TP/(TP + FP), Recall
(or Sensitivity) Rec = TP/(TP + FN), and F-score = (2 x Prec x Rec)/(Prec+ Rec), the
harmonic mean between Prec and Rec. True Positives (TP) refer to correctly identified causal
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relationships, False Positives (FP) are incorrectly identified relationships, and False Negatives (FN)

are missed relationships.

precision recall
- MIIC
10} PC
<] DirectLiNGAM
$050 ~ GOLEM
GraNDAG
- ICALINGAM
y -~ NotearsNonlinear
ST 0 O O O O® O OO OO « > O O O
PSS 0 S O QO 0 S O PP, S
A (,9\90 '»'1/<o %0\90 \,'L%Q%Q\,Qo

Sample size

Figure S2: Evaluation of Precision, Recall, and F-score for MIIC (black line), PC (second best
algorithm, in yellow), DirectLINGAM, GOLEM, GraNDAG, ICALiNGAM and NoterarsNonlinear
algorithms in multiple sample sizes (100, 200, 500, 1000, 5000, and 10000) in the Symprod Simpson
Graph. Median values with first and third quartiles as error bars are reported.

B.3 Predicting endogenous variables from exogenous ones

In this part we report MSE estimations for endogenous nodes. Estimated formulas for SR and GLM
are used from the proposed pipeline.

X1 X2 X3

0.6
2 S Method
07 0.4 A s = MiIC=oLM
W o o
7 PC-SR
= - PC-GLM
0.2-
4 SN N S PN S
0.0- ] — W ) P VU Y

O O © O O ©® O O L O O © O O O ©® ©
PP, PP L, TSP S
VP OLESS YV OILSSE YV IOLSS
Sample size

Figure S3: Evaluation of MSE in predicting X;, X5, and X3 for the different methods and multiple
sample sizes (100, 200, 500, 1000, 5000, and 10000) in the Symprod Simpson Graph. Median values

with first and third quartiles as error bars are reported.

B.4 Distance of synthetic data from training and test data
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Figure S4: Multivariate Wasserstein distance of synthetic data from training and test data on the
Symprod dataset for sample size 100, 200, 500, 1000 and 5000. Random method corresponds to
generating each feature using uniform marginal distribution over the empirical range of the variable.

C Steel toughness

The simulation models material toughness as a function of temperature, incorporating parameter
dependencies through a Gaussian copula.

 Temperature distribution: simulated from a uniform distribution over [—200, 50] °C.

* Parameter generation: (o, a1, A1, A3) follow fitted normal distributions based on empiri-
cal data.

* Dependency modeling: A Gaussian copula ensures realistic correlations between these
parameters.

* Key computations:

K (baseline toughness) is modeled as a linear function of temperature.

K, (ultimate toughness) follows an exponential temperature-dependent model.
failure probabilities are estimated using the Weibull model.
The expected toughness Y is computed using the gamma function.

Table [S2] provides an overview of the input parameters (features) and their associated marginal
distributions, complemented by a histogram to visualize the simulated values.

Features | Description Distribution
T Simulated temperature range Uniform distribution : /(—200, 50)
Ky Initial toughness parameter Linear relationship: Ko = ag + a1 - T
K, Ultimate toughness parameter Exp. relationship: K,, = Ao + A1 - exp(A3 - T)
m Shape parameter for Weibull failure model | Log-normal distribution
ag Intercept of linear toughness model Normal: N(25, 3)
Qq Slope of linear toughness model Normal: A/(0.05,0.01)
A1 Parameter for exponential toughness model | Normal: A/(10, 2)
A3 Parameter for exponential toughness model | Normal: A/(0.01, 0.002)
Y Simulated toughness values Derived from K and K,

Table S2: Description of features and

their distributions



https://en.wikipedia.org/wiki/Gamma_function

235 C.1 Distance of synthetic data from training and test data

236 Multivariate Wasserstein distance of synthetic data from training and test data on the steel toughness

dataset.
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Figure S5: Multivariate Wasserstein distance of synthetic data from training and test data on the steel

toughness dataset for sample size 500, 1000 and 5000.

237

238 D Photovoltaic faults

239 D.1 Distance of synthetic data from training and test data

Wasserstein distance multivariate
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Figure S6: Multivariate Wasserstein distance of synthetic data from training and test data on the
Photovoltaic Faults dataset for sample size 500. The estimation of larger samples sizes is not possible
due to the size of the data. To be able to compare the best performing algorithms, MIIC-GLM and
PC-GLM are not shown in the picture due to very large Wasserstein distance estimation.
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E Pipeline complexity

The complexity of the SCM estimation lies primarily within the SR phase. The MIIC algorithm
has already been applied in relatively large real scenarios (100 variables, 10,000 samples) and runs
efficiently in a few minutes. The complexity of SR estimation is associated with the connectivity of
the resulting causal network and to the choice of the regression parameters.

F Implementation Details of PySR

In the Symbolic Regression experiments, we employed the PySR package with the parameters
reported in Table[S3]

Certain functions are penalized by assigning them a high complexity score, and we impose nested
constraints to limit the depth of function compositions. For instance, an expression such as
exp(tanh(x))Sin2 (#) is highly unlikely to be selected, while repeated compositions like cos o cos o cos
or sin o cos o cos are explicitly prohibited. This ultimately leads to more interpretable functions,
more likely to have physical meaning, while avoiding overly complex expressions. Furthermore, for
numerical stability, we extend all partially defined functions — such as square root, logarithm, or the
exponentiation x, y — x¥ — by zero outside their domain of definition.

Here, in the extra_sympy_mappings category, s_safe_sqrt, s_safe_log, and s_safe_pow are custom
SymPy-defined functions for the square root, logarithm, and power operations, respectively. These
functions extend the domain of their standard counterparts to ensure numerical stability.

Moreover, to ensure that the magnitudes of the different loss values are comparable and to prevent
issues with early stopping triggered by the early_stop_condition, we normalize the data prior to
the regression phases.

11



Parameter Description

random_state 42

niterations 200

populations 15

population_size 100

maxsize 10

binary_operators [||+n, lI_Il’ ll*ll, n/n, "SafePow(X, y) = (X
< zero(x) && y ’% one(y) != 0) ? zero(x)
X"yll]

unary_operators ["sin", "cos", "tan", "sinh", "cosh", "tanh",
"exp", unegn’ "inv", "square", "abs",
"floor", "ceil", "round", "SafeLog(x)

= log(x < convert(typeof(x), 1le-10)
7 convert(typeof(x), le-10) : x)",
"SafeSqrt(x) = x < zero(x) 7 zero(x)

sqrt(x)"]

extra_sympy_mappings "sin": sin, "cos": cos, "tan": tan,
"sinh": sinh, "cosh": cosh, "tanh":
tanh, "exp": exp, "square": lambda x:
x**2, "abs": abs, "floor": sympy.floor,
"ceil": sympy.ceiling, "round": lambda x:

sympy .Function("round") (x), "inv": lambda
x: 1/x, "neg": lambda x: -x, "SafeSqrt":

s_safe_sqrt, "Safelog": s_safe_log,
"SafePow": s_safe_pow
}

complexity_of_operators {"+": 1, "-": 1, "x": 1, "/": 1, "neg":

1, "inv": 1, "SafeSqrt": 1.5, "square":
1.5, "abs": 2, "exp": 2, "Safelog": 2,
"sin": 2, "cos": 2, "tan": 2, "SafePow":
2, "sinh": 2.5, "cosh": 2.5, "tanh":

2.5, "floor": 3, "ceil": 3, "round": 3}

nested_constraints { "sin": A{"sin": 1, "cos": 1, "tan":
1}, "cos": A{"sin": 1, "cos": 1, "tan":
1}, "tan": A{"sin": 1, "cos": 1, "tan":

1}, "sinh": {"sinh": 1, "cosh": 1,
"tanh": 1}, "cosh": <{"sinh": 1, "cosh":
1, "tanh": 1}, "tanh": {"sinh": 1,
"cosh": 1, "tanh": 1}, "Safelog":
{"SafelLog": 1} }

elementwise_loss loss(prediction, target) = (prediction -
target) "2
early_stop_condition stop_if (loss, complexity) = loss < le-10 &&

complexity < 10

Table S3: PySR Parameters
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